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Abstract

Large-scale unsteady flow structures play an influential role in the dynam-

ics of many practical flows, such as those found in gas turbine combustion

chambers. This thesis is concerned primarily with large-scale unsteady struc-

tures that arise due to self-sustained hydrodynamic oscillations, also known

as global hydrodynamic instability. Direct numerical simulation (DNS) of

the Navier–Stokes equations in the low Mach number limit is used to obtain

a steady base flow, and the most unstable direct and adjoint global modes.

These are combined, using a structural sensitivity framework, to identify

the region of the flow and the feedback mechanisms that are responsible for

causing the global instability. Using a Lagrangian framework, the direct and

adjoint global modes are also used to identify the regions of the flow where

steady and unsteady control, such as a drag force or heat input, can suppress

or promote the global instability.

These tools are used to study a variety of reacting and non-reacting flows

to build an understanding of the physical mechanisms that are responsible for

global hydrodynamic instability in swirling diffusion flames. In a non-swirling

lifted jet diffusion flame, two modes of global instability are found. The first

mode is a high-frequency mode caused by the instability of the low-density

jet shear layer in the premixing zone. The second mode is a low-frequency

mode caused by an instability of the outer shear layer of the flame. Two

types of swirling diffusion flames with vortex breakdown bubbles are consid-

ered. They show qualitatively similar behaviour to the lifted jet diffusion

flames. The first type of flame is unstable to a low-frequency mode, with

wavemaker located at the flame base. The second type of flame is unstable

to a high-frequency mode, with wavemaker located at the upstream edge of

the vortex breakdown bubble. Feedback from density perturbations is found

to have a strong influence on the unstable modes in the reacting flows. The

wavemaker of the high-frequency mode in the reacting flows is very similar

to its non-reacting counterpart. The low-frequency mode, however, is only

observed in the reacting flows. The presence of reaction increases the influ-



ence of changes in the base flow mixture fraction profiles on the eigenmode.

This increased influence acts through the heat release term.

These results emphasize the possibility that non-reacting simulations and

experiments may not always capture the important instability mechanisms of

reacting flows, and highlight the importance of including heat release terms

in stability analyses of reacting flows.
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Introduction

1.1 Context

The combustion of liquid and gaseous fossil fuels provides a large proportion

of the energy required for transportation and electrical power generation in

the world today. The mixing of the fuel with the oxidizer plays an important

role in determining the efficiency of the combustion process. Good mixing

leads to efficient combustion, which can reduce the operational and manu-

facturing costs involved.

Mixing has been defined, in Broadwell & Mungal (1991), as ‘the process

of diffusion of substances across intermaterial surfaces’. This process can be

promoted by increasing the surface area that is available for diffusion, and

by increasing the concentration gradients that drive diffusion. Both of these

can be achieved by a process which Broadwell & Mungal (1991) quote as

‘stirring’: ‘the mechanical process whereby fluids are distributed more uni-

formly within a given domain’. This, they note, ‘is a purely kinematical

aspect dependent on flow parameters’, whereas ‘mixing depends on material

properties such as diffusivities’. 1

1This distinction was first suggested by C. Eckart in Journal of Marine Research, VII,
3, 265 (1948).
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Fuel injectors improve the rate of mixing through this ‘stirring’ mech-

anism. They are designed to produce turbulent flows with large velocity

gradients (shear). These turbulent shear flows often have large-scale struc-

tures that are very efficient at stirring, stretching, and folding the fluid.

These large-scale structures have been observed in non-reacting turbulent

shear layers (Brown & Roshko, 1974), jets (Crow & Champagne, 1971), and

wakes (Wygnanski et al., 1986). In combustion systems, these large-scale

structures can have a profound effect on the structure and stability of the

flame. (Coats, 1996)

Swirl is imparted to flows in fuel injectors for two main reasons. Firstly,

swirling jets have been found to have higher spreading rates and to produce

better mixing between the jet fluid and the surrounding fluid compared to

non-swirling jets (Panda & McLaughlin, 1994). Secondly, in combustion sys-

tems, swirl is used to stabilize the flame through the formation of a central

recirculation zone (CRZ) that ensures a supply of fresh reactants to, and

removal of hot products away from the flame front. This CRZ is caused by

vortex breakdown, which occurs in highly swirling flows. In most situations,

a large-scale unsteady helical mode, commonly referred to as the precessing

vortex core (PVC), evolves around this CRZ. The review articles by Syred

(2006) and Huang & Yang (2009) provide an extensive overview of the numer-

ical and experimental evidence for these structures in practical combustion

systems.

The unsteady hydrodynamic structures present in both swirling and non-

swirling flows can also interact with other modes in the combustion system,

such as the acoustics, to lead to complex instability behaviour. In particular,

unsteady heat release from the flame can couple with pressure oscillations

caused by the acoustics, leading to high-amplitude oscillations that are refer-

rred to as thermoacoustic instability. This is a major challenge facing many

gas-turbine manufacturers today. Chakravarthy et al. (2007) and Sivakumar

& Chakravarthy (2008) have shown that the large-scale structures arising

from the hydrodynamics can set the frequency of these thermoacoustic in-



3

stabilities. The exact relationship between the hydrodynamics and the ther-

moacoustic modes of instability is not known precisely and is still an area of

current research. This thesis, however, is only concerned with the hydrody-

namic instability.

Advances in computing power and diagnostic techniques have made it

easier to understand the way flows behave. In contrast, understanding why

they behave that way and how we might change that behaviour has not been

as straightforward and forms the motivation for this thesis. In particular,

this thesis is motivated by the aim of deriving sensitivity information that

can aid designers. This sensitivity information includes identifying which re-

gions of the flow are most influential in causing the large-scale hydrodynamic

structures and how one might change the frequency and prominence of these

structures by making small changes to the design.

1.2 Background

Although most practical applications feature flows that are turbulent, this

thesis is concerned with large-scale unsteady structures that develop in lam-

inar flows. Hydrodynamic instability can lead to unsteadiness in flows that

have steady boundary conditions. This was first shown experimentally by

Reynolds (1884) for flow in a pipe. He found that unsteady structures de-

veloped in the steady laminar flow in a pipe when the velocity of the water

in the pipe was above a critical value. Around the same time, theoretical

studies by Helmholtz and William Thomson (Lord Kelvin), on the effect of

wind on a surface of water, and Lord Rayleigh, on the growth of sinusoidal

perturbations on the surface of a liquid jet, laid the foundations for the use

of linear stability analysis to study the response of steady laminar flows to

small perturbations.

The stability of shear flows, which are particularly relevant for this thesis,

was first investigated by Rayleigh (1880) for the case of inviscid flow between

two fixed walls. The flow was assumed to be parallel, which means that it
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was the same at each streamwise location. Here, Rayleigh derived the famous

inflexion point theorem, which states that an inflexion point in the velocity

profile is a necessary condition for the flow to be unstable. In doing so, he

used the method of normal modes, which has since become the standard

procedure of studying linear stability. The method consists of decomposing

the perturbations into modes of different wavelengths and calculating the fre-

quency with which these modes grow or decay. Typically, the analysis leads

to an equation that relates the wavenumber (the inverse of the wavelength)

and frequency of the perturbations. This equation is referred to as the dis-

persion relation for the flow. This dispersion relation is solved as a complex

eigenvalue problem - the one-dimensional eigenfunction provides the shape

of the mode, while the complex eigenvalue determines whether this mode

grows or decays.

In the early 20th century, the method of normal modes was applied

to study the stability of viscous parallel shear flows. This led to the Orr-

Sommerfeld equations, which define an initial value problem that determines

whether perturbations of a specified spatial wavelength grow or decay in time.

The dispersion relation is solved for a complex frequency and real wavenum-

ber. This analysis is referred to as a temporal stability analysis. The spatial

analogue of this problem, which determines whether perturbations of a speci-

fied frequency grow or decay in space, was developed in the mid 20th century

to study the instability of flows developing over space such as boundary lay-

ers. Here, the dispersion relation is solved for a real frequency and complex

wavenumber. This analysis is referred to as a spatial stability analysis. A

full review of these methods of analysis can be found in Drazin & Reid (1981).

