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Abstract

Thermoacoustic instabilities have hindered the development of high energy density combus-
tors, such as those in jet engines, gas turbines or rockets, for decades. They are notoriously
difficult to model and despite efforts to eliminate them, can show up unexpectedly. The
current study demonstrates how Bayesian machine learning techniques may be leveraged to
exploit noise radiation, and combustor sensor data in general, for forecasting such instabilities.
We use Bayesian neural networks to learn a functional relationship between sensor data and
measures of thermoacoustic stability or operating parameters. First, we demonstrate on a
laboratory-scale Rijke tube driven by a turbulent flame that it is possible to predict decay
rates of acoustic pulses from the spectrum of 100 millisecond combustion noise samples,
thus enabling us to monitor the combustor’s thermoacoustic stability in real time. We then
apply these ideas to predict instabilities in an experimental rocket chamber, where we use the
history of sensor data, including measurements of noise (dynamic pressure), temperature,
static pressure, etc. to predict instabilities upto 250 milliseconds before they occur. The
Bayesian nature of our algorithms allows principled estimates of uncertainty to accompany
each prediction while the technique of Integrated Gradients lets us interpret our models.

It is hoped that this study will serve as a first step towards establishing Bayesian machine
learning techniques as a tool to help us discover interesting relationships in combustor data
and build trustworthy, robust and reliable combustion prognostics or sensor validation.
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Chapter 1

Introduction

1.1 The problem of thermoacoustic instabilities

Thermoacoustic instabilities are a potentially catastrophic phenomenon arising in combustion
chambers from the coupling between unsteady heat release rate and acoustic waves. There is
no alternative to combustion when it comes to long distance flight or space travel, because of
the unmatched power to weight ratios that jet and rocket engines possess. But it is due to this
very high energy density that designers of rocket thrust chambers, jet engines or gas turbines
remain worried about thermoacoustic instabilities. Even if 0.1% of the energy within the
chamber is dissipated via the thermoacoustic mechanism, it would result in unacceptably
large pressure oscillations. These can cause flame blow-off, extensive structural damage,
high rates of heat transfer and component failure.

The earliest reported observation of this phenomenon by Higgins dates back to 1777,
while the first qualitative explanation was proposed decades later by Rayleigh [1878], who
realized that the driving mechanism of these oscillations is similar to that of a piston engine.
In thermoacoustics, a continuous flame behaves like the periodically ignited gas while an
acoustic wave is the piston-analogue which periodically perturbs the flame. Acoustic velocity
fluctuations perturb the base of the flame creating ripples that convect downstream and cause
heat release rate fluctuations after a certain delay, which in turn gives rise to more acoustic
waves (either directly or indirectly via the acceleration of entropy fluctuations). If the two-
way interaction is such that more heat is released during moments of high pressure, as occurs
in a piston engine, then heat is converted to work per cycle. If this excess work cannot be
dissipated via viscous damping or acoustic radiation, it increases the pressure oscillation
amplitude, leading to instability. This understanding was mathematically quantified by Chu
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[1965], who formulated the Rayleigh criterion for instability as follows:

∫ T

0

∫
V

γ −1
γ p̄

p′q′dvdt >
∫ T

0

∫
S

p′u′ ·n |dS| dt (1.1)

where p′ and q′, are the perturbations in pressure and the heat release rate, respectively, and
T , V and n are the period of oscillation, the combustor volume and the normal vector to the
surfaces represented by S, respectively.

Thermoacoustics made the transition from scientific curiosity to industrial headache
during the development of liquid-propellant rocket engines in the 1930s and subsequently in
the 1960s. For example, Oefelein and Yang [1993] report that achieving a stable design of
the Saturn V Rocket F-1 engine required approximately 2000 full-scale tests to eliminate
instabilities, which caused pressure oscillations as large as the mean pressure of the com-
bustion chamber. Then, in the 1950s, they were observed in the afterburners and ramjets
used in turbojet engines [Zinn et al., 1997]. More recently, stricter emission regulations have
motivated the development of aero-engine and gas turbine combustors that operate in lean,
low temperature regimes to prevent the dissociation of nitrogen molecules and reduce the
formation of NOx gases. However, lean operating conditions are also more prone to ther-
moacoustic instabilities [Keller, 1995] and this has made the elimination of thermoacoustic
oscillations even more of a priority for manufacturers.

Despite decades of research on this topic, quantitatively accurate models of this phe-
nomenon eludes researchers even today. The phase lag between pressure and heat release
rate fluctuations, which governs the thermoacoustic stability of a system, is exquisitely
sensitive to system parameters and dependent on multiple mechanisms with different scaling
behaviours– hydrodynamic, acoustic and combustion. This makes accurate computational
modeling very challenging. The complex, sensitive dependence of thermoacoustic stability
on various system parameters also means that instabilities can recur in the later developmental
stages of an engine. It is not uncommon for component tests or even full combustor tests
to proceed without a problem but then have instabilities crop up in full engine tests. This
makes it difficult for us to predict at the design stage whether an engine will suffer from
thermoacoustic instabilities and leads to expensive redesigns. This thesis explores some
of the ways in which data-driven tools from probabilistic machine learning can help us go
beyond traditional physics-based modeling and allow us to predict and avoid thermoacoustic
instabilities better.
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1.2 Mitigation strategies for thermoacoustic instabilities

Designers can suppress thermoacoustic oscillations in four ways. The first, and most preferred
way is to find design modifications that will stabilise the combustor. Owing to the high
sensitivity of thermoacoustic growth rates to system parameters, it is often possible to stabilise
unstable modes by making minor modifications to the geometry [Aguilar and Juniper, 2020]
or flame behaviour

The second mitigation strategy is tuned passive control, where thermoacoustic oscillations
are mitigated by adjusting a passive damping device in response to changing operating
conditions Kobayashi et al. [2019a]. For example, the resonant frequencies of Helmholtz
resonators can be tuned by changing the cavity volume, neck area or neck length. These
devices, however, can be bulky and affect the performance of the aircraft or rocket engine.
The range over which their bandwidth can be tuned is also limited.

The third mitigation strategy is avoiding unstable regions in the operating parameter
space. This can be achieved through extensive experimentation and setting a margin of
safety around dangerous islands of instability. This is not only expensive, but differences in
behaviour between experimental rigs and real operating conditions can also force designers to
be too conservative. The construction of instability precursors from pressure measurements
and optical measurements has therefore attracted considerable attention from the combustion
research community [Juniper and Sujith, 2018]. Lieuwen [2005] used the autocorrelation
decay of combustion noise, filtered around an acoustic eigenfrequency, to obtain an effective
damping coefficient for the corresponding instability mode. Other researchers have used
tools from nonlinear time series analysis, which capture the transition from the chaotic
behaviour displayed by stable turbulent combustors to the deterministic acoustics during
instability, such as Gottwald’s 0-1 test [Nair et al., 2013] and the Wayland test for nonlinear
determinism [Gotoda et al., 2011] to assess the stability margin of a combustor. Nair et al.
[2014] reported that instability is often presaged by intermittent bursts of high-amplitude
oscillations and used recurrence quantification analysis (RQA) to detect these. In a later
paper, Nair and Sujith [2014] noted that combustion noise tends to lose its multifractality
as the system transitions to instability. They proposed the Hurst exponent as an indicator
of impending instability. Measures derived from symbolic time series analysis (STSA)
[Sarkar et al., 2016] and complex networks [Murugesan and Sujith, 2016] are also able to
capture the onset of instability. Recent studies have explored machine learning techniques to
learn precursors of instability from data. These promise greater accuracy than physics-based
precursors of instability, though at the cost of robustness and generalizability. Hidden Markov
models constructed from the output of STSA [Jha et al., 2018] or directly from pressure
measurements [Mondal et al., 2018] have been used to classify the state of combustors.
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Hachijo et al. [2019] have projected pressure time series onto the entropy-complexity plane
and used support vector machines (SVMs) to predict thermoacoustic instability. SVMs
were also employed by Kobayashi et al. [2019b], who used them in combination with
principal component analysis and ordinal pattern transition networks to build precursors from
simultaneous pressure and chemiluminiscence measurements. Related work by McCartney
et al. [2020] used the detrended fluctuation analysis (DFA) spectrum of the pressure signal as
input to a random forest and found that this approach compared favorably to precursors from
the literature. A recent study by Gangopadhyay et al. [2021] trained a 3D Convolutional
Selective Autoencoder on flame videos to detect instabilities. Transfer learning is also being
explored [Mondal et al., 2021] as a means of efficiently transferring knowledge of precursors
across machines.

Finally, there is active feedback control [Dowling and Morgans, 2005] where an actuator
such as loudspeaker or a fuel control valve is operated so that the perturbations generated
destructively interfere with the developing instability. These systems may be operated
in an open-loop configuration, e.g. a simple phase shifted strategy, or in a closed loop
configuration. Unlike the passive approach, the actuator in such a system must act on a very
short, millisecond timescale. Despite their laboratory successes, challenging demands of
high power output, reliability and robustness placed on an active feedback control system
means that feedback control is not used in rocket engines and aircraft engines.

1.3 Opportunities for Probabilistic Machine Learning

Machine learning techniques seek to capture functional relationships between quantities of
interest. Unlike traditional physics-based approaches, they can have a sizable number of
parameters and this flexibility allows them to represent the data more faithfully. However,
the flexibility also has downsides: a particular dataset can be evidence for an infinite number
of different functional relationships and we do not know which one is correct. Bayesian
machine learning provides a solution to this problem by defining a probability distributions
over these possible functions and estimating the resulting uncertainty in its predictions. A
Bayesian model starts with an appropriately vague prior belief about what the output of our
model should be and, as we observe more data, we update this belief to obtain progressively
tighter posterior distributions in accordance with Bayes’ rule. This ensures that the model
does not make overconfident predictions from out-of-distribution inputs, which are entirely
different from those which it was trained on. These uncertainty estimates are particularly
important when using a machine learning model in a critical device such as an aircraft
engine. Bayesian machine learning techniques with correctly specified priors can also learn
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successfully from smaller amounts of data and are resistant to overfitting [Ghahramani,
2005]. They can also be used in continual learning without catastrophic forgetting [Li et al.,
2019], which is particularly important if we want to keep learning from data throughout the
operating lifetime of a device. Chapter 2 discusses the Bayesian machine learning tools used
in this thesis in greater detail.

The following chapters describe how these tools can augment instability mitigation
strategies. We know that for thermoacoustic models to be quantitatively accurate, their
parameters and other inputs need to be highly accurate, because of thermoacoustic systems’
high sensitivity to changes. Chapter 3 describes how we can use a Bayesian neural network
to assimilate flame imaging data from experiments or DNS into a simplified combustion
model known as the G-equation [Williams, 1985]. We find that our approach is as effective
as previous Kalman filter based approaches [Yu et al., 2019a], but roughly 106 times faster.

Once we have a model, we need to find an optimally stable configuration. Gradient-
descent based approaches coupled with an adjoint model work well but they can become
stuck in local optima. The stability landscape of a combustor design is typically multimodal.
Global optimization heuristics such as genetic algorithms [Jones et al., 1998], on the other
hand, are inefficient and require too many simulations to be run, which may be unfeasible
if the underlying model is expensive. High-dimensional, gradient-augmented Bayesian
optimization [Eriksson et al., 2018] offers an effective compromise. In Chapter 4, we show
how we can construct a Gaussian process surrogate of the combustor’s stability in the design
space, use the uncertainty in the surrogate to evaluate the adjoint model strategically and find
a global optima within a constrained computational budget.

In Chapter 5, we investigate how Bayesian machine learning can use sensor data to help
with the prognosis and avoidance of instabilities. We perform experiments on a toy system,
a vertical tube with a swirling turbulent flame, and evaluate its thermoacoustic stability in
thousands of different operating conditions using pings from a loudspeaker. We then train a
Bayesian neural network to recognize how close the system is to instability from its noise
spectrum. We find that this network is able to generalize to unseen operating conditions,
provides uncertainty estimates in its predictions and even an explanation as to which features
in the spectrum influenced its prediction the most. We also find that it compares favorably
with previous physics-inspired approaches such as the Hurst exponent [Nair and Sujith,
2014], autocorrelation decay [Lieuwen, 2005] and permutation entropy [Gotoda et al., 2011].

Chapter 6 takes the techniques used in the previous chapter from the laboratory into
industrially relevant systems. First, we train a Bayesian neural network on multimodal data
from BKD, a rocket engine combustor which is operated by DLR and equipped with pressure,
temperature and optical sensors, to predict the amplitude of impending instabilities. The
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model is able to forecast instabilities on unseen experimental runs quite accurately and its
uncertainty estimates are well-calibrated. We also demonstrate the robustness of the Bayesian
model by simulating a sensor failure and observing how this affects predictions.

Chapter 7 applies the same tools to data from an industrial intermediate pressure combus-
tion test rig equipped with three pressure transducers. Experiments were performed on three
different fuel injectors, two of which are nominally identical but display somewhat different
thermoacoustic behaviour. A Bayesian neural network is trained on data from one of the
injectors to predict an operating point’s distance from the instability threshold and applied
to all three datasets. The performance of the network is also compared to physics-inspired
precursors.

Chapter 8 summarizes the contributions made in this present work and suggests some
directions for future research.



