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Abstract

Coherent structures in turbulent flows provide a means of understanding turbulence in terms
of large organised motions. Understanding the mechanism of formation of coherent struc-
tures can be helpful in suppressing or enhancing the turbulence in a flow by means of active
or passive control devices. Knowledge of the Reynolds number scaling of the size and
energy content of coherent structures can extend the knowledge to high Reynolds number
flows, which are out of reach of the present computational and experimental facilities.

In this thesis, linear amplification and eigenvalue stability analyses are performed by lin-
earising the Navier–Stokes or Reynolds-averaged Navier–Stokes (RANS) equations over the
mean flow profiles in several wall-bounded turbulent shear flows. It is investigated whether
the linear optimal modes or the leading eigenmodes approximate the coherent structures
in fully nonlinear turbulent flows. This is done by comparing various kinematic properties
of the optimal modes, such as the shape and energy spectra, with those of the observed
coherent structures in turbulent channel and pipe flows in the first half of the thesis.

The use of the linearised Navier–Stokes equations in the regions of high mean shear in
the flows is justified based on rapid distortion theory. In the linearised RANS equations-
based analysis, turbulence models are used to account for the effect of wave-induced per-
turbations in the Reynolds stress on the behaviour of small external wave motions. The
turbulence models used in this thesis are the eddy viscosity model (EVM) and the explicit
algebraic Reynolds stress model (EARSM). The focus of this thesis is to investigate whether
this effect of wave-induced perturbations in the Reynolds stress needs to be included in sta-
bility analysis of wall-bounded turbulent flows.

The linear amplification analysis based on the Navier–Stokes equations finds three main
types of structures in turbulent channel flows. The first type are the small streamwise
wavelength (λ+

x = 200− 800) structures, which are found to scale in inner units and have
preferred spanwise wavelength equal to around one hundred wall-units. These properties
match well with those of observed near-wall structures. The second type are the interme-
diate streamwise wavelengths (from λ+

x > 800 to λx < 3) structures which correspond to
hairpin vortical and large-scale streaky like structures. The peak in energy amplification in



x

this wavelength range found from the analysis matches well with that from DNS. Various
kinematic properties, such as the inclination angle of streaks with the wall, also match with
those of large-scale-motions (LSMs) observed in experiments. The third type are the large
streamwise wavelength (λx ≥ 6) structures. The preferred spanwise wavelength of these
structures (λz|peak ≈ 2), their scaling in outer units, and the fact that they extend to the wall
match with the observed features of very-large-scale-motions (VLSMs). All these results
show that the most optimal modes obtained from the linearised Navier–Stokes equations,
without any turbulence model or eddy viscosity, share many important features with those
of observed coherent structures in turbulent channel flows.

In comparison, the results from the EVM- and EARSM-based linear amplification anal-
yses find only two types of coherent structures. One type are of the small wavelengths,
which correspond to the near-wall structures, and the other type are of the large wavelengths,
which correspond to the VLSMs. These analyses, however, find minima in energy spectra
in the intermediate wavelength region, where DNS and the Navier–Stokes equations-based
analysis find maxima in energy spectra.

In axially rotating turbulent pipe flows, it is found from the linearised Navier–Stokes
equations-based analysis that rotation causes the widening of streaks and prevents the for-
mation of quasi-streamwise vortices. These results match well with observations from DNS,
which further shows the usefulness of the linearised Navier–Stokes equations.

In the second part of the thesis, stability analyses based on the linearised Navier–Stokes
and RANS equations are applied in more complex flows. Based on the results from the sta-
bility analyses for flows in gas-turbine systems, it is found that for such flows the inclusion
of turbulence models in stability analysis has no significant qualitative effect on the results.
This is because these instabilities are driven by regions of high mean shear for which anal-
ysis based on the linearised Navier–Stokes equations is sufficient. It is also found from
stability analysis that an expansion at the nozzle exit and swirl in the flow are destabilising,
and therefore increase hydrodynamic instability.

Based on the preliminary comparisons of stability results and observations from DNS
in Taylor-Couette flows, it is again concluded that the linearised Navier–Stokes equations-
based analysis is better at capturing intermittent coherent structures as compared to the
linearised RANS equations-based analysis.

It is concluded in this thesis that the linearised Navier–Stokes equations-based analysis,
which does not require any turbulence model, can be used to find information about coherent
structures in high mean shear flows, such as the flows in gas-turbine fuel-injectors or wall-
bounded turbulent flows.
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Chapter 1

Introduction

“Coherent Structures are the embodiment of our desire to find order in apparent disorder."

— A. K. M. Fazle Hussain [13]

One of the principal approaches in the study of turbulence is to understand it in terms of
elementary large organised motions, which are known as coherent structures [14]. Although,
there is no unanimously accepted definition of coherent structures, various researchers have
explained them from their perspective. From a dynamical point of view, coherent structures
are characterised as the deterministic aspect of turbulence, the other aspect of turbulence
being stochastic [15–17]. For the purpose of quantitative measurements, Hussain (1986)
[13] defined a coherent structure as a connected turbulent fluid mass with instantaneously
phase-correlated vorticity over its spatial extent. A simple and appealing definition is given
by Adrian (2007) [14], according to which coherent structures are large organised motions
that persist for a long time. There is an emphasis on their persistence in time. Fluid con-
tinuity always ensures some degree of spatial coherence, but only those structures that live
long enough are caught in flow visualisations and contribute significantly to the mean flow
statistics to be important [14].

The idea to understand turbulence in terms of coherent structures receives particular at-
tention because it provides much desired properties of universality and determinism to tur-
bulent flows. For example all wall-bounded flows, such as flat-plate boundary layer flows,
channel flows, and pipe flows, have similar near-wall vortical and streaky structures. The
most prominent work in the direction of unifying turbulent flows based on experimental ob-
servations on coherent structures is of Townsend (1976) [18]. The main features of turbulent
flow in wakes, jets, mixing zones, pipes, channels, boundary layers, and between rotating
cylinders have been illuminated based on the principles developed in the book [18].
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More recently, various simplified approaches have been developed to model coherent
structures (summarised in Section 1.2). These simplified approaches provide a way to ex-
tend the understanding of turbulence to Reynolds numbers which are beyond the present
computational and experimental resources, and their predictive properties provide a basis
for developing active- or passive-control mechanisms for enhancing or reducing turbulence
in the corresponding flows. One type of such simplified approaches that is based on the
linearised Navier–Stokes or RANS equations is the topic of this study. Various energy am-
plification analyses, based on either the linearised Navier–Stokes or the linearised RANS
equations, are developed and applied to extract coherent structures in a number of wall-
bounded shear flows. The purpose of this study is to understand which of the energy ampli-
fication analyses is best suited to study different wall-bounded shear flows.

1.1 Coherent structures in turbulent shear flows

The literature on coherent structures, or large eddies, observed in turbulent shear flows is
enormous. Townsend (1951) [19] were the first to recognise the presence of coherent struc-
tures in wall-turbulence. Inspired by the work of Townsend, Grant (1958) [20] also found
large organised eddies in a wake flow behind a circular cylinder and in a flat plate boundary
layer flow. Kline et al. (1967) [21] were the very first researchers to do an extensive visual
and quantitative research on coherent structures in the near-wall region in boundary layer
flows. They reported the formation of low-speed streaks by a lift-up mechanism, and also
reported that average spanwise spacing between the streaks is nearly 100 wall units. This
result on the spanwise spacing has been confirmed by many researchers [22–27], Smith and
Metzler (1983) [27] reported 100 wall units to be the average and 80 wall units to be the
most probable spanwise spacing.

Other structures found in wall turbulence are hairpin vortices [28–30] and turbulent
bulges in the outer layer of the turbulent boundary layer [31]. With the advancement in
experimental facilities, such as of particle image velocimetry and laser doppler velocime-
try, many large coherent structures in the outer layer of wall turbulence are captured and
quantitatively described. Large-scale-motions (LSM), which are eddies of streamwise ex-
tent of around 1–3 times the characteristic flow dimension (such as boundary layer thickness
or channel half-width) are found and explained by many researchers in a recent few years
[6, 7, 14, 32–35]. Structures larger than LSMs, with streamwise extent of up to 15-20 times
the characteristic flow dimension, have also been found and their mechanism of formation
has been speculated in Refs. [6, 14, 32, 34–38]. There are several notable reviews on coher-
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ent structures in wall turbulence which can be referred for further reading [39–43]. Apart
from wall-turbulence coherent structures have been reported in several free shear turbulent
flows as well [44–47].

1.2 Simplified approaches for extraction of coherent struc-
tures

In the turbulent regime flows become very sensitive to initial conditions and random per-
turbations. Consequently, instantaneous flow solutions considered in isolation provide little
insight about the flow dynamics. In such cases, simplified approaches based on the govern-
ing Navier–Stokes equations or the Reynolds-averaged Navier–Stokes equations have been
developed to understand the flow dynamics, such as the transition to turbulence, mechanism
of the formation of organised coherent structures, and their sustaining mechanisms in appar-
ently disorganised flow. Such simplified approaches in literature could be roughly classified
into three classes.

1.2.1 Exact solutions of Navier–Stokes equations

In the first class, turbulent flows are treated as deterministic chaotic systems as compared to
in a statistical manner in the traditional theory [48]. This approach is based on the fact that
although the Navier–Stokes equations for a fluid flow are infinite-dimensional, the small-
scale motions are smoothed by viscosity and the flow can be approximately treated as a
finite-dimensional dynamical system. Coherent structures are thought of as lower dimen-
sional manifolds in whose neighbourhood the fluid flow system spends a substantial fraction
of its time [49]. Therefore, a turbulent flow can be described by substantially lower-order
models based on coherent structures in the flow.

In the past two decades, a number of coherent structures in simple turbulent flows are
found as exact nonlinear travelling wave solutions [48, 50–59] or as exact periodic wave
solutions [60–63] of the Navier–Stokes equations. These numerically computed exact so-
lutions of the Navier–Stokes equations are found to theoretically describe the transition to
turbulence as well as fully turbulent flows in terms of lower-order dynamical systems. A
review concerning the application of this approach to the transition to turbulence can be read
from Eckhardt et al. (2007) [56], and to fully turbulent flows can be read from Kawahara et

al. (2011) [48].
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1.2.2 Input-output analysis

In the second class, the Reynolds-number scaling of turbulent quantities and coherent struc-
tures are found from forcing analysis. Waves perturbations, which are parameterised by
either wave speeds [5, 64, 65] or by temporal frequencies [66–70] Refs added, are fed in to
the system and their responses are studied.

The general solution of the linearised equations of a dynamical system contains two
parts, and are shown in equation 2 in Schmid (2007) [71] for the linearised incompressible
Navier–Stokes equations. The first part is the response to initial perturbations, which is con-
sidered in the third class of the approaches discussed in Section 1.2.3. This part is also called
the homogeneous solution and quantifies the inherent energy amplification of perturbations
in the system through energy transfer from the mean flow. The second part is the response
to an external forcing, which is considered in input-output analyses. This part is also called
the particular solution and quantifies the outside influence on disturbance growth, resonance
behaviour, and pattern selection. An advantage of input-output analysis is that it can nat-
urally include the neglected terms in the governing equations, such as the nonlinear terms.
This is done by including the neglected terms in the input forcing, which may make the in-
put forcing function very complex. McKeon & Sharma (2010) [5] formulated the problem
to make minimal assumptions in their analysis of fully developed turbulent pipe flows, and
examined the response to forcing parameterised by wavenumbers in the two inhomogeneous
directions and the wave speed. Recently, Sharma & McKeon (2013) [64] and Moarref et al.

(2013) [65] extended the same analysis to find various coherent structures in turbulent pipe
flow and Reynolds number scaling of energy spectra in turbulent channel flow, respectively.
Sharma & McKeon (2013) [64] used combinations of the leading response modes to predict
hairpin vortices and other structures. Moarref et al. (2013) [65] used weighting function
based on the DNS data at low Reynolds number channel flows, and predicted the Reynolds
number and wall-normal variations of energy in the streamwise velocity at high Reynolds
numbers.

1.2.3 Energy amplification analysis

In the third class, coherent structures are found as the most amplified modes of the linearised
Navier–Stokes equations [1, 72–75] or the linearised RANS equations [2, 10, 68, 76–80].
The present study is focused on the development of such analyses and their application in
various wall-bounded turbulent flows.

The Navier–Stokes equations linearised over the mean velocity profile have been used
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for linear stability analysis of perturbations for a long time since the early work of Malkus
(1956) [72]. A formal justification for such analyses, however, came much later when the
theory of rapid distortion (RDT) was developed [81, 82]. Hunt and Carruthers (1990) [81]
showed that use of the linearised Navier–Stokes equations to simulate large coherent struc-
tures is justified in the regions of high mean shear. This is because in these regions the linear
terms act much more quickly than the nonlinear terms. Energy amplification analysis based
on the linearised Navier–Stokes equations is formulated in Chapter 2 and is used in Chapters
2, 4, 5, and 6. The literature in this area is also discussed in further detail in Chapter 2.

The use of turbulence models to augment the linearised Navier–Stokes equations was
first introduced by Reynolds & Hussain (1972) [76]. They used a triple decomposition of
the flow fields as f = f + f̃ + f ′, where f is the time time-averaged flow fields part, f̃ is the
organised wave perturbations part, and f ′ is the turbulent fluctuations part. The organised
wave perturbations f̃ are defined using phase-averaging and represent the external wave
perturbations. The turbulent fluctuations ( f ′) contribute to the Reynolds stress components
in the flow, which are defined as u′iu

′
j, where over-line represents the time-averaging, su-

perscript ′ represents the fluctuating part, u represents the velocity field, and subscripts i

and j represent the spatial directions. Reynolds & Hussain (1972)’s purpose was to include
the effect of wave-induced perturbations in the Reynolds stress on the behaviour of small
external wave perturbations. They concluded that a simple eddy viscosity model, with a
constant eddy viscosity profile, is effective in modelling the wave-induced perturbations in
the Reynolds stress, and the resulting analysis predicts the behaviour of external wave per-
turbations that is not substantially different from the actual behaviour. They also proposed
that there is a need for better models to obtain quantitatively better results. In Chapter 3, the
explicit algebraic Reynolds stress models (EARSMs)-based linearised RANS equations are
derived, and the corresponding analyses are used in Chapters 3, 5, and 6. The literature in
this area is also discussed in further detail in Chapter 3.

In the present study, analysis based on the linearised Navier–Stokes equations and anal-
yses based on the EVM- and EARSM-based linearised RANS equations, where the effect
of wave-induced fluctuations in Reynolds stress is included in the analysis, are implemented
for several wall-bounded turbulent shear flows. These analyses are performed to find coher-
ent structures, or hydrodynamic instabilities, in the flows and wherever possible the results
are compared with the experimental or numerical results in the literature. The focus of this
study is on understanding which of the analyses best suit the wall-bounded turbulent shear
flows.
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1.3 Relevance to gas-turbines and general scope

The main reason for studying hydrodynamic instabilities in gas-turbine flows is for their role
in entrainment of fuel into air, which is important for air-fuel mixing at the molecular level
for combustion [83–85]. Another reason is because hydrodynamic instabilities may also
interact with thermoacoustic oscillations, which can cause pressure oscillations to grow to
dangerously high levels [86]. The difficulty in studying hydrodynamic instabilities comes
because flows inside gas-turbines are in the turbulent regime and the systems’ geometries are
usually complicated. This make studying them computationally expensive, such that DNS is
practically impossible and LES is possible only at a few steps in the design process. RANS
and URANS are popular methods because they calculate the mean velocity and Reynolds
stresses in a turbulent flow in a feasible time as required in the design process. These
methods, however, are very dissipative, particularly in commercial solvers. The RANS
solvers give no information about hydrodynamic instabilities in the flows, and the URANS
solvers give information only about low frequency oscillations in the flows. Therefore,
approaches based on the linearised Navier–Stokes or RANS equations, which require only
the mean velocity and Reynolds stress fields as input, to find hydrodynamic instabilities
in gas-turbine injector-combustor systems are desirable. Such approaches are applied for
studying hydrodynamic instabilities in gas-turbine flows in Chapter 5.

Apart from gas-turbines, another important application of modelling coherent structures
is for drag-reduction in aerodynamic flows. Moarref and Jovanovic (2012) [87] have de-
rived a model-based active control for drag-reduction in turbulent channel flow. Their
active-control is based on the linearised K − ε model RANS equations, which are shown
to capture coherent structures in channel flow [2, 10]. Meliga et al. (2012) [88] have also
obtained sensitivity results in 2D wave flow past a square cylinder by using the linearised
RANS equations based global stability analysis. It is, therefore, expected that successful
demonstrations of various linearised equations based analyses can serve as the basis for the
application of tools from linear algebra in fluid flows.

1.4 Thesis structure

This thesis is divided into seven chapters. In chapter 2, energy amplification analysis based
on the linearised Navier–Stokes equations is applied on turbulent channel flows. The effect
of the nonlinear terms is approximated by using the streamwise wavelength of perturbations
as input to the analysis. In this analysis only molecular viscosity is used, i.e. no eddy
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viscosity or any other turbulence model is used in the analysis. The results are compared
with the observations from experiments and DNS in turbulent boundary layers. In chapter
3, the linearised RANS equations are derived based on different turbulent models. These
models include the eddy viscosity models (EVMs), which are first-order turbulence closure
models, and the explicit algebraic Reynolds stress models (EARSMs), which are second-
order turbulence closure models. This is the first study in the literature where a second-
order turbulence model is used to derive the linearised RANS equations for the purpose of
stability analysis. The EARSM- and EVM-based analyses are implemented on turbulent
channel flows, and the results are compared with those in the literature. In Chapter 4, the
linearised Navier–Stokes equations based stability analysis and secondary stability analysis
are performed to study the effect of rotation on near-wall coherent structures in turbulent
pipe flow. In Chapter 5, analyses based on the linearised Navier–Stokes and linearised
RANS equations are applied for flows inside gas-turbine injector-combustor systems. The
effect of small modifications in systems’ operating conditions and designs on hydrodynamic
instabilities are predicted, and the results from the various analyses are compared to find
which one best suit these flows. In Chapter 6, analyses based on the linearised Navier–
Stokes and EARSM-based linearised RANS equations are applied on Taylor-Couette flow
to find intermittent coherent structures that develop on the top of Taylor vortices. Some
preliminary comparisons are made between the stability analyses results with those from
the DNS. Lastly, Chapter 7 presents the conclusion and further work.





Chapter 2

Extraction of coherent structures in
turbulent channel flow from linear
amplification analysis

Fully developed turbulent channel flow is the most studied flow case in the literature on
extracting coherent structures. In this Chapter, a simple approach is presented for finding
coherent structures in turbulent channel flows, which, to an extent, serves as a basis in the
analyses used in Chapters 4, 5, and 6. This chapter also presents a detailed review on other
approaches in the literature.

2.1 Introduction

Simplified approaches for understanding and controlling coherent structures in turbulent
flows have recently gained much attention. These approaches are desired for their applica-
bility at high Reynolds numbers, where DNS or experiments are either not possible or not
accurate, and for their simplification, which helps in understanding the dynamics of coher-
ent structures. Various simplified approaches in the literature could be roughly classified
into three classes. In the first class, coherent structures are found as nonlinear travelling
wave or periodic solutions of the Navier–Stokes equations [48, 54–57, 62]. In the sec-
ond class, coherent structures are found from an input-output analysis where the waves are
parameterised either by wave speeds [5, 64, 65] or by temporal frequencies [66–68]. In
the third class, coherent structures are found as the most amplified modes of the linearised
Navier–Stokes equations [1, 72–75] or of the linearised RANS equations [2, 10, 68, 76–80].
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The success of the approaches that are based on linearised equations in finding coher-
ent structures has motivated the application of other linear analysis tools in turbulent flows.
For example, sensitivity analysis of a wake flow behind a 2-D square cylinder is performed
in Ref. [88]. They used the Spallart-Allmaras model to derive the RANS equations for
the flow, and the linearised RANS equations are then used to calculate sensitivity of the
flow to a small control cylinder. Their results compare well with the experimental measure-
ments in the same flow [89]. The linearised K − ε model-based RANS equations are used
in deriving model-based control for suppressing near-wall structures in channel flow [87].
Application of a passivity theorem, as a result of which each wavenumber perturbations can
be controlled individually, is used to derive a linear control strategy for successful relami-
narisation of a low Reynolds number turbulent channel flow in Ref. [90]. Kim (2007) [91]
reviewed the usefulness of linear systems approach in turbulent flow control, which further
emphasises the importance of the linear dynamics in turbulence. These sensitivity and con-
trol applications further motivate for the development of simplified approaches in turbulent
flows.

In this chapter an approach is presented for extracting coherent structures in turbulent
channel flows. In this approach the most amplified perturbations and the corresponding
initial optimal modes of the linearised Navier–Stokes equations are interpreted as approx-
imations of coherent structures in fully nonlinear turbulent channel flows. The effect of
the neglected nonlinear terms is modelled as the input streamwise wavelengths of the per-
turbations, where the input values are based on experimental and DNS observations. The
use of the linearised Navier–Stokes equations is justified based on the rapid distortion the-
ory [81, 82, 92]. Hunt & Carruthers (1990) [81] showed that application of the linearised
Navier–Stokes equations in reproducing large-scale turbulent structures is justifiable in the
high mean shear flow regions, because in such regions the time-scale at which the linear
terms act is much smaller than the time-scale at which the nonlinear terms act. Lee, Kim,
& Moin (1990) [82] showed that to be true for the formation of streaks in flows where the
mean shear is as high as in the near-wall region in wall-bounded turbulent flows. Recently,
Jimenez (2013) [92], based on the same theory, further stretched the applicability of the lin-
earised Navier–Stokes equations into the logarithmic layer, and through physical arguments
also explained the role of linear processes in the formation of coherent structures in this
region.

A simple mathematical description for the justification of the RDT in the regions of
high mean shear is presented in Lee, Kim, & Moin (1990) [82], and is presented here. The
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ensemble-averaged (or Reynolds-averaged) velocity is labelled Ui, and fluctuating velocity
and pressure fields are labelled ui and p, respectively. The Reynolds stress terms are repre-
sented as uiu j. The equation for the evolution of the fluctuating velocity fields is written as
below.

∂ui

∂ t
+U j

∂ui

∂x j
=

[
− ∂ p

∂xi
+ν

∂ 2

∂x j∂x j
ui

]
−
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u j
∂

∂x j
Ui

]
︸ ︷︷ ︸
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−
[

∂

∂xk

(
u′ku′i

)
−
(

u′ku′i
)]

︸ ︷︷ ︸
NL

(2.1)

where the terms labelled L and NL are the principal linear and nonlinear driving terms,
respectively. In the flow region, where the timescale of the L term is much smaller than the
timescale of the NL term, the contribution from the NL term can be ignored. This means that
the evolution of the fluctuating field can be predicted based on the linearised Navier–Stokes
equations. The timescale of the L term is straightforward to obtain. It is equal to the inverse
of the mean shear, 1

S , where S is the mean shear. The timescale of the NL term is defined as
l
q , where l is a length scale and q is the turbulence kinetic energy. Lee, Kim, & Moin (1990)
[82] took dissipation length scale ld to be the length scale and argued that it gives a good
indication of differences in turbulence structures. The dissipation length scale is given as:
łd = q3

ε
, where ε = ν

∂ui
∂x j

∂ui
∂x j

is the dissipation rate of the turbulence kinetic energy. Based
on these definitions, the ratio of the NL-term timescale to the L-term timescale is given as:
S∗ = Sq2

ε
. This ratio is shown to be big in the near-wall region as well as in the logarithmic

layer in Jimenez (2013) [92].

The modelling of the effect of the neglected nonlinear terms as the input streamwise
wavelength of perturbations is based on the results of Kim & Lim (2000) [93], and the re-
generation cycle proposed in Refs. [11, 94]. Kim & Lim (2000) [93] showed that while
the linear terms are essential in the formation and maintenance of streaks, it is nonlin-
ear mechanisms that are responsible for the proper streak spacing. It is also known from
the regeneration cycle that the streaky structures form from near-wall vortical structures,
as also predicted from linear amplification analysis results of Butler & Farrell (1993) [1].
Schoppa & Hussain (2002) [11] showed that the near-wall vortical structures, also called
quasi-streamwise vortices, have the streamwise lengths equal to a few hundred wall-units,
this is also mentioned in Ref. [42] and observed in Ref. [95]. In the present study, these
results are interpreted as that the nonlinear mechanisms that are responsible for the proper
streak spacing act through selecting the streamwise length of the vortical structures. There-
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fore, the streamwise wavelengths are used as input in the present analysis. Although the
results in Ref. [93] and the regeneration cycle are only for near-wall structures, in the
present approach the modelling of the effect of the nonlinear terms as the input streamwise
wavelength is extended in the entire channel. This is partly justified based on the similarity
of coherent structures and in the mechanism of their formation in the entire wall-bounded
flow [30, 92].

Of course, such a modelling of the effect of the neglected nonlinear terms is only rudi-
mentary. Nevertheless various kinematic properties of the resulting optimal modes are in
good agreement with those of coherent structures as discussed in this chapter. The present
approach is very close to many approaches in the literature, particularly those in Refs.
[1, 2, 10, 73]. Therefore the key differences and benefits of the present approach over
the existing linear amplification approaches are separately discussed. In this process, the
present approach is also discussed in detail.

2.1.1 Relation with other linear amplification approaches

Butler & Farrell (1993) [1] were the first to perform non-modal stability analysis on
the mean flow profile in turbulent channel flow. Their purpose was to find streaks in the
near-wall region whose spanwise spacing, L+

z , scales in wall units (i.e. it is independent
of the Reynolds number if non-dimensionalized using the kinematic viscosity, ν , and the
friction velocity, uτ =

√
ν(dU

dy |wall)). The widely accepted value is L+
z ≈ 100 [21, 27].

Butler & Farrell (1993) [1] found that the global maximum in the transient growth is at
the spanwise wavelength λ+

z = 540 (not 100) and streamwise wavelength λ+
x = ∞. The

maximum transient growth (Gmax) calculations for the same flow profile are performed here
and the results, for the streamwise uniform as well as finite wavelength perturbations, are
shown in figure 2.1. Butler & Farrell (1993) [1] pointed out that the optimization time
(τ+= 2342) required for this process is very long, and that, after a certain time, the nonlinear
terms will act to prevent the linear transient growth. They estimated this time to be τ+e = 80,
and referred to it as an eddy turnover time. When the optimisation time was limited to the
τ+e , they found the peak in the transient growth to be at the λ+

z = 100 and λ+
x = ∞.

This limiting of the optimisation time, however, is challenged both quantitatively and
conceptually. Kim & Lim (2000) [93] showed that nonlinear time-marching simulations
for a turbulent channel flow start to become significantly different from the corresponding
linear time-marching simulations in time only half as long as the τ+e . This raises a question
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Fig. 2.1 The maximum transient growth, Gmax, as a function of the spanwise (λ+
z ) and

streamwise (λ+
x ) wavelengths. The peaks in Gmax are at λ+

z ≈ 100 for the λ+
x = 250−800

perturbations. For higher λ+
x perturbations the peaks are not at λ+

z ≈ 100, but are at much
higher λ+

z values. At the λx = ∞, the peak is at the λ+
z = 540, as reported in Ref. [1].

on the estimated τ+e . Chernyshenko and Baig (2005) [73] raised a question on the given
reason for limiting the optimisation time. They pointed out that the flow is fully nonlin-
ear all the time, so to argue that nonlinear mechanisms are significant only after a certain
time during the formation of each streak is unrealistic. Besides these shortcomings, the
results in Ref. [1] predict the formation of streaks that are streamwise uniform, while the
observed streaks are around 1000 wall-units long. The present approach overcomes all these
shortcomings by using the streamwise wavelength as input instead of the optimisation time.
Firstly, the streamwise lengths of coherent structures are much more easily observed than
the optimisation time. Secondly, use of the streamwise wavelength as input does not restrict
the nonlinearity to be significant only after a certain time in the process. In fact it divides
the role of the linear and nonlinear terms as concluded in Ref. [93], and is in good agree-
ment with the notion of the most widely accepted regeneration cycle of near-wall structures
[11, 94, 96].

The current understanding of the formation of near-wall structures is that low-speed
streaks of L+

x ≈ 1000 (length in the streamwise direction) below y+ = 40−50 (wall-normal
location) are formed by relatively short quasi-streamwise vortices, which are O(100) wall-
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units long [11, 42, 95]. The quasi-streamwise vortices on the one side transport high speed
fluid towards the wall, known as sweeps, and on the other side lift low speed fluid away from
the wall, known as ejections. The lifted low speed fluid from the ejections, when left behind,
elongates and forms the near-wall streaks. The ejections and sweeps, therefore, are indirect
indicators of the streaks [11]. The next step in the regeneration cycle is the formation of the
streamwise vortices back from the lifted streaks. Schoppa & Hussain (2002) [11] show that
the preferred streamwise wavelength of these vortices is λ+

x ≈ 300, which, perhaps coinci-
dentally, closely matches with the minimal channel length required for sustaining turbulence
[97].

It is known from the results in Refs. [1, 2, 10] and from the results presented in figure
2.5, that linear amplification analysis captures the formation of sweeps and ejections like
structures from quasi-streamwise vortices like structures. Therefore, the streamwise wave-
lengths of a few hundred wall units (λ+

x = 200−800) are used as input in the present anal-
ysis. These input wavelengths are close to the streamwise length of the observed near-wall
vortical structures [11, 42, 95], and are smaller than the streamwise length of the observed
streaks (≈ 1000) [8]. Figure 2.1 shows that when the streamwise wavelength of perturba-
tions is fixed in between 200− 800 wall-units, the most amplified spanwise wavelength is
naturally close to 100. In Section 2.3, it is shown to be the case in other Reynolds number
flows as well.

Another closely related linear amplification analysis to find near-wall structures is of
Chernyshenko & Baig (2005) [73]. They tested two conceptual models for the sustainment
of near-wall structures. In the first model, the pattern of streaks is dictated by the pattern
of wall-normal motions via a lift-up mechanism, which is also in agreement with the re-
generation cycle [11, 94]. In the second model, the pattern of streaks is dictated by the
selective properties of the linearised Navier–Stokes operator alone. They presented numeri-
cal results which supported the second model over the first. This is re-iterated in a follow-up
article by the same group - in a developed turbulent flow the selective properties of the lin-
earised Navier–Stokes operator are stronger than the selective properties of the nonlinear
terms - [98]. Chernyshenko & Baig (2005) [73] were right to point out that the linearised
Navier–Stokes operator have important selective properties as demonstrated in various lin-
ear amplification and harmonic forcing papers [1, 2, 5, 10], but it does not agree with the
numerical experiments of Kim & Lim (2000) [93], who showed that the nonlinear terms
are essential for the streaks to form in the right pattern. In contrast to Chernyshenko &
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Baig (2005) [73]’s analysis, in the present approach while it is recognised that the linearised
Navier–Stokes operator has strong selective properties and select the preferred λ+

z , it is also
recognised that the nonlinear terms select the preferred λ+

x during the formation of vortices.
Therefore the present approach, to an extent, accommodates both the conceptual models
suggested by Chernyshenko & Baig (2005) [73].

The latest linear amplification approach to find coherent structures in turbulent channel
flow is where the molecular viscosity is replaced by an eddy viscosity in the linearised
Navier–Stokes equaions. Because this is the state-of-the-art approach it is necessary to
show whether there is any advantage of using the present approach over this approach.
The use of the eddy viscosity models in stability analysis was first introduced by Reynolds
& Hussain (1972) [76]. This was to account for the effect of wave-induced perturbations
in the Reynolds stress on the behaviour of small external wave-perturbations. Del-Alamo
& Jimenez (2006) [10] were the first to use eddy viscosity model in non-modal stability
analysis to find coherent structures in wall-bounded turbulence, and later Pujals et al. (2009)
[2] introduced a correction in Ref. [10]’s analysis. Pujals et al. (2009) [2] found that such
linear amplification analysis naturally gives two peaks in the maximum transient growth
(Gmax). One is at λ+

z ≈ 100, which scales in inner units and identified to correspond to
near-wall streaks, and the other is at λz ≈ 4, which scales in outer units and identified to
correspond to very-large-scale-motion (VLSMs). Calculations of Gmax using their approach
are performed here for two flow profiles: (a) the Reτ = 2000 empirical profile used in Pujals
et al. (2009) [2] and (b) the Reτ = 2003 DNS profile calculated in Ref. [3]. The results
from the two profiles are similar and are shown in figure 2.2.