In situations where perturbations may grow in both space and time, a

purely temporal or purely spatial stability analysis may be insufficient to

characterize the stability. The development of spatio-temporal stability the-

ory resolved this by using the concept of absolute instability, which was

originally developed in the field of plasma physics. A parallel flow is de-

scribed as convectively unstable if the linear response to a localized impulse
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spreads only downstream of the location of the impulse. In this case, the

energy at the site of the impulse decays in the long time limit and the flow

eventually returns to its base state. In contrast, a parallel flow is described

as absolutely unstable if the linear response to a localized impulse spreads

both upstream and downstream of the location of the impulse. In this case,

the energy at the site of the impulse grows in the long time limit, and the

impulse reponse dominates over the base state. In a spatio-temporal stability

analysis, the dispersion relation is solved for complex frequency and complex

wavenumber. These ideas and their application to shear flows are reviewed

in detail by Huerre & Monkewitz (1990).

In many situations, flows are not parallel but evolve in the streamwise

direction. In cases that are only weakly non-parallel, the WKBJ approxi-

mation can be used to extend the concept of absolute instability of parallel

flows to non-parallel flows. This approximation states that the wavelength

of the instability is much smaller than the spatial scale over which the base

flow changes. The spatio-temporal stability can then be determined for each

streamwise location of the flow, by assuming that the flow there is locally

parallel and only varies in one spatial dimension. Such an analysis is, there-

fore, referred to as a local linear stability analysis.

Huerre & Monkewitz (1990) showed that the global behaviour of the flow

is related to its local stability properties. If a sufficiently large region of the

flow is absolutely unstable, the flow behaves as an oscillator. It supports

self-sustained oscillations at a well-defined frequency. These self-sustained

oscillations are known as global modes and arise from a purely hydrody-

namic feedback loop (Chomaz et al., 1988; Huerre & Monkewitz, 1985). A

classical example of such a flow is the flow behind a cylinder. Such a flow

is said to be linearly globally unstable. In contrast, if a flow is convectively

unstable everywhere, the flow behaves as an amplifer. It is very sensitive to

external perturbations and amplifies these disturbances spatially. A classical

example of such a flow is a uniform density jet. Such a flow is said to be

linearly globally stable.
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For flows that are strongly non-parallel, a linear global stability analysis

is more appropriate. This applies the normal mode approach to study the

growth of two- and three-dimensional perturbations on top of a steady two-

or three-dimensional base flow. Zebib (1987) and Jackson (1987) studied the

linear global stability of two-dimensional viscous flow past a circular cylinder.

They solved two-dimensional eigenvalue problems and obtained the growth

rate, frequency, and the two-dimensional eigenfunction for the most unstable

mode.

In many practical flows, the normal mode approach and most unstable

eigenmode have been unable to explain experimental observations. For ex-

ample, the normal mode approach predicts pipe flow and plane Couette flow

to have no unstable eigenvalues for any flow velocity, whereas experimen-

tal observations clearly show unsteady behaviour beyond a critical Reynolds

number. One explanation for this discrepancy has been the discovery that

the linearized Navier–Stokes operator that governs the growth of the pertur-

bations in viscous shear flows is non-normal (Butler & Farrell, 1992). This

means that the linear eigenfunctions are not orthogonal to each other. They

can, therefore, interact to produce perturbation growth that is greater than

that predicted by the most unstable linear eigenmode. This is of particular

importance to flows that are linearly globally stable because large transient

growth can occur even though a normal-mode approach would predict that

all perturbations should decay in the long time limit. (Schmid, 2007).

More precisely, though, a non-normal operator is one which does not

commute with its adjoint. This is analogous to the concept of a non-normal

matrix which does not commute with its conjugate transpose. The normal

mode approach can be applied to the adjoint operator in the same way as

the direct linear operator. Salwen & Grosch (1981) showed that the adjoint

eigenfunctions of the Orr-Sommerfeld equations are bi-orthogonal with their

direct linear counterparts. This means that for each linear eigenmode, there

exists only one adjoint eigenmode that is non-orthogonal to it. This adjoint
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eigenvalue is the complex conjugate of the direct linear eigenvalue.

A direct consequence of the non-normality of the linear operator is that

the eigenvalues can be quite sensitive to small perturbations. This leads

to the idea of the pseudospectrum of the linear operator (Trefethen et al.,

1993), which defines how the spectrum of eigenvalues changes for small per-

turbations to the linear operator. For flows with large non-normality, a small

perturbation of the linear operator can produce a large modification of the

spectrum. From a physical point of view, this means that a small change in

the flow can change the global behaviour of the flow. This was demonstrated

experimentally by Strykowski & Sreenivasan (1990) on the vortex shedding

that arises in the wake behind a circular cylinder. By placing a small control

cylinder in a suitable location, they were able to suppress the vortex shedding

entirely. The same problem was first investigated numerically by Hill (1992)

using a linear global stability analysis around the cylinder wake. He showed

that the two-dimensional adjoint eigenfunction (or adjoint global mode) can

be used to quantify the effect of steady and unsteady forces on the unstable

eigenvalue.

The physical interpretation of the adjoint global mode is summarized

nicely by Chomaz (2005). In a flow that is globally unstable and behaves

as an oscillator, the adjoint global mode represents the initial condition that

maximizes the amplitude of the direct global mode at any time, or equiva-

lently, the sensitivity of the eigenvalue to external open-loop harmonic forc-

ing. This may be useful for thermoacoustics as it can identify where the

hydrodynamic mode is receptive to acoustic forcing, which produces veloc-

ity and pressure perturbations in the hydrodynamics. The adjoint global

mode can be used to calculate the sensitivity of the eigenvalue to a small

perturbation to the linear operator. This is called the structural sensitivity

(Giannetti & Luchini, 2007) and physically, this can be used to identify the

region of the flow that is most influential in determining the growth rate

and frequency of the global mode. Giannetti & Luchini (2007) showed that

this region, which they called the wavemaker, is given by the overlap of the
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direct and adjoint global modes. 1 This is useful in understanding the inher-

ent dynamics of the flow and the mechanisms that cause the self-sustained

oscillations. When considering control of these oscillations, however, it is

important to take into account that a control force will have an effect on the

base flow as well as on the linear operator. This was recognized originally by

Hill (1992), and described in more detail by Marquet et al. (2008a) for the

cylinder wake. They calculated the sensitivity of the eigenvalue to arbitrary

base flow modifications, and to steady forcing. This is expected to be most

useful from a practical point of view to develop passive control and boundary

modification strategies to promote or suppress the instability. These tech-

niques have now been applied to a variety of flows that behave as oscillators,

such as, the compressible flow behind axisymmetric bodies (Meliga et al.,

2010), the case of a jet impinging on a flat plate (Meliga & Chomaz, 2010),

and planar wakes typically found in the paper-making industry (Tammisola,

2011). These techniques have also been applied to study flows that behave as

amplifiers, and have also been used to derive reduced-order models of flows

for closed-loop control. A review of these techniques and their applications

can be found in Sipp et al. (2010).

It is important to realize that these linear analyses that have been dis-

cussed so far are strictly only valid near the threshold of instability (or bifur-

cation point). Even near the bifurcation point, the linear analysis predicts

the initial growth of perturbations, but once these pertubations become suf-

ficiently large, nonlinear effects start becoming important, and the flow sat-

urates to a nonlinear limit cycle (or a nonlinear global mode). For a weakly-

nonparallel flow, Pier & Huerre (2001) extended the local linear stability

analysis to predict the frequency of the nonlinear global mode that devel-

ops in a spatially developing wake. They showed that the nonlinear global

frequency is determined by the local absolute frequency at the streamwise

location where the flow first becomes absolutely unstable. For the more

strongly non-parallel case of the cylinder wake, Pier (2002) found that the

1This overlap is defined as the dyadic product of the direct and adjoint global mode
vectors.
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local frequency selection criterion was less accurate. Near the bifurcation

point, a weakly nonlinear approach can also be applied to the global sta-

bility analysis (Chomaz, 2005). This involves the use of Landau equations

to model the amplitude of the global mode. In this thesis, however, only a

linear stability analysis near the bifurcation point is used.