Chapter 2

Bayesian machine learning

2.1 Introduction

A central theme of science is learning how to predict a quantity of interest from known inputs.
Traditionally, this mapping from inputs to outputs is mediated by simple algebraic relations
or differential equations. However, we often encounter problems where the formulation of
an analytical model is non-obvious or where simulating the governing equations may be
computationally expensive. In such cases, we need to resort to learning from large sets of data
using iterative, physics-agnostic processing algorithms to extract patterns and features. In
computer science, this task of automatically learning a mapping between inputs x ∈ RD and
outputs y ∈Rm is known as supervised machine learning. The main difference between these
machine learning algorithms and physical models is in the number of parameters. While
a physical model may only need a handful of tunable parameters, the broad applicability
that we desire in a machine learning algorithm means that they need to be flexible enough to
represent a wide variety of functional relationships. The number of parameters can therefore
range from thousands (e.g. small neural networks, decision trees) to billions (e.g. large
transformer-based language models like GPT-3 [Dale, 2021]) or potentially even infinite (e.g.
non-parametric models like Gaussian processes). A caveat of this flexibility is well-illustrated
by the apocryphal von Neumann quote: "With four parameters I can fit an elephant, with
five I can make him wiggle his trunk." A highly flexible model can fit many functional
relationships that are consistent with the limited available data but most of these will fail to
generalize, i.e., provide reasonable predictions for inputs that were not seen in the dataset.
Therefore, we need to constrain the range of the possible functional relationships that are
consistent with the data and estimate the uncertainty in our predictions. Bayesian inference
provides a systematic way of doing this.
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2.2 Uncertainty Quantification in Machine Learning Mod-
els

In Bayesian machine learning, uncertainty over the model parameters or hidden variables is
quantified by placing a prior distribution over the hidden variables p(θ). This represents our
initial naive belief of what the model’s predictions should look like. Bayes’ theorem then lets
us update the prior distribution p(θ) using the observed data D = {xn,yn}N

n=1 and gives us
the posterior distribution of the hidden variables given the observed data: p(θ |D) in terms of
the likelihood distribution p(D|θ) and the prior.

p(θ |D) =
p(θ)p(D|θ)∫

θ
p(θ)p(D|θ)dθ

(2.1)

There are two main types of uncertainty one can model [Huang et al., 2006]. Aleatoric
uncertainty captures noise inherent in the observations, e.g., sensor noise and it is not
possible to reduce this even if more data were to be collected. Mathematically it appears in
the likelihood term p(D|θ). For example, in a regression problem, this could be the noise
standard deviation σ of a Gaussian likelihood distribution. Aleatoric uncertainty can further
be subdivided into homoscedastic uncertainty, uncertainty which is constant for different
inputs, and heteroscedastic uncertainty, where some inputs potentially have more noisy
outputs than others. Epistemic uncertainty accounts for uncertainty in the model parameters
θ – uncertainty which captures our ignorance about which model generated our collected
data. This uncertainty can be explained away given enough data, and is often referred to as
knowledge uncertainty.

With a few exceptions such as Gaussian processes for which an analytical solution is
possible, the computation of the intractable high dimensional integral

∫
θ

p(θ)p(D|θ)dθ ,
known as the marginal likelihood, poses computational challenges. The most widely used
family of numerical methods to integrate over the posterior, Markov Chain Monte Carlo, is too
computationally expensive to be practical as it requires us to sample from the entire parameter
space with a random walk. Variational inference is often used [Blundell et al., 2015], in which
the posterior is approximated using a convenient parametrization and the Kullback-Leibler
divergence between this variational distribution and the true posterior is minimized using
backpropagation. However, although computationally cheap, mean-field variational inference
has drawbacks such as not capturing correlations between parameters. Similarly, the Laplace
approximation [Ritter et al., 2018], which uses the Hessian of the probability distribution
around the Maximum A-Posteriori (MAP) estimate to deduce the posterior distribution,
also restricts the posterior distribution to be unimodal and Gaussian. Recently, a different
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approximate inference method, based on ensembling, has been proposed. This is called the
anchored ensembling algorithm. It is cheap, simple and scalable but manages to outperform
variational inference in several neural network uncertainty quantification benchmarks [Pearce
et al., 2018]. This is the technique we use in this thesis to perform inference in neural
networks and will be discussed in greater detail in the following section.

2.3 Bayesian neural networks

In this thesis, we will work with simple feedforward neural networks. These are a repeated
composition of the function f (Wx+ b), where f is a non-linear function known as the
activation function, W is the matrix of weights and b is the vector of biases. Each application
of the function is known as a "layer" and the size of W and b is referred to as the number of
nodes in that layer of the network. The weight and bias matrices are the tunable parameters
θ of the neural network that we need to infer.

Anchored ensembling [Pearce et al., 2018] is a cheap, simple, scalable approximate
Bayesian technique for neural networks. Consider a data set (xn,yn), where each data point
consists of features xn ∈ RD and output yn ∈ R. Define the likelihood for each data point
as p(yn | θ ,xn,σ

2
ε ) = N (yn | NN(xn;θ),σ2

ε ), where NN is a neural network whose weights
and biases form the latent variables θ and σ2

ε is the data noise. Define the prior on the
weights and biases θ to be the standard normal p(θ) = N (θ | µprior,Σprior). The anchored
ensembling algorithm then simply does the following:

1. The parameters θ0, j of each j-th ensemble member of our neural network ensemble
are initialized by drawing from the prior distribution N (µprior,Σprior).

2. Each ensemble member is trained ordinarily (e.g. using stochastic gradient descent
optimizer ADAM [Kingma and Ba, 2015]) but with a slightly modified loss function
that "anchors" the parameter values to their initial ones. The loss function for the j-th
ensemble member is given by Lossanchor, j =

1
N ||y− ŷ j||22+ ||Σ1/2θ −θ0, j||22, where the

i-th diagonal element of Σ is the ratio of data noise to the prior variance of the i-th
parameter.

Pearce et al Pearce et al. [2018] prove that this procedure approximates the true posterior
distribution for wide neural networks and that the trained neural networks in the ensemble
may be treated as samples from an approximate posterior distribution. The resulting ensemble
has predictions that converge when they are well-supported by the training data and diverge
when they are not. The variance of the ensemble predictions is an estimate of the Bayesian
model’s epistemic uncertainty. The total uncertainty of each prediction is obtained by adding
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Fig. 2.1 Approximate Bayesian inference using ensembles of neural networks.

the epistemic uncertainty and the irreducible aleatoric uncertainty σε which stems from
observation noise:

σ
2
total = σ

2
ε +

1
Ne

∑
j

ŷ2
j − (

1
Ne

∑
j

ŷ j)
2 (2.2)

The tunable hyperparameters such as the learning rate, the data noise, the number of
nodes in each layer are optimized by minimizing the log-likelihood of data in a validation
set.

2.4 Neural network interpretation

Neural networks have a reputation as black boxes, which disincentivizes their application
to problems in which practitioners must understand why the algorithm is or is not working.
We use the technique of integrated gradients (IG) [Sundararajan et al., 2017a] to attribute
the predictions of our network ensemble to the input features. This is a simple scalable
method that only requires access to the gradient operation. IG has several desirable properties
that other attribution methods lack, such as implementation invariance, sensitivity, linearity,
completeness and preservation of symmetry.

For deep neural networks, the gradients of the output with respect to the input are an
analog of the linear regression coefficients. In a linear model, the regression coefficients
characterize the relationship between input and output variables globally. In a nonlinear
neural network, however, the gradient of the output at a point merely characterizes the local
relationship between a predictor variable and the output. IG computes the path integral of
the gradient of the outputs with respect to the inputs around a baseline to the input under
consideration. For an image recognition algorithm, a completely black image could be a
reasonable choice of baseline, while for a regression problem like ours, where the input
variables were normalized to have zero mean and unit standard deviation, the average input
of all zeros is a sensible baseline. We consider the straight-line path (in the feature space
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RD) from the baseline x′ to the input x being considered. The IG attribution attr j for the j-th
feature is then defined as follows:

attr j(x) = (x j −x′j)
∫ 1

α=0

∂ f (x′+α(x−x′))
∂x j

dα (2.3)

This integral is computed numerically by sampling the gradient evenly along the path. For
our neural network ensemble, we average the integrated gradient attributions obtained from
individual ensemble members to obtain a mean attr j for each feature.

Understanding network predictions via Integrated Gradients involves looking at individual
examples and their attribution plots. To gain a global overview of the relative importance
of input features, we also use the permutation importance technique Breiman [2001]. To
compute permutation feature importances, we shuffle the values of a feature between samples
in the dataset and measure the impact of randomizing them on the accuracy of a trained
model. The average error of model predictions should increase significantly if important
features are randomized in this way and the decrease in accuracy can therefore be understood
as a measure of a feature’s criticality.

2.5 Gaussian Process Modelling

The underlying theory of Gaussian process (GP) regression is presented briefly below. A
more detailed exposition may be found in the book by Rasmussen and Williams Rasmussen
[2006].

Unlike neural networks which work with a fixed, finite set of parameters, GP models are
non-parametric stochastic processes which can grow in learning capacity with the size of the
training data. One can derive a Gaussian process model from a single layer neural network in
the limit of infinitely many parameters [Neal, 1996]. GPs are superior to neural networks in
their analytic tractability and interpretability, but the downside is their poor scaling behaviour
w.r.t. dataset size and input dimension.

A GP assumes a multivariate, jointly Gaussian probability distribution for any finite
collection of random variables. For example, if the function f (x) for an input x is con-
sidered a random variable, then, for a finite sub-collection x1,x2, ...,xT , the corresponding
function outputs f (x1), f (x2), ..., f (xT ) are assumed to have a multivariate jointly Gaussian
distribution.
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 f (x1)
...

f (xT )

∼ N (

m(x1)
...

m(xT )

 ,

k(x1,x1) · · · k(x1,xT )
...

...
k(xT ,x1) · · · k(xT ,xT )

) (2.4)

where the underlying Gaussian process is completely characterized by a mean function m(x),
E[ f (x)], and a covariance function: k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))].

Let Dtrn = (xtrn
i ,ytrn

i ), i = 1, · · · ,N, be the set of observed data points that we will use
to train the GP model (also referred to as the training set) and Dtst = (xtst ,ytst) the test set
in which xtst are the desired inputs for which we wish to estimate the unknown ytst . In the
regression model, it is assumed that

yi = f (xi)+ εi (2.5)

where εi are independent and identically distributed (i.i.d) additive noise variables ∼N (0,σ2).
εi takes into account the aleatoric uncertainty of the output. Then, a zero-mean Gaussian
process prior GP(0,K) is assumed for the function f (·). By incorporating the noise term, the
joint distribution of the observed values and the functional values at the test locations are:[

f (ytrn)

f (ytst)

]
∼ N (0,

[
k(xtrn,xtrn)+σ2I k(xtrn,xtst)

k(xtst ,xtrn) k(xtst ,xtst)+σ2I

]
) (2.6)

A crucial ingredient in a GP model is the choice of covariance kernel, which encodes
the correlation between points in the feature space. In this thesis, we will work with the
automatic relevance determination (ARD) Matern 5/2 covariance function k(x,x′;θ) =

σ2
f (1+

√
5r+ 5

3r2)e−
√

5r where r =

√
∑

D
m=1

(xk−x′k)
2

σ2
m

. The Matern 5/2 function generates

smooth, twice differentiable functions and the ARD formulation facilitates learning a length-
scale for each input dimension to deal with directional anisotropies in the data set. Learning
the noise σ and the kernel hyperparameters σ f ,(σm)

D
k=1 from the data involves maximizing

the marginal likelihood or equivalently, minimizing the negative log marginal likelihood
(NLML) using gradient descent methods like L-BFGS:

logp(ytrn|xtrn) =−1
2

log|K +σ
2I|− 1

2
ytrnT (K +σ

2I)−1ytrn − N
2

log(2π) (2.7)

Finally, we can obtain the posterior distribution of the outputs at the test inputs. By the
property of normal distribution, these are also Gaussians.
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ytst |ytrn,xtrn,xtst ∼ N (µ tst ,Σtst) (2.8)

where the posterior means for the test outputs are given by

µ
tst = K(xtst ,xtrn)[K(xtrn,xtrn)+σ

2I]−1ytrn (2.9)

and the posterior covariances are given by

Σ
tst = K(xtst ,xtst)−K(xtst ,xtrn)[K(xtrn,xtrn)+σ

2I]−1K(xtst ,xtrn)+σ
2I (2.10)

The matrix inversions in the formulae impose a cubic computational cost penalty w.r.t.
the size of the dataset N. However, there are ways to work around this, as we will see in the
next section.

2.6 Global optimization using Gaussian Processes

In this thesis, we propose using gradient-augmented Bayesian optimization (BO) to optimize
functions derived from adjoint models whose derivatives we have access to. BO is able to find
global optima in expensive, multi-modal functions with strikingly few function evaluations.
It does so by building a Gaussian Process (GP) metamodel of the objective function at every
iteration. To decide where to evaluate the objective function next, an acquisition function
such as expected improvement [Huang et al., 2006], upper confidence bound [Srinivas et al.,
2009] or knowledge gradient [Scott et al., 2011] is used. This balances exploration (i.e.,
moving to places where the GP has high predictive uncertainty) and exploitation (i.e., moving
to where the GP has a high predictive mean). Vanilla BO, however, does not utilize derivative
information. Nevertheless, since the derivative of a GP with a twice-differentiable kernel
is also a GP [Williams and Rasmussen, 1996], it is possible to model derivatives in a GP
metamodel. The incorporation of derivative observations in the GP model leads to lower
predictive variances (Figure 2.2 shows a simple example of a 1D GP with and without
derivatives) and makes our exploration of the search space much more efficient. The main
challenge is the impractical O(n3D3) computational cost of building a GP model with n
function evaluations and D derivatives. In this thesis, we use a scalable gradient-augmented
Bayesian optimization algorithm loosely based on Eriksson et al. [2018].

Bayesian optimization is a powerful tool but the inclusion of D extra pieces of gradient
information per point causes severe scaling issues, particularly when a large number of
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Fig. 2.2 A 1D Gaussian Process metamodel with and without derivatives. Including derivative
information results in a GP which has a higher confidence in its predictions. The gray area
represents 3 s.d. uncertainty bounds in the Gaussian process metamodel, the red crosses are
function evalulations, the red lines denote function and derivative evaluations and the dotted
blue lines are randomly sampled functions from the Gaussian process metamodel. Figure
adapted from Williams and Rasmussen [1996]

iterations are run. In this paper, we use the algorithm from Eriksson et al. [2018] for scaling
GPs with derivatives. The cubic scaling with the number of functional evaluations for kernel
learning in GPs stems from the fact that a linear system must be solved, which necessitates
a Cholesky factorization of the kernel matrix. To work around this, we approximate the
true kernel with a structured kernel interpolation for products (D-SKIP) approximation
from Gardner et al. [2018] which allows fast matrix-vector multiplication. The structured
kernel interpolation (SKI) approach uses local polynomial interpolation on an induced
grid with sparse weights to approximate the kernel matrix in each dimension. Instead of
computing kernel values between data points directly, SKI computes kernel values between
inducing points and interpolates these kernel values to approximate the true data kernel
values k(x,x′) ≈ ∑i wi(x)k(xi,x′). The final kernel matrix can be written as a Hadamard
product (⊙) of approximate one-dimensional matrices; for example, in two dimensions, the
kernel matrix with derivatives is approximated as follows:

K∇ ≈

 W1K1W T
1 W1K1∂W T

1 W1K1W T
1

∂W1K1W T
1 ∂W1K1∂W T

1 ∂W1K1W T
1

W1K1W T
1 W1K1∂W T

1 W1K1W T
1

⊙

 W2K2W T
2 W2K2W T

2 W2K2∂W T
2

W2K2W T
2 W2K2W T

2 W2K2∂W T
2

∂W2K2W T
2 ∂W2K2W T

2 ∂W2K2∂W T
2


(2.11)

where Wj and K j denote the structured kernel interpolation (SKI) and inducing point grid
matrices in the j-th coordinate direction. Additionally, we use the iterative conjugate gradient
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method with pre-conditioning for solving the linear system instead of Cholesky factorization.
These tricks enable O(nD) complexity kernel learning for the GP, where n is the number of
data points and O(1) prediction per test points.