The major drawback in the results from the eddy viscosity based approach is pointed out
in Jimenez (2009) [4]. It is that in the intermediate spanwise wavelengths region, which is
in between the two peaks at λ+

z ≈ 100 and λz = 2, there is minimum energy amplification
as shown in figure 2.2, while DNS show a peak in the energy spectra in this intermediate
wavelength region. Jimenez (2009) [4] suspected that the reason for this is that the eddy
viscosity used in the analysis is too high to model the energy-containing eddies correctly.
In the original work of Reynolds & Hussain (1972) [76], they used a triple decomposition
u = u+ ũ+ u′′, where u is the time-averaged field, ũ is the organised part of the motion
defined using phase-averaged field, and u′′ corresponds to the disorganised part, to derive
the linearised RANS equations. In Ref. [76], the organised component ũ was part of an
externally introduced perturbation in the flow, while turbulent coherent structures, such as
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Fig. 2.2 The maximum transient growth, Gmax, as a function of the spanwise (λz) and stream-
wise (λx) wavelengths calculated from the eddy viscosity based approach for the flow pro-
files (a) Reτ = 2000 from the empirical expression in Ref. [2] and (b) Reτ = 2003 from
the DNS in Ref. [3]. The top axis is the spanwise wavelength in outer units (λz) and the
bottom axis is the spanwise wavelength in inner units (λ+

z ), and the arrow is in the direction
of increasing λx. The results in the two cases are very similar. This approach finds two
peaks in Gmax, one at λ+

z ≈ 100, which corresponds to near-wall streaks, and the other at
λz ≈ 2− 4, which corresponds to VLSMs, as mentioned in [2]. The main disadvantage of
this approach is that it finds minima in energy amplification at the intermediate spanwise
wavelengths, between λ+

z ≈ 100 and λz = 2, where DNS show a peak in energy spectra [4].
Another smaller disadvantage of this approach is that it finds the optimal structures to be
streamwise uniform (i.e. the λx = ∞) [4, 5].
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streaks, are inherently present in the flow [98]. The time-averaging and phase-averaging
both smooth the streaks out, so they are included in u′′ and not to be predicted as part of
ũ. Blesbois et al. (2013) [98] argued that if the streaks are to be predicted as part of the
solution of the equations for ũ, then the streaks should not be included in u′′, and hence their
contribution in the Reynolds stress components should also not be included.

Some researchers consider that using the eddy viscosity based approach is important
because the mean velocity is a steady solution of the RANS equations and not of the Navier–
Stokes equations. Therefore, it is the RANS equations, which contain an eddy viscosity in
place of the molecular viscosity, that should be linearised for stability analysis. While it
is true that steady solutions of the eddy viscosity based RANS equations are close to the
mean flow profiles in turbulent channel flow, it is not a reason that stability analysis based
on these equations can predict coherent structures in the flow. In fact, one of the features of
very large coherent structures, such as the VLSMs, is that they are not amenable to models,
such as the EVMs, that calculate the Reynolds stress from the local mean velocity gradients.
As also pointed out in Guala et al. (2006) [6], very-large motions are hardly local and are
therefore not amenable to being represented by gradient transport models.

In comparison, the approach presented in this chapter is simply based on the rapid distor-
tion theory and is backed by a number of papers [1, 73, 81, 82, 93] [McKeon and Sharma
ref. removed]. It is shown in Section 2.4, that apart from the peaks at λ+

z ≈ 100 and λz ≈ 2
the present approach also finds peaks in energy amplification in the intermediate spanwise
wavelengths region, and various kinematic properties of the corresponding optimal struc-
tures are in good agreement with those of the observed coherent structures. Another draw-
back in the eddy viscosity based approach is that the transient growth is maximum for the
streamwise uniform perturbations, i.e. λx = ∞, however the near-wall streaks have a fi-
nite streamwise wavelength (≈ 1000) [4, 5]. This second drawback is not a problem in the
present approach because λx is an input based on experimental or DNS observations.

2.1.2 Complimentary simplified approaches

As explained in Section 1.2.2 of Chapter 1, input-output analyses are other popular sim-
plified approaches to find information on coherent structures in turbulent flows [5, 64–67].
These analyses are considered complimentary to the present one, because where the present
analysis gives the homogeneous solution of the linearised Navier–Stokes equations, which
quantifies the inherent energy amplification of perturbations in the system through energy
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transfer from the mean flow, the input-output analyses give the particular solution, which
quantifies the outside influence on disturbance growth, resonance behaviour, and pattern
selection [71].

2.1.3 Outline

In Section 2.2, the formulation of the present approach for turbulent channel flows is shown.
In Section 2.3, non-modal amplification analysis at the small input streamwise wavelengths
is performed. In Section 2.4, non-modal amplification analysis at the intermediate and large
streamwise wavelenghts is performed.

2.2 Methodology for calculation of transient growth in tur-
bulent channel flow

The streamwise, wall-normal, and spanwise directions, respectively, are represented by
(x,y,z) coordinates. The mean flow velocity in the channel is given as (U(y),0,0), and the
linear perturbations are assumed to be of the form (u(y),v(y),w(y))exp{−iωt +2πix/λx +

2πiz/λz}. The friction Reynolds number is defined as Reτ = uτh/ν . The bottom wall of
the channel is located at y = 0. The wall-normal location (y) and wavelengths (λx and λz)
are always non-dimensionalized in outer units, i.e. by h. Any variable represented with a
superscript+ is non-dimensionalised in wall units, i.e. by ν and uτ .

The linearised Navier–Stokes equations are given as:

∂u
∂ t

=−v
dU
dy

− ikxUu− ikx p+
1

Reτ

[
∂ 2u
∂y2 − k2

z u− k2
xu
]

∂v
∂ t

=−ikxUv− ∂ p
∂y

+
1

Reτ

[
∂ 2v
∂y2 − k2

z v− k2
xv
]

∂w
∂ t

=−ikxUw− ikz p+
1

Reτ

[
∂ 2w
∂y2 − k2

z w− k2
xw
]

0 = ikxu+
∂v
∂y

+ ikzw (2.2)

where kx and kz are equal to 2π

λx
and 2π

λz
, respectively. The Orr-Sommerfeld and Squire

equations are derived from the linearised Navier–Stokes equations for the present analysis,
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and are given as:
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[
v

Ω

]
,

(2.3)
where Ω is the wall-normal vorticity, i represents the imaginary unit, and I is the identity
operator. Chebyshev spectral method with Gauss-Lobatto points in the y-direction is used
for discretisation. The fact that v and Ω are anti-symmetric and symmetric, respectively,
with respect to the centre of the channel is used and discretisation is performed only for half
of the domain. Chebyshev differentiation matrices are used for the differential operators in
the equation [99].

The purpose of this formulation is to calculate the maximum transient growth, Gmax,
given below.

Gmax = sup
|u(t)|2 + |v(t)|2 + |w(t)|2

|u(0)|2 + |v(0)|2 + |w(0)|2
(2.4)

where |.|2 represents the L2-norm. The maximum transient growth, Gmax, is maximized not
only over all the initial conditions but also over the time t. In order to calculate Gmax, first
the eigenvalues and eigenvectors of equation 3.16 are calculated. The Matlab function ‘eig’
is used to calculate the eigenvalues (not the eigenvectors), the eigenvectors corresponding
to the calculated eigenvalues are then calculated using the Matlab function ‘eigs’ because it
is numerically cheaper.

The maximum transient growth is calculated based on the knowledge of eigenvalues
and eigenvectors, by using the formulation given in Ref. [100]. The system eigenvectors are
labelled fi and the corresponding eigenvalues are labelled ωi. The calculated eigenvectors,
fi, are modified such that they are composed of the (u(y),v(y),w(y)) velocity components.
The matrices F and Λ(t) are formed as below.

F = [ f1 f2 f3 ... fM] (2.5)
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Λ(t) = diag(exp(−iω1t) exp(−iω2t) exp(−iω3t) ... exp(−iωMt)) (2.6)

The maximum transient growth at time t is then equal to SV D
(
FΛF−1) [100]. The

matrix F , however, is not necessarily a square matrix. The F−1 is therefore calculated as
(F∗F)−1 F∗, where F∗ is the complex conjugate transpose of F . In the matlab numerical
code the maximum transient growth at time t is calculated by using the command given
below.

Gmax(t) = svds(FΛ(t)/(F∗F)F∗,1) (2.7)

The maximum transient growth, Gmax, is calculated by finding the maxima of Gmax(t) by
repeating the calculations for several values of t. The codes are verified by reproducing the
results of Butler & Farrell (1993) [1], presented in figure 2.1, and of Pujals & Cossu (2009)
[2], presented in figure 2.2 (a).

The maximum transient growth, Gmax, is calculated for a fixed input λx over a range of
λz values. The spanwise wavelength, λz, at the maximum in Gmax is labelled λz|peak. This
value of λz|peak is assumed to be the preferred spanwise wavelength of coherent structures
in the flow at the corresponding streamwise wavelength. The kinematic properties of the
initial and final optimal modes at λz|peak and λx are matched with those of the observed
coherent structures at approximately similar wavelengths in the flow. This process is then
repeated for a number of input streamwise wavelengths.

2.3 Non-modal amplification analysis at small wavelengths

Figure 2.3 shows the maximum transient growth, Gmax, as a function of λz and λx for channel
flows at the Reτ = 934, 2003, and 4079. The input λ+

x used is of O(100), which is based
on the observed streamwise length of quasi-streamwise vortices [11, 42, 95]. Calculations
at the higher wavelengths are presented in Section 2.4. The flow profiles for these cases
are taken from the DNS data of Refs. [3, 101, 102]. Linear amplification calculations are
performed with 150 grid-points and 280 eigenvectors for the Reτ = 934 and 2003 cases.
Values of Gmax calculated with 150 grid-points converge to a reasonable accuracy; it is
checked that the change in Gmax is smaller than 10−2 when some of the calculations are
repeated with 170 grid-points and 320 eigenvectors. Calculations for the Reτ = 4079 case
are performed with 195 grid-points and 380 eigenvectors. Its convergence is checked by
repeating a few calculations with 180 grid-points and 350 eigenvectors, and the change in
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Fig. 2.3 The maximum transient growth, Gmax, as a function of the spanwise wavelength
(λ+

z ) for the (a) Reτ = 934, (b) Reτ = 2003, and (c) Reτ = 4079 flow cases. The peaks in
Gmax are at λ+

z ≈ 100, which is in agreement with the observations on the near-wall streaks
spacing. The peak spanwise wavelength value, λ+

z |peak, increases with increasing λx. The
values of Gmax and λ+

z |peak scale in wall units.

Gmax remains smaller than 10−2.

The results for these Reynolds number flows are very similar to each other as well as to
those for the Reτ = 180 flow shown in figure 2.1. A peak in the transient growth exists at
λ+

z ≈ 100, and shifts to higher λ+
z for higher λ+

x perturbations. The values of Gmax and
λ+

z |peak scale well in wall units. The optimisation time is in the range ≈ 30−100, and also
scales in wall-units. The jumps in Gmax at higher λ+

z show that the solutions switch to a
different mode. This does not happen in the Reτ = 180 case perhaps because it is a low
Reynolds number flow and therefore the scale separation is not present in the flow. The
preferred spanwise wavelength from linear amplification analysis (λ+

z |peak = 100) is close
to the observed spanwise spacing of near-wall structures as reported in Ref. [27] and in
many others. It is examined whether other kinematic properties of the optimal modes at
λ+

z |peak match with those of near-wall structures.
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Fig. 2.4 Amplitude of velocity components of the optimal modes at the λ+
x = 400 and λ+

z =
90. (a) The initial optimal modes are vortical structures like near-wall quasi-streamwise
vortices, and (b) the final optimal modes are streaky structures like near-wall streamwise
streaks. The shape of the optimal modes, represented by their velocity amplitudes, scale in
wall units.

2.3.1 Optimal modes and near-wall structures

Figure 2.4 presents velocity amplitudes of the optimal modes at the λ+
z = 90 and λ+

x = 400
in the four Reynolds number cases. This λ+

z is the λ+
z |peak for the three higher Reynolds

number flow cases, whereas λ+
z |peak in the Reτ = 180 flow is 100. This difference in the

Reτ = 180 flow case is because this flow’s profile is an empirical fit given in Ref. [1],
while the other three flow profiles are from DNS data. For the same reason, there is a
small difference in the shapes of the optimal modes in the Reτ = 180 flow case as compared
with those in the other Reynolds number cases. Although not shown here, λ+

z |peak and the
corresponding optimal modes in the Reτ = 180 DNS flow profile case are checked to match
with those in the higher Reynolds number cases. This shows that these small differences are
not because the Reτ = 180 flow is a lower Reynolds number case.

The velocity amplitudes represent the wall-normal distribution of perturbation energy
in the optimal modes. Figure 2.4 shows that the peak in energy in these modes is at y+ ≈
15− 20 and most of their energy is in the region y+ < 60, which shows that these modes
exist in the near-wall region. Figure 2.4 (a) shows the velocity amplitudes of the initial
optimal modes. They have most of their energy in the spanwise and wall-normal velocity
compoents, and the initial optimal mode in the Reτ = 2003 flow case is plotted in the y− z

plane in figure 2.5 (a). The shape of this mode shows that it is like a vortical structure
with vorticity in the streamwise direction, which is a property of quasi-streamwise vortices.
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Fig. 2.5 Results for the λ+
x = 400 and λ+

z |peak = 90 in the Reτ = 2003 flow case. (a) The
initial optimal mode in the y− z plane, it has a vortical structure like that of near-wall quasi-
streamwise vortices. (b) The final optimal mode in the x− y plane (the y−axis is twice
magnified). Regions with the positive streamwise velocity have the negative wall-normal
velocity and vice-versa, so they belong to the Q4 and Q2 events. Here Q2 and Q4 refers to
2nd and 4th quadrants, respectively, of fluctuating u and v phase plots.

These vortices have a wall-normal component of velocity, which on the one side transports
high speed fluid towards the wall and on the other side lifts low speed fluid away from the
wall. These energetic processes are known as sweeps and ejections. The velocity amplitudes
of the final optimal modes are shown in figure 2.4 (b). These mode have most of their energy
in the streamwise velocity component, and the final optimal mode in the Reτ = 2003 flow
case is plotted in the x − y plane in figure 2.5 (b). The shape of this mode shows that
it consists of packets of Q4 (positive u and negative v) and Q2 (negative u and positive
v) events, which are the properties of sweeps and ejections, respectively. The lifted low
speed fluid after the ejections elongates and forms near-wall low-speed streaks, and the high
speed fluid after the sweeps forms near-wall high-speed streaks. Therefore, the sweeps and
ejections are indirect indicators of the near-wall streaks [11]. Figures 2.4 and 2.5 show that
the present approach captures the formation of the sweeps and ejections like strucutres, and
hence of the near-wall streaks, from the quasi-streamwise vortices like structures.

Linear amplification analysis gives information about which wavelength structures in
flows are preferred, i.e. get more energy amplification from the mean flow. Based on λ+

x

and the corresponding λ+
z |peak, a relation for peak in the energy spectra is obtained. Be-

cause these optimal structures are mainly influential in the near-wall region, this relation is
compared with the one observed in the near-wall region in DNS. Jimenez et al. (2004) [8]
showed that spectra of energy in streamwise velocity at y+ = 16 has a peak that follows the
relation: λ+

z = 13(λ+
x )

1/3. This is very close to the peak in energy predicted by the present
linear amplification analysis: λ+

z |peak ≈ 12.5(λ+
x )

1/3. This relation is based on the λ+
z |peak

results for the flow cases Reτ = 934,2003, and 4079, such that the square of the deviation in
λ+

z |peak is minimised by adjusting the pre-multiplication factor while keeping the exponent
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(= 1/3) constant.

2.4 Non-modal amplification analysis at higher wavelengths

Figure 2.6 presents the maximum transient growth, Gmax, for the (a) Reτ = 934, (b) 2003,
and (c) 4079 flows as functions of λz and λx. The input streamwise wavelengths are in the
range from λ+

x = 800 to λx = 20. The peaks in energy amplification are at the spanwise
wavelengths (λz|peak) that depend upon the input λx. In figure 2.3 it is shown that peaks in
Gmax are at the small spanwise wavelengths λ+

z ≈ 100 when the input λ+
x = 200−800, and

in figure 2.6 it is shown that peaks in Gmax are at the large spanwise wavelengths λz ≈ 2
when the input λx = 4− 20. These peaks correspond to the two peaks in Gmax from the
eddy viscosity based analysis shown in Pujals et al. (2009) [2], and also shown in figure 2.2.
Apart from these two peaks, the present analysis also finds peaks in Gmax at the intermediate
spanwise wavelengths from λ+

z ≈ 450 to λz ≈ 1.75 when the input streamwise wavelengths
are from λ+

x = 800 to λx ≈ 3. The eddy viscosity-based analysis, however, finds minimum
in Gmax in this wavelength region. The inferred energy spectra from the present analysis,
therefore, have a maximum in energy at these intermediate spanwise wavelength, while the
inferred energy spectra from the eddy viscosity based analysis have a minimum in energy
in the same range. DNS show a maximum in energy spectra in this intermediate spanwise
wavelength range [3, 9], which matches better with the results from the present analysis as
compared to those from the eddy viscosity based analysis.

Figure 2.7 shows λz|peak as function of λx in (a) wall-units and (b) in outer units. λz|peak

increases monotonically with λx. At λx ≈ 3, λz|peak suddenly jumps to a higher value as indi-
cated by the dashed lines. Interestingly this λx matches with the threshold wavelength used
to differentiate the LSMs and VLSMs in Guala et al. (2006) [6]. They used λx ≈ 3, based
on the net force spectra, while Bailey & Smits (2010) [35] used λx ≈ 6, based on the energy
autospectra, as the threshold wavelength. In this chapter, the features of the optimal modes
are discussed by grouping them in three wavelength regions. The first region is λ+

x = 800
to λx = 2.75 before the λz|peak jump and is labelled intermediate wavelength range. This is
also the range of wavelengths where hairpin vortices and the LSMs are reported in experi-
ments and DNS. The second region is 2.75 < λx < 6 and is labelled transition wavelength
range, some researchers include this in the LSMs while the others in the VLSMs. The third
region is λx > 6 and is labelled large wavelength range, this is the range of wavelengths
where the VLSMs are reported. The transient growth calculations are performed only up to
the λx = 20 perturbations.



2.4 Non-modal amplification analysis at higher wavelengths 25

Fig. 2.6 The maximum transient growth, Gmax, at the higher wavelengths for the flows at
(a) Reτ = 934, (b) Reτ = 2003, and (c) Reτ = 4079. the value of λz|peak varies from the
intermediate wavelengths (from λ+

z = 450 to λz = 1.5) to the large wavelengths (λz ≈ 2)
depending upon the input λx. The value of λz|peak increases with increasing λx. The present
analysis finds peaks in Gmax at the intermediate wavelengths, while the EVM based analysis
finds only minima in Gmax at these intermediate wavelengths. The DNS data for turbulent
channel flows shows peak in the energy spectra at these intermediate wavelength, which is
in agreement with the present analysis.
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Fig. 2.7 The preferred spanwise wavelength (λz|peak) as functions of the input streamwise
wavelength in (a) inner units and (b) outer units. Frame (b) shows that there is a jump in
the value of λz|peak at λx ≈ 3, after which λz|peak scales nearly in outer units. The jump
region is indicated by dashed lines, and corresponding λx matches well with the threshold
wavelength used in Ref. [6] for differentiating between the LSMs and VLSMs. The region
before the jump does not scale in either inner or outer units, except an initial part which
scales in inner units.

It is investigated whether the optimal modes and the inferred energy spectra from the
present linear amplification analysis match with those of coherent structures observed in
experiments and DNS. In the present analysis, the wall-normal location at which a final
optimal mode contains most energy (in the streamwise velocity) is labelled y+|dominant , and
it is assumed to be the wall-normal location of the corresponding optimal modes.

2.4.1 Intermediate wavelength optimal modes

The intermediate wavelength is the region of λx before the jump in λz|peak, which is from
the λ+

x = 800 to λx = 2.75. As mentioned several times in this chapter, the major advantage
of the present approach is that it finds peaks in the Gmax in this wavelength range while the
eddy viscosity based approach finds only minima in the same wavelength range. In order
to show that this really is an advantage, it is essential to show that kinematic properties
of the optimal modes and energy spectra match with those of coherent structures found in
experiments and DNS.

Two pairs of the optimal modes are presented in figures 2.8 and 2.9 for all the three
Reynolds number cases. The first pair is at the λ+

x = 1500 and the second pair is at the
λx = 2. The spanwise wavelengths of the optimal modes are the corresponding λz|peak

values in each case, which are 0.72 and 0.83 in outer units (675 and 775 in wall units) in the
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Fig. 2.8 The normalised velocity amplitudes of the (a) initial and (b) final optimal modes at
the λ+

x = 1500 and the corresponding λ+
z |peak, for the Reτ = 934 (dashed line), 2003 (solid

line), and 4079 (squares) flow cases. The black colour is for the streamwise velocity com-
ponent, grey is for the wall-normal velocity component and light-grey is for the azimuthal
velocity component. These modes have similarities with the optimal modes shown in figure
2.4 and 2.9. The initial optimal modes, which have most of their energy in the spanwise
velocity and have significant energy in the wall-normal velocity, are like vortical structures.
The final optimal modes have most of their energy in the streamwise velocity like streaky
structures. These modes extend to the wall but are dominant in the outer layer.

Reτ = 934 case, 0.31 and 0.55 in outer units (625 and 1100 in wall units) in the Reτ = 2003
case, and 0.15 and 0.47 in outer units (625 and 1900 in wall units) in the Reτ = 4079 case.

These optimal modes have similarities with the optimal modes in the near-wall region
shown in figure 2.4. The initial optimal modes have most energy in the azimuthal velocity
component and significant energy in the wall-normal velocity component, which shows they
are vortical type structures. The final optimal modes have most energy in the streamwise
velocity component, which shows they are streaky structures. These results are interpreted
such that the initial vortical structures get linearly amplified to form the final streaky struc-
tures. Such interpretation of the results is in accordance with the observations reported in
Refs. [7, 14, 30, 32]. In their interpretation, vortical structures are referred to as hairpins
or half-formed hairpins and these hairpin vortices produce low-speed streaky structures in
the outer layer (and there are almost equal number of high-speed streaky structures as well).
The longer streaky structures are formed by a combined action of several hairpin vortices,
called packets of hairpin vortices whose formation mechanism is proposed in [33]. Various
kinematic properties of the optimal structures with those of observed coherent structures are
compared to further investigate the match between them.
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Fig. 2.9 The normalised velocity amplitudes of the (a) initial and (b) final optimal modes
at the λx = 2 and the corresponding λz|peak, for the Reτ = 934 (dashed line), 2003 (solid
line), and 4079 (squares) flow cases. These modes have similarities with the optimal modes
shown in figures 2.4 and 2.8. The initial optimal modes, which have most of their energy
in the spanwise velocity and have significant energy in the wall-normal velocity, are like
vortical structures. The final optimal modes have most of their energy in the streamwise
velocity like streaky structures. These modes extend to the wall but are dominant in the
outer layer.

Figures 2.8 and 2.9 show that the optimal modes at the λ+
x = 1500 are closer to the wall

as compared to the optimal modes at the λx = 2. In figures 2.10 (a) and (b) y+|dominant of the
final optimal modes as functions of their λ+

z and λ+
x , respectively, are shown. These plots

show that as the structures move away from the wall they get wider and longer. It has also
been observed for structures in the same wavelength region in Ref. [6] (figure 4(d) of their
paper) and in Ref. [35] (figure 6 of their paper), and Ref. [9] also quoted that generally the
structures get longer and wider as they separate from the wall. Based on figure 2.10, the best
fit, on minimising the standard deviation, for these optimal modes’ width and length with
their wall-normal location is found to be λ+

z ∝ y+|dominant and λ+
x ∝ (y+|dominant)

1/0.56,
respectively. It is also inferred that the maximum in energy spectra for optimal modes
from these results is (λz)

1.79 ∝ λx. The peak in energy spectra found in DNS data at the
Reτ = 2003 has relations λ 2

z ∝ λx for the streamwise velocity autospectra and λz ∝ λx for
the wall-normal velocity and spanwise velocity autospectra as shown in figure 2 of Ref. [9].
Given that the streamwise velocity component contains most of the energy, relation for the
peak in energy spectra of optimal modes found from the present analysis is in a reasonably
good agreement with the observed peak in energy spectra in DNS shown in Ref [9]. It is
also noted that λz ∝ y agrees with the self-similar eddies proposed by Townsend [18]. The
relation λx ∝ (y+|dominant)

1/0.56 still shows the self-similar nature of the eddies but does not
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Fig. 2.10 The y+|dominant as functions of (a) λ+
z and (b) λ+

x . These plots show that structures
get wider and longer as they move away from the wall.

Fig. 2.11 Quiver plot of the final optimal mode at the λx = 2 and the corresponding λz|peak =
0.55 in the Reτ = 2003 flow case in the x− y plane. This plot shows that the mode contains
packets of Q2 and Q4 events, which is observed in Ref. [7] for the streaky structures. The
Q2 and Q4 events contribute towards the negative uv−Reynolds stress component.

match with the relation proposed by Townsend [18]. This mismatch in λx scaling is also
noted in Ref. [65].

Figure 2.11 shows a quiver plot of velocity vectors in the streamwise–wall-normal plane
for the optimal mode at the λx = 2 and λz|peak = 0.55 in the Reτ = 2003 case. This figure
shows that the streaky structures in the final optimal mode consist of Q2 (negative u and
positive v) and Q4 (positive u and negative v) events. This is very important because almost
all the observed streaky structures in experiments are consist of the Q2 or Q4 events, and
this is why the uv−Reynolds stress component is negative [7].
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Fig. 2.12 Low speed streaky regions in the final optimal modes at the (a) λ+
x = 1500 and (b)

λx = 2 and the corresponding λz|peak in the Reτ = 2003 flow case are shown. The maximum
amplitude (=−0.5) is arbitrarily decided to be one-sixth of the maximum amplitude in the
final optimal mode. Inclination angles of the streaks with the wall are shown by the red
dashed line, which are based on visualisation alone. The inclination of the streak in the
λx = 2 optimal mode is close to the inclination of the ∆x ≈ 2.5 low-speed streak observed
in Ref. [7].

Figure 2.12 shows approximately the angle of inclination of low-speed streaky parts of the
final optimal modes at the (a) λx = 0.75 and λz|peak = 0.31 and (b) λx = 2 and λz|peak = 0.55
in the Reτ = 2003 flow case. The maximum negative amplitude in the figure (= −0.5) is
arbitrarily decided as one-sixth of the maximum amplitude in the optimal mode for a good
visualisation. The comparison of the inclination angle with that in experiments can only
be approximate, because even in experiments the inclination angle depends upon arbitrary
choices of threshold amplitude, therefore only a quick approximation of the inclination
angle, as indicated by the red line that is based on visualisation alone, is considered. This
figure shows that the larger low-speed streak has a smaller inclination angle with the wall,
and also that the inclination angle of the larger streak matches with that of the ∆x ≈ 2.5
streak (≈ 11o) reported in figure 8 of Ref. [7].

Another noticeable property of the final optimal modes shown in figures 2.8 and 2.9
is that the v−velocity component is vanishingly small near the wall, while the u− and
w−velocity components extend to the wall. This is in line with the observations of Ref.
[9], where it is reported that the v−autospectra is detached from the wall while the u− and
w−autospectra are attached.
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Based on the match of these various kinematic properties; such as peak in the energy
spectra, the shapes of the initial and final optimal modes, and the inclination angle; it is
concluded that the optimal structures predicted by the present approach are good approxi-
mations of the observed coherent structures. It is, therefore, also concluded that the present
analysis has an advantage over the EVM-based analysis, because the latter analysis does
not find these coherent structures. The EVM-based analysis finds only minima in energy
amplification in the intermediate wavelength region, as seen in figure 2.2, and hence predict
no optimal structures in this region.

2.4.2 Transition range optimal modes

The transition range is the region of streamwise wavelengths (2.75 < λx < 6), which is
considered as the LSMs in Ref. [35] while considered as the VLSMs in Ref. [6]. The
optimal modes at the λx = 4, which is right after the region where the λz|peak jumps, and
the corresponding λz|peak in the three Reynolds number cases are shown in figure 2.13. It is
observed that their shape is similar to those of the structures in the intermediate wavelength
range shown in figures 2.8 and 2.9. However unlike them these structures do not reach to
the wall. This is shown more clearly in frame (c) for the final optimal mode. Their spanwise
wavelength (λz ≈ 1.70) is close to those of the large wavelength optimal modes in Section
2.4.3, which is similar to those of the VLSMs (one-third of pipe circumference) found in
Ref. [35]. The final optimal modes have some similarities with detached LSMs reported in
Ref. [35]. They observe that the detached LSMs are as wide as the VLSMs, while unlike
the VLSMs they do not extend to the wall.

2.4.3 Large wavelength optimal modes

The large wavelength range includes the λx = 6 to λx = 20 (calculations are performed only
up to the λx = 20). The observed eddies in this range are referred to as VLSMs, and the
VLSMs as large as Lx = 14−25 have been reported in experiments [32, 36, 37]. The optimal
modes at the λx = 20 and the corresponding λz|peak for the three flow cases Reτ = 934,
2003, and 4079 are presented in figure 3.6. These structures scale closely in outer units
in terms of their shape and size. The final optimal modes extend to the wall, as shown in
frame (c) more clearly. These are the properties of the VLSMs, they scale in outer units
[14, 32, 35] and extend to the wall. The spanwise wavelength of the optimal modes also
match with the observations in Ref. [35], who find the VLSMs to be approximately one-
third of the pipe circumference (1

32π ≈ 2). The optimal modes, however, have most of their
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Fig. 2.13 Velocity amplitudes of the (a) initial and (b) final optimal modes at the λx = 4
and the corresponding λz|peak. (c) magnification of the near wall region, indicated by a
square box in frame (b). The mode shapes are close to those of the optimal modes in the
intermediate wavelength range. However, unlike those mode shapes, these structures do not
extend to the wall as shown for the final optimal mode in frame (c). The mode shapes nearly
scales in outer units like the VLSMs.
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Fig. 2.14 Velocity amplitudes of the (a) initial and (b) final optimal modes at the λx = 20
and the corresponding λz|peak. (c) magnification of the near wall region, indicated by a
square box in frame (b). The mode shapes scale closely in outer units, and extend to the
wall. These are properties of the VLSMs. The velocity amplitude, however, is maximum at
y ≈ 0.5 while the VLSMs have most energy at the y ≈ 0.2.

energy outside the logarithmic layer (with maximum at y ≈ 0.5), whereas it is clear from
experimental observations that VLSMs have most of their energy inside the logarithmic
layer (with maximum at y ≈ 0.2) [6, 34]. It seems that the present analysis is poor at
approximating the shape of the VLSMs in terms of their wall-normal energy distribution.
The reason for that is because the present analysis is applicable only in the region of high
mean shear, the VLSMs, however, exist from high mean shear near-wall region to zero
mean shear centre of the channel. Their region of existence, therefore, is outside the zone
of applicability of rapid distortion theory, on which the present analysis is based.