In the context of swirling flows, there have been numerous studies on

the invscid and viscous linear stability of parallel swirling flows. The well-

known Batchelor vortex (Batchelor, 1964), which was derived as a model

for the trailing line vortex downstream of a wing, has received considerable

attention. This analytical profile has also been found to be a good model

for swirling flows in other applications, such as those downstream of vortex

breakdown states. Both temporal and spatio-temporal stability local stabil-

ity analyses have been performed, and a full review of these local stability

results would be quite long. A concise review, however, can be found in §1.1

of Heaton et al. (2009). The main point that is important for the purpose of

this thesis is that increasing swirl generally tends to promote local absolute

instability for non-axisymmetric perturbations. At the time when work for

this thesis was begun, the only study of the global stability of a swirling flow

was that of Heaton et al. (2009), who considered the weakly non-parallel

Batchelor vortex and found modes with azimuthal wavenumbers m = −1

(helical) and m = −2 (double-helical) to be globally unstable. The sensitiv-

ity of these modes was not, however, investigated.

1.3 Scope of this work

This thesis is part of a wider effort to identify the regions that are most

influential in causing hydrodynamic instabilities in flows with strong den-

sity and velocity gradients, such as fuel injectors. It continues on from the

work of Chandler (2010), who developed linearized direct and adjoint algo-

rithms for the low Mach number Navier–Stokes equations, which are suitable

to study hydrodynamic instability in flows with strong density and velocity
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gradients. Chandler developed two types of adjoint algorithms: a continuous

adjoint, which involved deriving the adjoint low Mach number equations, and

a discrete adjoint, which involved calculating the conjugate transpose of each

step of the direct algorithm. Chandler implemented these algorithms in an

axisymmetric direct numerical simulation code from a previous study. Due

to its convenience, only the discrete adjoint was implemented for reacting

flows, whereas both the continuous and discrete adjoints were implemented

for non-reacting flows. Chandler (2010) used these tools to obtain the di-

rect and adjoint global modes for the axisymmetric mode of instability of a

low-density jet and a lifted jet diffusion flame, and calculated the structural

sensitivity for these flows.

In this thesis, these tools are extended to include the capability to study

swirling flows and non-axisymmetric modes of instability. The continuous

adjoint approach is favoured in this thesis, and therefore, a continuous ad-

joint scheme (which is slightly different to the scheme proposed by Chandler)

has been implemented for reacting flows. In addition, the tools are extended

to obtain the sensitivity of the modes of instability to steady forcing and

changes in the base flow. These extensions produce a set of tools that can

now be used to study a variety of both swirling and non-swirling reacting

and non-reacting flows. The mathematical formulation and the numerical

implementation of these tools is described in chapters 2 and 3.

These tools are then used to study a variety of flows, of increasing com-

plexity, to build an understanding of the physical mechanisms that are re-

sponsible for global hydrodynamic instability in swirling diffusion flames. As

a first step, in chapter 4, the tools are applied to study passive control of a

globally unstable low-density jet. In chapters 5 and 6, the tools are applied,

for the first time, to study the origin and passive control of the spiral modes

of vortex breakdown. To understand the feedback mechanisms that influ-

ence the growth rate and frequency of the unstable mode, the components of

the structural sensitivity tensor are considered in more detail. In chapter 5,

the tools are applied to the Grabowski velocity profile (Grabowski & Berger,
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1976), which is well-studied numerically. This means that the results can be

compared to previous studies to establish the validity of the tools developed

in this thesis. In chapter 6, the tools are applied to a velocity profile that is

a good model for the velocities measured in experiments near the exit plane

of swirling jets. The sensitivity maps are compared to those obtained for

the Grabowski profile. In chapter 7, the lifted jet diffusion flame that was

originally considered by Chandler (2010) is revisited and studied in more

detail to understand the origin of, and the possible control of the unstable

modes. Finally, in chapter 8, the tools are applied to study global hydrody-

namic instability in a swirling flame. The modes of instability are compared

to and found to be related to the modes of instability seen in the previous

chapters. This thesis ends with a summary of the work completed and some

possibilities of how this work may be continued and extended.
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2

Mathematical formulation

This chapter is devoted to formulating the linear global stability and sen-

sitivity analyses based on the low Mach number equations. The equations

governing the motion of the base flow and those governing the motion of

perturbations on top of this base flow are presented. The adjoint of the

linearized operator is used to obtain the sensitivity of the growth rate and

frequency of these perturbations to feedback inherent to the flow, and to

open-loop steady and unsteady forcing.

2.1 Governing equations

This thesis considers the motion of a viscous fluid in a cylindrical domain with

length Xmax and radius Rmax, using cylindrical coordinates (x, r, θ). The flow

has density, ρ, pressure, p, temperature, T , and velocity, u = (ux, ur, uθ)T .

The physical properties of the flow, namely the viscosity, µ, thermal con-

ductivity, λ, and the specific heat capacity at constant pressure, cp are all

assumed to be uniform throughout the flow and to remain constant. The

inlet boundary, at x = 0, is labelled Ωin. The outlet boundary, at x = Xmax,

is labelled Ωout. The lateral boundary, at r = Rmax, is labelled Ωlat.

The motion of the fluid is governed by a set of equations which describe

the conservation of mass (the continuity equation), conservation of momen-
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tum (the Navier–Stokes equations), and conservation of energy and any other

scalar quantity. An additional equation of state is required to make this a

complete set of equations. In nondimensional form, these equations may be

written as

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u, (2.1a)

∂(ρu)

∂t
= −

1

γMa2
∇p + ∇ · (

1

S1Re
τ − ρuu) + Ri(1 − ρ)ĝ

(2.1b)

ρ(
∂T

∂t
+ u ·∇T ) =

1

S1RePr
∇2T, (2.1c)

p = ρ ((S1 − 1)T + 1) , (2.1d)

where τ =
[

∇u + (∇u)T
]

− 2
3(∇ ·u)I is the viscous stress tensor. The nondi-

mensional parameters and variables are defined in Tables 2.1 and 2.2 in terms

of a reference length L0, a reference velocity U0, and two reference values of

the density and temperature: ρ0 and T0 and ρ1 and T1. The values of these

depend on the specific flow profile being studied. There are many possible

ways of nondimensionalizing the equations of motion. The definitions used in

this thesis follow those used in earlier studies of Nichols (2005) and Chandler

(2010). The same results can be obtained with different definitions, as long

as the parameters are scaled appropriately.

In the limit of low Mach number, an approximate set of equations can be

derived which allows for density variations due to temperature or due to the

mixing of different species but excludes density variations due to pressure.

This has the effect of excluding acoustic waves, which significantly reduces

the computational cost of solving these equations.

To derive these low Mach number (LMN) equations, the independent

variables in the equations above are expanded as power series in ε = γMa2

in the form u = u(0) + εu(1) + O(ε2). The pressure term in the momen-

tum equation contains a factor of 1/ε and hence, the term retained in the

momentum equation is the first-order term −∇p(1). The zeroth order mo-
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Nondimensional variable Definition
Length x ≡ x∗

L0

Velocity u ≡ u∗

U0

Temperature T ≡ T ∗
−T0

T1−T0

Pressure, p p ≡ p∗

ρ0RgT0

Density ρ ≡ ρ∗

ρ0

Time t ≡ t∗U0

L0

Table 2.1: Nondimensional variables defined in terms of dimensional vari-
ables (starred), physical constants and the reference values.

Nondimensional parameter Definition
Mach number Ma ≡ U0

γRgT0

Density ratio S1 ≡
ρ0

ρ1

Reynolds number Re ≡ ρ1U0L0

µ

Prandtl number Pr ≡ µcp

λ

Richardson number Ri ≡ gL0

U2
0

Table 2.2: Nondimensional parameters defined in terms of dimensional
variables (starred), physical constants and the reference values.
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mentum equation gives ∇p(0) = 0 and the zeroth order equation of state

gives p(0) = ρ [(S1 − 1)T + 1]. All other variables are approximated by the

zeroth order term in their series.

This implies that the zeroth order pressure (which is referred to as the

thermodynamic pressure), is uniform in space. In this thesis, the computa-

tional domain is assumed to be open, which implies that the thermodynamic

pressure is also constant in time. Using the equation of state and the defi-

nition of the nondimensional pressure, it can be shown that p(0) = 1. In the

LMN equations, the first order pressure p(1) is referred to as the hydrody-

namic pressure because it is associated with the fluid motion and does not

affect the thermodynamic state of the fluid. In nondimensional form, the

LMN equations are

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u, (2.2a)

∂(ρu)

∂t
= −∇p + ∇ · (

1

S1Re
τ − ρuu) + Ri(1 − ρ)ĝ, (2.2b)

ρ(
∂T

∂t
+ u ·∇T ) =

1

S1RePr
∇2T, (2.2c)

ρ [(S1 − 1)T + 1] = 1, (2.2d)

where the superscript has been dropped from the hydrodynamic pressure.