Once we have the GP surrogate model of our function, we use its mean and uncertainty
to compute the expected improvement acquisition function (Jones et al. [1998]) which helps
us decide where best to sample the function and its derivative in each iteration. Expected
improvement is defined as EI(x) = E[max( f (x+)− f (x),0)] where f (x+) is the value of the
best sample so far and x+ is the location of that sample i.e. x+ = argmaxxi∈x1:t

f (xi). The
expected improvement can be evaluated analytically for a Gaussian process:

EI(x) =

( f (x+)− f (x)−ξ )Φ(Z)+σ(x)φ(Z) if σ(x)> 0

0 if σ(x) = 0
(2.12)

where

Z =


f (x+)−µ(x)−ξ

σ(x) if σ(x)> 0

0 if σ(x) = 0
(2.13)

µ(x) and σ(x) are the mean and the standard deviation of the GP posterior predictive at x,
respectively. Φ and φ are the CDF and PDF of the standard normal distribution, respectively.
The first summation term in Equation (3) is the exploitation term which encourages the
algorithm to explore where the surrogate model has a lower predictive mean than the current
best sample and the second term is the exploration term which encourages sampling new
points in regions of high uncertainty.

The parameter ξ in Equation (3) determines the amount of exploration during optimiza-
tion and higher ξ values lead to more exploration. With increasing ξ values, the importance
of improvements predicted by the GP posterior mean µ(x) decreases relative to the impor-
tance of potential improvements in regions of high prediction uncertainty, represented by
large σ(x) values. We use the default value ξ = 0.01 recommended by Lizotte [2008].

In most high-dimensional optimization problems of practical significance, there exist
only a few relevant directions that capture most of the variation in the function. This is
exploited by the active subspace dimension reduction method [Constantine et al., 2014].
The optimal subspace is given by the dominant eigenvectors of the covariance matrix C =∫

Ω
∇ f (x)∇ f (x)T , estimated by Monte Carlo integration. Because we already have access

to gradient information, it is natural to combine active subspaces with BO to reduce the
computational overhead of building our GP metamodel at every iteration. Random projections
(without gradients) have already been used in the BO literature for high-dimensional functions
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Wang et al. [2013].We learn the active subspace that captures 95% of the variation at every
iteration, choose d random directions of the active subspace onto which the function is to be
projected and add a small amount of random noise to the projection matrix.

Algorithm 1: BO with derivatives and active subspace learning
sample cost function f and gradients ∇ f at D initial points using simple Latin
Hypercube sampling, where D is the dimension of the design space.

while computational budget remaining do
Estimate active subspace of cost function using sampled gradients that capture
99% of the variation.

Pick d directions at random from estimated active subspace to compute
projection P ∈ RD×d .

Add a small amount of random Gaussian noise to obtain the final projection
matrix Pnoisy.

Update hyperparameters of GP with gradient defined by kernel k(PT
noisyx,PT

noisyx′)
and construct the GP surrogate.

Use the GP surrogate to optimize the expected improvement
un+1 = argmax EI(u) to obtain the next candidate point xn+1 = Pnoisyun+1.

Sample point xn+1, value fn+1, and gradient ∇ fn+1

Update data Dn+1 = Dn ∪{xn+1, fn+1,∇ fn+1}
end



Chapter 3

Parameter inference in reduced order
flame models

The research in this chapter is a product of collaboration with Maximilian Croci. The project
was devised with him. I performed the Bunsen flame experiments, wrote the Bayesian Neural
Network code and ran the parameter inference on processed flame images. Maximilian ran
the LSGEN flame simulations, performed thresholding and interpolation on the flame image
data and compared our results to the Ensemble Kalman Filter. This work was presented
at the International Conference on Computational Science 2021 where it was selected for
publication as an article in the Lecture Notes in Computer Science book series titled "Data
Assimilation Using Heteroscedastic Bayesian Neural Network Ensembles for Reduced-Order
Flame Models" (volume 12746, pp 408-419).

3.1 Introduction

Complex, nonlinear physical models of engineering systems give rise to challenging inverse
problems which require the estimation of unknown model parameters from observations,
along with uncertainty quantification. With the growing popularity of digital twins [Fuller
et al., 2020], there is also a need to reduce the computational cost of parameter inference such
that these models may be updated in real-time using the latest sensor observations. Traditional
filtering-based techniques require the system to be simulated in parallel, which becomes
unfeasible if the underlying model is computationally expensive to simulate. Amortized
inference using neural networks [Cranmer et al., 2020] circumvents this problem by having
an expensive offline training phase, where a surrogate of the approximate posterior p(θ |z) is
learnt from a library of simulator-generated observations zi corresponding to input parameters
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θ i, typically using normalizing flow-based methods [Rezende and Mohamed, 2015] [Radev
et al., 2020]. The surrogate can then be rapidly evaluated online to perform parameter
inference on new observed data.

Thermoacoustic instabilities are driven by the coupling of the heat release rate of the
flame and the acoustics in the combustor [Strutt, 1878]. It is therefore necessary to model
the flame dynamics such that the heat release rate as a function of velocity perturbations
is quantitatively accurate. The simplest physics-based model sets the heat release rate
fluctuation to be a linear multiple of the velocity perturbation at the base of the flame some
time earlier. This delay models the time taken for perturbations to travel down the flame.
This is known as the n− τ model. It is too simple for our purposes because it cannot
simulate flame dynamics. The G-equation [Williams, 1985] is the kinematic model used
in LSGEN2D [Hemchandra, 2009] to simulate a ducted, premixed flame such as that from
a Bunsen burner. By tuning the parameters of the G-equation model to fit a Bunsen flame
experiment, a digital twin of the flame is created and its surface area variation in time, which
when multiplied by the laminar flame speed gives us the heat release rate variation, can
be calculated. The ensemble Kalman filter (EnKF) is the current state-of-the-art, which
iteratively performs Bayesian inference of the G-equation parameters from G-equation model
forecasts generated in LSGEN2D and observations of the flame edge [Yu et al., 2019b]. The
model forecasting is expensive, however, which makes the EnKF too expensive to be used
online. We propose to infer online the G-equation parameters of Bunsen flame experiments
using a heteroscedastic Bayesian neural network ensemble [Sengupta et al., 2020a,b]. In an
expensive offline step, the ensemble learns a surrogate for the Bayesian posterior distribution
of the parameters given observations of the flame front from a library of pairs of G-equation
parameters and corresponding flame front shapes generated in LSGEN2D. The ensemble can
then be used to infer online the parameters of the model for simulation of the Bunsen flames.

3.2 Bunsen flame experiment and simulations

3.2.1 Bunsen flame experiment

A Bunsen burner is placed inside a transparent duct and a high-speed camera is used to take
images of the Bunsen flame at a frame rate of fs = 2500 frames per second and a resolution
of 1200×800 pixels. Speakers force the flame at frequencies in the range 250 Hz to 450
Hz. The gas composition (methane, ethene and air) and flow rate are varied using mass flow
controllers. By varying the forcing frequency and amplitude and gas composition and flow
rate, flames with different aspect ratios, propagation speeds and degrees of cusping of the
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flame front are observed. In some cases, the flame front cusping leads to pinch-off at the
flame tip. For each of the 270 different flame operating conditions, 500 images are taken.

The flame images are processed to find a single-valued discretisation of the flame front,
x = f (y). First, the pixel intensities are thresholded and a position x for every vertical position
y is found by weighted interpolation of the thresholded pixels, where the weights are the
pixel intensities. Next, splines with 28 knots are used to smooth the (x,y) coordinates. Each
flame image is therefore converted into a 90× 1 vector of flame front x coordinates x (as
the y coordinates are the same for all flames, they are discarded). Observation vectors z are
created by stacking 10 subsequent x vectors. These observation vectors are used for inference
with the neural networks. All 500 images of each Bunsen flame are processed in this way.

3.2.2 Flame front model

In this chapter we use a kinematic model of the flame front as a boundary between reactants
and products (see Figure 3.1). The flame front is defined to be the G = 0 contour of a scalar
field G(x,y, t). Regions of negative and positive G correspond to unburnt and burnt gases
respectively (the magnitude of G does not have a useful meaning). The position of the flame
front in space and time is governed by:

∂G
∂ t

+v ·∇G = sL|∇G|, (3.1)

where v is a prescribed velocity field and sL is the laminar flame speed: the speed at which the
flame front propagates normal to itself into the reactants. The flame speed sL = s0

L (1−L κ)

is a function of the unstretched (adiabatic) flame speed s0
L, the flame curvature κ and

the Markstein length L , and is insensitive to pressure variations. The unstretched flame
speed s0

L depends only on the flame chemistry. The velocity field v = u′i+(V (x)+ v′) j
comprises a parabolic base flow profile V (x) = V (1+α(1− 2( x

R)
2)) and superimposed

continuity-obeying velocity perturbations u′(x,y, t) = V ε sin(St(K
R y− t)) and v′(x,y, t) =

−V εKSt
R xcos(St(K

R y− t)) where α determines the shape of the base flow profile (α = 0 is
uniform flow, α = 1 is Poiseuille flow), ε is the amplitude of the vertical velocity perturbation
with phase speed V/K, St = 2π f Rβ/V is the Strouhal number with forcing frequency f
and flame radius R, and β is the aspect ratio of the unperturbed flame. The parameters
K,ε,L ,α,St and β are tuned to fit an observed flame shape.
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Fig. 3.1 (Left) Image of a Bunsen flame. (Middle) G-equation model of the flame front.
(Right) Simulated flame in LSGEN2D.

3.2.3 Simulated flame front library

A library of simulated flame fronts with known parameters K,ε,L ,α,St and β is created
for neural network training. The parameter values are sampled using quasi-Monte Carlo
sampling to ensure good coverage of the parameter space. The parameters are sampled
from the following ranges: 0.0 < K ≤ 1.5, 0.0 < ε ≤ 1.0, 0.02 ≤ L ≤ 0.08, 0.0 ≤ α ≤ 1.0,
2.0 ≤ β ≤ 10.0 and 0.08 ≤ f/ fs ≤ 0.20. The values of St are calculated by additionally
sampling 0.002 ≤ R ≤ 0.004 m and 1 ≤ V ≤ 5 m/s and calculating St = 2π f Rβ/V . The
parameters are sampled 8500 times, normalised to between 0 and 1 and recorded in target
vectors {t = [K,ε,L ,α,St,β ]}.

For each of the 8500 unique parameter configurations, LSGEN2D iterates the G-equation
model of the flame front until it converges to the corresponding forced cycle. For each of
the 200 forced cycle G field states produced by LSGEN2D, the flame front is found by
interpolating the G values. This results in a x = f (y) discretisation and the vectors x of x
coordinates are recorded. Observation vectors z are created by stacking 10 subsequent x
vectors. There are 200 observation vectors created from every cycle, resulting in a library
of 1.7×106 observation-target parameter pairs {(z, t)}. This library is split 80%-20% into
training and testing data sets.

3.3 Inference using heteroscedastic Bayesian neural net-
work ensembles

We assume the posterior probability distribution of the parameters given the observations
can be modelled by a neural network: pθ (t|z) with its own parameters θ . We assume this
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posterior distribution has the form:

pθ (t|z) = N (t; µ(z),Σ(z)) , (3.2)

where Σ(z) = diag(σ2(z)). This encodes our assumption that the parameters are all mutually
independent given the observations z. The architecture of a single neural network is shown
in Figure 3.2. Each neural network comprises an input layer, four hidden layers with ReLU
activations and two output layers: one for the mean vector µ(z) and one for the variance
vector σ2(z). The output layer for the mean uses a sigmoid activation to restrict outputs to
the range (0,1). The output layer for the variance uses an exponential activation to ensure
positivity. An ensemble of M = 20 such neural networks is initialised, each with unique initial
weights θ j,anc sampled from a Gaussian prior distributions according to He initialisation [He
et al., 2015].

For a single observation z, the j-th neural network in the ensemble produces a sam-
ple of the posterior with an associated estimate of the aleatoric noise in the observations:
µ j(z), σ2

j(z). This is achieved by using the loss function L j:

L j =
(
µ j(z)− t

)T
Σ j (z)−1 (

µ j(z)− t
)
+ log

(
|Σ j (z) |

)
+
(
θ j −θanc, j

)T
Σ
−1
prior

(
θ j −θanc, j

)
.

(3.3)
The loss function comprises the negative log of the Gaussian likelihood function (probability
of the observations given the targets, first two terms) and a regularising (penalty) term.
By regularising about parameter values drawn from a prior distribution, the NNs produce
samples from the posterior distribution. This is called randomised maximum a-posteriori
(MAP) sampling [Pearce et al., 2020].

Once converged, the prediction from the ensemble for an observation z is therefore a mix-
ture of M Gaussians each centered at their respective means µ j(z). This mixture is approxi-
mated by a single multivariate Gaussian posterior distribution p(t|z)≈N (t; µ(z),Σ(z)) with

mean µ(z) = Σ jµ j(z)
M and covariance Σ(z) = diag(σ2(z)) where σ2(z) =

Σ jσ
2
j(z)

M +
Σ jµ

2
j(z)

M −(
Σ jµ j(z)

M

)2
following similar treatment in Lakshminarayanan et al. [2017]. This is done for

every observation vector z. The posterior distribution p(t|zi) with the smallest total variance
σ2

i,tot = ||σ2(zi)||1 is chosen as the best guess to the true posterior. The M parameter samples
from the chosen posterior are used for re-simulation, which allows us to check the predicted
flame shapes and to calculate the normalised area variation over one cycle.
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Fig. 3.2 Architecture of a single neural network. The input and hidden layers have 900
nodes each, while the output layers have 6 nodes each. All layers are fully connected (FC).
Rectified Linear Unit (ReLU) activation functions are used for the hidden layers and sigmoid
and exponential (Exp) activation functions are used for the mean and variance ouput layers
respectively.