The optimal modes at the λx = 20 and the corresponding λz|peak = 3.4 in the Reτ = 2000
and Reτ = 2003 flow cases calculated from the eddy viscosity based analysis are shown in
figure 2.16. The value of λz|peak is around two times higher than the observed azimuthal
width of the VLSMs (≈ 2) in Ref. [35], but the modes have most of their energy in the
logarithmic layer (y ≈ 0.3) like that of the VLSMs. The optimal mode shapes shift closer
to the wall in the eddy viscosity-based approach because the eddy viscosity is lower in the
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Fig. 2.15 Velocity amplitudes of the (a) initial and (b) final optimal modes at the λx = 20
and the corresponding λz|peak = 3.4 in the Reτ = 2000 (squares) and Reτ = 2003 (solid line)
flow cases calculated from the eddy viscosity based approach. Although λz|peak is higher
than the observed spanwise extent of the VLSMs, the wall-normal energy distribution in the
final optimal mode closely matches with that of the VLSMs. The final optimal modes have
most of their energy in the logarithmic layer, with maxima at y ≈ 0.3, which matches well
with the observation that the VLSMs are most energetic at y ≈ 0.2.

near-wall region and increases towards the centre. The modes, therefore, are damped higher
in the region closer to the centre than they are in the region closer to the wall.

The origin of the VLSMs is a topic of debate in many recent papers. One popular theory
is that the VLSMs are formed by merging of the LSMs and there are many experiments to
support this theory, such as in Refs. [6, 32, 38]. Adrian (2007) [14] discussed that if merging
of the LSMs is the sole source of formation of the VLSMs, it does not satisfactorily explain
how the VLSMs contain the substantial turbulent kinetic energy and Reynolds shear stress
as observed in Refs. [6, 32, 36]. Based on the experiments of Ref. [35], Smits et al. (2011)
[43] also discussed that it is unlikely that the VLSMs form from the merging of the LSMs.
Adrian (2007) [14] also pointed out that the formation of the VLSMs through merging of
the LSMs opposes the classical Kolmogorov energy cascade concept, which is supported at
high Reynolds numbers showing transfer of energy from large to small scales. Therefore,
there must be a mechanism for the production of kinetic energy at the largest scale. The
present approach, along with other linear amplification approaches [2, 10], supports the
idea that there is a mechanism for the production of the turbulent kinetic energy at the large
scales through energy transfer from the mean flow shear.
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2.5 Summary and Conclusion

In this chapter, linear amplification analysis is performed on the Navier–Stokes equa-
tions linearised over the mean velocity profile to extract coherent structures in turbulent
channel flows. The effect of the neglected nonlinear terms is modelled as the input stream-
wise wavelengths of perturbations, where the input values are based on experimental and
DNS observations. Nonlinear processes, such as energy transfer from large-scale coher-
ent structures to small-scale background turbulence and merging or breaking up of primary
structures to form new coherent structures, are not accounted for by the present analysis.
Therefore, the analysis is limited only to primary forms of coherent structures. The most
amplified perturbations and the corresponding initial optimal modes from the analysis are
interpreted as approximations of coherent structures in fully nonlinear turbulent channel
flows. It is acknowledged that modelling the effect of the neglected nonlinear terms as the
input streamwise wavelengths is very rudimentary, nevertheless various kinematic proper-
ties of the optimal modes and the maxima in energy amplification from the analysis match
with those of the observed coherent structures in wall-bounded turbulence DNS and exper-
iments.

The first type of structures found from the present analysis are at the small streamwise
wavelengths (λ+

x = 200− 800) in Section 2.3. The peak in the transient growth, Gmax, for
structures in this small streamwise wavelengths range is at the spanwise wavelength equal
to one hundred wall-units (λ+

z |peak ≈ 100) as shown in figure 2.3. This matches well with
the observed spanwise spacing of near-wall streaks in experiments [21, 27]. Moreover, the
corresponding initial and final optimal modes are of the shape of near-wall vortical and
near-wall streaky structures, respectively, as shown in figures 2.4 and 2.5. Therefore, it
is concluded that the present analysis captures the formation of the near-wall streaks from
the quasi-streamwise vortices. The maxima in energy spectra in the near-wall region from
the present analysis, which is based on λ+

x and the corresponding λ+
z |peak values, is found

to closely follow the relation λ+
z |peak ≈ 12.5(λ+

x )
1/3, which is in a good match with the

observed peak in streamwise energy spectra in the near-wall region in Jimenez et al. (2004)
[8] (λ+

z |peak ≈ 13(λ+
x )

1/3).

The second type of structures found from the present analysis are at the intermediate
streamwise wavelengths (from λ+

x > 800 to λx < 3) in Section 2.4.1. The peaks in the
transient growth, Gmax, for the structures in this streamwise wavelength range vary from
the λ+

z = 425 to λz ≈ 1 as shown in figures 2.6 and 2.7. On the basis of their shapes
(shown in figures 2.8 and 2.9), the initial and final optimal modes are compared with large
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vortical structures and the LSMs, respectively. Various kinematic properties of the optimal
structures are shown to be in a good match with those of the observed structures. It is
found that these optimal structures get wider in the spanwise direction and longer in the
streamwise difrection as they get away from the wall as shown in figure 2.10. This property
matches with those of the LSMs found in Refs. [6, 35]. The peak in energy spectra, based
on λ+

z |peak and the corresponding λ+
x , from the present analysis is found to be (λz)

1.79 ∝ λx,
which also matches with the energy spectra in Ref. [9]. Other properties, such as inclination
angle of the low-speed streaky parts with the wall and the phase between the wall-normal
and streamwise velocity components, also match with those of the LSMs.

Another interesting result from the present analysis is that there is a jump in λ+
z |peak

value at the λx ≈ 3 as shown by the dashed lines in figure 2.7. This value of the streamwise
wavelength matches with that of the threshold wavelength used in Guala et al. (2006) to
differentiate between the LSMs and VLSMs.

The third type of structures from the present analysis are at the large streamwise wave-
length (λx ≥ 6) in Section 2.4.3. The preferred spanwise wavelength of these structures
(λz|peak ≈ 2), their scaling in outer units, and the fact that they extend to the wall match
with the observed features of the VLSMs. Unlike VLSMs, which are most energetic in
the logarithmic layer, however, these optimal modes have most of their energy outside the
logarithmic layer.

The main conclusion of the analysis presented in this chapter is that this analysis is
simpler than the EVM-based approach in the literature yet the results are in better match
with DNS and experiments. This is summarised in figure 2.16, where the preferred λz

corresponding to various λx values from the present analysis (black dots) and the EVM-
based analysis (red diamonds) in the Reτ = 2003 flow case are plotted. For some λx values
there are two points, this is because there are two peaks in Gmax at those λx perturbations
as shown in figure 2.2 (b) for the EVM-based analysis. The dashed magenta line is for the
streamwise velocity energy spectra in the near-wall region in Jimenez et al. (2004) [8]. The
dashed blue line is for the streamwise velocity energy spectra in the y = 0.1− 0.3 region
in Jimenez & Hoyas (2008) [9] (the relation is known up to a constant of proportionality).
It is seen in this figure that in the small streamwise wavelength region (λ+

x ≤ 800), where
the near-wall structures are observed, the black dots from the present analysis are very close
to the magenta line while the red diamonds from the EVM-based analysis are all at the
λz = 75− 85. The bigger drawback from the EVM-based analysis is that there are no red
squares in the intermediate λz region. This is the range of wavelengths where the LSMs are
observed. The black dots from the present analysis show that they are in a good match with
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Fig. 2.16 The preferred λz corresponding to the various λx values from the present analysis
(black dots) and the EVM-based analysis (red diamonds) in the Reτ = 2003 flow case are
shown. For some λx values there are two points. This is because there are two peaks in
Gmax at those λx perturbations as shown in figure 2.2 (b). The dashed magenta line is for the
streamwise velocity energy spectra in the near-wall region in Jimenez et al. (2004) [8]. The
dashed blue line is for the streamwise velocity energy spectra in the y = 0.1− 0.3 region
in Jimenez & Hoyas (2008) [9] (the relation is known up to a constant of proportionality).
The biggest drawback in the EVM-based analysis is that there are no red squares in the
intermediate λz region. This is the range of the wavelengths where the LSMs are observed.
The black dots from the present analysis show that they are in a good match with the slope
of the blue line.
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the slope of the blue line, and various kinematic properties of the corresponding optimal
modes are shown to be in good match with the observed LSMs in Section 2.4.1. Beyond the
λx = 5−6 and λz = 2−3, there are no reliable spectra from experiments or DNS, therefore,
the results from the analyses in that wavelength range cannot be compared against any
relation.

A major consequence of the results shown in this chapter is that the present analysis can
be used in control applications in place of the EVM-based analysis, such as in Moarref &
Jovanovic (2012) [87]. Another consequence is that the present analysis can be used for
obtaining energy spectra in high Reynolds number flows, provided that the mean velocity is
known for those flows.



Chapter 3

RANS-based linear amplification
analysis

In Chapter 2, stability analysis based on the linearised Navier–Stokes equations is used. The
focus of this Chapter is on stability analysis based on the linearised RANS equations.

3.1 Introduction

The Navier–Stokes equations linearised over the turbulent mean flow profile for stability
analysis have been in use for a long time since the work of Malkus (1956) [72]. Reynolds
& Hussain (1972) [76], however, were the first to introduce the use of turbulence models to
augment the linearised Navier–Stokes equations. Their purpose was to include the effect of
wave-induced perturbations in the Reynolds stress on the behaviour of small external wave
perturbations. They concluded that a simple eddy viscosity model, with a constant eddy
viscosity profile, is effective in modelling the wave-induced perturbations in the Reynolds
stress, and the resulting analysis predicts the behaviour of external wave perturbations that
is not substantially different from their actual behaviour. They also proposed that there is a
need for better models to obtain quantitatively better results.

Recently, del Alamo & Jimenez (2006) [10] used a similar EVM-based analysis as
Reynolds & Hussain (1972) [76] to predict coherent structures in turbulent channel flows,
and their analysis is later corrected by Pujals et al. (2009) [2]. Cossu et al. (2009) and
Willis et al. (2010) [68, 79] also used similar analyses to find coherent structures in tur-
bulent boundary layer and pipe flows, respectively. These researchers predicted near-wall
structures and very-large-scale-motions (VLSMs) in these flows with some success. Crouch
et al. (2007) and Crouch et al. (2009) [77, 78] used the Spalart-Allmaras model-based
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linearised RANS equations to successfully predict the onset of transonic buffet in high
Reynolds number flows around a circular cylinder and aerofoils, respectively. Meliga et

al. (2012) and Moarref & Jovanovic (2012) [87, 88] have further extended the application
of the linearised RANS-based analyses by applying them for sensitivity analysis of a 2-D
wake flow past a square cylinder and for designing model-based control for the drag re-
duction in a turbulent channel flow, respectively. Success of the above mentioned studies
encourages the development in the direction of the linearised RANS-based analyses.

In this chapter, EARSM-based linearised RANS equations are derived for the purpose
of stability analysis, where the EARSM stands for Explicit algebraic Reynolds stress model.
The EARSMs are also known as anisotropic eddy viscosity models (AEVMs) and are sim-
ilar to eddy viscosity models (EVMs). Both type of the models are based on the effective-
viscosity hypothesis, according to which the Reynolds stress components depend upon local
velocity gradients alone. The EARSMs, however, are based on the general form of the hy-
pothesis, which is given in Refs. [103], and are second-order turbulence models, while the
EVMs are based on a simpler form of the hypothesis, given in Refs. [104], and are first-order
turbulence models. To my knowledge, this is the only study where a set of the second-order
turbulence model-based linearised RANS equations for the purpose of stability analysis are
derived. An advantage of using second-order turbulence models is that they have a wider
range of application than that of first-order turbulence models. In terms of accuracy in the
mean flow calculations, the EARSMs sit somewhere between the EVMs and differential
Reynolds stress models (DRSMs) [105, 106].

The EARSM used in this chapter is developed by Gatski & Speziale (1993) [107]. In
order to verify the derivation and the associated codes, the EARSM-based linearised RANS
equations are applied for energy amplification analysis of turbulent channel flow. The results
are compared with those from the EVM-based analysis, also derived in this chapter, and
from Pujals et al. (2009) [2]. The results are in good qualitative agreement. There are
only small quantitative differences, which are, of course, expected from any two stability
analyses based on different turbulence models.

In Chapter 2 and in Refs. [4, 98], it is discussed that an eddy viscosity profile based on
the full Reynolds stress is too high to be used in stability analysis of channel flow to find
coherent structures. Blesbois et al. (2013) [98] pointed out that in the original paper of
Reynolds & Hussain (1972) [76], the linearised RANS equations were derived for external
wave perturbations. Coherent structures in turbulent channel flows, however, are implicitly
present, and therefore are not expected to be found from the stability analysis based on the
linearised RANS equations. This point is briefly discussed in Section 3.5 in the light of the
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derivations for the linearised RANS equations presented in Section 3.2. The damping effect
of using the eddy viscosity profile on eigenvalue spectra of wave perturbations in a turbulent
channel flow is also shown.

3.1.1 Outline

This chapter is divided into six sections. In Section 3.2, the linearised RANS equations
are derived, and the term that represents the wave-induced perturbations in the Reynolds
stress is expressed using different turbulence models. The models used in this chapter are
the EVM and EARSM. In Section 3.3, the linearised RANS equations for turbulent channel
flows are derived. In Section 3.4, the EVM- and EARSM-based linearised RANS equations
are applied for energy amplification analysis of turbulent channel flows. In order to verify
the derivations and the associated codes for the EARSM-based analysis, the results from
the two analyses are compared with each other and with those in the literature. In Section
3.5, the application of the linearised RANS-based analysis to find coherent structures is
discussed, and the damping effect of the EVM-based analysis on eigenvalue spectra in a
turbulent channel flow is shown.

3.2 Linearised RANS equations

Like Reynolds & Hussain (1972) [76], the triple decomposition of the velocity and pressure
fields as ui = ui + ũi +u′i and p = p+ p̃+ p′, respectively, are used. Over-line indicates the
time-averaged flow fields part, over-tilde indicates the organised wave perturbations part,
which are defined using phase-averaging, and superscript ′ indicates the disorganised tur-
bulent fluctuations part. On substituting the above decomposition into the Navier–Stokes
equations, the time-averaged momentum and continuity equations, respectively, for an in-
compressible flow are written as:

u j∂ jui =−∂i p+
1

Re
∂ j jui −∂ ju′iu

′
j −∂ jũiũ j

∂ ju j = 0 (3.1)

where ∂ j and ∂ j j represent partial differentiation and double partial differentiation in the
spatial direction j, respectively. For a statistically stationary flow, and in absence of the or-
ganised wave-perturbations, these equations are identical to the Reynolds-averaged Navier–
Stokes equations. A statistically stationary turbulent flow is the one in which the mean
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quantities, which are defined using ensemble-averaging, do not change with time, and for-
tunately most turbulent flows are statistically stationary. The term in the momentum equa-
tion (u′iu

′
j), called the Reynolds stress, represents stress in the mean flow equations because

of the turbulent fluctuations. Similar to the time-averaged equations, the phase-averaged
Navier–Stokes equations are obtained as:

∂t (ũi) =−(u j + ũ j)∂ j (ui + ũi)−∂i(p+ p̃)+
1

Re
∂ j j (ui + ũi)−∂ jũ′iu

′
j

∂ j
(
u j + ũ j

)
= 0 (3.2)

And by subtracting the time-averaged equations, the equations for phase-averaged fields are
obtained as:

∂t (ũi) =−u j∂ jũi − ũ j∂ jui −∂i p̃+
1

Re
∂ j jũi +∂ j

(
ũiũ j − ũiũ j

)
−∂ j

(
ũ′iu

′
j −u′iu

′
j

)
∂ jũ j = 0 (3.3)

In the momentum equation, the last term
(

ũ′iu
′
j −u′iu

′
j

)
is interpreted as the wave-induced

fluctuations in the Reynolds stress and is labelled ri j in Reynolds & Hussain (1972) [76].
This term is modelled for the small wave perturbations (ũi and p̃) using turbulence closure
models [76], and for such small wave perturbations the second last term

(
ũiũ j − ũiũ j

)
is

neglected to obtain the linearised perturbations equations.

In this chapter, the ri j term is derived using the frozen eddy viscosity models, exactly as
done in Reynolds & Hussain (1972) [76], and using the frozen EARSM, similar to as done
in Ref. [76]. The term frozen means that turbulent quantities, such as the turbulent kinetic
energy (K), turbulence dissipation rate (ε), and eddy viscosity profile (νt), do not change
with the organised wave perturbations. The derivation with full eddy viscosity models,
where the assumptions of a frozen model are relaxed, is also discussed but application of
such analysis is outside the scope of this study.

3.2.1 Frozen eddy viscosity models

The eddy viscosity models are first-order turbulence closure models. They are based on an
effective-viscosity hypothesis, given by Boussinesq (1977) [104], according to which the
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Reynolds stress components are given as:

u′iu
′
j =

2
3

Kδi j −νt
(
∂ jui +∂iu j

)
(3.4)

where νt is the eddy viscosity profile. A common way to calculate the eddy viscosity pro-
file is as νt = Cµ

K2

ε
, where Cµ is a constant which is usually set as 0.09. This definition

of eddy viscosity profile is based on homogeneous turbulence, and therefore in very non-
homogeneous parts of turbulent flows, such as in the near-wall region, some corrections are
required. In simple shear flows, such as in a channel flow, the eddy viscosity profile can

simply be calculated as: νt =− u′iu
′
j

dui/dx j
, where i is the direction of the mean velocity and j is

the direction in which the mean velocity varies [105].

The mean strain rate and rotation rate tensors (Si j and Ωi j), and the phase-averaged strain
rate and rotation rate tensors (S̃i j and Ω̃i j) are defined in equations 3.5 and 3.6, respectively.

Si j =
1
2
(
∂ jui +∂iu j

)
, Ωi j =

1
2
(
∂ jui −∂iu j

)
(3.5)

S̃i j =
1
2
(
∂ j (ui + ũi)+∂i

(
u j + ũ j

))
, Ω̃i j =

1
2
(
∂ j (ui + ũi)−∂i

(
u j + ũ j

))
(3.6)

The expression for the Reynolds stress components in 3.4 is re-written as:

u′iu
′
j =

2
3

Kδi j −2νtSi j (3.7)

The expression for ri j is derived as:

ri j = ũ′iu
′
j −u′iu

′
j =−2νt

(
S̃i j −Si j

)
=−νt

(
∂ jũi +∂iũ j

)
(3.8)

This expression of ri j is substituted in equation 3.3, and the nonlinear term is ignored in the
equation, to derive the equations for linear perturbations as:

∂t (ũi) =−u j∂ jũi − ũ j∂ jui −∂i p̃+
1

Re
∂ j jũi +∂ j

[
νt
(
∂ jũi +∂iũ j

)]
∂ jũ j = 0 (3.9)

3.2.2 Full eddy viscosity models

In the full eddy viscosity model-based linearised RANS equations, the assumption that the
turbulent quantities, such as K, ε , and νt , remain constant is relaxed. Therefore, differential
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equations for the turbulent quantities, such as in the Spalart-Allmaras or K−ε models, need
to be linearised and solved. This requires either obtaining the mean flow from the RANS
equations, or find a suitable model to which the given mean flow profile, from DNS or
experiments, is an approximate solution. This is out of the scope of the present study. In
most chapters of this thesis the mean flow profiles come from DNS data, and for Chapter 5
from a commercial software package ANSYS Fluent. The focus in this study is instead on
using a second-order turbulence model in deriving the linearised RANS equations.

3.2.3 Frozen explicit algebraic Reynolds stress model

The EARSMs are second order turbulence closure models. They are based on the gen-
eral form of the effective-viscosity hypothesis, according to which the Reynolds stress
anisotropy tensor (a) can be written in terms of ten tensorially independent combination
groups composed of S and Ω, as shown in equation 3.10. All the higher order combination
groups are reduced with the aid of the Cayley-Hamilton theorem [103].

a = G1S+G2
(
SΩ−ΩS

)
+G3

(
S2 − 1

3tr{S2}I
)
+G4

(
Ω

2 − 1
3tr{Ω

2}I
)
+

G5

(
ΩS2 −S2

Ω

)
+G6

(
SΩ

2
+Ω

2S− 2
3tr{SΩ

2}I
)
+G7

(
ΩSΩ

2 −Ω
2SΩ

)
+

G8

(
SΩS2 −S2
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and ai j =
u′iu

′
j

K − 2
3δi j. (3.10)

where the Gi−coefficients are functions of the known independent invariants of S and Ω

[107, 108], and I is the identity tensor such that all non-diagonal elements are zero and
all diagonal elements are equal to one. The Reynolds stress components in the EARSMs
depend on S as well as Ω tensors, and the relation is nonlinear. If only the first term in
equation 3.10 for a is retained, then the EARSM reduces to the EVM.

The G−coefficients are calculated by substituting equation 3.10 into an algebraic form
of equations for the Reynolds stresses that are obtained by imposing an equilibrium hypoth-
esis in which the convection and diffusion terms are zero:

u′iu
′
j

K
(P − ε) = Pi j − εi j +Πi j, (3.11)

where P (= Pii/2) is the turbulent production rate, ε (= εii/2) is the turbulent dissipation
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rate, Pi j is the production tensor, εi j is the dissipation rate tensor, and Πi j is the pressure
strain rate tensor. The procedure to calculate the G−coefficients requires further assump-
tions to obtain the explicit equations. In this chapter the solutions obtained by Gatski &
Speziale (1993) [107] to calculate the G−coefficients from the mean flow data are used.

The expression for ri j is derived as:

ri j = ũ′iu
′
j −u′iu

′
j = K

(
ãi j −ai j

)
:= Kb̃i j (3.12)

where ã is given as:

ã = G̃1S̃+ G̃2

(
S̃Ω̃− Ω̃S̃

)
+ G̃3

(
S̃2 − 1

3tr{S̃2}I
)
+ G̃4

(
Ω̃2 − 1

3tr{Ω̃2}I
)
+

G̃5

(
Ω̃S̃2 − S̃2Ω̃

)
+ G̃6

(
S̃Ω̃2 + Ω̃2S̃− 2

3tr{S̃Ω̃2}I
)
+ G̃7

(
Ω̃S̃Ω̃2 − Ω̃2S̃Ω̃

)
+

G̃8

(
S̃Ω̃S̃2 − S̃2Ω̃S̃

)
+ G̃9

(
S̃2Ω̃2 + Ω̃2S̃2 − 2

3tr{S̃2Ω̃2}I
)
+

G̃10

(
Ω̃S̃2Ω̃2 − Ω̃2S̃2Ω̃

)
,

and G̃i = Fi

(
S̃,Ω̃

)
(3.13)

where Fi are the functions to obtain Gi from S and Ω as:

Gi = Fi
(
S,Ω

)
.

The expression for ri j in equation 3.12 is substituted into equation 3.3, and the nonlinear
terms are neglected, to obtain the linear perturbation equations as:

∂t (ũi) =−u j∂ jũi − ũ j∂ jui −∂i p̃+
1

Re
∂ j jũi −∂ j

(
Kb̃i j

)
∂ jũ j = 0 (3.14)

Equations 3.9 and 3.14 are the general form of the EVM- and EARSM-based linearised
RANS equations, respectively. Their specific forms depend upon the turbulence model used
for calculations of νt or Gi, and on the flow case under study.

3.3 Turbulent channel flow

Turbulent channel flow is studied here as a case study to show the application of the EARSM-
based linearised RANS equations in energy amplification analysis to find coherent struc-



46 RANS-based linear amplification analysis

tures. This flow case is chosen because: (i) coherent structures in turbulent channel flow are
well studied in the literature, (ii) several analyses based on the linearised Navier–Stokes or
RANS equations are applied on turbulent channel flow [1, 2, 10, 72, 73, 76], and (iii) it has
a simple flow geometry. In the geometry considered here, the streamwise, wall-normal, and
spanwise directions are labelled (x,y,z), respectively. The mean stream is in the x−direction
and the flow is homogeneous in the x− and z−directions. The channel half-width is h, with
the x−axis on the bottom wall. The mean velocity, turbulent fluctuations, and linear har-
monic perturbations, respectively, are given as:

ui = [u(y),0,0] , p = p(y),

u′i = [u′,v′,w′](x,y,z, t) , p′ = p′(x,y,z, t) , and

ũi = [ũ, ṽ, w̃](y)exp [−iωt + ikxx+ ikzz] , p̃ = p̃(y)exp [−iωt + ikxx+ ikzz] . (3.15)

where ω is a complex number, and kx and kz are real numbers. The streamwise wave-
length of perturbations is λx =

2π

kx
, and the spanwise wavelength of perturbations is λz =

2π

kz
.

The kinematic viscosity is labelled νt , and the friction Reynolds number is defined as
Reτ = huτ

ν
, where friction velocity is defined as uτ =

√
ν

du(0)
dy . All the lengths presented

are non-dimensionalised in outer units, which is done by dividing by h. When they are
non-dimensionalised in inner units they are divided by ν/uτ , and the non-dimensionalised
streamwise and spanwise wavelengths are represented as λ+

x and λ+
z , and the non-dimensionalised

axes in the streamwise, wall-normal, and spanwise directions are represented as X+, Y+, and
Z+, respectively.

The νt profile and Gi−coefficients need to be calculated from the mean flow data for the
implementation of the EVM- and EARSM-based linearised RANS equations, respectively.
The DNS data used are for channel flows at the Reτ = 180, 934, and 2003, which are
available online from Refs. [3, 101]. The eddy viscosity profile is calculated as νt =− u′v′

du/dy .
The Gi−coefficients are calculated as in equation (49) in Gatski & Speziale (1993) [107].
The accuracy of these models in reproducing the Reynolds stress tensor is checked for the
Reτ = 934 flow case, and the results are shown in figure 3.1. The top and bottom rows
are the estimations from the EVM and EARSM, respectively. The solid lines are the exact
Reynolds stress from the DNS data, and the dashed lines are estimated from the models.

The EVM, by definition, is exact at estimating the u′v′−component, as seen in the frame
(a), but the error is large in all the three normal Reynolds stress components estimations.
The other two Reynolds stress components (v′w′ and w′u′) are identically zero in turbulent
channel flows. The EARSM is overall more accurate at estimating the Reynolds stress.
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Fig. 3.1 The Reynolds stress components estimated from the (a–d) EVM and (e–h) EARSM
for the Reτ = 934 flow case. The solid lines are from the DNS data and the dashed lines are
from the models. The EVM, by definition, is accurate at estimating the u′v′−component,
but the EARSM is better at estimating all the other components. The error in the models
is higher in the near-wall region, this is because all turbulence models are inaccurate in the
near-wall region.
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Except for the u′v′−component, it estimates all the other component more accurately. The
EVMs have isotropic eddy viscosity, which is calculated based on the dominant component,
while the EARSMs have anisotropic eddy viscosity, i.e. different turbulent viscosity in each
direction. The dominant Reynolds stress component in turbulent channel flows is u′v′, and
therefore the EVM is accurate only at estimating this component, while the EARSM is better
at estimating all the other components. Another noticeable factor in these estimates is that
the difference between the Reynolds stress from the DNS and from the models is maximum
near the wall. This is because all turbulence models are inaccurate in the near-wall region,
and require artificial corrections.

3.4 Linearised RANS-based amplification analysis

The mean flow velocity and linear perturbations from equation 3.15, along with the cal-
culated νt are substituted in equation 3.9 to obtain the EVM-based linearised equations.
Then the Orr-Somerfeld equations were obtained and an eigenvalue problem is formulated
as below.

ω


−k2

z − k2
x

+ d2

dy2 0
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[
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]
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(3.16)
where Ω̃ is the wall-normal vorticity, i represents the imaginary unit, and I is the identity
operator.

The calculated Gi are substituted in equation 3.14 to obtain the EARSM-based linearised
equations, which is also formulated as an eigenvalue problem.

ω


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0




ũ

ṽ

w̃

p̃

= [NS]


ũ

ṽ

w̃

p̃

+[T ]

 ũ

ṽ

w̃

 (3.17)
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where [NS] represents the Navier–Stokes equations, which is given by the continuity equa-
tion and first four terms in the momentum equation written in equation 3.14, and [T ] repre-
sents the turbulence term, which is given by the last term in the momentum equation written
in equation 3.14. This equation is re-written as a generalised eigenvalue problem.

ω [B]


ũ

ṽ

w̃

p̃

= [A]


ũ

ṽ

w̃

p̃

 (3.18)

Chebyshev spectral method with Gauss-Lobatto points in the y-direction is used for
discretisation. The fact that ṽ is anti-symmetric and ũ, w̃, and p̃ are symmetric with respect to
the centre of the channel is used, and discretisation is performed only for half of the domain.
Chebyshev differentiation matrices are used for the differential operators in the equation
[99]. The Matlab function ‘eig’ is used to calculate the eigenvalues (not the eigenvectors),
the eigenvectors corresponding to the calculated eigenvalues are then calculated using the
Matlab function ‘eigs’ because it is numerically cheaper.

The maximum transient growth, Gmax = sup ũ2(t)+ṽ2(t)+w̃2(t)
ũ2(0)+ṽ2(0)+w̃2(0) , is maximised over the

amplification time t as well as the initial condition. It is calculated based on the formulation
given in Ref. [100]. The procedure of its calculation based on the system’s eigenvalues and
eigenvectors is described in Section 2.2.

Figure 3.2 shows the maximum transient growth, Gmax, in the three flow cases, (a, d)
Reτ = 180, (b, e) Reτ = 934, and (c, f) Reτ = 2003, calculated from the (a–c) EVM- and
(d–f) EARSM-based analyses as functions of λx and λz. The top and bottom axes show
the spanwise wavelengths in outer (λz) and inner (λ+

z ) units, respectively. The different
lines in each frame correspond to the different λx perturbations, and the arrows indicate the
direction of increase in λx. The λx in the Reτ = 180 flow case are λ+

x = 200, 400, 900,
1800, and 3600. The λx in the Reτ = 934 flow case are λ+

x = 400, and λx = 1, 2, 5, and
20. The λx in the Reτ = 2003 flow case are λ+

x = 400, and λx = 0.5, 1, 2, 5, and 20. The
calculations from the EARSM based analysis are performed with 150 grid-points for all the
cases. Some calculations are repeated with 130 or 170 grid-points, and the change in Gmax

is up to O(10−2). The calculations in the EVM based analysis are performed with 150 grid-
points for the Reτ = 2003 and 934 cases, and are checked by repeating some calculations
with 130 grid-points, and with 130 grid-points for the Reτ = 180 case, and are checked by
repeating some calculations with 110 grid-points. The change in Gmax is up to O(10−2) in
all the cases.
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Fig. 3.2 The maximum transient growth, Gmax, in the three flow cases, (a, d) Reτ = 180, (b,
e) Reτ = 934, and (c, f) Reτ = 2003, calculated from the (a–c) EVM- and (d–f) EARSM-
based analyses are shown as functions of λx and λz. The top and bottom axes show the
spanwise wavelengths in outer (λz) and inner (λ+

z ) units, respectively. The different lines in
each frame correspond to the different λx perturbations, and the arrows indicate the direction
of increase in λx. The most important feature in these plots is that there are two peaks in
the Gmax in all the cases. A primary peak at the higher λz values, which scales in outer
units, and a secondary peak at the smaller λ+

z values, which scales in inner units. These
results are similar to the results in Refs. [2, 10], where the optimal structures corresponding
to the primary peak are compared with very-large-scale-motions (VLSMs) and the optimal
structures corresponding to the secondary peak are compared with near-wall structures.
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The most important feature in figure 3.2 is that both the analyses find that there are
two peaks in Gmax for all the flow cases. A primary peak at the larger spanwise wavelength,
which scales in outer units, and a secondary peak at the smaller spanwise wavelength, which
scales in inner units. These results are very similar to the results in Pujals et al. (2009) and
del-Alamo & Jimenez (2006) [2, 10], who also use the EVM-based analysis. A difference
between the present EVM-based analysis and that of Pujals et al. (2009) [2] is that in the
former analysis the DNS data for channel flow are used while in the latter analysis empirical
profiles of the eddy viscosity and mean velocity for channel flow are used. Therefore, the
results are expected to be quantitatively little different but qualitatively similar. This is
shown in figure 2 of Chapter 2. In Refs. [2, 10], the optimal structures corresponding to
the primary peak are compared with very-large-scale-motions (VLSMs) and the optimal
structures corresponding to the secondary peak are compared with near-wall structures.