These equations can be expressed in terms of the momentum, m = ρu,

temperature and pressure as

∂q

∂t
= N(q), (2.3)

where q ≡ (mx, mr, mθ, T )T is the state vector and N is a nonlinear differ-

ential operator representing the action of the equations on the state vector.

The density, ρ, is not included in the state vector because it can be derived

from the temperature, T . The pressure, p, is not included in the state vector

because it can be derived from the other flow variables in this incompressible

formulation.
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2.2 Linear global stability analysis

In this thesis, the stability of axisymmetric flows is studied. A steady axisym-

metric solution to equation (2.3) is required. This steady solution, labelled

q̄ ≡
(

m̄x, m̄r, m̄θ, T̄
)T

, is referred to as the base flow and is obtained using

the procedures described in §3.2.1. 1 The evolution of small perturbations,

which are labelled u′, ρ′ etc., on top of the base flow is governed by the

linearized equations of motion:

∂ρ′

∂t
= −∇ ·m′, (2.4a)

∂m′

∂t
= −∇p′ −∇ · (ρ̄ūu′ + ρ̄u′ū + ρ′ūū) +

1

S1Re
∇ · τ ′ + Riρ′ĝ,

(2.4b)

ρ̄
∂T ′

∂t
= −m′ ·∇T̄ − ρ̄ū ·∇T ′ +

1

S1RePr
∇2T ′, (2.4c)

ρ′

ρ̄
= −

(S1 − 1)T ′

((S1 − 1)T̄ + 1
, (2.4d)

where m′ ≡ ρ̄u′+ρ′ū is the linearized momentum and τ ′ =
[

∇u′ + (∇u′)T
]

−
2
3(∇ · u′)I is the linearized viscous stress tensor. This set of equations can

be represented as
∂q′

∂t
= Lq′, (2.5)

where q′ ≡ (m′

x, m′

r, m′

θ, T ′)T is the state vector and L is a linear differential

operator representing the action of the equations on the state vector.

Following the normal mode approach, these linear perturbations are de-

composed into Fourier modes in time and the azimuthal direction:

q′(x, r, θ, t) = q̂(x, r)eimθ+λt, (2.6)

1The steady base flow is a solution to the nonlinear LMN Navier–Stokes equations,
but it may be unstable, in which case the steady base flow will not exist in practice.
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where m is the azimuthal wavenumber and λ ≡ σ + iω contains the growth

rate, σ, and frequency, ω. Substituting (2.6) into (2.5) leads to an eigenvalue

problem, in which m has been incorporated into the linear operator as a

parameter:

λq̂ = Lmq̂. (2.7)

For each azimuthal wavenumber, m, only certain values of λ satisfy (2.7).

Each of these eigenvalues has a corresponding two-dimensional eigenfunc-

tion, q̂(x, r). Each eigenvalue/eigenfunction pair is labelled a direct global

mode. The linear stability of each direct global mode is determined by its

growth rate, σ. If σ < 0 it is linearly globally stable. If σ > 0, it is linearly

globally unstable. In this linear analysis, the flow tends to the form of the

global mode with highest σ in the long-time limit and therefore this mode

determines the system’s overall stability.

2.3 Sensitivity to internal feedback

As mentioned earlier, global instability arises due to purely hydrodynamic

feedback mechanisms in the flow. Mathematically, these feedback mecha-

nisms are inherent to the linearized operator Lm. As a simple thought exer-

cise, one may consider the effect of changing these feedback mechanisms to

control the global instability. The eigenvalue of the global mode is a function

of the linear operator and the base flow, λ = f (Lm, q̄). For a simple function

G = f(x, y), the change in G due to small change in x is given by δG = ∂G
∂x δx.

Similarly, the change in the eigenvalue due to a small change in the linear

operator is given by

δλ = 〈∇Lmλ, δLm〉, (2.8)

where ∇Lmλ is a complex function that represents the functional derivative

of λ with respect to Lm. Formally, this is defined as

∇Lmλ = lim
ε→0

(

λ(Lm + εδLm, q̄) − λ(Lm, q̄)

ε

)

. (2.9)
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This is labelled the sensitivity of the eigenvalue to a small change in the

linear operator or, in short, the structural sensitivity. The notation 〈a,b〉

denotes an inner product over a volume V ,

〈a,b〉 =
1

V

∫

V

aHb dV, (2.10)

where aH denotes the Hermitian (i.e. complex conjugate transpose) of a.

2.3.1 Derivation

Using ideas from optimal control theory, the sensitivity function can be cal-

culated by formulating a Lagrangian problem for λ. Equation (2.7) acts as a

constraint in this problem. For now, changes in the base flow are neglected

and only changes in the linear operator are considered. The Lagrangian

problem is then given by

L = λ − 〈a, λq̂− Lmq̂〉 (2.11)

The complex vector field a is the Lagrange multiplier in this problem. To

find the sensitivity function, the functional derivative of L with respect to

all variables other than Lm must be set to zero. The sensitivity function will

then be given by the the functional derivative of L w.r.t Lm. Firstly, setting

the functional derivative of L w.r.t q̂ to zero gives

〈∇q̂L, δq̂〉 = lim
ε→0

(

−〈a, ε(λδq̂ − Lmδq̂)〉

ε

)

= 0 (2.12a)

⇒ −〈a, λδq̂〉 + 〈a,Lmδq̂〉 = 0. (2.12b)

Using results from the field of functional analysis, the second term can be

rearranged to give

〈a,Lmδq̂〉 = 〈L+
ma, δq̂〉 + boundary terms, (2.13)
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where L+
m is the corresponding adjoint operator of Lm. The adjoint operator

can be seen to be a generalization of the conjugate transpose of a matrix.

The boundary terms are set to zero by choosing suitable boundary conditions

(§3.3.2). Then, substituting (2.13) into (2.12) gives

〈−λ∗a, δq̂〉 + 〈L+
ma, δq̂〉 = 0 (2.14a)

〈−λ∗a + L+
ma, δq̂〉 = 0 (2.14b)

A non-trivial solution of this is obtained by solving

−λ∗a + L+
ma = 0, (2.15)

or equivalently,

λ∗a = L+
ma, (2.16)

where λ∗ ≡ σ − iω is the complex conjugate of the corresponding direct

eigenvalue. This is an eigenvalue problem and by comparing it to (2.7), the

Lagrange multiplier a can be interpreted as the adjoint eigenfunction or the

adjoint global mode q̂+.

There are two ways to obtain the adjoint operator. The first way is the

discrete adjoint approach, which involves taking the conjugate transpose of

the discretized linear operator matrix to obtain the discretized adjoint op-

erator matrix. The second way is the continous adjoint approach, which

involves deriving the adjoint equations from the linearized NS equations and

then discretizing the adjoint equations. Chandler discussed both these ap-

proaches for the LMN equations and showed that they gave the same results.

He found that the discrete adjoint is easier to debug than the continuous ad-

joint and its eigenvalue matches the direct solution to machine precision. On

the other hand, the continuous adjoint offers physical insight and Chandler

found that it produced better resolved eigenmodes and converged faster than

the discrete adjoint for the same spatial resolution. Therefore, in this thesis,

the continuous adjoint approach is used.
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In the continuous adjoint approach, the adjoint equations are derived

from the direct governing equations by integration by parts. For the LMN

equations, Chandler (2010) found that the direct equations (2.4) need to be

rearranged into a suitable form before deriving the adjoint equations. This

is necessary so that the two sets of equations can be solved using a similar

algorithm, which reduces numerical errors that arise when solving the adjoint

equations. The Lagrangian problem (2.11) is then written as

L = λ −

〈

p̂+, (S1 − 1)

(

m̄i
∂T̂

∂x̂i
−

1

S1RePr

∂2T̂

∂x2
i

)

+
∂

∂xi

(

m̂i

ρ̄

)

〉

· · ·

−

〈

m̂+
i , λm̂i +

∂

∂xj

(

m̄jm̂i

ρ̄
+

m̂jm̄i

ρ̄
−

ρ̂m̄jm̄i

ρ̄2

)

+
∂p̂

∂xi
· · ·

−
1

S1Re

(

∂2

∂x2
j

(

m̂i

ρ̄
−

ρ̂m̄i

ρ̄2

)

+
1

3

∂2

∂xj∂xi

(

m̂i

ρ̄
−

ρ̂m̄i

ρ̄2

))