3.4 Inference using the Ensemble Kalman Filter

The Kalman filter iteratively performs Bayesian inference to find the probability distribution
of the state of a system given noisy observations of the system and an imperfect model of the
system dynamics. In this study, the state comprises the location of the flame edge and the
parameters K and ε . These parameters are assumed to be independent given the observations
of the flame edge and constant for each of the Bunsen flame experiments. The flame edge is
modelled using the G-equation (3.1). The ensemble Kalman filter (EnKF) [Katzfuss et al.,
2016] evolves an ensemble of simulations forward in time. The covariance matrix of these
ensembles is assumed to approximate the covariance matrix of the state evolved over the
same period of time. The EnKF is more practical when the state contains many variables and
the evolution is nonlinear. In this study, the state contains O(102) variables and the governing
equation (3.1) is nonlinear.

The parameters L ,α,St,β are calculated by solving the G-equation when steady and do
not need to be inferred with the EnKF. This reduces the cost of the EnKF but increases the
number of steps compared with the BayNNE method. The forcing frequency f is manually
set when running the Bunsen flame experiments. The unperturbed laminar flame speed
s0

L is calculated using Cantera and knowledge of the methane and ethene flow rates. V is
calculated from s0

L and β using the relation V = sL
0

√
β 2 −1. The Strouhal number can then

be calculated: St = 2π f βL /V . Further details on the implementation of the EnKF may be
found in the original paper by Yu et alYu et al. [2019b].

An ensemble size of 32 is used in this study. A multiplicative inflation factor of 1% is
chosen to mitigate the underestimation of the error covariances due to the finite ensemble
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Fig. 3.3 Scatter plots of true parameters (scaled) versus predicted parameter values for
simulated test data.

size [Yu et al., 2019a]. Once the EnKF has converged, the parameters K and ε calculated
by each ensemble member are recorded. These are samples from the posterior distribution
of the parameters given all the flame x-location vectors: p(K,ε|x1,x2, . . . ,xN). This differs
from the BayNNE, which was given x-location vectors in groups of 10.

3.5 Results

The neural network is first evaluated on the test set of simulated flame observations to ensure
that it recovers the true parameters (known in this case) correctly. The correlation coefficient
ρ between true and predicted parameter values are 0.982, 0.994, 0.971, 0.993, 0.976 and
0.990 for K, ε , L , α , St and β , respectively. Estimates of parameter uncertainty are also
well-calibrated, with particularly high uncertainties in K and St predicted for datapoints
with low εa (amplitude of perturbation), which is physically sensible, as it is not possible to
recover these parameters from an unperturbed flame.

Next, the ensemble is evaluated on the Bunsen flame image data. Parameter predictions
for an observation vector z take O(10−4) seconds on an Nvidia P100 GPU. Including the
pre-processing time for thresholding, spline fitting and area calculation, predictions can
therefore be made in less than a millisecond for every few seconds of acquired video data.
Figure 3.4 show two different Bunsen flames simulated using the parameters inferred by the
BayNNE and the EnKF, overlaid on the real experimental data. The BayNNE predicts flame
shapes in good agreement with the experiments: the root mean square distances between the
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simulated and Bunsen flame shapes of 5 different Bunsen flames ranges from 0.017 units to
0.024 units, with mean 0.019 units (where the flame radius is 1 unit). These results show
that the BayNNE’s parameter estimates match those of the EnKF and require O(108) less
computing power.

The uncertainty in the BayNNE’s predictions is greater than that of the EnKF due to
the calculated posterior being the probability of the parameters given 10 flame images,
whereas the EnKF considers all 500 flame images of the Bunsen flame. Unfortunately, it
is not possible to combine the BayNNE’s parameter estimates without knowledge of the
joint probability distribution of the observation vectors. Any two observation vectors are
not independent as knowledge about the first restricts our expectation of the second to a
likely set of forced cycle states. Future work will address this limitation by using alternative
neural network architectures, such as long-short term memory networks [Hochreiter and
Schmidhuber, 1997], that are better suited to time-series data.
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Fig. 3.4 Results of inference using the BayNNE method compared to the EnKF method
for the simulation of two different Bunsen flames. The flame images are preprocessed to
find the flame front and then used for inference. The green and orange bands in the EnKF
and BayNNE predicted flame shape plots are regions of high likelihood. The normalised
area variations over one period of the simulated flames show good agreement with the
experiments.





Chapter 4

Global optimization of combustor models
using Bayesian optimization and adjoint
methods

This chapter has been published as an article in the International Journal of Spray and
Combustion Dynamics titled "Thermoacoustic stabilization of combustors with gradient-
augmented Bayesian optimization and adjoint models".

4.1 Introduction

Thermoacoustic stability is exceedingly sensitive to changes in the acoustic characteristics of
a combustion chamber and the acoustic/ hydrodynamic response of the flame. As a result,
small changes in the system geometry, boundary conditions or flame behavior can often
stabilise an unstable combustor. However, coming up with a suitable design modification
through pure trial-and-error experimentation is usually infeasible. A famous example is
the F1 engine of the Saturn V rocket whose stabilization required 2000 full-scale engine
tests; baffles were introduced in the injector plate to suppress thermoacoustic oscillations
[Joos, 2006]. Adjoint-based sensitivity analysis in thermoacoustic models offers a systematic
procedure for discovering appropriate design changes.

The advantage of adjoint methods lies in the efficient computation of derivatives of a
given objective function at a cost that scales independently of the number of design variables.
The sensitivity of eigenvalues (natural frequencies and growth rates) of a thermoacoustic
model w.r.t. to design variables can therefore be computed cheaply using adjoint methods;
this information is then utilized by an optimization routine from the gradient descent family
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to arrive at a stabilized design. Adjoint-based sensitivity analysis has been applied to low-
order network models by Magri and Juniper [2013], Mensah and Moeck [2017] and Silva
et al. [2017], to 2D Helmholtz equation models by Falco and Juniper [2021] and to 3D
Helmholtz models by Mensah et al. [2019]. A comprehensive review of the use of adjoints in
thermoacoustic can be found in Magri [2019].

Other techniques have also been used to stabilize designs. Aguilar Perez [2019] used an
exhaustive grid search while Jones et al. [2021] used a genetic algorithm to optimize the shape
of a thermoacoustically unstable combustor. Compared to gradient descent using adjoints,
these tools have the advantage of not getting trapped in local minima, but are much slower in
comparison and require many expensive simulations to be run for each configuration they
evaluate.

In this chapter, we propose using gradient-augmented Bayesian optimization (BO) to
optimize adjoint models. BO is able to find global optima in expensive, multi-modal functions
with strikingly few function evaluations. It does so by building a Gaussian Process (GP)
metamodel of the objective function at every iteration. To decide where to evaluate the
objective function next, an acquisition function such as expected improvement [Huang et al.,
2006], upper confidence bound [Srinivas et al., 2009] or knowledge gradient [Scott et al.,
2011] is used. This balances exploration (i.e., moving to places where the GP has high
predictive uncertainty) and exploitation (i.e., moving to where the GP has a high predictive
mean). Vanilla BO, however, does not utilize derivative information. Nevertheless, since the
derivative of a GP with a twice-differentiable kernel is also a GP [Williams and Rasmussen,
1996], it is possible to model derivatives in a GP metamodel. The incorporation of derivative
observations in the GP model leads to lower predictive variances (Figure 1 shows a simple
example of a 1D GP with and without derivatives) and makes our exploration of the search
space much more efficient. The main challenge is the impractical O(n3D3) computational
cost of building a GP model with n function evaluations and D derivatives. In this chapter,
we use a scalable gradient-augmented Bayesian optimization algorithm loosely based on
Eriksson et al. [2018].

To demonstrate the effectiveness of gradient-augmented Bayesian optimization, we
consider two optimization problems from the literature on adjoint models in thermoacoustics.
The first one is a simple toy problem from Juniper [2018] where the iris diameter and heater
position in a 1D Helmholtz equation model of a Rijke tube must be optimized. The second
involves geometry optimization in a low-order network model of a longitudinal combustor
from Aguilar and Juniper [2020]. We compare gradient-augmented BO with BFGS, a
standard quasi-Newton optimizer which uses an estimate of the inverse Hessian matrix to
improve convergence. Compared to BFGS, we find that the gradient-augmented BO does
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not get stuck in local optima and requires fewer evaluations of the solver to arrive at more
thermacoustically stable configurations. It is also able to efficiently explore the whole design
space and locate multiple suitable combinations of design parameters, which is useful further
downstream in the design cycle.

4.2 Methods

4.2.1 Thermoacoustic models

Our goal is to design systems in which all eigenmodes decay in time, so we use the summed
exponential of the growth rates as our objective function. This strongly penalizes positive
growth rates, but the rewards for stabilizing the system diminish progressively as growth
rates become less than zero. If X is the vector that contains all the combustor parameters and
λi-s are growth rates of the eigenmodes of interest, then our cost function is given by

J (X) = ∑
i

eλi (4.1)

One could alternatively optimize log(1+∑i eλi), which approximates the above objective
for highly negative values of λi, but increases linearly with the growth rates for large values.
This ensures numerical stability since the function values and their gradients do not become
arbitrarily large.

We only consider longitudinal thermoacoustic modes in this chapter, but we note that
the above expression would result in double-counting of symmetric azimuthal modes in a
system that has them. When optimizing such a system, the corresponding terms should be
weighed by 0.5 to avoid penalizing them doubly.

The first test case considered in this chapter comes from Juniper [2018] where opti-
mization using adjoints is demonstrated on a 1D Helmholtz model of a Rijke tube. A finite
element discretization of the weak form is used and the discrete adjoint framework is used
to compute eigenvalue sensitivities. The design parameters are the heater position and the
diameter of a variable-diameter iris placed at the downstream boundary. The growth rate of
the fundamental mode, which we seek to minimize, has two local minima (Figure 4.2) in the
search space.

The second test case is taken from Aguilar and Juniper [2020] and relates to geometry
optimization in a network model of Rama Balachandran’s 10 kW longitudinal combustor
built in Cambridge, originally intended for the experimental investigation of the response of
turbulent premixed flames to acoustic oscillations [Balachandran et al., 2005]. The geometry
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Fig. 4.1 Contour plots of non-dimensionalized growth rate and frequency of the Rijke tube
fundamental mode plotted against heater position and iris diameter, reproduced from Juniper
[2018]. The numbered black contour lines correspond to frequencies and the colored contour
plot represents the growth rate. White arrows indicate the direction and magnitude of the
growth rate gradients, as computed by the adjoint model.

Fig. 4.2 Geometric parameters of the network model from Aguilar Perez [2019] used in the
optimization routine. The parameters in black are allowed to be updated. The parameters in
red are kept constant.
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consists of an inlet duct connected to a plenum with a linearly varying cross section on either
end. This leads to the neck which contains the fuel injection plane and a centred bluff body
used to stabilize the flame. The outlet is a cylindrical pipe which contains the flame. Figure
4.3 shows a schematic of the combustor model and the geometric parameters being optimized.
The rig is modeled using a one-dimensional network model with 124 straight ducts. This
model has 4 unstable eigenmodes between 0 and 1000 Hz that need to be stabilized with
geometry modifications. We restrict the search space to a box bounded by ±4.5% of the
areas and lengths in the original configuration.

4.2.2 Gradient-augmented Bayesian optimization

We use the gradient-augmented Bayesian optimization algorithm with active subspace di-
mension reduction described in Chapter 2. For the longitudinal combustor problem, we learn
the active subspace that captures 95% of the variation at every iteration and we retain d = 3
random directions of the subspace at every iteration. The subspace projection is not used for
the 1D Rijke tube problem, since the optimization problem is two-dimensional.

4.3 Results

For the 1D Rijke tube problem, the gradient-augmented BO consistently finds the known
global optimum near (0.82,0.5) fairly rapidly across all trials, whereas a gradient-descent-
based approach such as BFGS predictably converges to either of the two local optima
(the other one is located at (0.0,0.5)), depending on the starting point chosen. Figure 4.4
illustrates how the gradient-augmented Bayesian optimization refines its surrogate model
with increasing number of iterations. After 7 evaluations, the surrogate is very inaccurate
because the bottom right and top left quadrants are left unexplored. However, these regions
also have higher uncertainty, so we observe that by 17 evaluations, these regions have also
been explored. After this exploration phase, the BO deems that the model is accurate enough
for the purpose of optimization and spends the next 10 evaluations trying to converge on
the global optimum. BO consistently explores both local minima regardless of initialization.
This is very useful in thermoacoustics because almost all design optimization problems have
multiple stable configurations. Discovering more of them makes the designer’s life easier,
since thermoacoustic stability is typically just one of many conflicting design objectives. The
MATLAB code for the 1D Rijke tube optimization may be found here.

To compare between gradient-augmented BO and BFGS, we conduct 10 trials of both
algorithms on the longitudinal combustor test problem. In each trial, the initial points are

https://github.com/Ushnish-Sengupta/Grad_BO_Thermoacoustic
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Fig. 4.3 Surrogate Gaussian process model of the Rijke tube cost function at different
iterations. Black dots indicate where the Bayesian optimization has evaluated the function
and its gradients. The bottom right plot is a contour plot of the true cost function, with the
black dot indicating the location of the true global minimum.
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Fig. 4.4 Best objective function values achieved by the BFGS, BO without gradient and
gradient-augmented BO routines in the longitudinal combustor test case, averaged across
10 trials, plotted against the number of cost function evaluations. Error bars indicate 1 s.d.
variation across trials.

sampled uniformly from the design space with a different seed for the pseudo-random number
generator. When the number of iterations is very small, the BFGS appears to outperform
Bayesian optimization, but this is because Bayesian optimization explores more early on
due to the high initial uncertainty in the Gaussian Process surrogate. BO quickly overtakes
the BFGS average, however, and by the 50th iteration, 9 out of 10 BO runs have found a
configuration as stable as the best BFGS run. The final average cost function after 50 runs is
1.62 for BFGS and 1.01 for BO. As in the Rijke tube case, multiple distinct stable geometries
are found in each run. In general, stable configurations have a reduced flame holder area
and a reduced neck area, because the eigenvalues are quite sensitive to these two parameters.
Figure 4.5 shows a stable geometry found by one of the BO runs.