Apart from this important similarity between the results from the two analyses, there are
some minor quantitative and qualitative differences in the results. The EVM-based analysis
predicts the primary peak at λz|peak ≈ 3.4 while the EARSM-based analysis predicts it at
λz|peak ≈ 4.25. The EVM-based analysis predicts the secondary peak at λ+

z |peak ≈ 80 while
the EARSM-based analysis predicts it at λ+

z |peak ≈ 140−200 depending upon λ+
x . The ob-

served width of VLSMs in pipe flow is found to be around 2 outer units [35], and the span-
wise spacing of near-wall streaks is observed to be nearly 100 wall units [21, 27]. Therefore,
results from the EVM-based analysis are quantitatively closer to the observations. A qualita-
tive difference between the results is that the secondary peak from the EVM-based analysis
is predicted to be at the λ+

z |peak = 75− 85, which does not depend much upon λ+
x , while

it increases with increasing λ+
x in the EARSM-based analysis. In DNS data, it has been

observed that the larger structures are also wider [8], therefore, this property is captured
better by the EARSM-based analysis. Another difference in the results is that Gmax from
the EARSM-based analysis is smaller than that from the EVM-based analysis, and both
are much smaller than Gmax from the molecular viscosity (MV)-based analysis in Chapter
2. The reason that the EARSM damps more than the EVM is because the viscosity in the
dominant direction, which is of the u′v′−Reynolds stress, is over-estimated by the EARSM
as seen in figure 3.1.

3.4.1 Optimal mode shapes

Figure 3.3 shows the normalised amplitudes of velocities in the initial and final optimal
modes correspond to the secondary peaks in Gmax. Frames (a) and (b) show the modes at
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the λ+
x = 400 and λ+

z = 85 calculated from the EVM-based analysis, and frames (c) and (d)
show the modes at the λ+

x = 400 and λ+
z = 180 calculated from the EARSM-based analysis.

The dashed lines, solid lines, and squares correspond to the Reτ = 180, 934, and 2003
flows, respectively. The black, grey, and light-grey colours correspond to the streamwise,
wall-normal, and azimuthal velocities, respectively. These plots show that these modes
exist in the near-wall region and they scale in inner units, except the streamwise velocity
component in the initial optimal modes from the EARSM-based analysis shown in frame
(c). The shapes of the optimal modes from the EVM- and EARSM-based analyses match
with each other. The only noticeable difference is in the streamwise velocity component
in the initial optimal modes. The shapes of the wall-normal velocity in the initial modes
and the streamwise velocity in the final modes match well with those correspond to the
secondary peak shown in figures 5(a) and (b) in Pujals et al. (2009) [2].

In summary, the optimal modes that correspond to the secondary peaks (i) scale in inner
units, (ii) lie in the near-wall region, and (iii) have small wavelengths of the order of the
size of near-wall structures as observed in Refs. [8, 21, 27]. Because these features are
consistent with those of near-wall structures, these optimal modes are compared with the
near wall structures in previous studies [1, 2, 10, 73]. The optimal modes that correspond
to the secondary peaks in the Reτ = 180 flow case from the EVM- and EARSM-based
analyses are shown in two-dimensional planes in figures 3.4 and 3.5, respectively. Frames
(a) in both the figures show the initial optimal modes in the spanwise–wall-normal plane.
These figures show that the mode shapes are like vortical structures in the near-wall region.
They match with quasi-streamwise vortices. Frames(b) in both the figures show the final
optimal modes in the streamwise–wall-normal plane. These figures show the mode shapes
are streaky structures. The regions with the positive streamwise velocity have the negative
wall-normal velocity. These regions match with sweeps, which form high-speed streaks.
The regions with the negative streamwise velocity have the positive wall-normal velocity.
These regions match with ejections, which form low-speed streaks.

Figure 3.6 shows the normalised amplitudes of velocities in the initial and final optimal
modes correspond to the primary peak in Gmax. Frames (a) and (b) show modes at the
λx = 20 and λz ≈ 3.4 calculated from the EVM-based analysis, and frames (c) and (d)
show modes at the λx = 20 and λz ≈ 4.25 calculated from the EARSM-based analysis.
The dashed lines, solid lines, and squares correspond to the Reτ = 180, 934, and 2003
flows, respectively. The black, grey, and light-grey colours correspond to the streamwise,
wall-normal, and azimuthal velocities, respectively. These plots show that the final optimal
modes have most energy in the streamwise velocity and it peaks in the logarithmic layer
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Fig. 3.3 The normalised amplitudes of velocities in the initial and final optimal modes at
the (a, b) λ+

x = 400 and λ+
z = 85 calculated from the EVM-based analysis, and at the

(c, d) λ+
x = 400 and λ+

z = 180 calculated from the EARSM-based analysis. The dashed
lines, solid lines, and squares correspond to the Reτ = 180, 934, and 2003 flows, respec-
tively. The black, grey, and light-grey colours correspond to the streamwise, wall-normal,
and azimuthal velocities, respectively. The shape of these modes show that they scale in
inner units, except the streamwise velocity component in the initial optimal mode from the
EARSM-based analysis in frame (c). The shapes of the optimal modes from the EVM- and
EARSM-based analyses match with each other. The only noticeable difference is in the
streamwise velocity component in the initial optimal modes. The shapes of the wall-normal
velocity in the initial modes and the streamwise velocity in the final modes match well with
those shown in figures 5(a) and (b), respectively, in Pujals et al. (2009) [2].
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Fig. 3.4 Results for the λ+
x = 400 and λ+

z = 85 in the Reτ = 180 flow case from the EVM-
based analysis. (a) The initial optimal mode is shown in the Y+−Z+ plane, it has a vortical
structure like that of near-wall quasi-streamwise vortices. (b) The final optimal mode is
shown in the X+−Y+ plane (the Y+−axis is twice magnified). The streaky structures with
the positive streamwise velocity have the negative wall-normal velocity and vice-versa.
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Fig. 3.5 Results for the λ+
x = 400 and λ+

z = 180 in the Reτ = 180 flow case from the
EARSM-based analysis. (a) The initial optimal mode is shown in the Y+− Z+ plane, it
has a vortical structure like that of near-wall quasi-streamwise vortices. (b) The final opti-
mal mode is shown in the X+−Y+ plane (the Y+−axis is twice magnified). The streaky
structures with the positive streamwise velocity have the negative wall-normal velocity and
vice-versa.
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at y ≈ 0.2− 0.3. The shapes of the optimal modes from the EVM- and EARSM-based
analyses match with each other. The wall-normal velocity in the initial optimal modes and
the streamwise velocity in the final optimal modes match with those shown in figures 5(c)
and (d), respectively, in Pujals et al. (2009) [2].

In summary, the optimal modes that correspond to the primary peak (i) scale in outer
units, (ii) lie in the entire channel but have most of their energy in the logarithmic layer,
and (iii) have very large wavelengths. Because these features are consistent with those of
VLSMs, these optimal modes are compared with the VLSMs in Refs. [2, 10]. The origin
of the VLSMs has been a topic of discussion in many recent studies. Some researchers con-
clude that they form from the merging of smaller large-scale-motions (LSM) while others
believe that they form independently. This is discussed in detail with references in Chapter
2. The results in this chapter, and in Refs. [2, 10], suggest that VLSMs can form indepen-
dently of the smaller structures.

There is a good overall agreement between the results from (i) the present EVM-based
analysis (ii) the present EARSM-based analysis, and (iii) the EVM-based analysis in Pujals
et al. (2009) [2]. The aim of this linear amplification analysis is to verify the present
EARSM-based analysis. It is a much more complicated turbulence model as compared to
the EVM, and the match in the results from the EARSM-based analysis with those from the
EVM-based analyses confirms that the derivations and associated codes used in the present
chapter are correct. The EARSM-based analyses, similar to the present one, are used in
Chapter 5 for flows in gas-turbine injector-combustor systems and in Chapter 6 for Taylor-
Couette flows.

3.5 RANS-based linearised equations to find coherent struc-
tures

For the purpose of this discussion, coherent structures in turbulent flows are characterised
into two types. The first type are intermittent coherent structures, such as streaks and vor-
tices in channel flow or other large eddies in statistically stationary turbulent flows. Their
contribution in the velocity and pressure fields averages out in the time-averaged as well
as the phase-averaged fields, therefore they are part of the fluctuating fields u′i and p′. The
second type are almost constant frequency coherent structures, such as vortex shedding in a
turbulent flow behind a cylinder. Their contribution in the velocity and pressure fields av-
erages out in the time-averaged fields, but not in the phase-averaged fields. They, therefore,
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Fig. 3.6 The normalised amplitudes of velocities in the initial and final optimal modes at the
(a, b) λx = 20 and λz ≈ 3.4 calculated from the EVM-based analysis, and at the (c, d) λx = 20
and λz ≈ 4.25 calculated from the EARSM-based analysis. The dashed lines, solid lines,
and squares correspond to the Reτ = 180, 934, and 2003 flows, respectively. The black, grey,
and light-grey colours correspond to the streamwise, wall-normal, and azimuthal velocities,
respectively. The shape of these modes show that they scale well in outer units, and that
the shapes from the EVM- and EARSM-based analyses also match with each other. The
shapes of the wall-normal velocity in the initial modes and the streamwise velocity in the
final modes from both the analyses match well with those shown in figures 5(c) and (d),
respectively, in Pujals et al. (2009) [2].
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are part of the phase-averaged fields ũi and p̃.

It is seen in Section 3.2, that the linearised RANS equations are derived for the phase-
averaged fields ũi and p̃. The linearised RANS-based analyses, therefore, are suitable for
prediction of the second type of coherent structures but not for the first type of coherent
structures. If an analysis, similar to the linearised RANS-based analysis, has to be derived
for predicting the first type of coherent structures, then in such analysis their contribution
should be included in ũi and p̃ fields not in u′i and p′ fields. Consequently, in such analysis
the Reynolds stress components will be much lower.

In the present EVM-based analysis for turbulent channel flows, and also in the other
EVM-based analyses in the literature [2, 10], however, the eddy viscosity profiles are cal-
culated based on the total Reynolds stress components. Such eddy viscosity profiles are
too high for the prediction of coherent structures [4]. This is seen in the transient growth
calculations. The maximum transient growth, Gmax, calculated from the EVM-based analy-
sis are very small, while Gmax calculated from the molecular viscosity (MV)-based analysis
in Chapter 2 are much larger. Another, and much graver, consequence of such high eddy
viscosity profile is that it finds only minima in energy amplification for all the intermedi-
ate wavelengths. The intermediate wavelength region is the region between the two peaks
found from the EVM-based analysis. The DNS data for channel flow show a peak in energy
spectra in the same wavelength region. The observed coherent structures in this wavelength
region are called hairpin vortices and LSMs, and they are predicted well by the MV-based
stability analysis in Chapter 2.

The damping effect of using the eddy viscosity profile such as in the present analysis is
shown in figures 3.7, 3.8, and 3.9 for the perturbations of the small (λ+

x = 400 and λ+
z = 85),

intermediate (λx = 2 and λz = 0.75), and large (λx = 20 and λz = 3) wavelengths in the
Reτ = 2003 flow case. It is not possible to say anything conclusively from the eigenvalue
spectra alone. Nonetheless they provide some insight about the damping in the EVM-based
analysis. The left side plots (a and c) show eigenvalues calculated from the MV-based
analysis and the right side plots (b and d) show eigenvalues calculated from the EVM-based
analysis. The eigenvalues are divided into three types based on the wall-normal position
(ys) where the corresponding eigenvectors have most energy. The red circles correspond to
eigenvalues in the near-wall region (ys ≤ 40/Reτ ), the blue circles correspond to eigenvalues
in the logarithmic layer (ys > 40/Reτ and ys < 0.3), and the black circles correspond to
eigenvalues outside the logarithmic layer (ys ≥ 0.3 and ys < 0.6). Other eigenvalues (ys ≥
0.6) are neglected because their contribute in the formation of coherent structures is not
likely to be important. The vertical axis in the plots is the growth rate (ωi), and the horizontal
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Fig. 3.7 The normalised eigenvalue spectra in the Reτ = 2003 flow case for the λ+
x = 400

and λ+
z = 85 perturbations calculated from the (a, c) MV- and (b, d) EVM-based analyses.

The top plots show a few leading eigenvalues with the 0.95 ≤ ωrs ≤ 1.05, and the bottom
plots show almost the complete spectra. These figures show that the EVM-based analysis
not only damps the eigenvalues significantly, but also scatter them away from ωrs = 1. As a
consequence fewer eigenvectors contribute in the formation of coherent structures.
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Fig. 3.8 The normalised eigenvalue spectra in the Reτ = 2003 flow case for the λx = 2 and
λz = 0.75 perturbations calculated from the (a, c) MV- and (b, d) EVM-based analyses. The
top plots show a few leading eigenvalues with the 0.95 ≤ ωrs ≤ 1.05, and the bottom plots
show almost the complete spectra. These figures show that the EVM-based analysis not only
damps the eigenvalues significantly, but also scatter them away from ωrs = 1. The frame (d)
shows that in the EVM-based analysis, the eigenvalues are divided into two regions based
on their growth rate. There are significantly fewer eigenvalues in frame (b) as compared
to those in the frame (a), which means that in the EVM-based analysis fewer eigenvectors
contribute in the formation of coherent structures.
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Fig. 3.9 The normalised eigenvalue spectra in the Reτ = 2003 flow case for the λx = 20 and
λz = 3 perturbations calculated from the (a, c) MV- and (b, d) EVM-based analyses. The
top plots show a few leading eigenvalues with the 0.95 ≤ ωrs ≤ 1.05, and the bottom plots
show almost the complete spectra. These figures show that the EVM-based analysis not only
damps the eigenvalues significantly, but also scatter them away from ωrs = 1. The frame (d)
shows that in the EVM-based analysis, the eigenvalues are divided into two regions based
on their growth rate. There are significantly fewer eigenvalues in frame (b) as compared
to those in the frame (a), which means that in the EVM-based analysis fewer eigenvectors
contribute in the formation of coherent structures.
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axis in the plots is the scaled frequency of eigenvalues (ωrs). It is calculated as:

ωrs =
ωr

u(ys)kx
(3.19)

This represents the convective velocity of an eigenvector divided by the flow velocity at the
location where the eigenvector has most energy. Because the coherent structures convect at
the local flow speed, ωrs is expected to be near 1. The top two plots (a and b) in the three
figures show only a few leading eigenvalues with the 0.95 ≤ ωrs ≤ 1.05. The bottom two
plots (c and d) show the almost complete spectra. Only a few scattered eigenvalues with the
ωrs much greater than 1 are not shown.

There are three noticeable properties in these plots. The first is, as expected, that the
EVM-based analysis has eigenvalues with the much smaller growth rate as compared to
those from the MV-based analysis. The factor is of more than 10. The second is that
eigenvalues from the EVM-based analysis, particularly in figures 3.8 and 3.9, are divided
into two regions based on their growth rate. It shows that only a few eigenvectors in the
EVM-based analysis contribute in the formation of coherent structures. The third is that the
most of the eigenvalues from the MV-based analysis have the ωrs = 1, which shows that
the corresponding eigenvectors can simulate the wave perturbations in the flow, while in the
EVM-based analysis they are considerably scattered away from the ωrs = 1. The conclusion
of this section is that the EVM-based analysis not only heavily damps the eigenvalues but
it also scatters them away from ωrs = 1. The overall effect of this is seen as a reduction in
transient growth in the system calculated from the EVM-based analysis. The spectra from
the EARSM-based analysis are not shown here, but they have similar features as those in
from the EVM-based analysis.

3.6 Summary and conclusion

In this chapter, the linearised RANS equations based on a second-order turbulence model
(EARSM) are derived. In order to verify the derivation and the associated codes, these
equations are applied for energy amplification analysis of turbulent channel flows to find
coherent structures. The results from this analysis are compared with those from the EVM-
based analysis derived in this chapter, and also with those of Pujals et al. (2009) [2].

The EARSM-based analysis finds that there are two peaks in the transient growth: a
primary peak at the λz ≈ 4.25, which scales in outer units, and a secondary peak at the λ+

z ≈
170, which scales in inner units. These results match qualitatively with those from the EVM-
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based analyses. They also show a primary peak, which scales in outer units, and a secondary
peak, which scales in inner units, in similar regions of wavelengths. Moreover, the shapes of
the optimal modes from the EARSM-based analysis are also in good agreement with those
from the EVM-based analyses. This agreement of results from the analyses based on the two
significantly different models verifies the derivation of the present EARSM-based analysis,
and the associated codes as well. The EARSM-based analyses, similar to the present one,
are used in Chapter 5 for flows in gas-turbine injector-combustor systems and in Chapter 6
for Taylor-Couette flows.

It is also discussed in this chapter, that analysis based on the linearised RANS equations
is better suited for coherent structures that occur at an almost constant frequency, such as
vortex shedding behind a cylinder, and not so suitable for coherent structures that occur
intermittently, such as streaks and vortices in turbulent channel flows. The linearised RANS
equations-based analysis over-damps the intermittent structures in a flow. The EVM-based
analysis in turbulent channel flow is used as an example to show this damping effect. It
is seen that the EVM-based analysis not only damps the eigenvalues significantly, but also
scatters them away from ωrs = 1, where ωrs = 1 represents the modes which convect at
local flow velocity. The overall effect of this is seen as a reduction in transient growth in the
system calculated from the EVM-based analysis.





Chapter 4

Effect of axial rotation on near-wall
structures in turbulent pipe flow

In this chapter, modal and non-modal stability analyses that are based on the linearised
Navier–Stokes equations are used to study the formation of near-wall coherent structures
in turbulent pipe flows and how rotation of the pipe around its own axis disrupts their for-
mation. This chapter is in two parts. In the first part, the process of formation of streaks
from quasi-streamwise vortices is studied. This analysis is similar to the analysis in Chapter
2, where linear amplification analysis is performed by linearising the Navier–Stokes equa-
tions around the mean velocity profile. The effect of the nonlinear terms in this analysis
is modelled as the input streamwise wavelengths of perturbations, which are based on ex-
perimental and DNS observations on coherent structures. In the second part, the process
of breakdown of low-speed streaks for the formation of quasi-streamwise vortices is stud-
ied. This analysis is similar to the modal stability analysis in Schoppa & Hussain (2002)
[11], where the Navier–Stokes equations are linearised over an idealised realisation of the
low-speed streaks.

4.1 Introduction

Turbulent boundary layers suffer from a higher skin-friction drag than their laminar coun-
terparts. It is recognised that this higher skin-friction drag in turbulent flows is caused by
coherent structures in the near-wall region. Consequently, there is commercial interest in
suppressing these structures either through passive control, such as by modifying the flow
boundaries by adding riblets [109], or through active control, such as by deterring sweeps
or stabilising and preventing lifting of spanwise vorticity in the near-wall region [110].
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Recently, many simplified approaches have been developed to understand and model co-
herent structures in turbulent flows [2, 5, 10, 48, 56, 68, 73, 75]. Out of these approaches the
ones that are based on linearised equations are of particular interest in control applications.
Moarref & Jovanovic (2012) [87] have implemented a linear model-based active-control in
channel flow for achieving drag reduction. Their study is based on the studies of Lee, Kim,
& Moin (1990) and Kim & Lim (2000) [82, 93], who showed the role of linear mechanisms
in the formation and maintenance of streaks, and on the studies of del-Alamo & Jimenez
(2006) and Pujals et al. (2009) [2, 10], who showed that the linearised RANS equations that
are based on a simple eddy viscosity model qualitatively capture the features of coherent
structures in turbulent channel flows. Sharma et al. (2011) [90] have also designed and
implemented a linear control strategy for re-laminarisation of a low Reynolds number tur-
bulent channel flow. Their linear control strategy is based on a passivity approach according
to which it is possible to control each wavenumber perturbation individually.

Meliga et al. (2012) [88] have used linearised RANS equations-based global stability
analysis to obtain the sensitivity of sinuous oscillations to the addition of a small control
cylinder in a 2-D turbulent flow past a D-shaped cylinder. In their analysis they linearised
a set of 2-D RANS equations around the mean flow, where the mean flow is obtained by
time-averaging the unsteady solutions obtained from the same set of RANS equations. They
showed that their results are in agreement with experimental observations of Ref. [89] for
the same flow. Mettot et al. (2014) [111], somewhat contrarily to Meliga et al. (2012)
Ref [88], have shown that an even simpler analysis, where the Navier–Stokes equations are
linearised over the mean flow, is equally capable of predicting the sensitivity results that
are in good agreement with the experiments. There are two main advantages of the latter
study. The first is that it does not require the RANS equations to be linearised. The second
is that solution for the mean flow can be obtained from any source, such as DNS, RANS, or
experiments, while in the former study the mean flow profiles have to be obtained from the
same set of equations as used in the stability analysis. Mettot et al. (2014) [111] obtained
the mean velocity profile by time-averaging the unsteady solutions of a set of 3-D RANS
equations.

The aim of the study in this chapter is to see (i) whether the linearised Navier–Stokes
equations based analyses capture the process of formation of near-wall structures in a ro-
tating turbulent pipe flow, and (ii) whether they explain the effects of axial rotation of the
pipe on the near-wall structures. The main motivation for this study is to see whether the
linearised equations based analyses in this chapter can be used as a basis for the application
of more tools from linear dynamical systems in rotating turbulent pipe flows. The effect of
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rotation in pipe flows is also interesting because of its difference in the laminar and turbulent
regimes. Constant axial rotation of pipe around its own axis has a destabilising effect in lam-
inar pipe flows as it brings the critical Reynolds number down [112]. Contrarily, in turbulent
pipe flows the axial rotation is stabilising as it causes a reduction in near-wall structures, and
brings the flow profile closer to the laminar parabolic shape flow profile [113]. Rotation of
the pipe can be thought of as a passive control mechanism (not an optimal one though) and
is similar to other control strategies in terms of the forcing mechanism, such as the forced
large-scale counter-rotating vortices or wall-oscillations in Refs. [114–117]. Therefore, un-
derstanding the effect of rotation on coherent structures also sheds light on the mechanism
of these other control strategies.

4.1.1 Regeneration cycle of near-wall structures and chapter outline

The most widely accepted mechanism for the formation and maintenance of near-wall struc-
tures in wall-bounded turbulent flows is the regeneration cycle summarised in figure 4.1
[8, 11, 94, 96, 118]. [Refs added.] There are three main steps in this cycle and the two
of them are linear. These two linear processes - (i) the formation of near-wall streaks
from quasi-streamwise vortices via a linear lift-up mechanism and (ii) the breakdown of
the streaks for the formation of the quasi-streamwise vortices via a secondary instability -
are studied using analyses based on the linearised Navier–Stokes equations in two parts of
this chapter in Section 4.3 and Section 4.4, respectively. In Section 4.2, the mean velocity
profiles in turbulent pipe flows are discussed, and the terminologies are introduced.

4.2 Pipe flow

The streamwise, radial, and azimuthal directions are represented by (x,r,θ) coordinates,
respectively. The mean flow velocity is given as (U0(r),0,W0(r)) in the (x,r,θ) directions,
respectively. The Reynolds, friction Reynolds, and rotation numbers, respectively, are de-
fined as:

Re =
UmR

ν
, Reτ =

uτR
ν

, and Ro =
W0 (R)

Um
.

where, Um is the mean bulk velocity, R is the pipe radius, ν is the kinematic viscosity, and

uτ is the friction velocity defined as: uτ :=
√
−ν

(
dU0(R)

dr

)
. From henceforth all variables

are non-dimensionalized in outer units, i.e. by Um and R, unless they are indicated by
superscript+, in which case they are non-dimensionalized in wall (or inner) units, i.e. by uτ
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Fig. 4.1 The regeneration cycle of near-wall structures involves three main steps. This cy-
cle can be started from any point, in the present study it is started from quasi-streamwise
vortices. The first step is the generation of near-wall streaks by linear amplification of
quasi-streamwise vortices via a lift-up mechanism. The second step is the breakdown of
the near-wall streaks for the formation of x-dependent flow via modal or non-modal sin-
uous instabilities. The third step is a nonlinear process that leads to the formation of the
quasi-streamwise vortices from the x-dependent flow.

and ν . The wall-normal distance is defined as y= 1−r in outer units and as Y+ =Reτ(1−r)

in inner units. Length in the azimuthal direction is defined as z+ = Reτθ in inner units.

The mean flow profiles are taken from the DNS results presented in Orlandi & Fatica
(1997) [113] for the pipe flows at Re = 2450 and Ro = 0, 0.5, 1, and 2. The (a) mean
axial velocity profiles in inner units and (b) mean azimuthal velocity profiles, normalised
by their rotation numbers, in inner units, are plotted in figures 4.2. The mean axial velocity
profile in the near-wall region, when non-dimensionalised in inner units, does not change
with the rotation number. The centreline velocity, however, increases with the rotation. The
mean azimuthal velocity profiles, when normalised by their rotation numbers, are similar at
all the rotation numbers. The profiles do not fall on the top of each other as found in the
experiments in Refs. [119–121], but there is still a good match in the profiles [113].

The friction Reynolds numbers for the four cases, in order of increasing rotation number,
are 170, 147, 149, and 157. It is highest for the non-rotating case, it decreases and then
increases slightly again as the rotation increases. This shows that some rotation causes a
decrease in the wall shear stress, and hence in the drag. This is because rotation causes a
disruption in the regeneration process of near-wall structures. As a result there are fewer
quasi-streamwise vortices and fewer near-wall streaks in the rotating cases as observed in
Ref. [113]. In this chapter, two of the cases, which are Ro = 0 and Ro = 0.5, are studied.
The study is limited only to these two cases because at higher rotation numbers (Ro = 1
and 2) the mean profiles themselves are linearly unstable. This suggests that the dominant
mechanism for the formation of streaks might no longer be the same non-normal lift-up
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Fig. 4.2 (a) The mean axial velocity profile in fully developed turbulent pipe flow for
the Re = 2450 at the four rotation numbers. The profiles in the wall region, when non-
dimensionalised in wall units, do not change with rotation number. (b) The mean azimuthal
velocity profile, normalised by their rotation number, for the three rotating cases. The nor-
malised profiles are similar to each other.

mechanism, and a discussion on that is beyond the scope of this study.

4.3 Formation of near-wall streaks from quasi-streamwise
vortices

Quasi-streamwise vortices are vortical structures that populate the near-wall region in wall-
bounded turbulent flows [40]. These vortical structures have significant wall-normal veloc-
ity component, which on the one side brings high speed fluid towards the wall and on the
other side lifts low speed fluid away from the wall. These events are known as sweeps and
ejections, respectively. The lifted low speed fluid from the ejections elongates and forms
low-speed near-wall streaks [42]. This process is dominantly linear because the quasi-
streamwise vortices are amplified via a linear lift-up mechanism for the formation of the
sweeps and ejections, and hence for the formation of the near-wall streaks. The role of lin-
ear mechanisms in the formation and maintenance of streaks is also shown in Refs. [82, 93].
Kim & Lim (2000) [93], however, also showed that streaks form at correct size only when
the nonlinear terms are also included.

Energy amplification analysis based on the Navier–Stokes equations linearised over the
mean velocity profile is performed here to study the formation of streaks and the effect of
rotation on their formation. Based on Kim & Lim (2000) [93]’s conclusions, the effect of the
nonlinear terms is modelled as the input streamwise wavelengths of the perturbations, where
the input values are based on the observed quasi-streamwise vortices’ streamwise lengths.
Such a modelling for the effect of the nonlinear terms is very rudimentary. Nonetheless
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there is a good match in the optimal modes and energy spectra from the analysis with those
in experiments and DNS.

The turbulent mean flow profile is uniform in the x− and θ−directions, so the perturba-
tions (u′,v′,w′, p′)(x,r,θ , t) over it are assumed to be of the form:

(u(r),v(r),w(r), p(r))exp{−iωt + ikx+ imθ},

where the streamwise wavelength is given as λx = 2π/k, and the azimuthal wavelength is
defined as λz := 2π/m (λx and λz are non-dimensionalised by R). The linearised momentum
and continuity equations for the perturbations are given below.
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In contrast to a non-rotating case, where the only linear coupling term is vdU0
dr , a rotating

case has additional linear coupling terms, which are w2W0
r in the v−momentum equation,

and v
r

d
dr (rW0) in the w−momentum equation. These terms represent linear interaction be-

tween the azimuthal and wall-normal velocity perturbations with the mean azimuthal ve-
locity, respectively. They increase the non-normality of the operator and, as will be investi-
gated, also the transient growth in the system.

For the numerical calculations, equations 4.1 are written as a generalised eigenvalue
problem.

ω [B]


u

v

w

p

= [A]


u

v

w

p

 (4.2)

Chebyshev spectral method is used with Gauss-Lobatto points in the wall-normal direc-
tion. Discretisation is performed by projecting the values of the quantities on the Gauss-
Lobatto points. Chebyshev differentiation matrices are used for the differential operators
in the equation [99]. Matlab function ‘eigs’ is used to calculate the eigenvalues and the
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required number of eigenvectors.
The maximum transient growth is defined as:

Gmax = sup
0≤t<∞

|
√

ru(t)|2 + |
√

rv(t)|2 + |
√

rw(t)|2

|
√

ru(0)|2 + |
√

rv(0)|2 + |
√

rw(0)|2
.

Many studies in the literature do not include the curvature effect in Gmax, perhaps because
this effect is small in the near-wall region and does not affect the results qualitatively. Gmax

is calculated based on the formulation given in Ref. [? ]. Towards that purpose, first the
eigenvectors are re-written such that they only include u, v, and w components and square
root of radial component, r, is multiplied. An eigenvector corresponding to an eigenvalue,
ωi is given as:

fi =
[√

rui
√

rvi
√

rwi
]
,

where ui, vi, and wi are the velocity components in the original eigenvector calculated from
equation 4.2. Based on the calculated fi and ωi, the maximum transient growth is calculated
in the same way as described in Section 2.2.

4.3.1 The Ro = 0 and Ro = 0.5 cases

Figure 4.3 presents the maximum transient growth, Gmax, for the (a) non-rotating (Ro = 0)
and (b) rotating (Ro = 0.5) cases. The Gmax calculations are performed for the perturba-
tions of λ+

x = 100 − 700. This choice of λ+
x is based on the streamwise length of the

observed quasi-streamwise vortices, which is only a few hundred wall-units [11, 42, 95].
Schoppa & Hussain [11] showed through numerical calculations that their preferred length
is approximately 300 wall-units, which, perhaps coincidentally, matches with the minimal
channel length required to sustain wall-turbulence [97]. The maximum transient growth,
Gmax, calculations are performed with 80 grid-points and 150 eigenvectors. The conver-
gence is checked by repeating a few calculations with 100 grid-points and 180 eigenvectors,
the change in Gmax is less than 0.1 percent and there is no change in the calculated λ+

z |peak

values.

Preferred azimuthal spacing of near-wall streaks

The peaks in Gmax are at λ+
z ∼ 100 for the non-rotating and rotating cases. This tallies

with the observations that near-wall streaks with spanwise/azimuthal spacing of 100 wall
units are preferred in wall-bounded turbulent flows [21, 27]. Figure 4.3 also shows that the
λ+

z |peak values are higher in the rotating case as compared to those in the non-rotating case,
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Fig. 4.3 The maximum transient growth, Gmax, as functions of λ+
x and λ+

z in the (a) non-
rotating and (b) rotating cases. The value of λ+

z |peak is at around 100 wall units in both
cases, which matches with the observed spanwise/azimuthal spacing of near-wall streaks.
The higher λ+

z |peak for the rotating case indicates widening of the streaks with rotation.

except for the λ+
x = 100 perturbations where it is slightly lower. The rotating flow, therefore,

is expected to have wider near-wall streaks as compared to those in the non-rotating case.
Such widening of streaks, or increase in their spacing, has also been observed in the DNS
data of Orlandi & Fatica [113].