− Riρ̂ĝ

〉

· · ·

−

〈

T̂+, λT̂ +
m̄i

ρ̄

∂T̂

∂xi
+

m̂i

ρ̄

∂T̄

∂xi
−

1

S1RePrρ̄

∂2T̂

∂x2
i

〉

· · ·

−

〈

ρ̂+,
ρ̂

ρ̄2
+ (S1 − 1)T̂

〉

. (2.17)

The adjoint pressure acts as the Lagrange multiplier for the continuity equa-

tion. This rearrangement is required to eliminate the ∂ρ/∂t term that was

present in the continuity equation in (2.4). This term would have led to a

∂p̂+/∂t term in the adjoint equations, which is not present in the direct equa-

tions. From (2.17), the adjoint equations are derived by taking the functional

derivative w.r.t the direct global mode fields as outlined in equations (2.12)

to (2.14). The adjoint eigenvalue problem is then defined by the following
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set of adjoint LMN equations:

∂m̂+
i

∂xi
= 0 (2.18a)

λ∗m̂+
i =

m̄j

ρ̄

(

∂m̂+
i

∂xj
+

∂m̂+
j

∂xi

)

+
1

ρ̄

∂p̂+

∂xi
+

1

S1Reρ̄

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

−
T̂+

ρ̄

∂T̄

∂xi
(2.18b)

λ∗T̂+ = m̄i
∂

∂xi

(

T̂+

ρ̄
+ (S1 − 1)p̂+

)

+
1

S1RePr

∂2

∂x2
i

(

T̂+

ρ̄
+ (S1 − 1)p̂+

)

− (S1 − 1)ρ̂+ (2.18c)

ρ̂+ = −m̄im̄j
∂m̂+

i

∂xj
− Riρ̄2m̂+

i gi −
m̄i

S1Re

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

(2.18d)

Returning to the Lagrangian problem, setting the functional derivative of L

w.r.t. a (now relabelled q̂+) to zero gives

〈∇q̂+L, δq̂+〉 = lim
ε→0

(

−ε〈δq̂+, λq̂− Lmq̂〉

ε

)

= 0 (2.19a)

⇒ −〈q̂+, λq̂− Lmq̂〉 = 0. (2.19b)

A non-trivial solution of this is simply the direct eigenvalue problem (2.7).

Next, setting the functional derivative of L w.r.t. λ to zero gives

〈∇λL, δλ〉 = lim
ε→0

(

εδλ − 〈q̂+, εδλq̂〉

ε

)

= 0 (2.20a)

⇒ δλ − 〈q̂+, q̂〉δλ = 0. (2.20b)

This provides a normalization condition for the direct and adjoint global

modes:

〈q̂+, q̂〉 = 1. (2.21)
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Finally, the functional derivative of L w.r.t. Lm is given by

〈∇LmL, δLm〉 = lim
ε→0

(

−〈q̂+,−εδLmq̂〉

ε

)

(2.22a)

= 〈q̂+, δLmq̂〉. (2.22b)

By setting all other functional derivatives to zero, the change in the eigen-

value due to a change in the feedback in the linear operator is given by the

expression in (2.22)b. The sensitivity of the eigenvalue to internal feedback,

or the structural sensitivity, is given by the dyadic product of the direct and

adjoint state vectors

∇Lmλ = q̂(q̂+)∗. (2.23)

2.3.2 The wavemaker

The concept of the structural sensitivity was developed by Hill (1992) and Gi-

annetti & Luchini (2007) for the incompressible Navier–Stokes equations, for

which the structural sensitivity is given by the dyadic product of the direct

and adjoint global mode velocity vectors, Sij = ûi(û
+
j )∗. For two-dimensional

direct and adjoint global modes, each component of the sensitivity tensor can

be visualized as a two-dimensional map that shows the regions of the flow

where feedback between the components of the velocity is strong. Giannetti

& Luchini (2007) used the Frobenius norm of this sensitivity tensor to iden-

tify where a modification in the linearized equations produces the greatest

drift of the eigenvalue and thereby reveal the region of the flow that acts as

the wavemaker.

For the formulation of the LMN equations used in this thesis, the equiv-

alent definition to that of Giannetti & Luchini (2007) is given by the dyadic

product of the direct and adjoint momentum vectors, Sij = m̂i(m̂
+
j )∗. The

components of this complex-valued 3× 3 tensor show how feedback between

the components of the linearized momentum vector affects the growth rate

and frequency of the global mode. The Frobenius norm of this tensor is
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equivalent to evaluating the expression

|∇Gλ|max = ‖(m̂+)H‖‖m̂+‖, (2.24)

where m̂ and m̂+ represent the direct and adjoint global mode momentum

fields that have been normalized according to (2.21). In this thesis, the Frobe-

nius norm of the sensitivity tensor is used to identify the region of the flow

that drives the global mode but it cannot reveal the feedback mechanisms

active in this region. This additional information is obtained by analysing

the individual components of the sensitivity tensor.

2.4 Sensitivity to a control force

So far, only the sensitivity of the eigenvalue to feedback between the per-

turbations has been considered. From an engineer’s perspective, it would be

useful to know the effect of external forces on the unstable mode. Depend-

ing on the application, engineers might want either to suppress the unstable

mode (to delay transition, for instance) or to promote it (to increase mixing,

for instance).

The effect of a small control force on the unstable eigenvalue is considered

here. The control force is modelled by adding mass, momentum and energy

source terms to the right-hand side of equation (2.3):

∂q

∂t
= N(q) + F, (2.25)

where F ≡ (+, f , ψ)T contains the source terms added to the right-hand side

of the continuity, momentum and energy equations respectively. The vari-

ables +, f and ψ are the nondimensional rates of addition per unit volume of

mass, momentum and thermal energy into the flow. In this linear stability

framework, the control force has a steady component (F̄) that acts on the

base flow (q̄) and an unsteady component (f ′) that acts on the linear per-
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turbation (q′) . The effects of these two components are modelled separately

following the approach of Marquet et al. (2008b).

The eigenvalue of the global mode, λ = σ + iω, is a function of the base

flow fields (q̄) and these are, in turn, functions of the steady components

of the forcing terms (F̄). The eigenvalue can, thus, be considered to be a

function of the steady component of the forcing terms, λ = f(F̄). Similarly,

the eigenvalue can also be considered to be a function of the unsteady com-

ponent of the forcing terms, λ = f(f ′). In this linear analysis, an eigenvalue

of a global mode is only sensitive to unsteady harmonic forcing at the same

frequency as the natural frequency of the global mode. The unsteady forc-

ing is assumed to take the form f ′ = f̂(x, r)eiωt, where f̂(x, r) represents the

spatial structure of the forcing term.

Following the approach in §2.3, the sensitivity functions are calculated by

formulating a Lagrangian problem for λ. Changes in the base flow are now

considered in addition to changes at the perturbation level. The Lagrangian

is now given by

L = λ − 〈q̄+, Nq̄ − F̄〉 − 〈q̂+, λq̂− Lmq̂− f̂〉, (2.26)

where the Lagrange multipliers q̄+ and q̂+ can be interpreted as the adjoint

base flow and the adjoint global mode respectively.

2.4.1 Sensitivity to steady forcing

The change in the eigenvalue due to a small variation of the steady force is

given by

δλF̄ = 〈∇F̄λ, δF̄〉, (2.27)

where ∇F̄λ, the functional derivative of λ w.r.t F̄, is labelled the sensitivity

of the eigenvalue to steady forcing. To find the sensitivity function, the func-

tional derivatives of L with respect to all variables other than F̄ must be set
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to zero. As in the previous section, the derivative w.r.t q̂ leads to a set of

equations that defines the adjoint eigenvalue problem (2.16). The derivative

w.r.t q̂+ leads to a set of equations that defines the direct eigenvalue prob-

lem (2.7). The derivative w.r.t λ leads to the normalization condition for the

direct and adjoint eigenmodes (2.21).