Figure 4.4 also shows the comparison between the gradient-augmented BO to BO without
gradient values. As expected, it converges to the global optimum more slowly. This shows
the benefit of having derivative information from the adjoint models.

It should be pointed out the BO involves a modest computational overhead whereas
BFGS has nearly none. For the longitudinal combustor model, it takes around 30 seconds per
iteration for the gradient-augment BO on a Dell G7 7590 laptop with a 4 core 8th Generation
Intel i5-8300HQ processor. However, when optimizing expensive models with this algorithm,
the evaluation of the cost function and its gradient becomes the computational bottleneck
while the cost per BO iteration becomes a non-issue.

This chapter demonstrated how scalable, gradient-augmented Bayesian optimization
pairs perfectly with adjoint methods in thermoacoustics. The BO algorithm consistently
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Fig. 4.5 A stable combustor configuration, shown in red, found by a gradient-augmented
Bayesian optimization run after 50 evaluations. Original unstable configuration in black.

finds more stable parameter combinations using considerably fewer iterations than BFGS, a
popular quasi-Newton optimizer.



Chapter 5

Prognosing instabilities from noise in a
Rijke burner

The work in this chapter has been published as an article in the Journal of Engineering for
Gas Turbines and Power titled "Bayesian machine learning for the prognosis of combustion
instabilities from noise" (vol 143 issue 7).

5.1 Introduction

The phase lag between pressure and heat release rate fluctuations, which governs the ther-
moacoustic stability of a system, depends on acoustic, hydrodynamic and combustion
mechanisms, which have different scaling behaviours. Accurate computational modeling is
thus very challenging [Juniper and Sujith, 2018]. At the moment, designers accommodate
thermoacoustic instabilities in their engines by avoiding unstable regions of the operating
parameter space. This, however, conflicts with other design objectives such as reducing NOx
emissions by operating at leaner fuel-air ratios. The aim of this chapter is to develop and
test a machine learning algorithm that can learn how close a combustor is to instability and
ensure its safe operation near unstable conditions.

5.1.1 Combustion noise as a diagnostic

The noise radiated by a turbulent combustor is generated by deterministic fluid dynamic phe-
nomena such as unsteady dilatation due to fluctuating heat release rates or the acceleration of
vorticity or entropy waves, and modified by acoustic reflections off boundaries [Dowling and
Mahmoudi, 2015]. We therefore expect pressure measurements to contain some information
about the state of the combustor. Inspired by Zelditch [2000] who answered Kac’s whimsical
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question “Can you hear the shape of a drum?” [Kac, 1966] by proving that the eigenfre-
quencies of vibration determine the shape of an analytic and convex membrane uniquely,
our study seeks to extract useful information about the state of a turbulent combustor from
the power spectra of noise samples. This would have important practical implications. For
example, it would allow noise to serve as an early warning prognostic for thermoacoustic
instability or blowoff. It would also enable pressure measurements to validate the readings of
other sensors such as flowmeters, making the system more robust to sensor failures. Pressure
and vibration measurements are easily accessible in fielded combustors so it makes sense to
use them as extensively as possible.

Historically, the motivation to understand and model combustion noise stems from the
desire to reduce noise pollution, such as that from an aircraft [Duran et al., 2014] or a factory
furnace [Putnam, 2009]. Pioneering theoretical work by Lighthill in aeroacoustics [Lighthill,
1961] was extended to the analytical study of combustion noise by Strahle [Strahle, 1971],
who used Lighthill’s acoustic analogy to derive a formula relating the far-field acoustic
perturbation to heat release rate fluctuations by treating the turbulent pre-mixed flame as
an assembly of monopole sound sources. It was also noted by Marble and Candel [1977]
that noise can be generated by entropy inhomogeneities in regions of accelerating flow when
combustion occurs in confined chambers. Aside from theoretical analysis, various empirical
correlations that try to predict the overall noise level [Strahle and Shivashankara, 1975] or the
spectral characteristics such as peak frequency, slope of rolloff in the high-frequency range,
[Abugov and Obrezkov, 1978] etc. as a function of operating conditions were also obtained
from experimental data. More recent studies have employed numerical simulations to predict
combustion noise for open flames as well as complex geometries. A study by Ihme and
Pitsch [2012] employs a model for predicting direct combustion noise generated by turbulent
non-premixed flames where the Lighthill acoustic analogy is combined with a flamelet-based
combustion model and incorporated into an LES simulation. Their predictions match well
with experimental results although discrepancies were noted at high frequencies. The hybrid
CHORUS method [Duran et al., 2014] predicts the noise output by performing LES of
the combustion chamber, extracting the acoustic and entropy waves and then propagating
these waves through the engine using analytical methods. Their results compare well with
experiments.

The inverse problem of using noise to infer conditions inside the combustor is somewhat
less well studied, although there has been a fair amount of research interest within the
thermoacoustic community [Juniper and Sujith, 2018]. Simplifying the combustion noise
generation process, Lieuwen [2005] uses the decay rate of autocorrelation to determine
the stability margin of a combustor. Several subsequent studies apply tools from nonlinear
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dynamics to combustion noise time-series and obtain useful precursors of instability. Gotoda
et al. [2011] employ the Wayland test for non-linear determinism to show that when a
system transitions to thermoacoustic instability, the combustion noise changes its character
gradually from random and uncorrelated to completely deterministic. Similarly, Nair and
Sujith [2014] show the disappearance of the multifractal signature of combustion noise as it
transitions to instability and note that measures such as the Hurst exponent can serve as an
early warning of thermoacoustic instabilities. A follow-up study by Godavarthi et al. [2017]
looks at measures derived from recurrence networks as instability precursors. Kobayashi
et al. [2019a] use a modified version of the permutation entropy to detect a precursor of the
frequency-mode-shift in their staged aircraft engine model combustor before the amplification
of pressure fluctuations. More recent work from the past year has also explored machine
learning oriented approaches to the problem. Mondal et al. [2018] apply Hidden Markov
Models to pressure timeseries for the early detection of instabilities in a Rijke tube, while
Kobayashi et al. [2019b] and Hachijo et al. [2019] combine Support Vector Machines with
complex networks and statistical complexity measures, respectively, to do the same in a
swirl-stabilized combustor.

The utilization of combustion noise for diagnostic purposes has not been limited solely
to the forecasting of thermoacoustic instabilities. Acoustic precursors from combustion
noise have been identified for lean blowout in a pre-mixed flame by Nair and Lieuwen
[2008] using the concentration of acoustic power in low-frequency bands, wavelet-filtered
variance and thresholding techniques. Gotoda et al. [2011] study the dynamics of pressure
fluctuations near lean blowout using permutation entropy, fractal dimensions, and short-term
predictability. Murayama et al. [2019] have also used the weighted permutation entropy of
combustion noise to develop precursors of blowout for their model gas turbine combustor.

5.1.2 The case for intepretable, Bayesian machine learning

A limitation of the approaches described above is that, by looking at the data through
a handcrafted and predefined lens, one may miss other relevant information in the data.
Machine learning techniques, on the other hand, find relevant functional relationships in the
data without being influenced by researchers’ preconceptions. Deployed correctly, they also
use all available information in the data. The downside of a purely data-driven approach,
however, is that it is only applicable to the specific system that generated the data.

To address this problem of limited portability and the fact that acoustic emissions are
an imperfect source of information, the Bayesian machine learning technique we employ in
this study provides principled measures of uncertainty in our predictions. We start with an
appropriately vague prior belief about what the output of our model should be and as we
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observe more data, we update this belief to obtain progressively tighter posterior distributions
in accordance with Bayes’ rule. This ensures that the model does not make overconfident
predictions from out-of-distribution inputs which are entirely different from what it was
trained on. These uncertainty estimates are particularly important when using a machine
learning model in a critical device such as an aircraft engine. Bayesian machine learning
techniques with correctly specified priors can also work with smaller amounts of data and
are resistant to overfitting [Ghahramani, 2005]. They can also be used in continual learning
without catastrophic forgetting [Li et al., 2019], which is particularly important if we want to
keep learning from data throughout the operating lifetime of a device.

In this study, we use anchored ensembling, which is a simple and scalable way to train
Bayesian neural networks [Pearce et al., 2018]. First, we perform a set of experiments on a
Rijke tube driven by a swirling premixed turbulent flame. The power, equivalence ratio, fuel
composition and the exit area of the tube are all varied so that noise data can be collected
over a wide range of operating parameters. The decay rates of oscillations provoked by
acoustic pulses are measured. The thermoacoustic behaviour of the combustor ranges from
very stable to almost unstable. The challenge for our neural network ensembles is then to
predict the power, the equivalence ratio and the measured decay rate using only a 300 ms
sample of the (un-forced) combustion noise as their input. We select this challenge because
conditions in an engine can change rapidly and decisions should be based on only the most
recent sensor data history. This is a high-dimensional regression problem to which our neural
network ensembles are perfectly suited.

A common criticism of machine learning techniques is that they are black-box models
that are completely opaque to the user. To remedy this, we have used techniques known
as Integrated Gradients [Sundararajan et al., 2017b] and permutation importance [Breiman,
2001] to reveal features in the acoustic spectrum that drive the predictions from our Bayesian
neural network ensembles.

5.2 Experimental Setup

Figure 5.1 shows the experimental apparatus used in this study. An ordinary Bunsen burner
is modified by attaching swirler vanes and a nozzle featuring a large central hole for the main
flame and smaller surrounding holes for the pilot flames. A premixed mixture of methane
and ethylene is used as fuel. This produces a noisy swirling premixed turbulent flame that
is anchored over a wide range of operating conditions. The burner is placed inside a steel
tube of length 800 mm and internal diameter 80 mm. Annular discs, with hole diameters 75,
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Fig. 5.1 Schematic of experimental setup, consisting of a 1 KW turbulent swirl flame inside
a steel tube of length 800 mm and internal diameter 80 mm

Fig. 5.2 Left: Turbulent combustor excited by an acoustic pulse. Right: Filter signal with
best-fit line in red.

65 and 55 mm, can be attached to the downstream end of the tube in order to change the
acoustic boundary conditions.

The noise is recorded by a G.R.A.S. 26TK microphone placed near the bottom end of the
tube. The raw pressure signal is sampled at 10000 Hz, which is considerably higher than
the dominant frequencies in the typical noise spectra. Data acquisition is managed using a
National Instruments BNC-2110 DAQ device and the software LabVIEW. Flow rates for fuel
and air are controlled using Bronkhurst EL-FLOW® Select flowmeters. A 70 W VISATON
3020 BG loudspeaker is placed near the base of the burner to supply acoustic pulses.

The system is operated at 900 different combinations of operating parameters which form
a grid in our 4-dimensional operating parameter space (volumetric flow rate, equivalence
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Fig. 5.3 Equivalence ratios and flow rates of datapoints for methane:ethene ratio of 3:4 and
outlet diameter 80 mm

ratio, fuel composition and outlet boundary condition). Experiments are performed at
methane:ethene ratios of 3:4, 1:1 and 5:4 (v/v) and tube outlet diameters 80, 75 and 65 mm.
For each of the 3 methane-ethene ratios and each of the 3 outlet boundary conditions, we
methodically sweep through 100 different fuel and air mass flow rates. Figure 5.3 shows
the 100 pairs of equivalence ratios and volumetric flow rates at which experiments are
performed while the methane:ethene ratio and outlet diameter remained fixed at 0.75 and 80
mm, respectively. While this figure represents a 2D slice of the entire dataset– similar, but not
identical, equivalence ratios and flow rates were achieved for the other fuel compositions and
boundary conditions. These experiments mimic, in a laboratory setting, the multidimensional
nature of the operating parameter space in a real jet engine where the boundary condition is
typically dynamic and the engine controller has the authority to change multiple quantities
such as fuel split, power, fuel inlet pressure, equivalence ratio, core speed and others. Any
early warning signal needs to function over the whole range of operating parameters, not just
when a single parameter is varied.

For each combination of operating parameters, the combustion noise is recorded and
the decay rate of a 50 millisecond-long acoustic pulse at 230 Hz (the fundamental acoustic
frequency of the system) is obtained. To extract the decay rate, the microphone signal is
processed in a manner similar to Schumm et al. [1994]. First, a Butterworth filter, with
a width of 20 Hz and centered at the excitation frequency 230 Hz, is used to filter out
the undesired frequencies. Then a Hilbert transform is applied to obtain the instantaneous
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Fig. 5.4 Contour plot of decay timescale (seconds) for methane:ethene ratio of 3:4 and outlet
diameter 80 mm

amplitude, A(t), of the pressure signal. When the logarithm of the obtained amplitude is
plotted against time, it is possible to identify a linear region corresponding to exponential
decay. To isolate the linear region, we ignore 50 ms of data immediately after the ping. The
noise floor is computed from the RMS value of the pre-pulse signal and the decaying signal
is cut-off when it decays to twice this value. The slope of this region then corresponds to the
decay rate of the oscillations.

We use the measured decay rate (or its negative inverse, the decay timescale) at each
operating point as a proxy for the thermoacoustic stability at that point. In general, decay
rates or timescales quantify the linear stability of a system, which is a necessary but not
sufficient condition for global thermoacoustic stability. However, for the high-amplitude
instability we want to avoid, the linear stability boundary is observed to characterize the
onset quite well. In Figure 7.1, we show a plot of the decay rate as a function of flow rate
and equivalence ratio, for the same boundary condition and fuel composition as in Figure 5.3.
(outlet diameter = 80 mm, methane-ethene ratio = 0.75) We observe that the decay rate only
reaches values close to 0 and decay timescales reach their highest values ( 0.35 seconds for
this particular subset of the data) in the vicinity of the high-amplitude 230 Hz instabilities.
This holds true for the other 8 combinations of boundary conditions and fuel compositions as
well. Therefore, if a diagnostic tool is well-correlated with the decay rate or timescale, it will
be able to warn us when we are too close to the instability.
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5.3 Statistical tools

5.3.1 Precursors of thermoacoustic instability from the literature

Nair and Sujith [2014] suggest that there is a loss of multifractality in combustion noise as
combustors progress towards combustion instability, which is reflected in a decline of the
signal’s Hurst exponent H prior to an instability. The Hurst exponent is estimated using the
Detrended Fluctuation Analysis technique introduced by Peng et al. [1995]. For some choice
of window length τ , the signal is divided into segments of length τ from which linear trends
are removed and the mean standard deviation of these segments, σ(τ), is computed. H is
then defined by the scaling of this so-called fluctuation function, σ(τ) w.r.t. the window size
τ . We obtain H by plotting the fluctuation function against window size on logarithmic axes
and calculating its slope using least squares linear regression.