Co-winding and counter-winding streaks:

Linear amplification in the rotating case is higher for the negative m modes than it is for
the positive m modes, unlike in the non-rotating case where it is symmetric in m. This
implies that the flow with rotation favours the formation of co-winding streaks (k/m is of
the opposite sign as that of U/W ) over the formation of counter-winding streaks (k/m is
of the same sign as that of U/W ). Also the Gmax values at the peaks are higher in the
rotating case than they are in the non-rotating case. This means that if everything else in the
regeneration cycle remains the same, the formation of near-wall streaks is more energetic
in the rotating pipe flow than it is in the non-rotating flow. This is the opposite trend to that
expected from the friction Reynolds number [113]. This will be further discussed later in
the chapter.
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Shape of the optimal modes

Figure 4.4 (solid lines) shows the normalised velocity amplitudes in the (a) initial and (b)
final optimal modes of the λ+

x = 300 and m = −12 perturbations in the non-rotating case.
The initial optimal mode has most of its energy in the azimuthal and wall-normal velocity
components, which is a feature of quasi-streamwise vortices. The final optimal mode has
most of its energy in the streamwise velocity component, which is a feature of near-wall
streaks. This also indicates that the streamwise velocity component gets most amplified
during the linear amplification process, which is expected because the linear coupling term,
−vdU0

dr , appears in the u−momentum equation. Figure 4.5 (a) shows a 2-d projection of
the initial optimal mode in the y− θ plane (y = 1− r). It confirms that the shape of the
initial optimal mode is of the form of quasi-streamwise vortices. Figure 4.5 (b) shows a 2-d
projection of the final optimal mode in the x− y plane. This mode has regions of positive
streamwise velocity and negative wall-normal velocity, where the negative wall-normal ve-
locity means that the flow is towards the wall. These regions match with sweeps which are
the initial form of high-speed streaks. This mode also has regions of negative streamwise
velocity and positive wall-normal velocity. These regions match with ejections which are
the initial form of low-speed streaks. The shapes of the optimal modes confirm that linear
stability analysis captures the process of the formation of the sweeps and ejections, hence
of the formation of the near-wall streaks, from the quasi-streamwise vortices.

Figure 4.6 (solid lines) shows the normalised velocity amplitudes in the (a) initial and
(b) final optimal modes of the λ+

x = 300 and m = −9 perturbations in the rotating case.
There is a higher contribution of energy from the streamwise velocity perturbation in the
initial optimal mode than that in the non-rotating case. Also the final optimal mode has
higher contributions from the azimuthal and wall-normal velocity perturbations than those
in the non-rotating case. This implies that rotation causes an increase in amplification of
the wall-normal and azimuthal velocity components more than of the streamwise velocity
component. This is understandable as the additional linear coupling terms in the rotating
case, which include W0, appear in the v− and w−momentum equations. The shapes of the
initial and final optimal modes in the y−θ and x−y planes are shown in frames 4.7 (a) and
(b), respectively. The shapes of these modes are quite similar to those in the non-rotating
case.
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Fig. 4.4 The normalised velocity amplitudes in the (a) initial and (b) final optimal modes
of λ+

x = 300 and m =−12 (or λ+
z = 89) perturbations. Solid lines are for the non-rotating

case, and the dashed lines are for the case Re f f = 0.05, which has small artificial rotation
added over the non-rotating case’s flow profile (explained in Section 4.3.2). The initial
optimal modes have most energy in the azimuthal and wall-normal velocity perturbations,
and are matched with quasi-streamwise vortex. The final optimal modes have most energy
in the axial velocity perturbations, and are matched with near-wall streaks. The shape of the
optimal modes are very similar for the two cases.
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Fig. 4.5 The (a) initial optimal mode in the y− θ plane and (b) final optimal mode in the
x− y plane in the non-rotating case for the λ+

x = 300 and m = −12 (or λ+
z = 89) pertur-

bations. The shapes of these modes confirm that the initial optimal mode corresponds to
quasi-streamwise vortices, and the final optimal mode corresponds to sweeps and ejections,
and hence to streaks.
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Fig. 4.6 The normalised velocity amplitudes in the (a) initial and (b) final optimal modes of
the λ+

x = 300 and m=−9 (or λ+
z = 102) perturbations. Solid lines are for the Ro = 0.5 case.

Dots and dashed lines are for the cases Re f f = 0.475 and Re f f = 0, repectively (explained
in Section 4.3.2). In these two cases the rotation is artificially reduced or removed from the
rotating case’s flow profile. The mode shapes are similar to those for the non-rotating case.
In the rotating case and the Re f f = 0.475 case, there are higher energy contributions from
the streamwise velocity perturbations in the initial optimal mode and from the wall-normal
and azimuthal velocity perturbations in the final optimal mode than those in the initial and
final modes, respectively, in the non-rotating and Re f f = 0 cases. This implies that rotation
causes an increase in amplification of the wall-normal and azimuthal velocity components
more than in the streamwise velocity component.
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Fig. 4.7 The (a) initial optimal mode in the y− θ plane and (b) final optimal mode in the
x− y plane of the λ+

x = 300 and m =−9 (or λ+
z = 102) perturbations in the Ro = 0.5 case.

The shapes of these modes are similar to the shapes of the corresponding modes in the
non-rotating case shown in figure 4.5.

Scaling of near-wall streaks

Jimenez et al. [8] found from their DNS data for a turbulent channel flow that peak in
spectra of energy in the streamwise velocity at y+ = 16, which is where near-wall streaks
have most energy, follows a relation as:

λ
+
z = 13

(
λ
+
x
)1/3

.

Notably, the wavelengths at the peaks in Gmax from the present analysis also follow a very
similar relation:

λ
+
z |peak = 13.18

(
λ
+
x
)1/2.98

.

This relation is obtained by using the λ+
z |peak values for the λ+

x = 100, 200, 300, 500, and
700 perturbations, and by minimising the standard deviation in the pre-multiplication factor,
which is equal to 0.22. Rotation in pipe causes widening of streaks. Scaling relation changes
for the rotating case (Ro = 0.5), and is given as:

λ
+
z |peak = 5.87

(
λ
+
x
)1/2

.
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This relation is also obtained in the same way as that in the non-rotating case. The standard
deviation in the pre-multiplication factor here is 0.0584. This relation indicates that near-
wall streaks get wider in the rotating case.

In summary, it is seen that the present linear amplification analysis captures the main
features of the process of formation of near-wall streaks from quasi-streamwise vortices.
It shows that near-wall streaks have the preferred azimuthal wavelength of approximately
100 wall units. The initial and final optimal structures in the process are shown to be close
to quasi-streamwise vortices and sweeps and ejections, respectively. The peak in energy
spectra from the analysis matches with that from the DNS in Ref. [8]. It also reproduces
the effects of rotation on streaks, such as their widening and preference for co-winding
structures in rotating flow cases. These results match with the observations in Ref [113]. It,
however, predicts that the transient growth increases with rotation, which would not tally
with the reduction in skin-friction if everything else in the regeneration cycle of near-wall
structures remains unchanged.

4.3.2 Artificial velocity profiles

Unlike in the non-rotating flows, the linear perturbation equations in the rotating flows,
shown in equation 4.1, have several linear coupling terms. Each of these linear coupling
terms enhances the system’s non-normality, and could contribute in extracting energy from
the mean flow to sustain turbulent coherent structures. In this Section, some of these terms
in the linear perturbation equations are artificially increased or decreased to identify the
contribution from each of them individually.

The artificial cases considered here are based on two assumptions. The first is that the
mean azimuthal velocity profile (W0), when normalized by the rotation number, remains
nearly unchanged at all the rotation numbers as seen in figure 4.2 (b). The second assump-
tion is that mean axial velocity profile (U0), when non-dimensionalised in wall units, does
not change much in the buffer layer with change in the rotation number. The types of artifi-
cial cases studied here are as follows:

I) Addition of small rotation to the non-rotating case: In these cases the mean streamwise
velocity profile is the same as in the non-rotating case, and the mean azimuthal velocity
profile is equal to either 5 percent or 10 percent of the W0 in the rotating case (Ro = 0.5).
Therefore giving the effective rotation numbers equal to 0.025 and 0.05 to these cases, and
they are labelled Re f f = 0.025 and Re f f = 0.05, respectively.

II) Reduction of rotation from the rotating case (Ro = 0.5): There are two such cases and
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in both of them the mean streamwise velocity is the same as in the rotating case (Ro = 0.5).
In the first case, the mean azimuthal velocity is 95 percent of W0 in the rotating case (Ro =

0.5), therefore giving it the effective rotation number equal to 0.475 (labelled Re f f = 0.475).
In the second case, the mean azimuthal velocity is set as zero, therefore giving it the effective
rotation number equal to 0 (labelled Re f f = 0).

III) Removal of the main linear coupling term: In these cases, the linear coupling term
vdU0

dr is artificially removed from the linearised equations in the Ro = 0 and 0.5 cases. This
is similar to one of the cases in Kim & Lim (2000) [93].

Type I artificial cases

Figure 4.8 (a) shows the maximum transient growth, Gmax, for the λ+
x = 300 perturbations

in the non-rotating flow case and the type I artificial cases. This figure shows that Gmax

increases when the rotation is artificially added to the non-rotating case. All these three
flow cases have the same U0 profile, therefore the change is Gmax is necessarily caused by
the W0 terms. The normalised velocity amplitudes in the optimal modes for the Re f f = 0.05
case are shown by the dashed lines in figure 4.4. The optimal mode shapes are similar
to those in the non-rotating case, except for a small difference in relative contribution of
different velocity components. The initial optimal mode has slightly more contribution
from the streamwise velocity and the final optimal mode has more contribution from the
wall-normal and azimuthal velocity perturbations. This shows that the W0 terms cause an
increase in amplification of the wall-normal and azimuthal velocity perturbations more than
an increase in amplification of the streamwise velocity perturbations. The value of λ+

z |peak

remains unaffected by the addition of the W0 terms.

Type II artificial cases

Figure 4.8 (b) shows the maximum transient growth, Gmax, for the λ+
x = 300 perturbations

in the rotating flow case and the type II artificial cases. This figure shows a reduction in
the maximum transient growth, Gmax, when W0 terms are reduced from the Ro = 0.5 case.
This reduction is very small in the Re f f = 0.475 case, but it is very clear in the Re f f = 0
case. This confirms again that the W0 terms cause an increase in the transient growth. In
figure 4.6 dots and dashed lines are for the normalised velocity amplitudes of the initial and
final optimal modes in the Re f f = 0.475 and Re f f = 0 cases, respectively. The mode shapes
are quite similar as in the Ro = 0.5 case, but with the decrease in the W0 terms there is a
decrease in contributions of the streamwise velocity component in the initial optimal mode
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Fig. 4.8 The maximum transient growth, Gmax, in the λ+
x = 300 perturbations in (a) the

non-rotating case and the type I artificial cases, and (b) the Ro = 0.5 case and the type II
artificial cases. Frame (a) shows that Gmax increases as rotation is artificially added to the
non-rotating case, and frame (b) shows that Gmax decreases as rotation is artificially removed
from the rotating case. These results show that the W0 terms in the linearised perturbation
equations contribute to the increase in transient growth. These results also show that λ+

z |peak
is entirely dependent upon the U0 profile.

and of the wall-normal and azimuthal velocity components in the final optimal mode. This
confirms again that the W0 terms cause increase in amplification of the wall-normal and
azimuthal velocity perturbations more than an increase in amplification of the streamwise
velocity perturbations. The value of λ+

z |peak remains the same even when the W0 terms are
completely removed. This shows that λ+

z |peak is entirely determined by the U0 profile.

Type III artificial cases

Kim & Lim (2000) [93] showed that turbulence in channel flow decays in the absence of
the U0 linear coupling term, which is similar to the vdU0

dr term. A major consequence of this
result is that one only needs to suppress the coupling between the wall-normal velocity per-
turbations and the mean shear to control the flow, and this can be achieved by wall-suction
and wall-blowing type actuators. In rotating pipe flows, however, there are additional linear
coupling terms which could extract energy from the mean flow to possibly sustain turbulence
even in the absence of the vdU0

dr term. To check this, the vdU0
dr coupling term is removed from

the rotating case (Ro = 0.5) to see whether the additional linear coupling terms can indepen-
dently extract energy from the mean flow. Figure 4.9 shows that there is very little transient
growth in the system, and none at all at λ+

z ≈ 100, in the absence of the vdU0
dr coupling term.
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Fig. 4.9 The maximum transient growth, Gmax, in the system when the vdU0
dr term is artifi-

cially removed. There is very little transient growth in the system and none at λ+
z ≈ 100.

This shows that the W0 terms do not cause transient growth by themselves. They need the
vdU0

dr term.

This shows that the additional linear coupling terms, which include W0, redistribute energy
and enhance transient growth but they do not independently extract energy from the mean
flow. Therefore, the original control strategy to just suppress the vdU0

dr term should also work
in rotating pipe flows.

From the results discussed in this section, it is concluded that rotation of the pipe in-
creases the transient growth in the system, which implies that if this were the only effect
of rotation then near-wall streaks would be more energetic in rotating cases. However, we
know that in rotating turbulent pipe flows the streaks are weaker and less frequent [113].
The streaks require quasi-streamwise vortices for their formation, and the formation of the
quasi-streamwise vortices requires the streaks to breakdown as shown in the regeneration
cycle in figure 4.1. This process is studied next to find whether this step can explain the
reduction in near-wall structures in the rotating flow cases.

4.4 Breakdown of near-wall streaks

Lifted streaks are susceptible to sinuous (anti-symmetric) and varicose (symmetric) instabil-
ities, which lead to their breakdown. Such streak instability is a common feature in laminar,
transitional, and turbulent wall-bounded flows. Asai et al. (2002) [122] managed to produce
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Fig. 4.10 (a) The cross-stream distribution of the streamwise velocity as observed for low-
speed streak regions at the quiescent phase, which is during the minimum drag phase, in the
minimal channel flow simulations. (b) Idealised version of (a). This figure is taken from
Schoppa & Hussain (2002) [11].

single low-speed streaks in laminar boundary layer flows. They showed that when the streak
is thin, as it is in the buffer layer, sinuous instability is dominant and eventually nonlinear
processes lead to the formation of quasi-streamwise vortices. They also showed that when
the streak is thicker, as it is in the logarithmic layer, varicose instability is dominant and
eventually nonlinear processes lead to the formation of hairpin vortices. In this chapter,
dynamics in the buffer layer is considered, where the streak thickness is approximately 100
wall units [21, 27], also shown in Section 4.3, and sinuous instability is dominant.

Lifted low-speed streaks in the near-wall region cause temporarily inflectional velocity
profile, which give rise to modal sinuous instabilities [11, 94, 122]. This sinuous mode in-
stability causes breakdown of the streaks, and an x−dependent flow is generated. Vorticity is
then accumulated in certain regions of this x−dependent flow and quasi-streamwise vortices
are eventually generated via nonlinear processes [11, 94]. Schoppa & Hussain [11] showed
that the breakdown can also happen because of non-modal sinuous instability, especially
when the streaks are not strong enough for modal instability. In this chapter, however, only
modal instability and how axial rotation of the pipe affects this instability are examined.

Figure 4.10(a) shows the cross-stream distribution of the streamwise velocity as ob-
served for low-speed streak regions at the quiescent phase, which is during the minimum
drag phase, in the minimal channel flow simulations. Figure 4.10(b) is an idealised version
of the actual distribution shown in frame (a) [11]. The velocity profile for the idealised dis-
tribution is given as, U(y,z) =U0(y)+ ∆uo

2 cos(βsz)g(y), V =W = 0, in Ref [11]. Because
the near-wall region is largely unaffected by curvature of the pipe, the same flow profile for
an idealised realisation of low-speed streaks in pipe flow is assumed in this study. It is given
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below in cylindrical polar coordinates as:

U(r,θ) =U0(r)+
∆uo

2
cos(Mθ)g(r)

V = 0, W (r) =W0(r)

g(r) = (1− r)exp
(
−η (1− r)2

)
= yexp(−ηy2), where y = 1− r. (4.3)

where η is such that the function g(r) has a plateau at y+ ≈ 20, and M represents the
azimuthal spacing of the streaks as: λ+

z = 2π

M Reτ . The strength of a streak is defined through
maximum normal vorticity: Ωy|max = 0.5M∆uo. A higher value of Ωy|max means a stronger
streak.

The linear perturbations in the velocity profile are decomposed as:

u =
N

∑
n=0

[unv(r)cos(nMθ)+uns(r)sin(nMθ)]

v =
N

∑
n=0

[vnv(r)cos(nMθ)+ vns(r)sin(nMθ)]

w =
N

∑
n=0

[wnv(r)sin(nMθ)+wns(r)cos(nMθ)]

p =
N

∑
n=0

[pnv(r)cos(nMθ)+ pns(r)sin(nMθ)]

(u′,v′,w′, p′) = (u,v,w, p)exp(−iωt + ikx) (4.4)

Subscripts nv and ns refer to the nth varicose and nth sinuous modes, respectively. The
continuity and momentum equations are given in Appendix A. It is seen from the equations
that the sinuous and varicose modes are linearly independent in non-rotating flow cases
where W0 = 0. The W0 terms cause coupling between the sinuous and varicose modes, but
they do not otherwise appear in the equations. Depending upon the W0 profile, rotation can
stabilise or destabilise the streaks. There is another effect of the axial rotation, which might
be significant in the cases with high rotation number, but is outside the scope of the present
study. This effect is through the change in the U−profile in equation A caused by rotation,
i.e. through the change in the shape of the streaks in rotating cases.

To numerically solve the linear perturbation equations, Chebyshev spectral method with
Gauss-Lobato points in the wall-normal direction are used. The leading eigenvalues and
eigenvectors are found using the ‘eigs’ command in Matlab. The number of grid-points
used is 80, and the number of sinuous and varicose modes used are 6. The convergence of
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the leading eigenvalues is checked by repeating the calculations with 100 grid-points and 6
sinuous and varicose modes, and with 80 grid-points and 8 sinuous and varicose modes. The
real and imaginary parts of the leading eigenvalues are found to be accurate to 3 significant
figures.

There are two families of cases considered here. The first family is comprised of the
non-rotating case and the Re f f = 0.025 and Re f f = 0.05 cases from the type I artificial cases
explained in Section 4.3.2. From the results for these cases, is is seen how a small increase
in rotation affects the breakdown instability of streaks. The second family is comprised
of the rotating case (Ro = 0.5) and the Re f f = 0.475 and Re f f = 0 cases from the type II
artificial cases explained in Section 4.3.2. The influence of rotation on the U−profile (by
changing the shape of the streaks) is not considered. However, the results of these cases still
show the effect of reducing the W0 terms on the breakdown instability of streaks.

4.4.1 The non-rotating case and the cases with small artificial rotation

The streak strength is fixed at Ωy|max = 4.3, which is similar to the values used in Ref. [11],
and η is set at 40 for the first family of cases. Figure 4.11 (a) shows the growth rate, ωi,
of streak breakdown instability in the non-rotating case as a function of the perturbation
wavelength λ+

x . Simulations are performed for streaks of azimuthal wavelength ≈ 100,
which is close to the observed spanwise spacing of near-wall streaks in boundary layer
flows [21, 27]. This is done by fixing M = 9−15, which is equivalent to λ+

z = 120−70.

Streaks are most unstable for perturbations of λ+
x ≈ 300, which implies that the most

preferred length of the resultant quasi-streamwise vortices is approximately 300. This
matches well with the results in Ref. [11], and with the length of the minimal channel
required for sustenance of wall-turbulence [97]. The M = 11 (λ+

z ≈ 97) streaks are most
susceptible to the breakdown instability, with maximum growth rate for the λ+

x ≈ 286 per-
turbations. It is also known from the results in Section 4.3, that quasi-streamwise vortices
that are 300− 400 wall units long in the streamwise directions get most amplified to form
near-wall streaks with λ+

z ≈ 90−100, which is equivalent to the M = 11−12 streaks. Based
on the results in the present section and in Section 4.3, it is concluded that quasi-streamwise
vortices of λ+

x ≈ 300− 400 and λ+
z ≈ 90− 100 are the most favoured ones in the near-

wall structures’ regeneration cycle. The streamwise length is chosen during the process of
breakdown of streaks, and the azimuthal width is chosen during the process of formation of
streaks.

The effect of rotation is examined for the M = 11 streaks. The results are shown in figure
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Fig. 4.11 (a) The growth rate, ωi, of the streak breakdown instability as a function of λ+
x

for streaks with azimuthal wavenumber M = 9−15, equivalent to azimuthal spacing of 70-
120, in the non-rotating flow case. The M = 11 (λ+

z ≈ 97) streaks are most unstable to the
breakdown instability at λ+

x ≈ 286. (b) The growth rate of the streak breakdown instability
in the M = 11 streaks in the three flow cases. The streak breakdown instability decreases as
rotation in the flow increases, which shows that rotation of the pipe has a stabilising effect
on streaks.

4.11 (b) for the three flow cases (Ro = 0, Re f f = 0.025 and Re f f = 0.05). It is seen from the
results that rotation has a stabilising effect on near-wall streaks. This means that rotation
prevents the breakdown of streaks, and hence reduces the formation of quasi-streamwise
voritces.

Figure 4.12 shows contours of the streamwise vorticity component of the leading eigen-
modes for the streak breakdown instability of the M = 11 streaks in the (a) Ro = 0 flow case
at λ+

x = 286, (b) Re f f = 0.025 flow case at λ+
x = 286, and (c) Re f f = 0.05 flow case at

λ+
x = 242. The streamwise vorticity structure is divided into three regions: crests, troughs,

and streak flanks, as marked in frame (a) and in Ref [11]. Nonlinear effects cause streamwise
vortices to get concentrated on one of the flanks and the generation of the quasi-streamwise
vortices commences [11]. Frames (b) and (c) show that the addition of rotation tilts the
structure of streamwise vortices in the direction of rotation. This is to favour the formation
of vortices which are tilted in the direction of rotation. It is seen in figure 4.7 that vortices
tilted in the direction of rotation develop into streaks more favourably than those tilted in
the other direction.
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Fig. 4.12 The streamwise vorticity component of the leading eigenmodes for the streak
breakdown instability of the M = 11 streaks are plotted for the (a) Ro = 0 flow case at λ+

x =
286, (b) Re f f = 0.025 flow case at λ+

x = 286, and (c) Re f f = 0.05 flow case at λ+
x = 242.

In frame (a) the three main regions in the structure are marked as crests, troughs, and streak
flanks. As nonlinear effects get prominent, the streamwise vortex gets concentrated on one
of the flanks and the generation of the quasi-streamwise vortices commences [11]. Rotation
in the flow tilts the structure of streamwise vortices in one direction. This is to favour the
formation of the vortices on the one side of the flanks, which is tilted in the direction of
rotation.
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Fig. 4.13 The growth rate, ωi, of the streak breakdown instability in the M = 9 streaks in the
three flow cases (Ro = 0.5, Re f f = 0.475, and Re f f = 0). The streak breakdown instability
increases as rotation is artificially removed, which confirms the stabilising effect of rotation.

4.4.2 The Ro = 0.5 case and the cases with artificially reduced rotation

The streak strength for this family of cases is fixed as Ωy|max = 4.3, the same as in Section
4.4.1, and η is set as 22. As mentioned before, in the cases with high rotation the effect
of rotation on the U−profile is not considered. These cases still include the effect of the
W0 terms on the streak breakdown instability, and purpose of examining these cases is to
confirm whether rotation has a stabilising role on the streak breakdown instability. Figure
4.13 shows the effect of artificially removing the rotation on the growth rate of the streak
breakdown instability of the M = 9 streaks. It shows that when 5 percent of the rotation is
removed from the rotating profile (Re f f = 0.475), the growth rate increases. If the rotation is
completely removed, the growth rate further increases significantly. These results confirm
the stabilising effect of the rotation on the streak breakdown instability. Therefore, this
shows that rotation prevents the formation of quasi-streamwise vortices.

4.5 Summary and Concusion

In two parts of this chapter, stability analyses based on the linearised Navier–Stokes equa-
tions are performed to study the formation of near-wall structures in turbulent pipe flow, and
to examine the effect of constant axial rotation of the pipe on their formation. In the first part
in Section 4.3, the formation of streaks from quasi-streamwise vortices and the effect of ro-
tation on this process are studied. This is done by performing energy amplification analysis
based on the Navier–Stokes equations linearised over the mean velocity profile. The effect
of the neglected nonlinear terms in this analysis is modelled as the input streamwise wave-
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lengths of the perturbations. In the second part in Section 4.4, the breakdown instability of
streaks, for the eventual formation of quasi-streamwise vortices, and the effect of rotation
on this process are studied. This is done by performing secondary stability analysis based
on the Navier–Stokes equations linearised over the mean velocity profile superimposed with
an ideal realisation of low-speed streaks. The mean flow profiles in this study are taken from
Ref. [113], and the profile for an ideal realisation of low-speed streaks is taken from Ref.
[11].

It is shown in the first part in Section 4.3 that streaks with the azimuthal spacing of
approximately 100 wall-units are preferred in the flows when they are formed from quasi-
streamwise vortices that are a few hundred wall-units long in the streamwise direction. Both
of these length scales match well with experimental observations in turbulent boundary
layers. It is found that axial rotation of the pipe causes the widening of streaks, which
agrees with the observations in Ref. [113]. Rotation also found to increase the transient
growth, Gmax, in the system. This increase in Gmax is in accord with the destabilising role
of rotation in laminar flows, but in turbulent flows the axial rotation is found to have a
stabilising effect. It is observed in Ref. [113], that flow in axially rotating pipes have fewer
near-wall structures than those in the same Reynolds number non-rotating pipe flow. In
order to get further clarification on the role of rotation, its effect on the process of streak
breakdown is examined.

It is shown in the second part in Section 4.4 that lifted low-speed streaks break down
to form quasi-streamwise vortices that are around 300 wall units long in the streamwise di-
rection. This matches with other theoretical calculations and experiments. It is also shown
that axial rotation of the pipe has a stabilising role on the streaks breakdown instability, and
therefore rotation prevents the formation of quasi-streamwise vortices. This explains how
rotation can cause a reduction in near-wall structures. Based on the observations that the ro-
tation has a stabilising role on near-wall structures, it is concluded that the stabilising role of
the rotation on the process of breakdown of streaks dominates over the effect of the rotation
in increasing the maximum transient growth, Gmax, in the process of formation of streaks.
In this Chapter, it is shown that simple linear stability analyses, without requiring any tur-
bulence closure model, reproduce many important features in the process of formation of
near-wall structures in turbulent pipe flow. They also explain the effect of axial rotation in
the pipe on the near-wall structures in rotating flows.

There are some limitations of linear stability analysis in turbulent flows. One of them is
that to perform linear stability analysis one needs the information on the mean flow profile.
The mean flow profile, however, in turn needs either the full or a modelled information of
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all coherent structures in the fully nonlinear flow. Therefore, linear stability analysis of
turbulent flows is no longer a predictive analysis like in laminar flows, but it is a diagnostic
analysis. If successful, such as in this chapter, it is useful in understanding the physics
behind the formation and maintenance of coherent structures. It is also useful as a basis
for further application of linear analysis tools, such as sensitivity analysis as shown in Refs.
[88, 111] and in designing model-based active control as shown in Ref. [87].





Chapter 5

Hydrodynamic instabilities in gas
turbine combustors

In this chapter approaches based on linearised equations are used to predict large hydrody-
namic structures in turbulent flows inside gas-turbine injector-combustor systems. The main
aim of this Chapter is to investigate whether the perturbations in the Reynolds stresses are
sufficiently influential that they need to be included in stability analysis, when applied for
finding hydrodynamic instabilities in gas-turbine injector-combustor flow systems. Local
linear stability analysis is applied to complex flows inside gas-turbine injector-combustor
systems [123–126]. In this Chapter, the calculations are performed using a software tool
’Instaflow’. This tool was originally developed by Dr Simon Rees and Dr Matthew P Ju-
niper for local linear hydrodynamic stability analysis of flows [123].

Another aim of this chapter is to present the use of stability analysis in predicting the
effect of changes in operating-condition/design on hydrodynamic structures in gas-turbine
flows. Most results in this chapter were produced during a collaborative work between me,
Mr Tifenn Brandily, Mr Mike Simpson, Mr Ali Ersoz, and Dr Matthew Juniper. Their help
is deeply appreciated. Thanks must also go to Dr Will Bainbridge and Prof Stewart Cant for
providing their Fluent codes to generate RANS and URANS data for the S series cases, and
to Dr Fred Witham from Rolls-Royce for providing RANS data for the T series cases.

5.1 Introduction

Flows inside gas-turbines are often injected with swirl, and are at high Reynolds numbers.
The swirl generates a radial pressure gradient, and when it comes out of an injector into
a combustion chamber it produces a negative axial pressure gradient on expansion. This
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causes the flow to reverse and a central recirculation zone (CRZ) usually forms. The recir-
culating flow brings the hot flow and reactants to the base of the flame, and enables the flame
to be stabilised within the combustion chamber. Another common coherent structure in a
combustion chamber is a precessing vortex core (PVC). It is formed when the recirculation
bubble is unstable to non-axisymmetric perturbations. A review of these structures, and the
physical mechanism behind their formation can be found in Ref. [127] and the references
cited therein. Syred [127] noted that the formation of a PVC and other instabilities is a
function of a number of parameters, such as the swirl number, the mode of fuel injection,
the equivalence ratio, and small changes in injector design.

The motivation behind studying hydrodynamic instabilities and the resultant large-scale
coherent structures in gas-turbine flows is for their role in entrainment of fuel into air, which
is important for air-fuel mixing at the molecular level for combustion [83–85]. Apart from
this desired effect on the air-fuel mixing, hydrodynamic instabilities may also interact with
thermoacoustic oscillations. Combustion in a confined geometry is susceptible to thermoa-
coustic oscillations. These oscillations are result of a positive feedback mechanism between
combustion and long wavelength pressure-waves inside the combustion chamber. If the me-
chanical energy injected during this positive feedback mechanism is higher than the acoustic
damping then these oscillations grow, sometimes to dangerously high levels [86]. Thermoa-
coustic oscillations are particularly high in cases where the frequency of hydrodynamic
instability is close to the natural acoustic frequency as shown in Refs. [128, 129]. This
therefore is one more reason for studying hydrodynamic instabilities.

Flows inside gas-turbines are in the turbulent regime and the systems’ geometries are
usually complicated. This make studying them computationally expensive, such that DNS is
practically impossible and LES is possible only at a few steps in the design process. RANS
and URANS are popular methods because they calculate the mean velocity and Reynolds
stresses in a turbulent flow in a feasible time as required in the design process. These meth-
ods however are very dissipative, particularly in commercial solvers. The RANS solvers
give either little or no information about hydrodynamic instabilities in the flows, and the
URANS solvers give information only about low frequency oscillations in the flows. The
main purpose of this chapter is to apply approaches based on the linearised Navier–Stokes
or RANS equations, which use the mean velocity and Reynolds stress fields as input, to find
hydrodynamic instabilities in gas-turbine injector-combustor systems. These approaches
include the molecular viscosity based stability analysis, eddy viscosity based stability anal-
ysis, and anisotropic eddy viscosity based stability analysis that are derived in Chapter 3.
The molecular viscosity based analysis is derived by linearising the Navier–Stokes equa-
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tions over the mean flow profile. The eddy and anisotropic eddy viscosity based analyses
are derived by linearising the RANS equations over the mean flow profile. The latter two
analyses include the wave-induced perturbations in the Reynolds stresses [76], plus all the
terms in the first analysis. The similarities and differences in the results from these analyses
are shown.