The derivative w.r.t q̄ leads to a set of equations for the adjoint base flow

fields, L̄+q̄+ = ḡ+. For incompressible flow, the adjoint base flow operator

L̄+ is equivalent to the adjoint global mode operator L+. For our formula-

tion of the LMN equations, however, these two operators are different. The

adjoint base flow equations can be written in full as

∂m̄+
i

∂xi
= 0, (2.28a)

−
m̄j

ρ̄

(

∂m̄+
i

∂xj
−

∂m̄+
j

∂xi

)

−
∂p̄+

∂xi
−

1

S1Reρ̄

(

∂2m̄+
i

∂x2
j

+
1

3

∂2m̄+
j

∂xj∂xi

)

+ T̄+ ∂T̄

∂xi
= f̄+

i ,

(2.28b)

−m̄i
∂T̄+

∂xi
−

1

S1RePr

∂2T̄+

∂x2
i

+ (S1 − 1)ρ̄ρ̄+ = ψ̄, (2.28c)

m̄im̄j

ρ̄2

∂m̄+
i

∂xj
+

m̄i

S1Reρ̄2

(

∂2m̄+
i

∂x2
j

+
1

3

∂2m̄+
j

∂xj∂xi

)

+
ρ̄+

ρ̄
= +̄+. (2.28d)

The complex fields that constitute ḡ+ ≡ (0, f̄+
i , ψ̄+)T and +̄+ on the RHS

need to be calculated first from the base flow and the direct and adjoint
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global modes as

f̄i
+

≡

(

m̂∗

j

ρ̄
−

ρ̂∗m̄j

ρ̄2

)

(

∂m̂+
i

∂xj
+

∂m̂+
j

∂xi

)

−
ρ̂∗

S1Re ρ̄2

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

· · ·

· · · −

(

T̂+

ρ̄
+ (S1 − 1)p̂+

)

∂T̂ ∗

∂xi
, (2.29a)

ψ̄+
T ≡

∂

∂xj

(

T̂+m̂∗

j

ρ̄

)

, (2.29b)

+̄+ ≡ 2
ρ̂∗ρ̂+

ρ̄3
−

m̂∗

j

ρ̄2

∂p̂+

∂xj
+

T̂+

ρ̄2

(

m̄j
∂T̂ ∗

∂xj
+ m̂∗

j

∂T̄

∂xj

)

· · ·

· · · −
T̂+

S1RePrρ̄2

∂2T̂ ∗

∂x2
j

−

(

m̄im̂∗

j

ρ̄2
+

m̂∗

i m̄j

ρ̄2
−

2ρ̂∗m̄im̄j

ρ̄3

)

∂m̂+
i

∂xj
· · ·

· · · −
1

S1Re

(

m̂∗

j

ρ̄2
−

ρ̂∗m̄j

ρ̄3

)

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

(2.29c)

The complex fields that constitute ḡ+ describe the sensitivity of the eigen-

value to arbitrary local base flow modifications, which do not necessarily

obey the NS equations. For example, f̄x
+

can be used to obtain the effect

of increasing only the axial momentum at a certain point in the flow, while

keeping the other components of the base flow momentum unchanged. This

differs from the adjoint base flow field m̄+
x , which describes the effect of ap-

plying a steady axial body force at a certain point in the flow. This axial

body force produces changes in all components of the momentum, such that

the NS equations are satisfied.

Once the terms in (2.29) have been calculated, the adjoint base flow

equations (2.28) can be solved. Since the base flow is axisymmetric, these

equations are solved for an azimuthal wavenumber m = 0. This ensures that

the adjoint base flow is axisymmetric.

The derivative of L w.r.t F̄ gives

δλF̄ = 〈q̄+, δF̄〉. (2.30)
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The sensitivity of the eigenvalue to steady forcing is therefore obtained from

the relevant adjoint base flow field. For example, the sensitivity to momen-

tum forcing is given by the adjoint baseflow momentum, m̄+(x, r). The real

part represents the sensitivity of the growth rate, σ, while the imaginary part

represents the sensitivity of the frequency, ω, to a small steady force.

2.4.2 Sensitivity to unsteady forcing

The change in the eigenvalue due to a small variation of the spatial structure

of the harmonic force is given by

δλf̂ = 〈∇f̂λ, δf̂〉, (2.31)

where ∇f̂λ is labelled the sensitivity of the eigenvalue to harmonic forcing.

The derivative of L w.r.t f̂ gives

δλf̂ = 〈q̂+, δf̂〉. (2.32)

The sensitivity of the eigenvalue to harmonic forcing is therefore obtained

from the relevant adjoint global mode fields.

2.5 Extension to reacting flows

The formulation presented in this chapter is easily extended to consider a fuel

reacting with an oxidizer to produce a flame. The reacting LMN equations

presented in Nichols & Schmid (2008) are used here. These are similar to the

non-reacting LMN equations described in §2.1, except for a few differences.

Firstly, an additional equation is required to model the difference in compo-

sition between the fuel and oxidizer. This additional equation is similar to

the non-reacting energy equation, but describes the evolution of the mixture

fraction of fuel, Z, which is a scalar field with a value of Z = 1 for pure
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fuel and Z = 0 for pure oxidizer. Secondly, the energy equation is modified

to include a source term to model the heat release due to reaction between

the fuel and oxidizer. Thirdly, the equation of state is modified to include

a dependence on both temperature and composition. The nondimensional

reacting LMN equations are expressed as

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.33a)

∂(ρu)

∂t
= −∇p + ∇ · (

1

S1Re
τ − ρuu) + Ri(1 − ρ)ĝ,

(2.33b)

ρ(
∂Z

∂t
+ u ·∇Z) =

1

S1ReSc
∇2Z, (2.33c)

ρ(
∂T

∂t
+ u ·∇T ) =

1

S1RePr
∇2T + Daρ3ω, (2.33d)

ρ [(S1 − 1)Z + 1] [(S2 − 1)T + 1] = 1, (2.33e)

where τ =
[

∇u + (∇u)T
]

− 2
3(∇ ·u)I is the viscous stress tensor. The source

term, Daρ3ω, is equivalent to the nondimensional rate of enthalpy release

per unit volume. The Damkohler number, Da, represents the ratio between

the rate of production of reaction product and the rate of fluid convection.

For the rate of reaction, ω, a simple Arrhenius law is used, which is identical

to the one used by Nichols & Schmid (2008):

ω =

{(

Z −
T

s + 1

) (

1 − Z −
sT

s + 1

)

− κT 2

}

exp

[

−β(1 − T )

1 − α(1 − T )

]

. (2.34)

The chemistry of the reaction is described by the mass stoichiometric ratio,

s, the equilibrium constant, κ, the heat release parameter, α ≡ (T̃f −T0)/T̃f ,

and the Zeldovich number β ≡ αT̃a/T̃f , where T̃a (K) is the dimensional

activation temperature of the reaction, and T̃f (K) is the dimensional adi-

abatic flame temperature. The additional nondimensional parameter in the

equations is the temperature ratio S2 ≡ T̃f/T0. The values of the chemical

parameters depend on the fuel-oxidizer mixture being considered and can be
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obtained from references such as Poinsot & Veynante (2005).

As for the non-reacting equations, a steady axisymmetric base flow is

obtained and the evolution of small perturbations on top of this reacting

base flow is given by the linearized reacting LMN equations:

∂ρ′

∂t
= −∇ · m′, (2.35a)

∂m′

∂t
= −∇p′ −∇ · (ρ̄ūu′ + ρ̄u′ū + ρ′ūū) +

1

S1Re
∇ · τ ′ + Riρ′ĝ,

(2.35b)

ρ̄
∂Z ′

∂t
= −m′ ·∇Z̄ − ρ̄ū ·∇Z ′ +

1

S1ReSc
∇2Z ′, (2.35c)

ρ̄
∂T ′

∂t
= −m′ ·∇T̄ − ρ̄ū ·∇T ′ +

1

S1RePr
∇2T ′ + Daρ̄2ω′,

(2.35d)
ρ′

ρ̄2
= −K̄1T

′ − K̄2Z
′, (2.35e)

where the linearized reaction rate is ω′ ≡ ρ̄K̄ZZ ′ + ρ̄K̄T T ′ + 3ρ′ω̄, and the

additional scalar fields used for ease of reference are

K̄1 ≡ (S2 − 1)
(

(S1 − 1)Z̄ + 1
)

, (2.36)

K̄2 ≡ (S1 − 1)
(

(S2 − 1)T̄ + 1
)

, (2.37)

K̄Z ≡

(

1 − 2Z̄ −
s − 1

s + 1
T̄

)

exp

[

−β(1 − T̄ )

1 − α(1 − T̄ )

]

, (2.38)

K̄T ≡

{

[(

Z̄ −
T̄

s + 1

) (

1 − Z̄ −
sT̄

s + 1

)