σ(τ)∼ τ
H (5.1)

For our study, we calculate H using 1 second slices from the dynamic pressure sensor
data (10000 data points) and 10 logarithmically spaced scaling window lengths between 0.01
and 0.02 seconds, which correspond to approximately two to four cycles of oscillations at
combustion instability. Basic checks have been performed and it is found that a synthetic
Gaussian white noise signal has a H close to 0.5 while a synthetic periodic signal at the
instability frequency has a H close to 0, as expected.

Lieuwen Lieuwen [2005] derived an effective damping coefficient ξi for a thermoacoustic
mode in terms of the decay rate ξi of the autocorrelation Ci(τ) of the i-th acoustic mode
ηi(t), assuming the combustor to be a second-order oscillator, the background noise to be
spectrally flat and parametric disturbances to be absent:
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The autocorrelation decay rate is calculated the same way as the decay rate of the acoustic
pulses. A 1-second long sample of the raw pressure signal is first put through a Butterworth
filter centered around the frequency of interest (here, 230 Hz) to obtain the signal ηi(t).
The autocorrelation Ci(τ) is then obtained as a function of the lag time τ and its envelope
determined through the Hilbert transform. The slope of the least-squares fitted line through
the logarithm of the autocorrelation amplitude then gives us the desired effective damping
coefficient ξi. We expect this quantity to tend towards zero as our system approaches
instability.
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5.3.2 Bayesian neural network ensembles

In our study, we train a Bayesian neural network ensemble of 10 two-layer neural networks
with 25 nodes in each layer and ReLU activation. The input to our network is the 51-
dimensional power spectrum of 300 millisecond noise samples, computed using Welch’s
method by averaging the spectra of 1 millisecond segments from the sample with 0.95
milliseconds of overlap between segments. The outputs are the decay time scale (the negative
inverse of the measured decay rate), the equivalence ratio, and power. Before training, all
the input variables and outputs are normalized using a min-max strategy to lie between -1
and 1. Noise samples from 180 randomly chosen operating parameter combinations (20% of
data) are held out in the test set for evaluating the performance of the model. 10-fold cross-
validation is performed where 10 different models are trained using 10 random train-test
splits. This ensures the stability of our algorithm’s performance with respect to different
train-test splits. Each ensemble member is trained using the stochastic gradient descent
optimizer ADAM [Kingma and Ba, 2015]. The tunable hyperparameters of our model such
as the learning rate, the data noise and the number of nodes in each layer are optimized by
minimizing the negative log-likelihood of data in a validation set.

5.3.3 Interpretation using Integrated Gradients and Permutation Im-
portance

To attribute the predictions of our network ensemble to the input features we use the technique
of integrated gradients [Sundararajan et al., 2017b]. This is a simple, scalable method for
attributing predictions to individual features that was described in Chapter 2. We use an
implementation of Integrated Gradients from the DeepExplain library [Ancona et al., 2018].

Understanding network predictions via Integrated Gradients involves looking at individual
examples and their attribution plots. To gain a global overview of the relative importance of
input features, we also use the permutation importance technique ?. To compute permutation
feature importances, we shuffle the values of a feature between samples in the dataset and
measure the impact of randomizing them on the accuracy of a trained model. The average
error of model predictions should increase significantly if important features are randomized
in this way and the decrease in accuracy can therefore be understood as a measure of a
feature’s criticality. For our data, we shuffle each 100 Hz frequency block in the input spectra
of the test data and measure the percentage increase of the Root Mean Squared Error.

The code and data used to produce the results in this chapter are available as a Google
Colab notebook in the Github repository https://github.com/Ushnish-Sengupta/FYR. The
notebook can be run in the web browser and does not require the installation of any software.

https://github.com/Ushnish-Sengupta/FYR
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5.4 Results

We train an ensemble of neural networks that takes the power spectrum of a noise sample
as input and predicts the negative inverse of the measured decay rate (the decay timescale).
Figure 5.5 shows the performance of the ensemble on the test dataset, where we observe
that the decay timescales are predicted reasonably accurately. In the course of our 10-fold
cross-validation, the root mean squared prediction error ranged from 0.021 seconds to 0.024
seconds, indicating that our algorithm is stable to variations in the training-test split. It is
particularly interesting to note how the grey errorbars (±1 S.D.) widen for the operating
points closer to instability, corresponding to larger decay timescales. This is because there
are comparatively fewer data points close to instability (only 13 operating conditions in the
training dataset have a decay timescale exceeding 0.3 seconds) making the ensemble less
certain about its predictions in that region. This demonstrates how principled uncertainties
prevent blind overconfidence in our machine learning models. Nevertheless, even with the
slightly larger uncertainties and prediction errors for those points, this algorithm can clearly
indicate when the system approaches thermoacoustic instability.

We also trained our ensembles to recognize the equivalence ratio and burner power
from a noise sample. Figures 5.6 and 5.7 show the measured values of these state variables
plotted against the predictions of our ensembles and reveal an even more accurate prediction.
The root mean squared error in equivalence ratio prediction ranged between 0.031 to 0.033
(≈ 3.5%), while the error for the power varied from 0.021 kW to 0.025 kW (≈ 2%). The
neural networks were thus able to predict these two important state variables quite accurately
given a short noise sample. Each operating condition seem to have a unique acoustic signature
which the machine learning algorithm can learn. In other words, one can indeed hear the
state of a combustor.

For each ensemble of trained neural networks, we use the technique of integrated gradients
to produce feature-level attribution plots, which can tell us how much a particular predictor
influenced the prediction for a particular input. For example, the attribution plot in Figure 5.8
shows this technique applied to the decay rate prediction ensemble for an input with a decay
timescale of 0.35 seconds. The most prominent features are the large positive attributions
for the frequency component around the fundamental, which is marked in Figure 5.8 as a
grey line labeled 1f, as well as the 3rd harmonic. The model has observed that an increased
concentration of acoustic power around the fundamental frequency combined with lower
powers around the third harmonic can be an indication that the system is close to instability.
It is intriguing, however, that almost all of the predictor variables seem to make meaningful
contributions to the final prediction and that if this information were removed, the accuracy of
the predictions would deteriorate. This implies that for diagnostics to have higher predictive
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Fig. 5.5 Plot of measured decay timescales vs decay timescales predicted by the neural
network ensemble on the test data
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Fig. 5.6 Plot of measured equivalence ratio vs equivalence ratio predicted by the neural
network ensemble on the test data

Fig. 5.7 Plot of measured burner power vs burner power predicted by the neural network
ensemble on the test data
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powers, the data should be considered in its entirety and not examined through a pre-defined
lens.

Our argument in favour of considering information from the entirety of the combustion
noise spectrum is bolstered by the permutation feature importance plot (Figure 5.9). Here,
a larger increase in the Root Mean Squared Error when a feature is randomized indicates
a strong dependence of the model on this feature. We observe that the higher frequency
portions of the input spectra, particularly near the third harmonic, have unique information
that is independent of other parts of the spectra and randomizing them increases the RMSE
on the test data by more than 20 percent, in some cases.

To compare our technique to those in the literature, the Hurst exponent and the decay of
autocorrelation amplitude are computed for noise samples from each operating condition.
While the Hurst exponent has a rough negative correlation with the measured decay rates,
falling as the decay timescales grow, the relationship is very noisy (Figure 7.2). This means
that, if the Hurst exponent were to be used to forecast instabilities for our combustors, there
would be many false alarms, which is clearly undesirable.

The same is found for the autocorrelation decay (see Figure 5.11), which also becomes
close to zero, as expected, at the edge of instability. However, it also approaches zero for
several operating points at which the combustor is very stable, making it somewhat unreliable
as a prognostic for instability. While these measures are attractive because they do not need
to be trained on extensive experimental data, they also seem to have limited predictive power
in our experiments.

To summarize, precursors of thermoacoustic instability are useful because they can be
used by an engine controller to avoid triggering instabilities. In this chapter, we use Bayesian
ensembles of neural networks to model relationships between measured combustion noise
and the stability margins or operating conditions of a lab-scale turbulent combustor. We
show that we can estimate the decay rate of acoustic pulses from a single 300 millisecond
sample of the combustor’s radiated noise over a wide range of operating conditions. We also
show that the operating parameters (equivalence ratio and power) could be recovered from
the noise data using the neural networks. This demonstrates that every operating point had a
different sound and that a Neural Network could recognise the operating point just from that
sound. A human may suspect this but would be unable to remember them all. Not only are
our estimates reasonably accurate, but they contain principled estimates of uncertainty. This
means that the model has the wisdom to “know what it doesn’t know” and this is reflected
in higher uncertainties when a provided input is too different from those on which it has
been trained. With Integrated Gradients, we discern which features in the input spectra
drive the networks towards a particular prediction, making our technique interpretable. We
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Fig. 5.8 Top: Min-max normalized power spectrum of a noise sample corresponding to a
0.43 second decay timescale (close to instability) Bottom: Integrated gradients attribution
plot for this power spectrum
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Fig. 5.9 Permutation feature importance for decay timescale prediction

Fig. 5.10 Plot of generalized hurst exponent H vs decay timescale
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Fig. 5.11 Plot of autocorrelation decay vs decay timescale

compare our approach with two precursors of thermoacoustic instability from the literature:
the Hurst exponent and the autocorrelation decay. While these broadly behave as expected,
their relationship to the measured decay rates was noisy.



Chapter 6

Prognosing instabilities in a rocket engine
combustor

The work in this chapter has been accepted for publication in the International Journal
of Spray Dynamics and Combustion conditional on implementing revisions suggested by
reviewers.

6.1 Introduction

High-frequency thermoacoustic instabilities continue to hinder the development of liquid
propellant rocket engines. This chapter proposes the diagnosis of impending instabilities
using multiple sensor data-streams as input and Bayesian neural networks for forecasting.
The forecast can be used by a rocket engine controller to perform a mass flow rate adjustment
and avoid the unstable regions.

Most papers in the literature identify indicators of approaching instability. In this chapter,
on the other hand, we use nonlinear autoregressive time series modeling with a Bayesian
Neural Network to forecast, with uncertainties, the future amplitude of pressure fluctuations
given the history of sensor signals and future flow rate control signals. This informs the
engine controller of the expected timing and potential severity of a forthcoming instability.
This approach also lets us take advantage of the rich instrumentation of our rig by integrating
multimodal sensor data into our model: high frequency dynamic pressure (p′(t)) and OH*
chemiluminescence (I′(t)) measurements, injector pressures (pH2, pO2) and temperatures
(TH2, TO2), chamber static pressure (pcc) and fuel flow rates (ṁO2, ṁH2). We compare models
with different combinations of sensors, different sensor-derived features, and different lengths
of signal histories in the inputs. We find that, although operating parameters and mass flow
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rate control signals can anticipate instabilities on their own, inclusion of dynamic pressure
signal history, in particular, results in a measurable increase in the forecast accuracy. It
is not possible to predict triggered thermoacoustic instabilities from operating parameters
and control signals alone, so we need to integrate multimodal sensor data with operating
parameters and control signals in an instability forecasting framework.

The size of our dataset is limited by the high cost and effort required for each addi-
tional test run on the rocket thrust chamber. Fortunately, the uncertainty-aware nature of
the Bayesian Neural Network allows us to work in this medium-data regime without over-
confident extrapolation. We compute log-likelihoods on the test dataset and find that the
uncertainty is well-quantified. We also simulate a sensor failure to assess the robustness
of our Bayesian forecasting tool. As expected, the network exhibits large epistemic uncer-
tainties during the failure, signalling the unfamiliar out-of-distribution nature of the inputs.
Finally we use the interpretation technique of integrated gradients (IG) to understand how
the different input features in our model influence the predictions.

6.2 Experimental Setup

The dataset used in this study is derived from experiments performed on the research
combustor BKD [Gröning et al., 2016] operated at the P8 test facility (Fröhlke et al. [1997],
Koschel et al. [1996]) of the DLR Institute of Space Propulsion in Lampoldshausen. It has
three main components: an injector head, a cylindrical combustion chamber and a convergent-
divergent nozzle, as shown in Figure 1. The combustion chamber is water-cooled and is
designed to deal with the high thermal loads that are expected during instability events. The
L42 injector head has 42 shear coaxial injectors and is operated with a liquid oxygen (LOX)/
hydrogen (LH2) propellant combination. The cylindrical combustion chamber is 80 mm in
diameter and the nozzle throat diameter is 50 mm, resulting in a contraction ratio of 2.56.
The chamber static pressure (pcc) is varied between 50−80 bar and mixture ratio of oxidizer
to fuel (ROF = ṁO2/ṁH2) between 2− 6. The experiments considered here have a LOX
injection temperature TO2 around 110 K and a hydrogen injection temperature TH2 around
100 K.

For the operating point with pcc = 80 bar, ROF = 6, the total propellant mass flow rate
is 6.7 kg/s, the theoretical thermal power is 90 MW and the thrust achieved is about 24 kN.
These specifications place BKD at the lower end of small upper stage engines.

A representative BKD test sequence, along with a spectrogram of dynamic pressure
oscillations inside the combustion chamber, is shown in Figure 6.2. Stable and unstable
operating conditions can be identified in the spectrogram. Strong high-frequency combustion
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Fig. 6.1 Experimental thrust chamber BKD.

instabilities of the first tangential (1T) mode at about 10 kHz were excited consistently when
approaching the operating point at pcc = 80 bar, ROF = 6. The coupling mechanism for
this instability is injection-driven [Gröning et al., 2016]. The flame dynamics are modulated
by the LOX post acoustics and combustion instabilities emerge when the frequency of the
1T chamber mode matches the second longitudinal eigenmodes of the LOX posts. This
mechanism has been confirmed using high-speed flame imaging by Armbruster et al. [2019].