Another purpose of this chapter is to apply the molecular viscosity based stability anal-
ysis to analyse the effect of changes in equivalence ratio and design of injector geometries
on hydrodynamic instabilities. Towards this purpose, three cases in the S series with various
equivalence ratio and six cases in the T series with small design modifications are consid-
ered. The S and T series are groups of Rolls-Royce lean-burn injectors currently under
development. Compressibility effects on hydrodynamic instabilities are also examined. For
one of the cases, the mean flow is obtained both from time-averaging the URANS simulation
data and from the RANS simulation data. The similarities in the results and the conceptual
differences between the RANS and URANS are pointed out.

A major assumption in this chapter is that local linear stability analysis can be applied
to complex flows inside gas-turbine injector-combustor systems. This assumption is based
on the success of previous studies on similar flows in Refs. [123–126]. In local stability
analysis the WKBJ approximation is applied. It means that the mean flow is assumed to
be locally parallel. Therefore small local perturbations in the velocity and pressure, in ax-
isymmetric mean flows, are assumed to be of the form: u(r)exp(i(2πkx+mθ −2πωt)). In
this expression, 2πk and m are the axial and azimuthal wavenumbers, and 2πω is the angu-
lar frequency of corresponding perturbations. Each azimuthal wavenumber perturbation is
considered separately by fixing the m as an integer.

The governing equations are solved with the no slip boundary condition at the walls
to find the maximum absolute growth-rate. The solution pair (k,ω) is a set of complex
numbers represented as (kr+ iki,ωr+ iωi). In this expression i=

√
−1, the axial wavelength

of the perturbation is 1/kr, the axial growth rate of the perturbation is −2πki, the frequency
of the perturbations is 2πωr, and the growth rate of the perturbations is 2πωi. The regions of
positive ωi are called pockets of absolute instability. Broadly speaking, in order to provoke
global instability, a pocket of absolute instability needs to be at least one quarter of the
corresponding instability wavelength. A review of theory of local stability analysis, and its
relation with global stability can be found in Ref. [130].
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5.1.1 Outline

This Chapter is divided into six Sections. In Section 5.2, different stability analyses are
briefly explained, and are applied to a case of the S series. The effects of compressibility
and the wave-induced fluctuations in the Reynolds stresses in stability analysis are analysed.
Section 5.3 discusses the conceptual differences between the RANS and URANS for sta-
tistically non-stationary turbulent flows. Stability analysis is performed by linearising the
equations over the RANS data. The results are compared with the results presented from
stability analysis performed by linearising the equations over the time-averaged URANS
data in Section 5.2. In Section 5.4, the operating conditions in the S series are changed
from stoichiometric to lean and to very lean by adjusting the fuel flow rate. The effect of
the change in the operating conditions on hydrodynamic instabilities is analysed. In Section
5.5, six cases in the T series are studied. Each of these cases have small design differences.
The effects of small design changes on hydrodynamic instabilities are pointed out.

5.2 Effects of turbulence models and compressibility in sta-
bility analysis of gas-turbine flows

Figure 5.1 shows the time-averaged velocity and temperature fields in the case-A of the
injector-combustor system in the S series. This case of the S series has an operating condi-
tion such that air and fuel are injected at the stoichiometric ratio. Later, cases in the S series
with lean fuel injection are also considered. A two-dimensional projection in the axial-radial
plane of a limited part of the geometry is shown, which is chosen such that it starts from the
centre and extends radially to the first wall in the radial direction. The results are obtained
by time-averaging the solutions from the URANS simulations. A pressure-based solver of
Fluent is used and the codes are provided by Dr Will Bainbridge [131]. The pressure-based
solver refers to the general class of methods called projection methods, where the pres-
sure equations, derived from the continuity and momentum equations, are solved to obtain
numerical solutions of the Navier–Stokes equations [132].

The fields shown in the figure are a result of extensive post-processing. First, the time-
averaged flow profiles are obtained by averaging the URANS data. In this study, the flow is
assumed to be axisymmetric. In order to average the flow in the azimuthal direction, the data
is interpolated onto a regular three-dimensional grid using the ‘TriScatteredInterp’ function
in MATLAB. This interpolated function is then averaged in the azimuthal direction. The
data is further smoothed to remove any numerical jumps, and special care is taken to ensure
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Fig. 5.1 The flow fields in the case-A of the S series gas-turbine injector-combustor system.
The operating conditions in this case are set such that air and fuel are injected at the stoi-
chiometric ratio. Frames (a–c) show the fields in the entire system while frames (d–f) show
fields only in an upstream part of the geometry. Frames (a) and (d) show the axial velocity,
(b) and (e) show the azimuthal velocity, and (c) and (f) show the temperature field.

that the swirl velocity and the first radial derivative of the axial velocity are zero at the
centreline. In this chapter swirl velocity refers to the azimuthal velocity component of the
flow.

Frames (a–c) show the axial and azimuthal velocities, and temperature fields in the ge-
ometry inclusive of the entire downstream portion. Frames (d–e) show the same fields as
in (a–c) but only in an upstream part of the geometry, which is the most influential region
of the flow. The geometry is sliced such that each slice contains the data at a discrete x-
location. These slices are then studied separately using local stability analysis. In local
stability analysis, the radial velocity is ignored. The flow after x = 0.14, however, has large
radial velocity that cannot be ignored, and therefore local analysis is not performed for the
flow downstream of x = 0.14.

The flow is turbulent. There are a number of stability analyses performed for various
turbulent flows in the literature, and different approaches are found useful for different flows.
A general form of the governing equations is formulated in this thesis, which is given below.
Different approaches used in this Chapter use specific forms of these governing equations
as explained below.

The linearised continuity equation is:

Ω
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The linearised momentum equation in the axial direction is:
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The linearised momentum equation in the radial direction is:
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The linearised energy equation is:
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where (u′,v′,w′, p′,T ′,ρ ′) are the perturbations in the axial velocity, radial velocity, az-
imuthal velocity, pressure, temperature, and density, respectively. The pressure, tempera-
ture, and density variations are related as: ρ ′

ρ
= p′

P − T ′

T . The frequency and wavenumber
in the equation are related to ω and k as Ω = 2πω , kx = 2πk. Re is the Reynolds number
based on the reference density, velocity, length, and viscosity values, Rg is the gas constant,
Pr is the Prandtl number, and γ is the ratio of the specific heat at constant pressure to the
specific heat at the constant volume. The ri j terms in the momentum equations represent the
perturbations in the Reynolds stresses, and are derived in Chapter 3.

The mean values of axial and azimuthal velocities are U and W , respectively, and those
of pressure, density, temperature are P, ρ , and T , which are related as P = ρRgT . The
mean values in this Chapter are the time-averaged quantities. They are obtained by either
averaging the URANS results over a long time, or by averaging the RANS results over
several iterations. The averages used in this Chapter are not Favre-averaged, which are
density weighted, but are simple time-averages theoretically defined as φ =

∫ t∞
0 φ(t)dt

t∞
, where

the instantaneous variable φ is integrated over a sufficiently long time t∞.

In this Chapter, the following approaches are used for the flow in the case-A of the S
series.

(i) Molecular viscosity based incompressible stability analysis (referred to as incom-
pressible): The governing equation for mass and momentum are linearised around the mean
flow profiles, which include the non-uniform mean density profile. Perturbations in the ve-
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locity and pressure are considered, while perturbations in the temperature (or density) are
ignored. The governing equations for such stability analysis are given in Ref. [133]. They
can also be obtained by setting dρ

dr , dT
dr , and ρ ′, i.e. p′

P − T ′

T , equal to zero, by setting Rg = ∞,
and by ignoring the ri j terms.

(ii) Molecular viscosity based compressible stability analysis (referred to as compress-
ible): The governing equation for mass, momentum, and energy are linearised around the
mean flow profiles, which include the non-uniform mean density profile. Perturbations in
the temperature (or density) are also considered. The governing equations for such stability
analysis are given in Ref. [133]. They can also be obtained by ignoring the ri j terms in the
above equations. The values of Rg, Pr, and γ are set as 287, 1, and 1.35, respectively, in this
Chapter.

(iii) Eddy viscosity model based incompressible linear stability analysis (referred to as
EVM): This analysis includes all the terms from analysis (i) plus the terms representing the
wave induced perturbations in the Reynolds stresses. Perturbations in the Reynolds stresses
are obtained by using an eddy viscosity model νt = 0.09K2

ε
, where νt is the eddy viscosity,

K is the turbulent kinetic energy, and ε is the turbulence dissipation rate. This is a first-order
turbulence model. The governing equations for this analysis can be obtained by using the
ri j expressions, which are derived in Section 3.2.1 in Chapter 3, in the above equations.

(iv) Explicit algebraic Reynolds stress model based incompressible linear stability anal-
ysis (referred to as EARSM): Like analysis (iii), this analysis also includes all the terms
from analysis (i) plus the terms representing the wave induced perturbations in the Reynolds
stresses. Perturbations in the Reynolds stresses are obtained by using an explicit algebraic
Reynolds stress model given by Wallin and Johansson [108]. This model belongs to the
family of anisotropic eddy viscosity model, and is a second-order turbulence model. The
governing equations for this analysis can be obtained by using the ri j expressions, which
are derived in Section 3.2.3 in Chapter 3, in the above equations.

Analyses (i) and (ii) are based on the predictive properties of stability analysis performed
on the Navier–Stokes equations linearised over the mean flow profile. Lee, Kim and Moin
[82] and Hunt and Carruthers [81] show that the linearised Navier–Stokes equations are
good at reproducing large-scale coherent structures in high mean shear regions in turbulent
flows. The flows inside gas-turbine injector-combustor systems are also characterised by
the high mean shear regions, particularly in the upstream part of the geometry where several
incoming flows at different velocities interact. Analysis (ii) examines whether compress-
ibility effects are important in this flow. Analyses (iii) and (iv) are based on the linearised
RANS equations, and are found to be useful in some flows [2, 10, 77, 78, 88]. They contain
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also the wave-induced perturbations in the Reynolds stresses in addition to all the terms in
the linearised Navier–Stokes equations. These analyses examine whether the wave-induced
perturbations in the Reynolds stresses need to be included in stability analysis of gas-turbine
injector-combustor systems.

5.2.1 Results

There are several absolutely unstable modes found from the above mentioned local stability
analyses. Only a few of them, however, can sustain global instability, and only those un-
stable modes are discussed. These modes are classified based on their region of influence,
azimuthal wavenumber (m), and frequency (ωr). A general feature among all these modes
is that they exist in the regions of high mean shear, which is not surprising because the mean
shear is known to cause instabilities.

Instability in the upstream central pipe

The flow in the upstream central pipe is a high Reynolds number wake with a counter flow
at the centre. The axial mean velocity profile is inflectional near the centre, and it has
high mean shear as well. Consequently, there are several absolutely unstable modes that can
sustain global instabilities. The flow is swirling in the clockwise direction, which, according
to Ref. [134], facilitates modes winding in the anti-clockwise direction. In accordance with
Ref. [134], it is found that these modes have negative m, positive kr, and positive ωr. Based
on that these modes are winding in the anti-clockwise direction and rotating in the clockwise
direction, which means that these modes are counter-winding and co-rotating with respect
to the local mean swirl.

Figure 5.2 shows the m = −1 instability mode, in terms of the normalised disturbance
kinetic energy multiplied by the local growth rate ωi, calculated by the four stability analy-
ses. Above the mode shape plots, their frequencies and streamwise wavenumbers are plotted
in the black and red colour lines, respectively, as functions of their streamwise location. The
number shown as ref in each frame is the maximum normalised growth rate for that mode,
so the higher ref number means the more unstable mode. The average wavelength of this
mode is around 2 units, and the length of the pocket of absolute instability is nearly 3 units.
Because the pocket of absolute instability is larger than one-quarter of the wavelength, this
mode has the potential to exist in the flow as a globally unstable mode.

The results from the incompressible and compressible stability analyses are very similar,
even quantitatively. This shows that the compressibility is not an important factor in this part
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of the geometry, this is because the flow is at a low Mach number. The modes calculated
from the EVM- and EARSM-based analyses are also very similar to the modes calculated
from the molecular viscosity-based analyses. Quantitatively, however, these modes are less
unstable. The EVM-based analysis damps the mode significantly while the EARSM-based
analysis damps it mildly. The only noticeable qualitative difference between the results is
that the modes calculated from the EVM- and EARSM-based analyses are slightly wider in
the radial direction as compared to the modes from the molecular viscosity-based analyses.
This is because the turbulent eddy viscosity is high in the central region, then decreases
towards the wall, and reaches zero at the wall. As a result the part of the modes in the
central region get more damped than the parts of the modes closer to the wall.

(a) Incompressible (b) Compressible (c) EVM (d) EARSM

Fig. 5.2 The m = −1 instability mode in the central pipe calculated from the four stabil-
ity analyses. They are represented in terms of the normalised perturbation kinetic energy
multiplied by the local growth rate ωi. Above the mode shape plots, the local absolute
frequency (ωr) and streamwise wavenumber (kr) are plotted in black and red colour lines,
respectively, as functions of the streamwise location. A comparison of frames (a) and (b)
shows that compressibility does not affect this instability mode. Frames (c) and (d) show
that turbulence models also have little qualitative effect. The difference is that the modes in
(c) and (d) are slightly wider in the radial direction as compared to the modes in (a) and (b).
The EVM-based analysis damps the mode significantly while the EARSM-based analysis
damps it relatively mildly.

Figure 5.3 shows the m = −2 instability mode in the central pipe. The mode shape is
very similar to the m=−1 instability mode, but the frequency and streamwise wavenumbers
are around two times higher, which is proportional to the change in the m. The mode shapes
calculated from all the stability analyses are very similar to each other. According to the
molecular viscosity- (compressible and incompressible) and the EARSM-based analyses
this mode is more unstable than the m = −1 mode. The EVM-based analysis, however,
predicts this mode to be less unstable than the m = −1 mode. The m = −3 to −5 modes,
not shown here, are predicted to be stable, or with a small pocket of absolute instability, by
the EVM- and EARSM-based analyses. Molecular viscosity-based analyses, however, show
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them to be more unstable than the m =−1 mode, and less unstable than the m =−2 mode.
This shows that turbulence model-based analyses damp the higher wavenumber modes more
than they damp the lower wavenumber modes.

(a) Compressible (b) Incompressible (c) EVM (d) EARSM

Fig. 5.3 The m = −2 instability mode in the central pipe calculated from the four stability
analyses. They are represented in terms of the normalised perturbation kinetic energy multi-
plied by the local growth rate ωi. Frames (a) and (b) show that the compressibility does not
affect this instability mode. Frames (c) and (d) show that turbulence models also have little
effect on the shape of the modes. According to the molecular viscosity- and the EARSM-
based analyses this mode is more unstable than the m=−1 mode. The EVM-based analysis,
however, predicts this mode to be stabler than the m =−1 mode.

Instabilities caused by the interaction of various incoming flows

Apart from the instabilities in the central pipe, there are a few unstable modes also between
x ≈ −1.5 to 0. There are several incoming flows at x ≈ −1.5, and each of them injects
flow at a different velocity. The incoming flow from the central region (up to r ∼ 0.45) is
a wake like flow with swirl in the clockwise direction. The incoming flow from the region
r ≈ 0.45− 1.5 is at a relatively slower axial velocity and with swirl in the anti-clockwise
direction. The incoming flow from the region r > 1.5 is at a relatively faster axial velocity
and with swirl in the clockwise direction.

As a result of interaction of various incoming flows, there are two unstable modes in
the flow with significantly long pockets of absolute instabilities. The four stability analyses,
again, give very similar results. This again shows that compressibility effects are not impor-
tant, and neither is the inclusion of the Reynolds stress perturbations in stability analysis of
this flow.

The first is the m =−2 instability mode, shown in figures 5.4 (a–d). This mode is most
dominant in the 1.5 < r < 2 region. The positive streamwise wavenumber (kr) implies that
this mode is winding in the anti-clockwise direction, and the positive frequency (ωr) implies
that this mode is rotating in the clockwise direction. Because the mean swirl in this region
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(1.5 < r < 2) is in the clockwise direction, this mode is counter-winding and co-rotating
with respect to the local mean swirl.

The second is the m = +2 instability mode, shown in figures 5.4 (e–h). This mode is
dominant in the 0.4 < r < 1 region. The positive streamwise wavenumber (kr), the positive
frequency (ωr), and the positive azimuthal wavenumber (m) imply that this mode is winding
in the clockwise direction and rotating in the anti-clockwise direction. Because the mean
swirl in this region (0.4< r < 1) is in the anti-clockwise direction, this mode is also counter-
winding and co-rotating with respect to the local mean swirl.

(a) Incompressible, m =
−2

(b) Compressible, m=−2 (c) EVM, m =−2 (d) EARSM, m =−2

(e) Inompressible, m = 2 (f) Compressible, m = 2 (g) EVM, m = 2 (h) EARSM, m = 2

Fig. 5.4 Frames (a–d) show the m = −2 instability modes in the x ≈ −1.5 to 0 region and
frames (e–h) show the m = 2 instability modes in the x ≈−1.5 to 0 region calculated from
the four stability analyses. The m =−2 mode is dominant in the region with negative swirl
while the m = 2 mode is dominant in the region with positive swirl. The positive values
of the frequency and wavenumber for these modes imply that they both are co-rotating and
counter-winding with respect to the local mean swirl in the flow.

5.2.2 Conclusion

The conclusions based on the results presented in this Section are:

i) Modes that are counter-winding and co-rotating with respect to the local swirl velocity
are favoured in the flow.

ii) Compressibility effects are not important, because the flow is at a low Mach number.
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iii) Two turbulence models are used to account for the effect of the wave-induced per-
turbations in the Reynolds stress in stability analysis of the system. It is seen that the main
effect of including the wave-induced perturbations in the Reynolds stress is to damp the
unstable modes in the system. The EVM damps more than the EARSM. Also both the
models damp the higher frequency/wavenumber modes more than they damp the lower fre-
quency/wavenumber modes.

iv) The use of turbulence models in stability analysis has little effect on the mode shapes,
wavenumbers, and frequencies. Therefore, in a qualitative analysis, such as the present one,
the use of turbulence models is not required.

5.3 Stability results with RANS data as input

In the commercial CFD package ANSYS-Fluent, RANS solvers are used for obtaining the
time-averaged solutions and URANS solvers are used for obtaining the ensemble-averaged
solutions. Most turbulent flows are statistically stationary, which are defined as the flows
in which the time-averaged equations (or quantities) are identical to the ensemble-averaged
equations (or quantities). Therefore the two solvers, RANS and URANS, would give solu-
tions close to each other. In turbulent flows that are not statistically stationary, such as vor-
tex shedding flow behind a cylinder or the flow inside a gas-turbine combustor, ensemble-
averaged quantities are time-dependent. For such flows, a URANS solver would give a
time-dependent ensemble-averaged solution while a RANS solver, assuming that it gives a
converged solution, would give a solution close to the time-average of the solution obtained
from a URANS solver.

In Section 5.2, the time-averaged URANS simulation data are used as the input to per-
form stability analysis. The purpose of this section is to repeat the same calculations, but
with the RANS simulation data as the input to perform stability analysis. The advantage of
using the RANS solutions over the time-averaged URANS solutions is that calculation of
the former takes much less computational time than that of the latter. Usually the data ob-
tained from the RANS simulations have sharper shear layers than those in the time-averaged
URANS data. Small differences in the spatio-temporal stability results obtained from using
the RANS data as the input and from using the time-averaged URANS data as the input are
pointed out in this section. Elsewhere in this chapter, the RANS and time-averaged URANS
data are used indistinguishably.

Figure 5.5 shows the axial and azimuthal velocities and the temperature field in the
case-A of the S series obtained from the RANS simulation. The fields presented here are
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Fig. 5.5 (a) The axial velocity, (b) the azimuthal velocity, and (c) the temperature fields in
the case-A of the S series obtained from the RANS simulation. They are qualitatively very
similar to the fields obtained by time-averaging the URANS simulation data, as shown in
figure 5.1. The only noticeable difference is that the RANS data has higher velocities and
temperature fields and the gradients in the fields are also sharper.

compared with the fields presented in figure 5.1 (d–f), where the same fields are shown in
the same part of the geometry for the same case but the data is obtained by time-averaging
the URANS simulation results. The fields obtained from the RANS data are qualitatively
similar to those obtained from the time-averaged URANS data. Quantitatively, they are
slightly different. The RANS data has slightly higher velocities and temperature magni-
tudes. Another difference is that the mean shear is sharper in the RANS data than that in the
time-averaged URANS data.

The EARSM-based stability analysis is performed by linearising the equations over the
mean flow obtained from the RANS simulation. The calculated instability modes are shown
in figure 5.6. Not surprisingly, these modes are similar to the four modes shown when the
calculations are performed using the time-averaged URANS data in Section 5.2. These
modes are: (a) the m = −1 instability mode in the central pipe, (b) the m = −2 instability
mode in the central pipe, (c) the m = −2 instability mode downstream of the central pipe
where the several incoming flows interact, and (d) the m = 2 instability mode downstream
of the central pipe where the several incoming flows interact. Qualitatively the mode shapes
are very similar to the mode shapes obtained from stability analysis with the time-averaged
URANS data as input. The only difference is that the growth rates and frequencies are
marginally higher, which is a result of the sharper shear layers. The results seen in this sec-
tion confirm that stability analysis over the RANS data gives very similar results to stability
analysis over the time-averaged URANS data.
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(a) m =−1 central (b) m =−2 central (c) m =−2 downstream (d) m =+2 downstream

Fig. 5.6 The main instability modes obtained from the EARSM-based analysis performed
with the RANS data as input for the case-A in the S series system. (a) The m = −1 in-
stability in the central injection, (b) the m = −2 instability in the central injection, (c) the
m =−2 instability downstream of the central injection where the several incoming flows in-
teract, and (d) the m =+2 instability downstream of the central injection where the several
incoming flows interact. These modes are qualitatively very similar to the four instability
modes shown in Section 5.2, where stability analysis of the same case is performed but with
the time-averaged URANS data as input. The only difference is that the growth rates and
frequencies are marginally higher, which is a result of the sharper shear layers.

Table 5.1 Three cases of the S-series

Case Air-fuel ratio Entropy spot driven thermoacoustic oscillations
A Stoichiometric Highest
B Lean Moderate
C Very lean Absent

5.4 Effect of change in operating conditions on the insta-
bilities in the S series

As already seen in Section 5.2, compressibility effects and inclusion of the Reynolds stress
perturbations are not required in stability analysis in the S series. Therefore, in this section,
only the molecular viscosity based compressible stability analysis is performed for flows in
the S series at the different operating conditions. These cases are listed in table 5.1. Case-A
has air and fuel injected at the stoichiometric ratio and is studied in Section 5.2, case-B has a
lean mixture, and case-C has a leaner mixture than in case-B. The purpose is to demonstrate
the application of stability analysis to study the effect of a change in the operating conditions
on hydrodynamic instabilities in gas-turbine flows.

The mean flow is obtained by time-averaging the data calculated from the URANS sim-
ulations. The pressure-based Fluent solver is used in the simulations, with the same pressure
difference maintained between the inlet and the outlet in all three cases. When the amount
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Fig. 5.7 The time-averaged fields are shown in case-B (frames a–c) and case-C (frames d–f)
of the S series: (a) and (d) show the axial velocity, (b) and (e) show the azimuthal velocity,
and (c) and (f) show the temperature field. The temperature field in case-B is colder than
that in case-A, and that in case-C is colder than that in case-B. The velocity fields have the
opposite trend. Case-B and case-C, on average, have higher velocity magnitudes than those
in case-A.

of fuel injection is decreased in cases-B and C, the amount of heat release also decreases.
This decreases the volumetric expansion in the flow, which decreases the change in velocity.
For a given mass-flow rate it would decrease the pressure drop. However, the pressure drop
is fixed, therefore the air mass flow rate increases as the fuel mass flow rate decreases. The
axial and azimuthal velocities, and the temperature fields in cases-B and C are presented
in figure 5.7. The temperature in case-B is colder than that in case-A, and that in case-C
is colder than that in case-B. This is because temperature decreases monotonically with the
decrease in fuel injection ratio. The velocity fields have the opposite trend. Case-B and
case-C, on average, have higher velocity magnitudes than in case-A. The mean shear layers
are also sharper in case-B than those in case-A, and case-C has the sharpest mean shear
layers of the three cases.

Figure 5.8 shows the thermoacoustic oscillations in terms of normalised spatially aver-
aged pressure in the three cases. These self-excited thermoacoustic oscillations, which are
generated by coupling between the flame and the combustion cavity, in the same lean-burner
geometry are discussed in [131, 135]. Large hot spots, or entropy spots, emerge from the
edges of the flame, convect towards the nozzle and alter the mass flow rate in the nozzle. The
nozzle is maintained at a fixed high pressure which causes the generation of an expansion
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Fig. 5.8 The thermoacoustic pressure oscillations in the three cases of the S series are shown:
(a) case-A, (b) case-B, and (c) case-C. The amplitude and frequency of the thermoacoustic
instability decreases monotonically as the fuel-air mixture is changed from stoichiometric
to lean.

wave that travels upstream towards the flame. The expansion wave causes further fluctu-
ations in the flame and generates more hot spots, and the cycle continues. These entropy
wave-driven thermoacoustic oscillations are axisymmetric. Case-A has these oscillations
with highest amplitude and frequency (≈ 0.02) of the three cases. Case-B has slightly lower
amplitude and frequency (≈ 0.01) than those in case-A. Case-C has a further lower fre-
quency of the oscillations, and the amplitude decays to a very small value. This shows
that the amplitude of thermoacoustic oscillations decreases monotonically as the amount of
fuel injection is decreased. Another aim of this section it to investigate whether there is a
link between the hydrodynamic instabilities in the upstream section of the system and these
entropy wave generated large thermoacoustic oscillations in the downstream region of the
system.

5.4.1 Hydrodynamic instabilities in case-B and case-C

Figure 5.9 shows hydrodynamic instability modes in case-B and case-C. The modes of in-
stability in case-B and case-C are qualitatively similar to the instability modes in case-A,
which are presented in Section 5.2. The only apparent difference is in the growth rate of the
instabilities. Case-C is predicted to be the most unstable, while case-A is the least unstable
of the three cases. This trend of hydrodynamic instability is consistent with the velocity
field in the three cases. Case-C with the sharpest shear layers is the most unstable and
case-A with the weakest shear layers is the least unstable. The trend of these hydrodynamic
instabilities is exactly opposite of the trend of the thermoacoustic oscillations. The hydro-
dynamic instability modes found in these cases are at high frequencies and have non-zero m,
while the thermoacoustic oscillations are at low frequency and are axisymmetric. The fact
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that the two types of instability have very different frequencies and orthogonal mode shapes
explains why there is no interaction between them and how they co-exist independently.

(a) m = -1 central-B (b) m = -2 central-B (c) m = -2 downstream-B (d) m = 2 downstream-B

(e) m = -1 central-C (f) m = -2 central-C (g) m = -2 downstream-C (h) m = 2 downstream-C

Fig. 5.9 Frames (a–d) and (e–h) show dominant instability modes in case-B and case-C,
respectively, of the S series injector-combustor system. These modes match very closely
with the unstable modes in case-A of the series. The growth rate, however, is higher in
case-B than that in case-A, and case-C has the highest growth rate among the three cases.
The growth rate of hydrodynamic instability increases with increasing gradient in the mean
shear layer.

5.5 Effect of small design modifications on hydrodynamic
instabilities

Six injector-combustor systems are considered in this section, for which the RANS data of
non-reacting flows has been given by Dr Fred Witham from Rolls-Royce. All these systems
have very similar geometry with small design modifications and are collectively called the
T series. The axial and azimuthal velocities in them are shown in figure 5.10. The top
row shows the axial velocity and the bottom row shows the azimuthal velocity fields. All
of them have the same colour-scale, which is calibrated as 0 to 2.25 for the axial velocity,
and 0 to 1.5 for the swirl velocity (positive azimuthal velocity indicates that swirl is in the
anti-clockwise direction). The flow through the central jet in the T series is non-swirling at
a moderate flow velocity. In the downstream portion, three annular incoming flows join the
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central incoming flow, and there are expansions in the system geometry. The radii of the
different sections in these systems is given in table 5.2.

(a) Axial: T0-D (b) Axial: T0-U (c) Axial: T1-D (d) Axial: T1-U (e) Axial: T2-D (f) Axial: T2-U

(g) Swirl: T0-D (h) Swirl: T0-U (i) Swirl: T1-D (j) Swirl: T1-U (k) Swirl: T2-D (l) Swirl: T2-U

Fig. 5.10 The top and bottom rows show the axial and azimuthal velocity fields in the T
series. All of them have the same colour-scale, which is calibrated as 0 to 2.25 for the axial
velocity, and 0 to 1.5 for the azimuthal velocity (the positive azimuthal velocity indicates
that the swirl is in the anti-clockwise direction). The flow through the central jet in the T
series is non-swirling at a moderate flow velocity. In the downstream portion, three annular
injections join the central injection and there are expansions in the system geometry. These
later injections add swirl in the flow.

These systems are named: T0-D and T0-U, T1-D and T1-U, and T2-D and T2-U. The
suffix D and U indicates the longer and shorter central injections, respectively. The numbers
0, 1, and 2 divide them based on the radii of the individual streams. Each of these systems
have four sections, and R1, R2, R3, and R4 are the radii of those sections. Table 5.2 lists
their values. The T0-D and T0-U have the smallest radius of the final section (R4), so
they have the highest axial velocity among the T series systems. The higher axial velocity
leads to lower absolute instability, because the axial flow sweeps the instabilities away. The
expansion in the flow from R3 to R4 is maximum in the T2-D and T2-U, followed by the
T1-D and T1-U, and is minimum in the T0-D and T0-U. The azimuthal velocity in the T
series is maximum in the T2-D and T2-U, followed by the T1-D and T1-U, and is minimum
in the T0-D and T0-U.
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Table 5.2 The radii of the different sections in all the cases of the T series.

Case R1 R2 R3 R4
T0-D 0.5 1.83 2.86 4.18
T0-U 0.53 1.87 3.03 4.20
T1-D 0.5 1.85 2.98 5.23
T1-U 0.5 1.83 2.94 5.23
T2-D 0.5 1.83 2.59 5.17
T2-U 0.5 1.85 2.57 5.23

5.5.1 Main instability modes in the T series

The two main instabilities in the T series are shown in figures 5.11 and 5.12. The first
instability mode has m = −1. It is mainly caused by the mean shear around the centreline
but also interacts with the mean shear between the other injected air streams. Based on the
signs of the m, kr, and ωr, this mode is winding and rotating in the anti-clockwise direction.
It is dominant in the central region, where swirl is very low. The second instability mode
has m = 2 and is caused by the inflection point in the mean axial velocity at r ≈ 3. Based on
the signs of the m, kr, and ωr, this mode is winding in the clockwise direction and rotating in
the anti-clockwise direction. The swirl near r = 3 is in the anti-clockwise direction, so this
mode is counter-winding and co-rotating with respect to the local mean swirl in the flow.

The average wavelength of these instabilities, however, is larger than the length of the
combustor by an order of magnitude. Therefore these instabilities are unlikely to sustain a
global instability. Nevertheless a comparison of instabilities can be made to see the effect
of the changes in the geometry. The T0-D and T0-U, with the smallest expansion and least
swirl in the flow, are the least absolutely unstable cases. The T2-D and T2-U, with the large
expansion and most swirl in the flow, are the most absolutely unstable cases. The T1-D and
T1-U sit somewhere in between. They have large expansion as in the T2-U and T2-D, but
only a moderate swirl in the flow. They are more unstable than the T0-D and T0-U, but less
unstable than the T2-D and T2-U. Based on these results it is concluded that swirl in the
flow and expansion in the geometry are destabilising.

5.6 Conclusions

The main conclusions of this chapter are:

1. For flows inside the gas-turbine injector-combustor systems inclusion of turbulence
models in stability analysis, in order to account for the wave-induced fluctuations in the
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(a) m = -1, T0-D (b) m = -1, T1-D (c) m = -1, T2-D

(d) m = -1, T0-U (e) m = -1, T1-U (f) m = -1, T2-U

Fig. 5.11 This instability mode is mainly caused by the shear around the centreline but also
interacts with the shear between the other injected flow streams. It is winding and rotating
in the anti-clockwise direction. The average wavelength of this mode is larger than the
length of the combustor by an order of magnitude, which implies that this mode is unlikely
to sustain a global instability.