− κT̄ 2

]

β
(

1 − α(1 − T̄ )
)2 · · ·

+2T̄

(

s

(s + 1)2
− κ

)

−
1 + (s − 1)Z̄

s + 1

}

exp

[

−β(1 − T̄ )

1 − α(1 − T̄ )

]

. (2.39)

Chandler (2010) derived a set of adjoint reacting LMN equations using the

same procedure as for the non-reacting equations but only implemented and

used the discrete adjoint for reacting flows. In this thesis, however, the

continuous adjoint approach is used for the reacting cases. The reacting
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adjoint equations derived by Chandler (2010) are given by

∂m̂+
i

∂xi
= 0 (2.40a)

λ∗m̂+
i =

m̄j

ρ̄

(

∂m̂+
i

∂xj
+

∂m̂+
j

∂xi

)

+
1

ρ̄

∂p̂+

∂xi
+

1

S1Reρ̄

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

−
T̂+

ρ̄

∂T̄

∂xi
−

Ẑ+

ρ̄

∂Z̄

∂xi
(2.40b)

λ∗Ẑ+ = m̄i
∂

∂xi

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

+
1

S1ReSc

∂2

∂x2
i

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

+ Daρ̄3

(

T̂+

ρ̄
+ K̄1p̂

+

)

K̄Z − K̄2ρ̂
+ (2.40c)

λ∗T̂+ = m̄i
∂

∂xi

(

T̂+

ρ̄
+ K̄1p̂

+

)

+
1

S1RePr

∂2

∂x2
i

(

T̂+

ρ̄
+ K̄1p̂

+

)

+ Daρ̄3

(

T̂+

ρ̄
+ K̄1p̂

+

)

K̄T − K̄1ρ̂
+ (2.40d)

ρ̂+ = −m̄im̄j
∂m̂+

i

∂xj
− Riρ̄2m̂+

i gi −
m̄i

S1Re

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

− 3Daρ̄4ω̄

(

T̂+

ρ̄
+ K̄1p̂

+

)

(2.40e)

These equations were coded but the scheme was found to be numeri-

cally unstable due to the presence of reacting terms in the definition of the

adjoint density - the last term in (2.40e). Any small error in the calcula-

tion of the adjoint density was being magnified by multiplication with the

Damkohler number, which was typically O(106). This numerical instability

can be avoided by using equation (2.35e) to express the ρ′ term in the lin-

earized reaction rate, ω′, in (2.35d), in terms of T ′ and Z ′. This leads to the
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following set of adjoint reacting LMN equations:

∂m̂+
i

∂xi
= 0 (2.41a)

λ∗m̂+
i =

m̄j

ρ̄

(

∂m̂+
i

∂xj
+

∂m̂+
j

∂xi

)

+
1

ρ̄

∂p̂+

∂xi
+

1

S1Reρ̄

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

−
T̂+

ρ̄

∂T̄

∂xi
−

Ẑ+

ρ̄

∂Z̄

∂xi
(2.41b)

λ∗Ẑ+ = m̄i
∂

∂xi

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

+
1

S1ReSc

∂2

∂x2
i

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

+ Daρ̄3

(

T̂+

ρ̄
+ K̄1p̂

+

)

(

K̄Z − 3K̄2ρ̄ω̄
)

− K̄2ρ̂
+ (2.41c)

λ∗T̂+ = m̄i
∂

∂xi

(

T̂+

ρ̄
+ K̄1p̂

+

)

+
1

S1RePr

∂2

∂x2
i

(

T̂+

ρ̄
+ K̄1p̂

+

)

+ Daρ̄3

(

T̂+

ρ̄
+ K̄1p̂

+

)

(

K̄T − 3K̄1ρ̄ω̄
)

− K̄1ρ̂
+ (2.41d)

ρ̂+ = −m̄im̄j
∂m̂+

i

∂xj
− Riρ̄2m̂+

i gi −
m̄i

S1Re

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

(2.41e)

The sensitivity analysis for the reacting equations follows in exactly the

same manner as for the non-reacting equations. The structural sensitivity is

defined in the same way by equation (2.23). The hydrodynamic wavemaker

may once again be identified by taking the Frobenius norm of the sensitiv-

ity tensor as defined by equation (2.24). However, for variable-density and

reacting flows, the role of feedback involving the mixture fraction and tem-

perature is likely to be important. The components of the sensitivity tensor

defined in terms of the full state vector, instead of just the momentum vector,

may provide additional information about the underlying feedback mecha-

nisms responsible for causing the global instability. The relative magnitudes

of the components involving momentum, temperature and mixture fraction

can be compared to each other - this comparison is valid as long as the direct

and adjoint global modes have been normalized according to equation (2.21).
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The sensitivity to steady forcing is obtained from the adjoint base flow,

which is defined by the equations

∂m̄+
i

∂xi
= 0 (2.42a)

−
m̄j

ρ̄

(

∂m̄+
i

∂xj
−

∂m̄+
j

∂xi

)

−
∂p̄+

∂xi
−

1

S1Reρ̄

(

∂2m̄+
i

∂x2
j

+
1

3

∂2m̄+
j

∂xj∂xi

)

+T̄+ ∂T̄

∂xi
+ Z̄+ ∂Z̄

∂xi
= f̄+

i (2.42b)

−m̄i
∂Z̄+

∂xi
−

1

S1ReSc

∂2Z̄+

∂x2
i

− Daρ̄3T̄+
(

K̄Z − 3K̄2ρ̄ω̄
)

+ K̄2ρ̄ρ̄+ = ψ̄Z

(2.42c)

−m̄i
∂T̄+

∂xi
−

1

S1RePr

∂2T̄+

∂x2
i

− Daρ̄3T̄+
(

K̄T − 3K̄1ρ̄ω̄
)

+ K̄1ρ̄ρ̄+ = ψ̄T

(2.42d)

m̄im̄j

ρ̄2

∂m̄+
i

∂xj
+

m̄i

S1Reρ̄2

(

∂2m̄+
i

∂x2
j

+
1

3

∂2m̄+
j

∂xj∂xi

)

+
ρ̄+

ρ̄
= +̄+. (2.42e)

The complex fields that constitute ḡ+ ≡ (0, f̄+
i , ψ̄+

Z , ψ̄+
T )T and +̄+ represent

the sensitivity of the eigenvalue to local base flow modifications and are given
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by

f̄i
+
≡

(

m̂∗

j

ρ̄
−

ρ̂∗m̄j

ρ̄2

)

(

∂m̂+
i

∂xj
+

∂m̂+
j

∂xi

)

−
ρ̂∗

S1Re ρ̄2

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

· · ·−

(

T̂+

ρ̄
+ K̄1p̂

+

)

∂T̂ ∗

∂xi
−

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

∂Ẑ∗

∂xi
, (2.43a)

ψ̄+
Z ≡

∂

∂xj

(

Ẑ+m̂∗

j

ρ̄

)

− (S2 − 1)(S1 − 1)p̂+

(

m̄j
∂T̂ ∗

∂xj
−

1

S1RePr

∂2T̂ ∗

∂x2
j

)

· · ·− (S2 − 1)(S1 − 1)ρ̂+T̂ ∗

+Daρ̄2p̂+
[

ρ̄
(

K̄1δK̄Z,δZ + (S2 − 1)(S1 − 1)K̄Z

)

Ẑ∗

+ρ̄
(

K̄1δK̄T,δZ + (S2 − 1)(S1 − 1)K̄T

)

T̂ ∗

−3ρ̄2
(

(

K̄2
1K̄Z + 2(S2 − 1)(S1 − 1)K̄1ω̄

)

T̂ ∗

+
(

K̄1K̄2K̄Z + (S2 − 1)(S1 − 1)K̄2ω̄
)

Ẑ∗

)]

+Daρ̄2
(

δK̄Z,δZẐ∗ + δK̄T,δZT̂ ∗

)

T̂+

−3Daρ̄3T̂+
(

(

K̄1K̄Z + (S2 − 1)(S1 − 1)ω̄
)

T̂ ∗ + K̄2K̄ZẐ∗

)

, (2.43b)

ψ̄+
T ≡

∂

∂xj

(

T̂+m̂∗

j

ρ̄

)

− (S2 − 1)(S1 − 1)p̂+

(

m̄j
∂Ẑ∗

∂xj
−

1

S1ReSc

∂2Ẑ∗

∂x2
j

)