The extreme conditions within the thrust chamber, where temperatures reach 3600 K and
the pressure reaches 80 bar, limit the diagnostic instruments for our instability investigations.
A specially designed measurement ring is placed between the injector head and the cylindrical
combustion chamber segment, as shown in Figure 6.1. At this location, the temperatures are
moderated by the injection of cryogenic propellants, which allows the mounted sensors to
survive several test runs. Eight Kistler type 6043A water-cooled high-frequency piezoelectric
pressure sensors are flush-mounted in the ring with an even circumferential distribution,
in order to measure the chamber pressure oscillations p′(t). The high-frequency pressure
sensors have a measurement range set to ±30 bar and a sampling rate of 100 kHz. An
anti-aliasing filter with a cutoff frequency of 30 kHz is applied. Three fibre-optical probes
are used to record the OH* radiation intensity I′(t) of selected individual flames. The full
acceptance angle of the optical probes is approximately 2◦. In order to capture the OH*
radiation signal, the probes are equipped with inteference filters with a centre wavelength of
310 nm. The sampling frequency of the I′(t) signals is also 100 kHz. There are also several
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Fig. 6.2 BKD test sequence and p′ spectrogram showing self-excited instability of the first
tangential mode [Gröning et al., 2016]. pcc is the chamber static pressure, ROF is the mixture
ratio of oxidizer to fuel, and TH2,TO2 are the LOX and hydrogen injection temperatures
respectively.
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low sampling frequency (100 Hz) sensors that measure the chamber static pressure pcc, the
mass flow rates of fuel ṁH2 and oxidizer ṁO2 and injector temperatures TH2,TO2.

6.3 Methods

6.3.1 Nonlinear autoregressive models with exogenous variables (NARX)
for timeseries modeling

To forecast instabilities, we train NARX-style models Lin et al. [1996] to capture the
functional relationship between the history of the sensor data, control signals and future
pressure fluctuations. These model the evolution of pressure fluctuations as follows:

log(p′rms(tm +∆t)) = f (xm,xm−1, ... xm−h,um+ f )+σε (6.1)

Here, p′rms(tm+∆t) is the root mean square amplitude of the dynamic pressure fluctuation
signal in a 50 ms window centered around tm +∆t. We choose ∆t = 500 ms for our models
because we consider this to be sufficient warning for a rocket engine controller to react
and take appropriate action. The state variables xm,xm−1, ... xm−h consist of various sensor
data (or transformations thereof) at times tm − 50, tm − 100, ... tm − 50h ms. The order of
dependence h determines how far in the past we look. In this study, we explore models
with h = 0 and h = 2. The elements of um+ f are the two mass flux control signals ṁH2,set

and ṁO2,set averaged over the window between tm and tm +∆t. These are the exogenous
variables whose future values are known and can therefore be included in the inputs. It is
possible to train models that capture higher order dependence on instantaneous values of the
control signals instead of reducing them to an average, but we find that this does not improve
predictive accuracy in our problem. σε is the homoskedastic (constant) observation noise
or aleatoric uncertainty term, which is assumed to be Gaussian. We forecast the logarithm
of p′rms(tm +∆t) instead of p′rms(tm +∆t) itself because the noise in the pressure fluctuations
increases with the amplitude, and so the simplifying assumption of constant homoskedastic
noise only holds approximately once this logarithmic transform has been applied. It also
forces p′rms predictions to be positive.

We model the nonlinear function f in Equation (2) as a feedforward neural network with a
simple multi-layer perceptron (MLP) architecture. In a standard neural network, one obtains
a point estimate of the network parameters. Here, however, we train a machine learning
algorithm on a dataset whose size is limited by the cost of performing experiments on large
rocket thrust chambers. With a standard neural network this size limit could lead to naive
and inaccurate extrapolations when the network encounters out-of-distribution inputs that
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are different from those which were experienced during training. In safety-critical systems
such as rockets, control decisions based on overconfident predictions could be catastrophic.
Bayesian Neural Networks (BNNs), described in Chapter 2, are an elegant solution to this
problem because they provide a confidence interval as well as a prediction.

6.3.2 Interpretation using Integrated Gradients

Neural networks have a reputation as black boxes, which disincentivizes their application
to cases in which practitioners must understand why the algorithm is or is not working. We
use the technique of integrated gradients (IG) [Sundararajan et al., 2017a] to attribute the
predictions of our network ensemble to the input features, as described in Chapter 2. We
use an implementation of Integrated Gradients from the DeepExplain library [Ancona et al.,
2018].

6.3.3 Transforming sensor signals into neural network inputs

We compare NARX models with different combinations and transformations of the sensor
data in their state variables xm−i (Equation 6.1) and evaluate their accuracy.

Models that include the low frequency signals pcc, ṁH2, ṁO2,TH2 and TO2 in their xm−i

vectors use the average value of the signal between tm −50i and tm −50(i+1). For the high
frequency pressure and OH* signals, p′ and I′, we use transformations from the literature
that are known to capture instability-relevant information as described next. The current p′rms

is a natural candidate which is included in all models that incorporate pressure information.
Sengupta et al. [2020c] and McCartney et al. [2021] have shown that, before a combustor
transitions to instability, the power spectral density shows measurable changes which can be
used as a precursor. We estimate the spectral density of the p′ (p′FFT) and I′ (I′FFT) time series
by applying Welch’s method Welch [1967] to a segment of the signals between tm −50i ms
and tm −50(i+1) ms. In this study, a Hann window of length 30 with 50% overlap is used
for both p′ and I′.

Kobayashi et al. [2019b] applied machine learning to the the ordinal partition transition
network of the p′ and I′ timeseries to detect instabilities early. The ordinal partition transition
networks for an m-dimensional time series are expressed by a weighted adjacency matrix W
consisting of Wi j = P(πi −→ π j), i, j ∈ [1,2m], ∑Wi j = 1, where P(πi −→ π j) is the observed
probability from the ith- to jth-order transition patterns. In this study, the order patterns are
π1, π2, π3, and π4 which account for all combinations of the signs of the increments for our
two-dimensional time series [p′(t), I′(t)]. The probability distribution of the corresponding
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16-dimensional transition patterns W computed from the segment of the signals between
tm −50i and tm −50(i+1) are used in the state variable vector.

We also include a naive baseline model p′rms(tm +∆t) = p′rms(tm) for comparison. This
model, by design, is incapable of forecasting any future instabilities but, because large
portions of the run consist of steady operation, its predictions have a reasonably good root
mean squared error (RMSE). This model exists to provide a baseline RMSE and any useful
forecast needs to be significantly more accurate than this.

6.3.4 Train-test-validation split, hyperparameters, performance met-
rics

We use a dataset of five experimental runs: three that are 50 seconds long and two that are 90
seconds long. Each run has two occurrences of the 1T instability, where an instability event
is defined as being when the peak-to-peak amplitude of the pressure fluctuations exceeds 5%
of the chamber static pressure.

To avoid data leakage, one experimental run is exclusively reserved for hyperparameter
tuning. The timeseries is split into contiguous 250 millisecond blocks and every fifth block
is used to evaluate the negative log-likelihood, which is the metric we use for tuning the
BNN hyperparameters. The hyperparameters are the network depth, layer width, noise σε ,
the learning rate for the ADAM optimizer, the number of epochs and the number of neural
networks in the ensemble. For simplicity, and to facilitate comparison between models, the
same hyperparameters are chosen for all models. This does not compromise the performance
of any particular model, since increasing the key hyperparameters, width and depth, benefits
all models. We choose a 3 hidden layer MLP with 100 units in each layer because larger
networks show only minimal gains in performance. A learning rate of 2×10−4 is found to
be optimal for convergence. The aleatoric noise parameter σε is set to 0.07. In anchored
ensembling, we train all members of the ensemble until convergence so the number of epochs
was set to 512, which is found sufficient for all models. Converged estimates of the test data
log-likelihood are obtained using 25 neural networks per ensemble.

To evaluate model performance, leave-one-out cross validation (LOOCV) is performed
on the remaining four runs. Time series data involves strong temporal correlations, so
assigning training and test data points randomly is dishonest because then the two sets would
be highly similar. The test set must therefore be a completely independent experimental run.
Additionally, LOOCV is necessary because with only four runs, firm conclusions cannot be
drawn based on performance metrics for one particular test-train split, since any claimed
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efficacy or differences between models could be caused by chance. We report average
performance metrics across the four possible splits.

To evaluate model accuracy, we compute the root mean squared error (RMSE) of our
pressure amplitude forecast for the entire test run (full RMSE). We also calculate this on a
subset of the test run comprising the two segments of the timeseries one second before and
after a transition to instability event (transition RMSE). The RMSE is computed separately on
this subset because our primary interest is in forecasting instabilities and the relative merits
of different models become clearer on this subset where there is a dramatic change in the
amplitude. As a measure of the quality of uncertainty, we report mean negative log-likelihood
per test data point.

6.4 Results

The models were trained on a laptop with 16 GB RAM, an Intel i7-10870H CPU and an
NVIDIA RTX 2070 GPU. Each NARX model took ∼ 2.5 hours to train. The inference time
of the ensemble averaged around 10 milliseconds per sample, indicating that the algorithm is
suitable as a real-time diagnostic tool.

Table 1 shows the average prediction RMSEs for the NARX models computed during
cross-validation across the four runs. We note, firstly, that the NARX models outperform
the naive baseline, which means that the data contains a predictable signal that can be
extracted. We also observe that the simple models, which use only the two operating point
parameters pcc and ROF as inputs, perform well. This is unsurprising because we know that
the 1T instabilities are consistently triggered when the operating point at pcc = 80 bar and
ROF = 6 is approached. This means that knowing the current operating point and future
flow rate control signals is informative. All transitions to instability in the test runs differ
from each other, however, even though though they have identical control trajectories. The
cross-validation shows unambiguously that the data from the additional instrumentation
improves the prediction of future pressure fluctuations. Models that include the dynamic
pressure spectrum p′FFT, radiation intensity spectrum I′FFT, current amplitude p′rms, ordinal
network transition probabilities, W , TO2, TH2, pO2 or pH2, have better prediction accuracies,
especially on the transition subset. Including higher order dependencies on state variables
also provides a slight boost in accuracy. Interestingly, the dynamic pressure spectrum appears
more informative than the spectrum of the OH* radiation intensity. This could be due to
the fact that a single optical probe observes only a small volume of the chamber, while the
pressure field integrates information across the whole chamber.
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State variable inputs x Order Full RMSE Transition RMSE NLL

Baseline – 0.1552 0.2134 –
pcc, ROF 0 0.1289 0.1630 -1.622
pcc, ROF 2 0.1202 0.1576 -1.631
p′rms, p′FFT 0 0.1197 0.1546 -1.5752
p′rms, p′FFT 2 0.1169 0.1508 -1.5467
p′rms, I′FFT 0 0.1255 0.1612 -1.5154
p′rms, W 0 0.1241 0.1566 -1.5801

TO2,TH2, pO2, pH2 0 0.1243 0.1578 -1.5948
pcc, ROF, p′rms, p′FFT, TO2,TH2, pO2, pH2 0 0.1048 0.1407 -1.5632
pcc, ROF, p′rms, p′FFT, TO2,TH2, pO2, pH2 2 0.1005 0.1311 -1.5350

Table 6.1 Cross-validation RMSEs (in bar) for entire runs (Full RMSE) and the transition
subset of the run (Transition RMSE) and mean negative log-likelihoods (NLL) for different
NARX models. Lower RMSEs and NLLs are better.

Table 1 also reports the mean negative log-likelihood (NLL) per datapoint, averaged
across the four cross-validations. The mean negative log-likelihoods are fairly low for most
of our models, implying that very few observations lie far outside the uncertainty bounds of
the forecast (Figure 4). This is also confirmed by the percentage of data points in the test set
within the ±1 standard deviation (s.d.) and ±3 s.d. bounds, which are roughly in line with
our Gaussian assumptions (68% within 1 s.d., 99.7% within 3 s.d.). Additionally, though
models using more features have higher prediction accuracies, they have slightly worse
NLLs in some cases because the presence of additional features results in higher epistemic
uncertainties.

To test the robustness of the Bayesian model against out-of-distribution inputs, we
simulate a sensor failure event. This is shown in Figure 6.4. To simulate an optical probe
icing event between 10 sec and 40 sec, the original photomultiplier signal is replaced by white
noise with mean 0.05 and amplitude 0.015. During this simulated probe failure, the epistemic
uncertainty of the Bayesian neural network greatly increases, indicating that the inputs are
highly dissimilar to conditions experienced during training. Predictions remain reasonable
despite the uninformative optical signal, although they become much less accurate.

We use the technique of integrated gradients to produce feature-level attribution plots,
which can tell us how much a particular predictor influenced the prediction for a particular
input. For example, the attribution plots in Figure 6.5 shows this technique being applied to
two data points. The first one is a data point just prior to the first instability event in a run,
where a large jump in the dynamic pressure fluctuation amplitude is forecast by the model.
This model uses p′FFT, p′rms and the flowrate control signals as input. The most prominent
feature is the large positive attribution for the oxygen flowrate control signal ṁO2, whose
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Fig. 6.3 Forecast p′rms values for the four experimental runs based on sensor data prior to
t − 0.5 sec, superimposed on observed p′rms values at time t. The model was trained on
the other three runs in each case. This model used p′FFT and p′rms as state variables and
order h = 2. Actual observations are shown as black dots, 3 standard deviation (S.D.) total
uncertainty bounds for the forecast are in light blue and 3 standard deviation (S.D.) epistemic
uncertainty bounds are in deep blue.
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Fig. 6.4 Bayesian Neural Network epistemic uncertainty (top) and p′rms forecasts (bottom) for
experimental run no. 4 where a fibre optical probe failure was simulated between t = 10 sec
and t = 40 sec (marked by two grey dotted lines). The model used I′FFT, p′rms as input state
variables and order = 0. Actual observations are shown as black dots, 3 standard deviation
(S.D.) total uncertainty bounds for the forecast are represented by light blue bars and 3
standard deviation (S.D.) epistemic uncertainty bounds are in deep blue. The light blue
bars are barely discernible from the deep blue bars in the failure region because the total
uncertainty is almost entirely dominated by the large epistemic uncertainty.
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Fig. 6.5 Integrated gradient attributions and input feature values (normalized to have zero
mean and unit standard deviation) for two datapoints from experimental run no. 4 at t = 16.0
seconds (top, immediately preceding an instability) and t = 60.0 seconds (bottom, stable).
The model used p′FFT and p′rms as state variables and order = 0. The blue dots show the
normalized values of the features for this particular datapoint and the bars represent the
integrated gradient attributions for each feature. For example, feature 6 (spectral power
around the 16.66 kHz frequency) in the top plot has a large negative value and a positive
integrated gradients attribution, meaning that the network has learned that low power in this
frequency band is a potential indicator of instability.
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feature value is also large for this datapoint. This is expected, because a large ṁO2 would
increase the pcc and ROF, bringing the combustor closer to instability. The prediction is also
modulated by contributions from the p′FFT features. This datapoint has a concentration of
power around the 10 kHz spectrum and low power in the mid to higher frequencies. There
is a positive contribution from the 10 kHz frequency component of the spectrum, which is
the frequency of the 1T mode, as well as from the 16.66k Hz frequency. This shows that the
model has learned that an increased concentration of acoustic power around the frequency
of the 1T mode and away from the mid-frequencies is an indication that the system is close
to instability. The second data point is from stable operation. The attributions in this case
have mostly negative values because the prediction of the model is strongly negative. The
current pressure fluctuation amplitude p′rms is close to −1.0 in this case and naturally has a
large negative attribution. The ṁH2 input (here −0.78) also contributes negatively because
low ROFs are stable. Finally, the high concentration of power in the mid-frequencies also
tells the network that this operating point will stay stable.