Reynolds stresses, has no significant qualitative effect on the results. Furthermore, they have
little quantitative effect on the frequency of oscillations and the position of the perturbation
kinetic energy, i.e. maximum of the eigenfunctions. This is because these instabilities are
driven by the regions of high mean shear in which the linear processes dominate as shown in
Refs [81, 82]. An implication of this is that only the mean flow velocity and density profiles
are required in order to find information on large hydrodynamic instabilities in these flows.
In order to use such tools reliably, it is important to validate the results from local analysis
with those from global analysis and experiments or LES or DNS for a number of cases. In
this direction, the recent results of Dr Outi Tammisola on global stability of flow in a gas-
turbine injector-combustor system are encouraging as they match with the local stability
results of Ref. [125], and also with the LES results.

2. The incompressible linearised governing equations give very similar results to the
fully compressible linearised governing equations for these flows. This is because these
flows are at the low Mach numbers (< 0.1).
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(a) m = 2, T0-D (b) m = 2, T1-D (c) m = 2, T2-D

(d) m = 2, T0-U (e) m = 2, T1-U (f) m = 2, T2-U

Fig. 5.12 This instability mode is caused by the inflection point in the mean axial velocity
at the r ≈ 3. It is winding in the clockwise direction and rotating in the anti-clockwise
direction. Swirl near the r = 3 is in the anti-clockwise direction, so this mode is counter-
winding and co-rotating with respect to the local mean swirl in the flow. The wavelength
of this mode is larger than the length of the combustor by an order of magnitude, which
implies that this mode is unlikely to sustain a global instability.

3. The stability analysis is performed by linearising the equations over the time-averaged
URANS solutions and also by linearising over the RANS solutions. The results are qualita-
tively similar, except that the frequencies and growth rates are predicted to be a little higher
when the RANS solutions are used. This is because the RANS solutions have sharper gradi-
ents, hence sharper mean shear layers, as compared to the time-averaged URANS solutions.
It is concluded that if the RANS solver gives a converged solution, then stability analysis
could be performed over the RANS solutions or the time-averaged URANS solutions almost
indistinguishably.

4. Stability analysis is performed for three cases of the S series, one at the stoichio-
metric operating condition and the other two at lean and very lean operating conditions.
The entropy wave-generated thermoacoustic oscillations in the first case have maximum
amplitude and frequency, followed by the lean case, and the very lean case has nearly no
thermoacoustic oscillations. The hydrodynamic instability modes in the upstream section of
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the system, however, are found to have the opposite trend. This shows that thermoacoustic
oscillations in the system and hydrodynamics instabilities in the upstream part co-exist in
the system without affecting each other. This is because the hydrodynamic instability modes
are at high frequencies and have non-zero azimuthal wavenumbers while the thermoacoustic
oscillations are at low frequency and are axisymmetric.

5. The effect of small design changes in the T series on hydrodynamic instability modes
is studied. Expansion at the nozzle exit and swirl in the flow are found to be destabilising. It
is also seen from the S and T series results that most instability modes are counter-winding
and co-rotating with respect to the local mean swirl in the flow.



Chapter 6

Global stability analysis of turbulent
Taylor-Couette flow

In this Chapter, two stability analyses are performed over the mean flow profiles in Taylor-
Couette flow. These mean flow profiles include Taylor-vortices and therefore are two-
dimensional. They can be obtained by either time-averaging or ensemble-averaging the in-
stantaneous flow fields. The two stability analyses are molecular viscosity (MV)-based sta-
bility analysis and an EARSM-based stability analysis. These analyses are derived in Chap-
ter 3. This chapter extends the application of these stability analyses to a two-dimensional
mean flow case. This work is part of an ongoing work in collaboration with Mr Hannes
Brauckmann and Prof Bruno Eckhardt, who kindly provided the DNS data for the mean
velocity, Reynolds stresses, and turbulent dissipation for all the cases considered here. The
aim of the overall project is to understand whether model-based stability analyses could pre-
dict the intermittent turbulent structures in Taylor-Couette flow, and whether the predicted
results on intermittent turbulent structures could be related to the observed fluctuating torque
in the flow.

6.1 Introduction

The flow between two independently rotating concentric cylinders is among the most stud-
ied cases in fluid mechanics since the early work of Refs. [136–138], and is referred to
as Taylor-Couette flow. The main reasons for the popularity of Taylor-Couette flow are
its simple geometry and high symmetry, which make it experimentally easily accessible
and mathematically well-defined. There are five independent parameters in this flow: the
angular velocities of the two cylinders, their radii, and the aspect ratio of the geometry.
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Standard bifurcation theory is used to describe transitions in this flow in considerable detail
[139]. Based on the combinations of the above mentioned parameters, the flow can transi-
tion to several states such as Taylor vortex flow, wavy vortex flow, modulated vortex flow,
corkscrew wavelet flow, and intermittent flow.

Interestingly, this flow shares many common features with Rayleigh-Bernard flow. Both
flows are bounded between solid boundaries, driven by external forcing, and have similar
vortical structures. Rayleigh-Bernard flow, however, is driven by buoyancy created by an
externally maintained temperature difference between the two plates, while Taylor-Couette
flow is driven by inertial terms created by externally maintained azimuthal velocities of the
two cylinders. An analogy between the two flows was first drawn by Bradshaw [140] and
later extended to the turbulent regime by Eckhardt, Grossmann, and Lohse [141]. Apart
from academic interest another reason for the popularity of Taylor-Couette flow is its appli-
cation in process technology [142].

Viscous fluid between the two cylinders causes molecular and convective transfer of
the azimuthal momentum between the two cylinders. In this process, there is a net loss of
angular momentum from one of the externally driven cylinders. This loss in angular mo-
mentum can be measured as torque [143]. Recent work concerning the understanding of
scaling of the torque with Reynolds number, optimising the flow parameters to obtain max-
imum torque, and extending the research to higher Reynolds number regimes can be found
in Refs. [12, 56, 144–146] and the references cited therein. The relationship between the
torque and the azimuthal velocities of the cylinders is not simple. For example it is observed
that small counter-rotation enhances the torque while large counter-rotation reduces it, and
that co-rotating cases have different scaling of the torque with Reynolds number as com-
pared to the scaling in counter-rotating cases. It is understood that the torque depends upon
the size of Taylor vortices and on intermittent turbulent structures.

In the present study, two stability analyses are used as attempts to understand the relation
between large-scale turbulent structures and torque. The first is based on the linearised
Navier–Stokes equations such as in Refs. [1, 73]. The second is based on the linearised
Navier–Stokes equations augmented with an anisotropic eddy viscosity model as shown in
Chapter 3. This anisotropic eddy viscosity augmented stability analysis is, in principle,
based on the eddy viscosity augmented stability analysis presented in Refs. [2, 10, 76].
This analysis is based on the linearised RANS equations, where the RANS equations are
obtained using the EARSM model of Wallin and Johansson (2000) [108].

These two stability analyses are applied to fourteen Taylor-Couette flow cases for which
the mean flow data is provided by Mr Hannes Brauckmann and Prof Bruno Eckhardt. The
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mean flow is obtained such that it retains Taylor vortices, which form from instability in the
flow caused by the rotation of the inner cylinder. The analyses presented here therefore are
secondary stability analyses. The purpose of these analyses is to predict large-scale inter-
mittent turbulent structures over Taylor-vortices in the flows. The similarity and differences
between the predicted coherent structures from the two above mentioned stability analyses
are presented here. A preliminary comparison of stability results with the observations from
the DNS data, such as the trend of the leading eigenmode’s growth rate with that of standard
deviation in the torque data, is also presented.

This Chapter is divided into six sections. Section 6.2 gives the definitions and termi-
nologies used in rest of the chapter. It also presents a formulation of the problem. Section
6.3 discusses the numerical details of the problem, and gives a brief description of the two
families of the cases considered. Section 6.4 and 6.5 present the stability results, such as
eigenvalues and eigenmodes, from the two analyses for the two families of the cases.

6.2 Definitions and problem formulation

The axial, radial, and azimuthal directions are labelled (x,r,θ)−directions, respectively.
The radii of the inner and outer cylinders are ri and ro, the gap between the two is d = ro−ri,
and the radius ratio is η = ri/ro. The aspect ratio is defined as Γ = Lz/d, where Lz is the
length of the cylinders in the axial direction, and is set to 2. When the outer cylinder is at
rest, this length supports a Taylor-vortex pair [12]. The angular velocities of the inner and
outer cylinders are ωi and ωo, respectively. The ratio of the angular velocities is defined as
µ = ωo/ωi, and the kinematic viscosity is labelled ν . The inner cylinder Reynolds number
(Rei), outer cylinder Reynolds number (Reo), and shear Reynolds number (Res) are defined
as:

Rei =
driωi

ν
, Reo =

droωo

ν
, Res =

2
1+η

|ηReo −Rei| (6.1)

The length is non-dimensionalised by d, and the figures presented in this chapter are re-
scaled in the radial direction as r = (r−ri)/d and in the axial direction as x = x/d. The axial
direction is periodic with the period of Lz in the DNS, and the mean velocity is obtained
by averaging the data in time and in the azimuthal direction. This implies that the mean
profiles are periodic in the x−direction and are independent of time and the θ−direction.
This is exploited in the stability analysis presented here. The mean velocities (U,V,W ) in
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the (x,r,θ)−directions, respectively, are decomposed into the Fourier components:

U =
nom

∑
j=1

U j(r)sin( j f x),V =
nom

∑
j=1

Vj(r)cos( j f x),W =W0(r)+
nom

∑
j=1

Wj(r)cos( j f x) (6.2)

where nom is the number of Fourier modes used to describe the mean velocity profiles,
f = 2π/Lz = π , and U j,Vj,W0 and Wj are functions of r alone. The velocity perturbations
(u′,v′,w′) in the (x,r,θ)−directions, respectively, and the pressure perturbation (p′) are:

u′ =

(
N

∑
j=1

H j (r)sin( j f x)

)
exp[ωt + imθ ]

v′ =

(
F0 (r)+

N

∑
j=1

Fj (r)cos( j f x)

)
exp[ωt + imθ ]

w′ =

(
G0 (r)+

N

∑
j=1

G j (r)cos( j f x)

)
exp[ωt + imθ ]

p′ =

(
N

∑
j=1

Pj (r)sin( j f x)

)
exp[ωt + imθ ] (6.3)

where N is the number of Fourier modes used to describe the perturbations, m, which is
fixed as a real integer, is the azimuthal wavenumber, real part of ω is the growth rate, and its
imaginary part is the frequency of the corresponding eigenvectors. Because the flow is not
homogeneous in the x−direction, a Fourier mode in the x−direction is not an eigenmode
but an eigenmode is a superposition of several Fourier modes. This will be clearer from the
linearised equations.

6.2.1 The linearised Navier–Stokes equations

Stability analyses with the linearised Navier–Stokes or RANS equations are found to be
good at predicting large-scale structures in turbulent flows, especially in the high mean
shear regions, as shown in Refs. [1, 73–75, 81, 82, 92, 93, 111, 124, 125] and in Chapters
2–5. This property of the linearised Navier–Stokes equations-based analysis is exploited
in determining large-scale structures that develop on the top of Taylor vortices in Taylor-
Couette flows. For this purpose, the Navier–Stokes equations are linearised over the mean
velocity profiles, which are obtained by time-averaging the data. The reference frame, dur-
ing the time-averaging, has the same velocity as the Taylor vortices. The mean profiles,
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Fig. 6.1 The region highlighted in grey is a representative cross-section in which the mean
velocities, Reynolds stresses and eigenvectors in all the flow cases are presented.

therefore, include Taylor-vortices in the flow. In figure 6.1 a schematic of Taylor-Couette
flow geometry is shown. The mean velocity and Reynolds stress profiles are homogeneous
in the azimuthal direction and periodic in the streamwise direction.

The region highlighted in grey is a representative cross-section in which the mean ve-
locities, Reynolds stresses, and eigenmodes in Sections 6.4 and 6.5 are shown. The MV-
and EARSM-based stability analyses are performed over the mean profiles, which include
Taylor-vortices. Therefore the instability results are for secondary large turbulent structures
that develop on the top of Taylor-vortices. [Shifted the figure and part of the paragraph
describing it before the equations.]

The momentum equation in the axial direction is:

∂u′

∂ t
=−V

∂u′

∂ r
− v′

∂U
∂ r

− W
r

∂u′

∂θ
−U

∂u′

∂x
−u′

∂U
∂x

− ∂ p′

∂x
+

ν

r
∂

∂ r

(
r

∂u′

∂ r

)
+

ν

r2
∂ 2u′

∂θ 2 +ν
∂ 2u′

∂x2

(6.4)

On substituting Fourier modes for the mean velocity and perturbation quantities in this equa-
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tion:

− iσHl =− 2
Lz

∫ Lz

0
sin(l f x)

nom

∑
k=1

Vk cos(k f x)
N

∑
j=1

dH j

dr
sin( j f x)dx+

ν

r
d
dr

(
r

dHl

dr

)
− im

r
W0Hl

− 2
Lz

∫ Lz

0
sin(l f x)

N

∑
k=1

Fk cos(k f x)
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∑
j=1

dU j

dr
sin( j f x)dx−ν

(
m2

r2 + l2 f 2
)

Hl

− 2im
rLz

∫ Lz

0
sin(l f x)
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∑
k=1

Wk cos(k f x)
N

∑
j=1

H j sin( j f x)dx+ l f Pl

− 2
Lz

∫ Lz

0
sin(l f x)
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∑
k=1

Uk sin(k f x)
N

∑
j=1

dH j

dr
j f cos( j f x)dx−F0

dUl

dr

− 2
Lz

∫ Lz

0
sin(l f x)

N

∑
k=1

Hk sin(k f x)
nom

∑
j=1

dU j

dr
j f cos( j f x)dx (6.5)

where σ = iω

The momentum equation in the radial direction is:

∂v′

∂ t
=−V

∂v′

∂ r
− v′

∂V
∂ r

− W
r

∂v′

∂θ
−U

∂v′

∂x
−u′

∂V
∂x

+2
W
r
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ν

r
∂
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(
r

∂v′

∂ r
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ν
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∂ 2v′

∂x2 −ν
v′

r2 −2
ν

r2
∂w′

∂θ
(6.6)

On substituting Fourier modes for the mean velocity and perturbation quantities in this equa-
tion.

− iσFl =− 2
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Fk cos(k f x)
nom

∑
j=1

dVj

dr
cos( j f x)dx+

ν

r
d
dr

(
r

dFl

dr

)
− im

r
W0Fl

− 2
Lz

∫ Lz

0
cos(l f x)

nom

∑
k=1

Vk cos(k f x)
N

∑
j=1

dFj

dr
cos( j f x)dx−ν

(
m2 +1

r2 + l2 f 2
)

Fl

− 2im
rLz

∫ Lz

0
cos(l f x)

nom

∑
k=1

Wk cos(k f x)
N

∑
j=1

Fj cos( j f x)dx− 2imν

r2 Gl −
dPl

dr

+
2
Lz

∫ Lz

0
cos(l f x)

nom

∑
k=1

Uk sin(k f x)
N

∑
j=1

Fj j f sin( j f x)dx+
2
r
(GlW0 +G0Wl)

+
2
Lz

∫ Lz

0
cos(l f x)

N

∑
k=1

Hk sin(k f x)
nom

∑
j=1

Vj j f sin( j f x)dx−F0
dVl

dr
− dF0

dr
Vl

+
4

rLz

∫ Lz

0
cos(l f x)

N

∑
k=1

Gk cos(k f x)
nom

∑
j=1

Wj cos( j f x)dx− im
r

F0Wl (6.7)
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and the equation for the F0−component is:

−2iσF0 =−
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The momentum equation in the azimuthal direction is:
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On substituting Fourier modes for the mean velocity and perturbation quantities in this equa-
tion.
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and the equation for the G0−component is:

−2iσG0 =−
N

∑
j=1

Vj
dG j

dr
−

N

∑
j=1

Fj

(
dWj

dr
+

Wj

r

)
− im

r

N

∑
j=1

G jWj +
N

∑
j=1

j f G jU j +
N

∑
j=1

j f H jWj

− 1
r

N

∑
j=1

G jVj −2F0

(
dW0

dr
+

W0

r

)
−2

im
r
(W0G0 +P0)+

2ν

r
d
dr

(
r

dG0

dr

)
−2ν(m2 +1)

r2 G0 −
4imν

r2 F0 (6.11)

The continuity equation is:

∂u′

∂x
+

∂v′

∂ r
+

v′

r
+

1
r

∂w′

∂θ
= 0 (6.12)

On substituting Fourier modes for perturbation quantities in this equation:

j f H j +
dFj

dr
+

Fj

r
+

im
r

G j = 0 (6.13)

and the relation between F0 and G0 from the continuity equations is:

dF0

dr
+

F0

r
+

im
r

G0 = 0 (6.14)

Because the flow is not homogeneous in the x−direction, all the Fourier modes are to be
solved simultaneously. The state vector is:[

N

∑
j=1

H j(r),F0(r),
N

∑
j=1

Fj(r),G0(r),
N

∑
j=1

G j(r),
N

∑
j=1

Pj(r)]

]
(6.15)

Its size is (4N + 2) times the number of grid-points in the r−direction. This analysis is
referred to as MV-based analysis or just MV in the rest of the Chapter. The growth rates and
eigenmodes obtained from the MV-based analysis are presented in Sections 6.4 and 6.5.

6.2.2 Anisotropic eddy viscosity augmented linearised equations

Another popular model-based stability analysis to predict large-scale structures in turbulent
flows is based on augmenting the linearised Navier–Stokes equations with an eddy viscosity.
Such an analysis was first presented in Reynolds and Hussain [76], and later used in Refs
[2, 10] in channel flow. In such an analysis, the RANS equations are linearised instead of
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the Navier–Stokes equations. The advantages and drawbacks of such an approach and a
detailed literature review is discussed in detail in Chapters 2–4.

In this Chapter, an anisotropic eddy viscosity model (or EARSM) given by Wallin and
Johansson (2000) [108], labelled WJ model, is used. Therefore, the RANS equations based
on the WJ model are linearised for stability analysis. This analysis is referred to as EARSM-
based analysis or just EARSM in the rest of the Chapter. The detailed derivation of the
linearised RANS equation based on an EARSM is given in Chapter 3.

The Reynolds stress anisotropy tensor is labelled as a, and its components are labelled
aww, auu, avv, awu, avw, and auv. The Reynolds stress components are then given as:

WW =

(
aww +

2
3

)
K, UU =

(
auu +

2
3

)
K, VV =

(
avv +

2
3

)
K,

WU = Kawu, VW = Kavw, UV = Kauv. (6.16)

where WW , UU , and VV are the azimuthal, axial, and radial Reynolds normal stress com-
ponents, and WU , VW , and UV are the azimuthal-axial, radial-azimuthal, and axial-radial
Reynolds shear stress components.

The linearised RANS equations also include the wave-induced perturbations in the Reynolds
stresses in addition to all the terms in the linearised Navier–Stokes equations [76]. In this
chapter, these perturbations in the Reynolds stresses are labelled a′ww, a′uu, a′vv, a′wu, a′vw,
and a′uv, and the linearised RANS equations are given below. The derivations of these terms
using an EARSM model is shown in Chapter 3.

The linearised RANS equations are, in the axial direction:

∂u′

∂ t
=−V

∂u′

∂ r
− v′

∂U
∂ r

− W
r

∂u′

∂θ
−U

∂u′

∂x
−u′

∂U
∂x

− ∂ p′

∂x
+

ν

r
∂

∂ r

(
r

∂u′

∂ r

)
+

ν

r2
∂ 2u′

∂θ 2 +ν
∂ 2u′

∂x2

− ∂

∂ r

(
Ka′uv

)
− 1

r
∂

∂θ

(
Ka′wu

)
− K

r
a′uv −

∂

∂x

(
Ka′uu

)
, (6.17)

in the radial direction:

∂v′

∂ t
=−V

∂v′

∂ r
− v′

∂V
∂ r

− W
r

∂v′

∂θ
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∂v′

∂x
−u′

∂V
∂x

+2
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r
∂

∂ r
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r

∂v′
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∂x2 −ν
v′

r2 −2
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−
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∂
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∂θ

(
Ka′vw
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+
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a′ww − ∂
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(
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)
,

(6.18)
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and in the azimuthal direction:

∂w′

∂ t
=−V

∂w′

∂ r
− v′

∂W
∂ r

− W
r

∂w′
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−u′

∂W
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ν
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∂
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∂ 2w′
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(6.19)

The wave-induced perturbations in the Reynolds stresses, which are present as a′ in the
equations above, are higher in the flows with higher Reynolds stresses. These additional
a′−terms usually have a stabilising effect on the flow. The growth rates and eigenmodes
obtained from the EARSM-based analysis are presented in Sections 6.4 and 6.5.

6.3 Numerical details and the cases studied

The numerical solutions of the linearised equations are obtained by using a Chebyshev spec-
tral method with Gauss-Lobato points in the r−direction. The Matlab command ‘sparse’ is
used to store the matrices, which are obtained after discretisation of the operators, in a com-
pact form. The leading 60 to 100 eigenvalues and eigenvectors are then found using the
‘eigs’ command in Matlab. The number of grid-points used is 60 to 80, and the number
of Fourier modes used for the mean profiles and perturbations is 30 to 40. All solutions
presented in this Chapter are obtained from a 2.9 GHz Intel Core i7 processor with 8GB-
1600MHz RAM. The above mentioned numbers of Fourier modes and grid-points are nearly
the maximum possible discretisation allowed by this computational resource, and are suffi-
cient for the convergence of eigenvectors as shown in figure 6.2 below.

In this chapter, two families of the cases are considered. The mean flows for these cases
are provided by Mr. Hannes Brauckmann and Prof Bruno Eckhardt. The first family has
fixed µ = 0 and changing Rei, which means that the outer cylinder is at rest and the inner
cylinder is rotating at several speeds. Seven cases of this family are considered by increasing
the azimuthal velocity of the inner cylinder progressively. These cases have Rei = 1481,
2222, 3333, 5000, 7500, 11250, and 16875. Here the Rei increases by a factor of 1.5 from
one case to the next.

The second family has fixed Res = 1733 and changing µ , which means that the mean
shear parameter in the flow is kept constant and the ratio of rotation of the two cylinders is
varied. Eight cases are considered in this family. Two of them have co-rotating cylinders
with µ = 0.2 and 0.4, one has a stationary outer cylinder (µ = 0), and five cases have
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Fig. 6.2 Eigenvalues of azimuthal wavenumber m = 0 perturbations in the (a, b) Res = 1733
and µ = 0.4, and (c, d) Rei = 11250 and µ = 0 cases calculated from the (a, c) MV-based
analysis and (b, d) EARSM-based analysis. The black dots are eigenvalues calculated with
40 Fourier modes and 60 grid-points in the r−direction and the red circles are eigenvalues
calculated with 30 Fourier modes and 80 grid-points. The convergence is good in all the
cases. In the higher Reynolds number case, the MV-based analysis calculations have small
differences in the growth rates amongst the eigenvalues with the negative growth rates.

counter-rotating cylinders with µ =−0.2, −0.4, −0.71, −1, and −2. The case with µ = 0
and Res = 1733 is common with the first case of the first family that has µ = 0 and Rei =

1481.

Figure 6.2 shows convergence of the leading eigenvalues in two cases: (a, b) a low
Reynolds number case with Res = 1733 and µ = 0.4, and (c, d) a high Reynolds number case
with Rei = 11250 and µ = 0. These eigenvalues are obtained for perturbations of azimuthal
wavenumber m = 0. The results in frames (a) and (c) are obtained using the MV-based
analysis and the results in frames (b) and (d) are obtained using the EARSM-based analysis.
There are two sets of results: (i) the results shown by black dots are calculated with 40
Fourier modes and 60 grid-points in the r−direction and (ii) the results shown by red circles
are calculated with 30 Fourier modes and 80 grid-points in the r−direction. The eigenvalues
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barely change, which shows that the results are well converged. The one exception is the
higher Reynolds number case (Rei = 11250) calculations from the MV-based analysis. It
has slight differences in the growth rates amongst the eigenvalues with the negative growth
rates.

6.4 Stability results for the µ = 0 flow cases

Figure 6.3 presents the mean velocity in four of the first family of cases, which are the Rei =

1481, 3333, 7500 and 16875 cases. The mean azimuthal velocity (W ) of the outer cylinder
is fixed at zero, and W of the inner cylinder is linearly proportional to Rei. Taylor-Couette
flow with a rotating inner cylinder and a stationary outer cylinder is Rayleigh unstable.
The instability in the flow causes the formation of Taylor-vortices, which get stronger with
increasing Rei. The mean axial and radial velocities plotted in the figure show the strength
of Taylor-vortices. Faster rotation of the inner cylinder causes stronger Taylor-vortices, and
therefore the U and V fields magnitudes also increase with Rei. This increase in U and V

is linearly proportional to Rei, which means that the magnitude of the U and V fields also
increases by a similar factor as the W fields with increasing Rei.

Figures 6.4 and 6.5 show the Reynolds normal and shear stress components, respectively,
in the four cases. The Reynolds stress components also increase with Rei. Because they are
second-order quantities, in general they are expected to increase in proportion to the square
of the mean velocities, which means by 2.252 ≈ 5 from one case to the next. The increase
is approximately 5 in all the cases, but is greater than 5 in between the Rei = 1481 and
Rei = 3333 cases. All the Reynolds stress components are generally high in the region
between two Taylor vortices, which coincides with the region of higher radial velocity.
These regions are near x = 0, 1, and 2. The increase in the Reynolds stress components
implies an increase in the anisotropic eddy viscosity components, which usually have a
stabilising effect on the eigenmodes calculated from the EARSM-based stability analysis.

Table 6.1 summarises the growth rates of the leading eigenvalues calculated from the
MV- and EARSM-based analyses for the m = 0, 1, and 2 perturbations in all the cases and
also for the m = 4, 5, and 6 perturbations in the Rei = 16875 case. The calculations are
performed at least up to m = 3 perturbations in all the cases to ensure that modes with the
highest growth rates are captured. In the Rei = 1481 case, there is almost no difference
in the growth rates calculated from the two analyses up to the significant figures of the
eigenvalues listed in the table. This is because the inertial terms, which are caused by the
mean velocity, are much larger than the turbulent eddy viscosity terms, which are caused
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Fig. 6.3 The mean velocity in the µ = 0 cases. Each row presents the mean velocities
in the (a) Rei = 1481, (b) Rei = 3333, (c) Rei = 7500, and (d) Rei = 16875 cases. Each
column presents the (i) azimuthal (W ), (ii) axial (U), and (iii) radial (V ) mean velocity
components in the above mentioned cases. By definition the mean azimuthal velocity of the
inner cylinder is linearly proportional to Rei, and the mean azimuthal velocity of the outer
cylinder is zero. The mean axial and radial velocities are non-zero because Taylor vortices
exist in the flow.
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Fig. 6.4 The Reynolds normal stress components in the µ = 0 cases. Each row presents
the Reynolds normal stress in the (a) Rei = 1481, (b) Rei = 3333, (c) Rei = 7500, and (d)
Rei = 16875 cases. Each column presents the (i) WW , (ii) UU , and (iii) VV−components
of the Reynolds normal stress. The magnitude of the Reynolds normal stress components
increases with increasing Rei.
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Fig. 6.5 The Reynolds shear stress components in the µ = 0 cases. Each row presents
the Reynolds shear stress in the (a) Rei = 1481, (b) Rei = 3333, (c) Rei = 7500, and (d)
Rei = 16875 cases. Each column presents the (i) WU , (ii) VW , and (iii) UW−components of
the Reynolds shear stress. The magnitude of the Reynolds shear stress components increases
with increasing Rei.
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Fig. 6.6 The growth rate of the leading eigenmodes for all the Rei cases calculated from the
(a) MV-based analysis (the first two eigenvalues are shown) and (b) EARSM-based analyses
(only the first eigenvalues are shown). The MV-based analysis predicts an increase in the
growth rate as Rei increases, which means that the higher Rei flows should be more inter-
mittent. The EARSM-based analysis predicts a decrease in the growth rate as Rei increases,
which means that the higher Rei flows should be less intermittent. The DNS data for these
flows show that the turbulent intermittency increases with increasing Rei, which means that
the growth rate predictions from the MV-based analysis are in better agreement with the ob-
servation from the DNS. The figure also shows the azimuthal wavenumbers of the leading
eigenmodes.

by the Reynolds stresses. The results from the two analyses have similarities with each
other until the Rei = 5000 case. This is seen in terms of the frequencies of the leading
eigenvectors, which match well with each other. For the flows with Rei ≥ 7500, the stability
results from the two analyses have no similarities.

Figure 6.6 shows variation of the growth rate of the leading eigenmodes with Rei cal-
culated from the (a) MV- and (b) EARSM-based analyses. The figure also indicates the
azimuthal wavenumbers of the leading eigenmodes. The EARSM-based analysis predicts
that the eigenmodes with m = 0 are least stable in all the cases, while the MV-based analy-
sis predicts that the azimuthal wavenumber of the most unstable eigenmode increases with
increasing Rei, with the exception of the Rei = 2222 case. One major qualitative difference
in the results between the two analyses is that the MV-based analysis predicts an increase in
the growth rate with increasing Rei, while the EARSM-based analysis predicts a decrease in
the growth rate with increasing Rei. Based on these results, the MV-based analysis predicts
that the µ = 0 flow cases should become more intermittent at higher Rei and the EARSM-
based analysis predicts that the µ = 0 flow cases should become less intermittent at higher
Rei. Based on the DNS data, fluctuations on top of Taylor vortices become stronger with
increasing Rei. Therefore, it is concluded that the stability results from the MV-based anal-
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Table 6.1 The leading eigenmodes in the µ = 0 cases. The MV-based analysis predicts
destabilisation with increasing Rei, while the EARSM-based analysis predicts stabilisation
with increasing Rei.

Case Azimuthal wavenumber
Rei m = 0 m = 1 m = 2

MV EARSM MV EARSM MV EARSM
−14+0i −14+0i −25+316i −25+316i −36−1956i −36−1956i

1481 −33+1025i −33+1025i −32+814i −32+814i −36+616i −36+616i
−39+495i −39+495i −35−1729i −35−1729i −47+119i −47+119i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

−12+0i −20+0i −8−2558i −59−457i −4−2897i −70+185i
2222 −17+0i −49+0i −24+462i −101−295i −23+462i −107−2880i

−37+2239i −79+716i −41+1201i −114−1827i −41+1201i −123+901i
m = 0 m = 1 m = 2

MV EARSM MV EARSM MV EARSM
11+0i −27+0i −9+785i −105+774i −12+337i −94+334i

3333 −16+0i −73+0i −50+1978i −150−468i −40+1530i −251−1061i
−69+1389i −144+1166i −66−3998i −218−1522i −95−2436i −263−3290i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

30+0i −34+0i 1+1132i −173+1102i −47+419i −178+396i
5000 −13+0i −118+0i −50+2818i −222−662i −96+2189i −380−2636i

−47+1945i −238+1720i −60+1236i −322+1220i −101+679i −399−591i
m = 0 m = 1 m = 2

MV EARSM MV EARSM MV EARSM
145+4459i −41+0i 143+3414i −223+1179i 112+2256i −280+106i

7500 36+6578i −181+0i 53+5603i −281−977i 13+4680i −390+423i
−45+2362i −276+2143i 22+1270i −347+1423i −12+6920i −443−3663i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

308+7814i −48+0i 382−6300i −310−1538i 373+4748i −375−585i
11250 284+0i −238+0i 335+8915i −348+1055i 361+7353i −548−5151i

229+0i −401+2554i 286+3737i −474−4747i 338+9973i −553−3115i
m = 0 m = 1 m = 2

MV EARSM MV EARSM MV EARSM
744+16814i −55+0i 850+14454i −453−2385i 880+12086i −469−1639i

16875 742+10172i −355+0i 817+21298i −476+928i 805+5372i −665−7351i
692+13522i −548+3278i 763−7789i −640−5378i 799+8651i −763−4771i

m = 4 m = 5 m = 6
MV EARSM MV EARSM MV EARSM

942+10548i 1036+12015i 895+2383i
16875 909+3892i 931+8223i 883+5804i

872−17292i 912+15097i 867+14348i
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Fig. 6.7 The first two leading eigenmodes of the (a, b) m = 0 and (c, d) m = 1 azimuthal
wavenumbers in the Rei = 1481 case calculated from the MV-based analysis. The MV and
EARSM-based analyses give very similar growth rates and eigenmode shapes for this flow
case.

ysis are in better agreement with the observations on the strength of intermittent structures
from the DNS data.