To summarize, we presented a method that combines multiple sensory modalities in
a rocket thrust chamber to predict impending thermoacoustic instabilities with uncertain-
ties. This is accomplished by training an autoregressive Bayesian neural network model
that forecasts the future amplitude of the dynamic pressure time series, using multiple sen-
sor measurements (injector pressure/ temperature measurements, static chamber pressure,
high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence
measurements) and future flow rate control signals as input. The method is validated using
experimental data from a representative cryogenic research thrust chamber. The Bayesian na-
ture of our algorithms allows us to work with a dataset whose size is restricted by the expense
of each experimental run, without making overconfident extrapolations. We find that the
networks are able to accurately forecast the evolution of the pressure amplitude and anticipate
instability events on unseen experimental runs 500 milliseconds in advance. We compare the
predictive accuracy of multiple models using different combinations of sensor inputs. We
find that the high-frequency dynamic pressure signal is particularly informative. We also use
the technique of integrated gradients to interpret the influence of different sensor inputs on
the model prediction. The negative log-likelihood of data points in the test dataset indicates
that prediction uncertainties are well-characterized by our model and simulating a sensor
failure event results in a dramatic increase in the epistemic component of the uncertainty,
as would be expected when a Bayesian method encounters unfamiliar, out-of-distribution
inputs.





Chapter 7

Prognosing instabilities in an
intermediate pressure industrial fuel
spray nozzle

The work in this chapter was done as part of a virtual industrial secondment with Rolls-Royce
Aircraft Engines. The data was collected by Rolls-Royce engineers from their experimental
combustion test rig and the analysis was performed by me.

7.1 Introduction

The third study on machine learning based instability precursors is on an industrial inter-
mediate pressure combustion test rig, which is equipped with three pressure transducers,
sampling at 50 kHz. Experiments are performed on three different fuel injectors over a
range of operating points in order to identify operating points that are thermoaoustically
unstable.The injectors are labelled 1a, 1b and 2. Injectors 1a and 1b are nominally identical.
The operating points are identified by their air-fuel ratio (AFR) and their exit temperature
(T30). The threshold of thermoacoustic instability is defined as the operating points at which
the acoustic amplitude exceeds 0.5% of the static pressure. The black lines in figure 10 show
this threshold in (AFR,T30)–space. Despite being nominally identical, injectors 1a and 1b
have instability thresholds at slightly different positions in (AFR,T30)-space.

The statistical tools used in this chapter have already been introduced in previous chapters,
so we can proceed directly to a discussion of the results obtained.
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Fig. 7.1 The black line shows the thermoacoustic instability threshold as a function of air-
fuel ratio (AFR) and exit temperature T30 for three aeroplane engine fuel injectors in an
intermediate pressure rig. The coloured lines show the distance to the black line. Injectors
1a and 1b are nominally identical.

7.2 Results

We normalize the ranges of AFR and T30 to run from 0 to 1 and then train a BayNNE to
recognize the Euclidian distance to the instability threshold, based on 500 ms of normalized
pressure measurements. Stable points are assigned positive distances and unstable points are
assigned negative distances. We compare the predictions from the BayNNE with those from
the autocorrelation decay, the permutation entropy, and the Hurst exponent. Figure 7.2 show
the Hurst exponent, the autocorrelation decay, and the permutation entropy for injector 1a.
The Hurst exponent reduces significantly as the system becomes unstable and this is a useful
indicator of the instability threshold, albeit with significant unquantified uncertainty. The
autocorrelation decay tends towards zero as the system becomes more unstable but, for this
data, barely changes across the instability threshold and therefore does not provide a useful
indicator for the threshold. The permutation entropy drops after the system has crossed the
threshold from stable to unstable operation, meaning that it is not useful as a precursor in
these experiments.

The BayNNE is trained on the training points of 1a and then applied to test data points
of 1a, 1b and 2. Figure 7.3 shows the distance from instability threshold predicted by the
BayNNE compared with the true distance. Uncertainty bands of the BayNNE are shown in
grey. The BayNNE provides a remarkably accurate prediction of the distance to instability
from the pressure signal alone. Figure 7.3(a) shows the distance from the instability threshold
predicted by the BayNNE trained on injector 1a when applied to pressure data from the
same injector and figure 7.3(b) shows the distance predicted by the BayNNE trained on
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Fig. 7.2 The black line shows the thermoacoustic instability threshold as a function of air-fuel
ratio (AFR) and exit temperature T30 for three aeroplane engine fuel injectors (a) 1a (b) 1b
and (c) 2 in the intermediate pressure rig. The coloured lines show the distance to the black
line. Injectors 1a and 1b are nominally identical.

injector 1a when applied to the nominally identical injector 1b. The BayNNE predictably
performs best when the test data originates from the same rig (prediction RMSE: 0.015)
but is also fairly accurate when predicting distances for the 1b injector (RMSE: 0.034). As
mentioned above, 1a is unstable over a different range of (AFR, T30)–space than 1b and,
despite this difference, the BayNNE has successfully identified the distance to instability on
the new injector and can therefore prognose instability. Figure 7.3 shows the distance from
the instability threshold predicted by the BayNNE trained on 1a when applied to the pressure
data from injector 2. The BayNNE performs badly, particularly when the system is stable.
However, the uncertainty in its predictions is also greater, reflecting the out-of-distribution
nature of the input. This confirms that a BayNNE trained on one thermoacoustic system
is a good indicator of thermoacoustic precursors on nominally-identical thermoacoustic
systems, outperforming statistical measures, but is not useful for different systems. This is
not surprising, given that the BayNNE is using all available information from the pressure
signal of this particular system, while the statistical methods are quantifying general features
in all systems.
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Fig. 7.3 Predicted distance to the instability threshold as a function of measured distance to
instability threshold for (a) injector 1a (b) injector 1b (c) injector 2 when the prediction is
obtained from a BayNNE trained on injector 1a. Injectors 1a and 1b are nominally identical.



Chapter 8

Conclusions and Outlook

8.1 Summary of contributions

Qualitatively accurate physical models can be augmented with data-driven probabilistic
machine learning tools such as Gaussian processes and Bayesian neural networks to improve
their quantitative accuracy and compute predictive uncertainties. This dissertation investigates
several ways in which such tools can be of benefit when modeling, designing against and
trying to avoid thermoacoustic instabilities.

The most influential element of any thermoacoustic system is the response of the flame
to acoustic forcing. This is also the hardest element to model. In Chapter 3, we use a
heteroscedastic Bayesian neural network ensemble to calibrate the parameters of the G-
equation, a reduced-order model for predicting the acoustic response of premixed flames,
based on observations. The ensemble is trained on 2.1 million simulated flame observations
and results on the test set of simulated flames show that parameters are recovered accurately
by the network from only 10 frames of flame data. Reasonable estimates of parameter
uncertainties are also obtained. We then use the network to infer parameters from high-
speed video footage of acoustically excited Bunsen flames in our lab. Re-simulating the
flames using inferred parameters reveals a close agreement between the model output and
experimental data, validating our data assimilation. Compared to the Ensemble Kalman filter
used for this task in the literature, our neural network based technique can assimilate flame
videos much more rapidly and obtain accurate parameter estimates using fewer observations.

Once a quantitatively accurate model of a thermoacoustic system is at hand, designers
need to explore the parameter space of the model to find an optimally stable design. Our
optimization algorithm should explore the design space efficiently using as few evaluations
of the underlying model as possible, as simulating the model can be expensive. In Chapter
4, we demonstrate how scalable, gradient-augmented Bayesian optimization (BO) pairs
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perfectly with adjoint methods in thermoacoustics. We use two optimization problems
from the literature as our test cases: a 1D Helmholtz equation model of a Rijke tube and
a low-order network model of a longitudinal combustor. We show that the BO algorithm
consistently finds more stable parameter combinations using fewer iterations than BFGS, a
popular quasi-Newton optimizer. It also builds a metamodel of the objective function in the
entire design space and explores multiple feasible designs. The metamodel can naturally be
used for uncertainty quantification as well.

Despite our best efforts to eliminate thermoacoustic instabilities in our combustor, there
are often particular ranges of operating conditions which need to be avoided because they
trigger instabilities. In Chapter 5, we use Bayesian ensembles of neural networks to model
relationships between measured combustion noise and the stability margins or operating
conditions of a lab-scale turbulent combustor. We show that we can estimate the decay rate of
acoustic pulses, the power and the equivalence ratio from a single 300 millisecond sample of
the combustor’s radiated noise over a wide range of operating conditions. Not only are these
estimates reasonably accurate, but they contain principled estimates of uncertainty. This
means that the model has the wisdom to “know what it doesn’t know” and this is reflected
in higher uncertainties when a provided input is too different from those on which it has
been trained. With Integrated Gradients, we discern which features in the input spectra
drive the networks towards a particular prediction, making our technique interpretable. We
compare our approach with two precursors of thermoacoustic instability from the literature:
the Hurst exponent and the autocorrelation decay. While these broadly behave as expected,
their relationship to the measured decay rates was noisy.

This study shows that a Bayesian ensemble of neural networks trained on a particular
combustor is better at discerning the onset of thermoacoustic instability than are traditional
measures based on the Hurst exponent and the autocorrelation decay. This shows that
important information is lost when data is filtered through the traditional methods. The good
agreement between predicted and measured values shown in Figures 5.5, 5.6 and 5.7 shows
that each operating point has a distinctive noise, which can be learned by the ensemble. It is
worth mentioning, of course, that this model is machine-specific and will not generalize to a
different machine. In an industrial setting, however, this drawback is mitigated by the fact
that there are only a few combustor designs and a lot of data for each combustor.

This work highlights the promise of building robust real-time early warning systems for
instabilities such as thermoacoustic oscillations using combustion noise data.

Chapter 6 takes the work done in our lab and applies it to a real world system. We
apply our uncertainty-aware and interpretable machine learning framework to forecast
instabilities using multimodal sensor data in a realistic, thermoacoustically unstable rocket
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thrust chamber. We predict the amplitude of dynamic pressure fluctuations 500 ms in
advance using temperature, static pressure, high-frequency dynamic pressure and OH*
radiation intensity data recorded during test runs performed with the cryogenic rocket thrust
chamber BKD. We perform a rigorous cross-validation of the autoregressive Bayesian neural
network and find that our models are able to anticipate all the instability events with varying
accuracy (25−40% lower RMSEs on the transition subset compared to baseline), depending
on the combination of inputs chosen. The inclusion of longer histories and additional sensor
information, in general, boosts predictive accuracy. Models that use the dynamic pressure
signal, in particular, show a measurable improvement in the forecast, confirming the findings
of the literature on this topic.

Once again, a key benefit of our Bayesian approach is the predictive uncertainty. In safety-
critical machines such as rocket engines, a diagnostic tool must be robust to unexpected
events such as sensor failures. We compute the log-likelihood of the test data given model
predictions and find that uncertainties are well-characterized. We also simulate a sensor
failure event in a model whose inputs included the spectrum of the fibre-optical probe signal
and demonstrate the robustness of Bayesian algorithms. Integrated Gradients helps us identify
important features and how they influence a particular prediction of the neural network.

Chapter 7 applies these machine learning based instability precursors to pressure data
from an industrial intermediate pressure combustion test rig. We used data from rigs with
three different injectors, two of which were nominally identical. We found that a neural
network ensemble trained on one of the identical injectors can predict the distance from
instability when applied to data obtained from its twin, even though these systems display
somewhat different thermoacoustic behaviour. The same network however fails to generalize
to the different injector, confirming the machine-specificity of these statistical, physics-
agnostic instability precursors. We also find that permutation entropy and the Hurst exponent
fail to adequately prognose instabilities on this data, although the permutation entropy does a
relatively better job.

8.2 Outlook

There are several promising avenues for future work in each of the applications considered.
For parameter inference using Bayesian neural networks, one can look at assimilating

data from more realistic industrial flame configurations as well as integrating our calibrated
reduced-order flame models into higher-level thermoacoustic network models of an entire
combustor.
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While Chapter 4 illustrates the untapped potential of gradient-augmented BO in thermoa-
coustics and other engineering disciplines where adjoint models are commonly used, the
models we used in our test cases were relatively cheap to evaluate. BO really shines when
the objective is expensive to evaluate, so a truly convincing use case would involve more
expensive models, e.g. 3D adjoint Helmholtz solvers and a complex combustor geometry
with many hundreds of parameters. Another interesting line of research would be looking
at different acquisition functions in the BO routine. One acquisition function of particular
interest is Noisy-Input Entropy Search [Fröhlich et al., 2020] which searches for robust
optima that are less sensitive to noise in their input. Since thermoacoustic stability is highly
sensitive to small perturbations in model parameters and geometry, finding more robust
optima may lead to better designs.

Chapters 5, 6 and 7 highlight the promise of building robust real-time early warning
systems for instabilities such as thermoacoustic oscillations using combustion noise data as
well as other sensor data such as photomultipliers and thermocouples. It also shows how
combustion noise can predict the power and equivalence ratio of the combustor and thus
validate sensor measurements without any additional investment in hardware. We can seek
to address the issue of machine-specificity in our machine learning models by training on a
wider variety of datasets from different sources and using techniques from transfer learning
and domain-invariant representation learning to build machine-invariant diagnostic tools,
which will generalize better to new devices. It also remains to be seen how effective these
diagnostic tools are at avoiding instabilities when implemented online. Hardware upgrades
are currently being undertaken at the DLR test facility that will allow the implementation of
these methods into the engine control algorithm.
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