A possible reason behind the bad predictions from the EARSM-based analysis could be
that the anisotropic eddy viscosity used is too high and therefore damps more than it should.
This has been seen for channel flows as well in Chapters 2 and 3, and is discussed in Refs. [4,
98]. These researchers explain that if coherent structures are to be found from the stability
analysis then their contribution in the Reynolds stresses should not be included. Therefore,
the wave-induced perturbations in the Reynolds stresses in the linearised equations should
only include the contribution from small-scale turbulence. Consequently, the anisotropic
eddy viscosity used in the stability analysis should be much smaller than that used in the
present EARSM-based analysis.

Figure 6.7 presents the first two leading eigenmodes of the (a, b) m = 0 perturbations
and of the (c, d) m = 1 perturbations calculated from the MV-based analysis. As mentioned
before, results from the EARSM-based analysis are very similar to those from the MV-based
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Fig. 6.8 The first two leading eigenmodes of the m = 0 azimuthal wavenumber in the Rei =
3333 case calculated from the (a, b) MV- and (c, d) EARSM-based analyses. The first
mode from the MV-based analysis matches with the second mode from the EARSM-based
analysis, and the second mode from the MV analysis matches with the first mode from the
MV-based analysis.

analysis for this case. Figures 6.8 and 6.9 show the leading eigenmodes from the MV- and
EARSM-based analyses for the flows at Rei = 3333 and 5000, respectively. These figures
show the similarity in eigenmodes from the two analyses. The stability results from the
two analyses do not have any similarities for the flows with Rei ≥ 7500. Figures 6.10 and
6.11 show the leading eigenmodes calculated from the MV- and EARSM-based analyses,
respectively, for the flows with Rei ≥ 7500. Figure 6.10 shows that the leading eigenmodes
predicted from the MV-based analysis for the higher Rei cases are more localised than those
for the lower Rei flows, i.e. they are concentrated at a few spots. This is also in agreement
with the observations from the DNS data, which show that intermittent turbulent structures,
although they become stronger, decrease in size in the higher Rei flow cases.
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Fig. 6.9 The first two leading eigenmodes of the m = 0 azimuthal wavenumber in the Rei =
5000 case calculated from the (a, b) MV- and (c, d) EARSM-based analyses. The first
mode from the MV-based analysis matches with the second mode from the EARSM-based
analysis, and the second mode from the MV-based analysis matches with the first mode
from the EARSM-based analysis.
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Fig. 6.10 The leading eigenmodes calculated from the MV-based analysis in the Rei = 7500
of the azimuthal wavenumbers (a) m = 0 and (b) m = 1, in the Rei = 11250 of the azimuthal
wavenumber (c) m = 1, and in the Rei = 16875 of the azimuthal wavenumbers (d) m = 1
and (e) m = 5. Unlike the eigenmodes in the lower Rei cases, these modes are concentrated
at a few spots, such as near the inner cylinder or the axial boundaries.
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Fig. 6.11 The leading eigenmodes of the azimuthal wavenumber (a, c) m= 0 and (b, d) m= 1
in the (a, b) Rei = 7500 and (c, d) Rei = 16875 cases calculated from the EARSM-based
analysis. These eigenmodes match the corresponding azimuthal wavenumber eigenmodes
in the lower Rei cases. This is in contrast to the eigenmodes calculated from the MV-based
analysis in these higher Rei cases, which are concentrated at a few spots.
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6.5 Stability results for the Res = 1733 flow cases

Figure 6.12 presents the mean velocities for the µ = −0.4, −0.2, 0.2, and 0.4 cases and
figure 6.13 presents the mean velocities for the µ = −0.71, −1, and −2 cases. The flow
between a rotating outer cylinder and a stationary inner cylinder is known to be Rayleigh
stable. As compared to the µ = 0 case, Taylor vortices are weakened in the cases with
the non-zero µ . This is seen through the fact that the U and V velocities in these cases
are smaller in magnitude than those in the µ = 0 case. Moreover, the U and V fields in
the negative µ cases are weaker than those in the positive µ cases of equal magnitude,
which shows that Taylor vortices in the counter-rotating cases are weaker than those in the
co-rotating cases. Finally, in the µ = −2 case, the stabilising effect of the outer cylinder
overtakes the destabilising effect of the inner cylinder and there are no significant Taylor-
vortices in the flow.

Fig. 6.12 The mean velocities in the Res = 1733 cases. Each row presents the mean veloc-
ities in the (a) µ = −0.4, (b) µ = −0.2, (c) µ = 0.2, and (d) µ = 0.4 cases. Each column
presents the (i) azimuthal (W ), (ii) axial (U), and (iii) radial (V ) mean velocity components
in the above mentioned cases. The mean azimuthal velocity mainly depends upon the inner
and outer cylinder rotation, which are determined by µ and Res. The mean axial and radial
velocity profiles are the result of the formation of Taylor vortices. These profiles suggest
that the Taylor vortices weaken when the outer cylinder rotates while keeping Res constant.
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Fig. 6.13 The mean velocities in the Res = 1733 cases. Each row presents the mean veloc-
ities in the (a) µ = −0.71, (b) µ = −1, and (c) µ = −2 cases. Each column presents the
(i) azimuthal (W ), (ii) axial (U), and (iii) radial (V ) mean velocity components in the above
mentioned cases. The mean axial and radial velocities in the µ = −2 case are very small,
which implies that there are no Taylor vortices in this case.

Figures 6.14 and 6.15 present the Reynolds normal and shear stress components, respec-
tively, for the (a) µ =−0.4, (b) −0.2, (c) 0.2, and (d) 0.4 cases. Figure 6.16 and 6.17 present
the Reynolds normal and shear stress components, respectively, for the (a) µ = −0.71, (b)
−1.0, and (c) −2.0 cases. In the positive µ cases, the WW , WU , VW , and UV Reynolds
stress components increase from the µ = 0 to 0.2 cases then decrease for the µ = 0.4 case.
The other two components (UU and VV ) increase continuously from the µ = 0 to 0.4 cases.
In the negative µ cases, all the Reynolds stress components increase very sharply from the
µ = 0 to −0.2 cases and then gradually decrease until the last case (µ =−2.0).
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Fig. 6.14 The Reynolds normal stresses in the Res = 1733 cases. Each row presents the
Reynolds normal stress components in the (a) µ =−0.4, (b) µ =−0.2, (c) µ = 0.2, and (d)
µ = 0.4 cases. Each column presents the (i) WW , (ii) UU , and (iii) VV Reynolds normal
stress components. For the negative µ cases, the Reynolds normal stress components first
increase sharply when µ is changed from 0 to −0.2 then decrease slightly in the µ =−0.4
case. For the positive µ cases, the Reynolds normal stress components increase when µ is
changed from 0 to 0.2, the UU and VV components further increase in the µ = 0.4 case, but
the WW component decreases slightly.



138 Global stability analysis of turbulent Taylor-Couette flow

Fig. 6.15 The Reynolds shear stresses in the Res = 1733 cases. Each row presents the
Reynolds shear stress in the (a) µ =−0.4, (b) µ =−0.2, (c) µ = 0.2, and (d) µ = 0.4 cases.
Each column presents the (i) WU , (ii) VW , and (iii) UW Reynolds shear stress component.
The Reynolds shear stress components first increase when µ is changed from 0 to −0.2 or
0.2, then decrease when further changed to µ =−0.4 or 0.4.
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Fig. 6.16 The Reynolds normal stresses in the Res = 1733 cases. Each row presents the
Reynolds normal stress in the (a) µ = −0.71, (b) µ = −1, and (c) µ = −2 cases. Each
column presents the (i) WW , (ii) UU , and (iii) VV Reynolds normal stress components. The
Reynolds normal stress components decrease with increasing negative µ .

Fig. 6.17 The Reynolds shear stresses in the Res = 1733 cases. Each row presents the
Reynolds shear stress in the (a) µ = −0.71, (b) µ = −1, and (c) µ = −2 cases. Each
column presents the (i) WU , (ii) VW , and (iii) UW Reynolds shear stress components. The
Reynolds shear stress components decrease with increasing negative µ .

Table 6.2 summarises the growth rates of the leading eigenvalues calculated from the
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MV- and EARSM-based analyses for the m = 0, 1, and 2 perturbations in all the Res = 1733
cases. The calculations are performed at least up to m = 3 perturbations in all the cases to
ensure that the leading eigenmodes are captured. The cases µ = 0, 0.2, 0.4, −1.0, and −2
have similarities in the frequency of the leading eigenmodes from the MV- and EARSM-
based analyses, while the cases µ = −0.2, −0.4, and −0.71 do not have any similarities
in the stability results from the two analyses. The results for the µ = −2 case cannot be
compared with the other cases. This is because the mean velocity in µ = −2 case has no
Taylor vortices. Consequently, the stability results for the µ = −2 case are for the primary
instability, which is the formation of Taylor vortices, while the stability results in the other
cases are for secondary instabilities.

Figure 6.18 shows the growth rates of the leading modes in all the Res = 1733 cases
obtained from the (a) MV- and (b) EARSM-based analyses. It also shows the azimuthal
wavenumbers of the leading eigenmodes. The MV-based analysis predicts that the growth
rate increases with the increasing absolute value of µ for all the cases except for the µ =−1
case. Based on these few cases, it predicts that the Res = 1733 flow cases should become
more intermittent with the increase in the outer cylinder rotation, except for the very strong
counter-rotation case. The EARSM-based analysis predicts that the growth rate first de-
creases for a small change in µ , which is from 0 to −0.2 or 0.2, then it increases when
the magnitude of µ is further increased. Therefore, it predicts that the Res = 1733 flow
cases with small counter- or co-rotation should be less intermittent than the µ = 0 case, and
that these flow cases should become more intermittent for the higher values of counter- or
co-rotation.
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Table 6.2 The growth rates of the leading eigenmodes in the Res = 1733 flow cases.

Case Azimuthal wavenumber

µ m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

38+0i 36+0i 76−616i 55−611i 99−1259i 51−1253i
0.4 31+430i −10+0i 39−414i −16−422i 54−1095i −40−1088i

30+284i −20+198i 20−238i −38−866i 37−1433i −78−1489i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

12+0i −21+0i −5+658i −70−344i 3+306i −91−221i
0.2 −14+0i −52+0i −5−347i −80+149i −29+797i −95−1075i

−27+1508i −87+486i −26+174i −97−791i −33−195i −127−676i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

−14+0i −14+0i −25+316i −25+316i −36−1956i −36−1956i
0 −33+1025i −33+1025i −32+814i −32+814i −36+616i −36+616i

−39+495i −39+495i −35−1729i −35−1729i −47+119i −47+119i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

−8+345i −22+0i −4−245i −126−99i −14−133i −125−224i
-0.2 −10+0i −189+385i −17−19i −174+219i −30−150i −183+111i

−40+570i −191+0i −31−419i −204−293i −32−487i −298−389i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

−12+74i −20+0i 5+14i −124−152i −9−59i −115−169i
-0.4 −23+241i −89+139i −15+186i −130+114i −17+122i −158+201i

−36+0i −190+284i −24−269i −178+206i −31−311i −247+59i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

10+69i −19+0i 22+19i −79−140i 3−39i −93−128i
-0.71 −13+0i −86+102i −7−86i −90+128i −26−196i −124+255i

−27+126i −106+0i −13−167i −149+40i −30−76i −214−52i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

−7+112i −13+0i −16+81i −65−171i −42−194i −91−100i
-1.0 −11+0i −78+0i −23−140i −82+160i −44+8i −103−207i

−48+0i −82+125i −44+169i −125−79i −62−114i −104+324i

m = 0 m = 1 m = 2
MV EARSM MV EARSM MV EARSM

40+0i −10+0i 39−63i −34+192i 31−122i −44−163i
-2.0 38+0i −44+0.3i 35−57i −47−49i 27−111i −49+406i

18+0i −66+0i 15−64ii −60−357i 5−127i −53−115i
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Fig. 6.18 The growth rates of the leading modes predicted by the (a) MV- and (b) EARSM-
based analyses. The MV-based analysis predicts co-rotation to be destabilising, which
means flows with positive µ should be more intermittent than the µ = 0 flow case. The
EARSM-based analysis predicts that small co-rotation (µ = 0.2) is stabilising while the
higher co-rotation (µ = 0.4) is destabilising. This means that the flow with small co-rotation
should be less intermittent than the µ = 0 case, and the flow with higher co-rotation should
be more intermittent than the µ = 0 case. The MV-based analysis predicts counter-rotation
to be destabilising except for the µ = −1 case, which means that the flows with higher
counter-rotation should be more intermittent except for the µ =−1 flow case. The EARMS
based analysis predicts that small counter-rotation is stabilising (up to the µ =−0.2), while
higher counter-rotation (up to the µ =−1) is destabilising. Therefore the µ =−0.2 should
be less intermittent than the µ = 0 case, and the flows with the µ ≥ −0.4 should be more
intermittent than the lower negative µ flows. The growth rate for the µ =−2 flow cases are
for the primary instability, which means for the formation of Taylor vortices.

Figure 6.19 shows the standard deviation in the torque at the inner (blue squares) and
outer (orange rhombuses) cylinders as functions of µ for the Res = 1733 flow cases. The
standard deviation is an indicator of the fluctuations in the torque with respect to the mean
torque. The trends of standard deviation in the torque match qualitatively with the trend of
growth rates predicted from the MV-based analysis in figure 6.18 (a). Therefore, based on
a preliminary comparison with the observations from the DNS data, it again suggests that
stability predictions from the MV-based analysis are in a better agreement than those from
the EARSM-based analysis.
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Fig. 6.19 Standard deviation in the torque at the inner (blue squares) and outer (orange
rhombuses) cylinders as functions of µ . The standard deviation is an indicator of the fluc-
tuations in the torque with respect to the mean torque. The trends of standard deviation in
the torque match qualitatively with the trend of growth rates predicted from the MV-based
analysis in figure 6.18 (a). This figure is provided by Mr. Hannes Brauckmann, which is
based on the DNS results presented in Ref. [12].

Figures 6.20, 6.21, and 6.22 show the shapes of the leading eigenmodes for the µ = 0.2
and 0.4 cases calculated from the two analyses. The figures show the similarity of eigen-
modes from the two analyses. Figures 6.23 and 6.24 show the shapes of the eigenmodes for
the µ =−0.2, −0.4, and −0.71 cases calculated from the MV- and EARSM-based analyses,
respectively. The stability results from the two analyses do not have similarities with each
other for these cases. Figures 6.25 and 6.26 show the shape of eigenmodes for the µ =−1
and −2 cases, respectively. The stability results from the two analyses again have many
similarities. Figure 6.26 shows that stability results for the µ = −2 flow case are for the
primary instability, i.e. for the formation of Taylor vortices. Therefore, the results for this
flow case cannot be compared with those for the other cases.
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Fig. 6.20 The first two m = 0 eigenmodes in the µ = 0.2 flow case calculated from the (a,
b) MV- and (c, d) EARSM-based analyses.

Fig. 6.21 The first eigenmodes in the µ = 0.4 case of the azimuthal wavenumbers (a, b)
m = 0 and (c, d) m = 1 calculated from the (a, c) MV- and (b, d) EARSM-based analyses.
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Fig. 6.22 The first eigenmodes in the µ = 0.4 case of the azimuthal wavenumbers (a, b)
m = 2 and (c, d) m = 3 calculated from the (a, c) MV- and (b, d) EARSM-based analyses.

Fig. 6.23 The first m = 1 eigenmodes in the (a) µ =−0.2, (b) µ =−0.4, and (c) µ =−0.71
flow cases calculated from the MV based analysis.



146 Global stability analysis of turbulent Taylor-Couette flow

Fig. 6.24 The first m = 0 eigenmodes in the (a) µ =−0.2, (b) µ =−0.4, and (c) µ =−0.71
flow cases calculated from the EARSM-based analysis.

Fig. 6.25 Eigenvectors in the µ =−1 case: (a, b) the first two m = 0 eigenmodes calculated
from the MV-based analysis, and (c, d, e) the first three m = 0 eigenmodes calculated from
the EARSM-based analysis.
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Fig. 6.26 The first few m = 0 eigenmodes for the µ = −2 flow case calculated from the
MV- and EARSM-based analyses. The stability results for this case are for the primary
instability, i.e for the formation of Taylor vortices.
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6.6 Summary and further work

In this chapter, two stability analyses are applied to predict large intermittent turbulent struc-
tures over Taylor vortices in flows between two concentric cylinders rotating independently
about their axis. The purpose is to discover whether the results from stability analyses, such
as growth rate and eigenmodes, are in agreement with the intermittent structures observed
from the DNS data, and whether these intermittent structures can be directly linked with the
observed fluctuating torque in the flow. The first stability analysis is based on the Navier–
Stokes equation linearised over the mean velocity profile. The second stability analysis is
based on the RANS equations linearised over the mean velocity and Reynolds stresses pro-
files, where an EARSM, proposed by Wallin and Johansson (2000) [108], is used to derive
the RANS equations.

These stability analyses are applied to the two families of flow cases. The first is with
a stationary outer cylinder (µ = 0), and an inner cylinder at various speeds (changing Rei).
On the one hand, the MV-based analysis predicts the flows with higher Rei should have a
higher occurrence of intermittent turbulent structures. On the other hand, the EARSM-based
analysis predicts the flows with higher Rei should have a lower occurrence of intermittent
turbulent structures. The second family of flows is the one where the shear Reynolds number
(Res) is maintained constant for the eight cases of inner and outer cylinder rotation ratios
(changing µ). Some conclusions are drawn for the Res = 1733 flow based on these eight
cases. For the co-rotating cases, on the one hand, the MV-based analysis predicts that there
should be an increase in intermittency with increasing µ . On the other hand, the EARSM-
based analysis predicts that flow should become stabilised for small co-rotation, when µ is
changed from 0 to 0.2, then destabilised for the higher co-rotation, when µ is changed from
0.2 to 0.4. For the counter-rotating cases, on the one hand, the MV-based analysis predicts
the flow should be more intermittent for higher counter-rotating flows except for the µ =

−1 case. On the other hand, the EARSM-based analysis predicts the flow should become
stabilised for small counter-rotation, when µ is changed from 0 to −0.2, then destabilised
for the higher counter-rotation.

A preliminary comparison of results from the stability analyses with observation from
the DNS data shows that the MV-based analysis is better at predicting the trend of strength
of turbulent structures with varying parameters. More thorough comparison of the shapes
of the leading eigenmodes from the stability analyses with coherent structures from the
DNS, and their precise relation with the torque measurements need to be done. If such
comparisons show a conclusive relation between stability analyses results and observed



6.6 Summary and further work 149

torque, then an obvious advantage of these stability analyses approaches is that they can be
easily extended to the higher Reynolds number flows, where DNS or detailed experimental
measurements are not possible. Moreover, these approaches can also give an insight into
the physical processes involved in enhancing or reducing the torque.





Chapter 7

Conclusions

Coherent structures in turbulent flows are extracted from analyses that require only the mean
velocity and Reynolds stress profiles as input. These are stability analyses over either the
linearised Navier–Stokes equations or the linearised RANS equations. In Chapters 2 and 3,
the equations are derived, the analyses are explained, and implemented on fully developed
turbulent channel flows. In Chapters 4, 5, and 6, these analyses are implemented to extract
coherent structures and understand their formation in more complex flows.

7.1 Summary of the work completed

In Chapter 2, linear amplification analysis is performed by linearising the Navier–Stokes
equations over the mean velocity profile to extract coherent structures in turbulent channel
flow. The use of the linearised equations is justified based on the rapid distortion theory
in Refs. [81, 82, 92]. The effect of the neglected nonlinear terms is modelled as the input
streamwise wavelengths of the perturbations, where the input values are based on exper-
imental and DNS observations. The most amplified perturbations and the corresponding
initial optimal modes from the analysis are interpreted as approximations of coherent struc-
tures in fully nonlinear turbulent channel flows. It is acknowledged that modelling the effect
of the neglected nonlinear terms as the input streamwise wavelengths is very rudimentary.
Nevertheless various kinematic features of the optimal modes and the maxima in energy
amplification from the analysis match with those of the observed coherent structures in
wall-bounded turbulence DNS and experiments.

The analysis finds three main types of structures in turbulent channel flows. The first
type of structures are at the small streamwise wavelengths (λ+

x = 200− 800) in Section
2.3. These initial and final optimal structures correspond to quasi-streamwise vortices and
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near-wall streaks, respectively, and the preferred spanwise wavelength for these structures
is found to be equal to one hundred wall-units (λ+

z |peak ≈ 100 - shown in figure 2.3). This
matches well with the observed spanwise spacing of near-wall streaks in experiments [21,
27]. The second type of structures are at the intermediate streamwise wavelengths (from
λ+

x > 800 to λx < 3) in Section 2.4.1. These initial and final optimal modes correspond to
hairpin vortical and large-scale streaky like structures, respectively, as shown in figures 2.8
and 2.9. The peak in energy amplification in this wavelength range found from the analysis
matches well with that from the DNS in Ref. [4]. Various kinematic properties, such as the
inclination angle of streaks with the wall and shapes of the streaks, also match with those of
large-scale-motions (LSMs) observed in experiments. The third type of structures are at the
large streamwise wavelength (λx ≥ 6) in Section 2.4.3. The preferred spanwise wavelength
of these structures (λz|peak ≈ 2), their scaling in outer units, and the fact that they extend
to the wall match with the observed features of very-large-scale-motions (VLSMs). All
these results show that the most optimal modes obtained from the linearised Navier–Stokes
equations, without any turbulence model or eddy viscosity, share many important features
(such as their lengths in the homogeneous directions, energy spectra, and shapes) with those
of coherent structures in turbulent channel flows.

In Chapter 3, the linearised RANS equations based on a second-order turbulence model,
which is explicit algebraic Reynolds stress model (EARSM), are derived. In order to verify
the derivation and the associated codes, these equations are applied to an energy amplifica-
tion analysis in turbulent channel flows in order to find coherent structures. The results from
this analysis are compared with those from the eddy viscosity model (EVM)-based analysis
derived in this chapter, and also with those of Pujals et al. (2009) [2]. The EARSM-based
analysis finds that there are two peaks in the transient growth, Gmax, in the system. A
primary peak at the λz ≈ 4.25, which scales in outer units, and a secondary peak at the
λ+

z ≈ 170, which scales in inner units. These results and the shapes of the optimal modes
from the EARSM-based analysis match qualitatively with those from the EVM-based anal-
yses. The agreement of the results verifies the derivation and the associated code for the
EARSM-based analysis. This analysis is then used in Chapters 5 and 6.

It is also concluded in Chapter 3, that an analysis based on the linearised RANS equa-
tions, such as the EVM- and EARSM-based analyses, is better suited for extracting coherent
structures that occur at an almost constant frequency, such as vortex shedding behind a cylin-
der, and not so suitable for extracting coherent structures that occur intermittently, such as
streaks and vortices in a turbulent channel flow. The reason for this is based on the deriva-
tion for the linearised RANS equations shown in Ref. [76] and Chapter 3, and discussed in
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Refs. [4, 98]. The linearised RANS equations are derived for organised wave-perturbations,
while intermittent coherent structures are part of the fluctuating perturbations. The inter-
mittent coherent structures, therefore, are not expected to be the solution of the linearised
RANS equations.

In Chapter 4, stability analyses based on the linearised Navier–Stokes equations are per-
formed to study the formation of near-wall structures in turbulent pipe flow, and to examine
the effect of constant axial rotation of the pipe on their formation. In the first part, the for-
mation of streaks from quasi-streamwise vortices and the effect of constant axial rotation
on the formation process are studied. This is done by performing energy amplification anal-
ysis based on the Navier–Stokes equations linearised over the mean velocity profile. The
effect of the neglected nonlinear terms in this analysis is modelled as the input streamwise
wavelengths of the perturbations, as in the analysis in Chapter 2. In the second part, the
breakdown instability of streaks, for the formation of quasi-streamwise vortices, and the
effect of constant axial rotation on this instability are studied. This is done by performing
secondary stability analysis based on the Navier–Stokes equations linearised over the mean
velocity profile superimposed with an ideal realisation of the low-speed streaks, such as in
Schoppa & Hussain (2002) [11].

It is found from the first part that constant axial rotation causes the widening of streaks,
which agree with the observations in Ref. [113], and increases the transient growth, Gmax,
in the system. In laminar flows, rotation is found to be destabilising, which is in accord with
this increase in Gmax. In turbulent flows, however, rotation is found to be stabilising, which
is not in accord with this increase in Gmax. It is found from the second part that constant
axial rotation of the pipe has a stabilising role on the breakdown instabilities of streaks, and
therefore it prevents the formation of quasi-streamwise vortices. This explains how constant
axial rotation causes a reduction in the near-wall structures. In this Chapter, it is shown that
simple linear stability analyses, without requiring any turbulence closure model, reproduce
many important features of the regeneration cycle of near-wall structures in turbulent pipe
flow.

In Chapter 5, approaches based on linearised equations are used to find large hydrody-
namic structures in turbulent flows inside gas-turbine injector-combustor systems. These
approaches include molecular viscosity based stability analysis, eddy viscosity based sta-
bility analysis, and anisotropic eddy viscosity based stability analysis that are derived in
Chapter 3. A major assumption in this chapter is that local stability analysis can be applied
to the complex flows inside gas-turbine injector-combustor systems. This assumption is
based on the success of previous studies on similar flows [123–126].
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The motivation behind studying hydrodynamic instabilities and the resultant large-scale
coherent structures in gas-turbine flows is for their role in entrainment of fuel into air, which
is important for air-fuel mixing at the molecular level for combustion [83–85]. Apart from
this desired effect on the air-fuel mixing, hydrodynamic instabilities may also resonate with
thermoacoustic oscillations, which can result in dangerously high pressure oscillations in
the system. Flows inside gas-turbines are in the turbulent regime and the geometry of gas-
turbine systems is usually complicated. This make studying them computationally expen-
sive, such that DNS is practically impossible and LES is possible only at a few steps in the
design process. RANS and URANS solvers are popular methods because they calculate the
mean velocity and Reynolds stresses in a turbulent flow in a feasible time as required in the
design process. The RANS solvers, however, are usually very dissipative and therefore do
not capture hydrodynamic instabilities. The URANS solvers are less dissipative than the
RANS solvers, but they can capture only low frequency oscillations. The stability analyses
used in the present study require only the mean velocity and Reynolds stress profiles as
input and give a quick information on hydrodynamic instabilities in the system.

Based on the results from the stability analyses used in this chapter, it is found that for
the flows in gas-turbine systems the inclusion of turbulence models in stability analysis, in
order to account for wave-induced fluctuations in the Reynolds stresses, has no significant
qualitative effect on the results. This is because these instabilities are driven by regions
of high mean shear for which analysis based on the linearised Navier–Stokes equations is
sufficient [81, 82]. It is also found that an expansion at the nozzle exit and swirl in the flow
are destabilising, and therefore increase hydrodynamic instability.

In Chapter 6, two stability analyses are applied to predict large intermittent turbulent
structures over Taylor vortices in flows between two concentric cylinders rotating indepen-
dently about their axis. The purpose is to find whether the results from stability analyses,
such as growth rate and eigenmodes, are in agreement with the intermittent structures ob-
served in DNS, and whether these intermittent structures can be directly linked with the
observed fluctuating torque in the flow. The first stability analysis is based on the Navier–
Stokes equation linearised over the mean velocity profile, such as in Chapter 2, and is la-
belled MV-based analsyis. The second stability analysis is the EARSM-based analysis de-
rived in Chapter 3, in this chapter an EARSM proposed by Wallin and Johansson (2000)
[108] is used. This chapter extends the application of these stability analyses to turbulent
flows with the two-dimensional mean velocity profile. The results show that growth rate
trend from the MV-based analysis is in good agreement with the trend of torque intermit-
tency in the DNS results.
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7.2 Main conclusions

In this thesis various linear amplification analyses are performed on different turbulent flows
to find coherent structures. The linear amplification analyses used can be divided into two
types. The first is based on the Navier–Stokes equations linearised over the mean velocity
profile. The second is based on the RANS equations linearised over the mean velocity and
Reynolds stress profiles. This type of analysis requires a turbulence closure model to find the
effect of wave-induced perturbations in Reynolds stresses on the stability analysis results. It
is concluded that the linearised RANS equations based analyses are not suitable for finding
coherent structures that occur intermittently, such as streaks and vortices in wall-bounded
turbulence. It is also concluded that the linearised Navier–Stokes equations based analysis
finds structures in the region of strong mean shear in the flow that are in good match with
the observed coherent structures in fully nonlinear turbulent flows.

7.3 Further work

A major consequence of the results is that the simpler analysis, based on the linearised
Navier–Stokes equations, can be used in control applications in place of the EVM-based
analysis, such as in Moarref & Jovanovic (2012) [87]. Another consequence is that the
linearised Navier–Stokes equations-based analysis can be used for obtaining energy spectra
in high Reynolds number turbulent channel and pipe flows, provided that the mean velocity
is known for those flows. Work in these directions will justify the work completed in this
thesis.

It is also seen that linear stability analysis predicts many useful hydrodynamic instability
trends for small changes in operating conditions and system designs in gas-turbine injector-
combustor systems, such as expansion at the nozzle exit and swirl in the flow are found to
be destabilising. In order to use such tools reliably, it is important to validate the results
from the analysis in this study with those from global analysis and experiments or LES or
DNS for a number of cases.

Most flows studied in this thesis have only intermittent coherent structures, with the ex-
ception of the flows in Chapter 5. In order to see the usefulness of the linearised RANS
equations based analysis, it is important to study flows that have coherent structures that
occur at almost a constant frequency. Contribution of the constant frequency coherent struc-
ture will be in the phase-averaged component of the velocity and pressure fields, as shown
in Chapter 3, for which the linearised RANS equations are derived.
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Appendix A

Linear perturbation equations for
secondary instability

This appendix presents the linearised continuity and momentum equations for the secondary
instability analysis for flow in a pipe rotating around its own axis.

The mean flow profile, which represents an idealised realisation of low-speed streaks,
is:

U(r,θ) =U0(r)+
∆uo

2
cos(Mθ)g(r)

V = 0, W (r) =W0(r)

g(r) = (1− r)exp
(
−η (1− r)2

)
= yexp(−ηy2), where y = 1− r.

where η is such that the function g(r) has a plateau at y+ ≈ 20, and M represents the
azimuthal spacing of the streaks as: λ+

z = 2π

M Reτ , and Ωy|max = 0.5M∆uo represents the
strength of a streak.



168 Linear perturbation equations for secondary instability

The linear perturbations in the velocity and pressure are decomposed as:

u =
N

∑
n=0

[unv(r)cos(nMθ)+uns(r)sin(nMθ)]

v =
N

∑
n=0

[vnv(r)cos(nMθ)+ vns(r)sin(nMθ)]

w =
N

∑
n=0

[wnv(r)sin(nMθ)+wns(r)cos(nMθ)]

p =
N

∑
n=0

[pnv(r)cos(nMθ)+ pns(r)sin(nMθ)]

(u′,v′,w′, p′) = (u,v,w, p)exp(−iωt + ikx)

The linearised continuity and momentum equations for the secondary stability analysis
are given below.
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where Tn = 2 for n = 1 otherwise Tn = 1.
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