· · ·− (S2 − 1)(S1 − 1)ρ̂+Ẑ∗

+Daρ̄2p̂+
[

ρ̄K̄1δK̄Z,δT Ẑ∗ + ρ̄K̄1δK̄T,δT T̂ ∗

−3ρ̄2
(

K̄2
1K̄T T̂ ∗

+
(

K̄1K̄2K̄T + (S2 − 1)(S1 − 1)K̄1ω̄
)

Ẑ∗

)]

+Daρ̄2
(

δK̄Z,δT Ẑ∗ + δK̄T,δT T̂ ∗

)

T̂+

−3Daρ̄3T̂+
(

(

K̄2K̄T + (S2 − 1)(S1 − 1)ω̄
)

Ẑ∗ + K̄1K̄T T̂ ∗

)

, (2.43c)
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and

+̄+ ≡ 2
ρ̂∗ρ̂+

ρ̄3
−

m̂∗

j

ρ̄2

∂p̂+

∂xj

· · · +
T̂+

ρ̄2

(

m̄j
∂T̂ ∗

∂xj
+ m̂∗

j

∂T̄

∂xj

)

+
Ẑ+

ρ̄2

(

m̄j
∂Ẑ∗

∂xj
+ m̂∗

j

∂Z̄

∂xj

)

· · · −
T̂+

S1RePrρ̄2

∂2T̂ ∗

∂x2
j

−
Ẑ+

S1RePrρ̄2

∂2Ẑ∗

∂x2
j

· · · −

(

m̄im̂∗

j

ρ̄2
+

m̂∗

i m̄j

ρ̄2
−

2ρ̂∗m̄im̄j

ρ̄3

)

∂m̂+
i

∂xj

· · · −
1

S1Re

(

m̂∗

j

ρ̄2
−

ρ̂∗m̄j

ρ̄3

)

(

∂2m̂+
i

∂x2
j

+
1

3

∂2m̂+
j

∂xj∂xi

)

· · · +3Daρ̄2K̄1p̂
+(K̄ZẐ∗ + K̄T T̂ ∗) + 2Daρ̄T̂+(K̄ZẐ∗ + K̄T T̂ ∗)

· · · −12Daρ̄3ω̄K̄1p̂
+(K̄1T̂

∗ + K̄2Ẑ
∗) − 9Daρ̄2ω̄T̂+(K̄1T̂

∗ + K̄2Ẑ
∗).

(2.44)

The additional scalar fields introduced by linearizing the expressions in (2.38)

and (2.39) around Z̄ and T̄ are given by

δK̄Z,δZ ≡ −2 exp

[

−β(1 − T̄ )

1 − α(1 − T̄ )

]

, (2.45)

δK̄Z,δT = δK̄T,δZ ≡

[

(

1 − 2Z̄ −
s − 1

s + 1
T̄

)

β
(

1 − α(1 − T̄ )
)2 · · ·

−
s − 1

s + 1

]

exp

[

−β(1 − T̄ )

1 − α(1 − T̄ )

]

, (2.46)
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and

δK̄T,δT ≡

{[(

−
1

s + 1

(

1 − Z̄ −
sT̄

s + 1

)

−
s

s + 1

(

Z̄ −
T̄

s + 1

)

− 2κT̄

)

· · ·

−
2α

1 − α(1 − T̄ )

((

Z̄ −
T̄

s + 1

) (

1 − Z̄ −
sT̄

s + 1

)

− κT̄ 2

)

· · ·
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. (2.47)

This section has shown that a sensitivity analysis using the reacting LMN

equation is similar to that using the non-reacting LMN equations, with the

exception that additional terms appear that model the effect of heat release

from the chemical reaction on the eigenvalue. As mentioned by Chandler

(2010), it is important to note that the exponential in the nonlinear reaction

rate term, ω, makes the linearized reaction rate term very sensitive to T̄ .

2.6 Local stability analysis

The local stability analysis is performed using the fully compressible Navier–

Stokes equations. As for the global analysis, the velocity, density, and pres-

sure fields are decomposed into a steady base flow and a small perturbation.

The compressible Navier–Stokes equations for the perturbation are expressed

as five PDEs in five primitive variables, (ρ′, u′

x, u
′

r, u
′

θ, p
′). For the local anal-

ysis, the flow is assumed to exhibit two well-separated length scales: an

instability wavelength, λl, and a length scale that characterizes the stream-

wise non-uniformity of the base flow, Ll. The local streamwise dependence

of the global mode is then assumed to take the form exp(ikx) such that (2.6)

becomes

ql(x, r, θ, t) = q̃(r)ei(kx+mθ−ωt), (2.48)
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where ql ≡ (ρ′, u′

x, u
′

r, u
′

θ, p
′)T is the local state vector, ω = iλ is the local an-

gular frequency and k is the local wavenumber. Substituting (2.48) into the

compressible Navier–Stokes equations converts the five PDEs into five ODEs,

as defined in the Appendix of Lesshafft (2007). For the variable-density flows

considered in this thesis, the Mach number is set to a nominal value of 0.01.

For the uniform-density flows considered in this thesis, the Mach number,

density perturbations, ρ′, and the base flow density gradient, ∂ρ̄/∂r, are set

to zero. The resultant eigenvalue problem is then solved using the procedure

described in §3.5.

In a full local analysis, the first step is to calculate the absolute growth

rate for each streamwise slice by finding saddle points of ω(k) in the com-

plex k-plane. This determines the locations of absolute instability in the

flow, which is a useful diagnostic tool for understanding the behaviour of the

global mode. The second step is to estimate the complex frequency of the

global mode and the streamwise position of its wavemaker region. These are

calculated by continuing the absolute growth rate into the complex x-plane.

The third step is to evaluate the local spatial wavenumbers at each slice and

then to calculate the corresponding global mode shape by integrating these

over the domain. These steps, and their application to a two-dimensional

shear flow, are demonstrated in Juniper et al. (2011).

The ratio λl/Ll, which must be small for a local analysis to be rigorously

valid, is labelled ε. In the flows featuring vortex breakdown in this thesis, ε

is small downstream of the vortex breakdown bubble but large around the

vortex breakdown bubble. This means that the local analysis becomes invalid

around the vortex breakdown bubble. This has a particularly strong effect

on the second step so, in this thesis, only the first step is performed.
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Numerical implementation

In the previous chapter, the linear global stability analysis was formulated

and the sensitivity of the eigenvalue to internal feedback and external steady

and unsteady forcing was derived. It was shown that the analysis requires a

steady solution to the LMN equations, the solution of two large eigenvalue

problems to obtain the direct and adjoint global modes, and the solution of

a large linear equation to obtain the adjoint base flow. In this chapter, the

numerical techniques used for these purposes are described. The techniques

rely on direct numerical simulation (DNS) of the LMN equations. The code

used is based on the nonlinear DNS code developed by Nichols (2005) and

the direct linear and adjoint solvers of Chandler (2010), which were for ax-

isymmetric perturbations. In this chapter, the main features of the code and

the procedures for obtaining the steady base flow and the direct and ad-

joint global modes are outlined. The modifications that were made to handle

swirling flow and non-axisymmetric modes of instability are also discussed.

3.1 Details of the code

The code is written in FORTRAN90 and utilizes OpenMP for parallel com-

putation. The equations of motion are discretized on a collocated grid with

Sx and Sr points in the axial and radial directions. Sixth-order compact
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finite difference schemes are used to calculate spatial derivatives in the axial

and radial directions. The co-ordinate singularity at r = 0 (the centreline)

is treated using an asymptotic method proposed by Constantinescu & Lele

(2002).

The equations are solved using an explicit projection method, similar to

that used by Chorin (1968). The momentum equations are stepped forward

in time, ignoring the pressure gradient term, to give an intermediate mo-

mentum field m∗. Taking the divergence of this and including the effect of

the change in density from the energy equation leads to a Poisson equation

for the pressure. This equation is solved by applying a discrete cosine trans-

form in the axial direction (calculated using Fast Fourier Transforms) and

then solving the resulting large matrix inversion problem using an efficient

algorithm that is based on the Thomas algorithm. The pressure gradient

term is then calculated and used to correct the intermediate field to give the

momentum at the next time step.

During the matrix inversion, a Dirichlet condition, p = 0, is enforced on

Ωlat. Chandler (2010) used a quarter-wave cosine transform to enforce a Neu-

mann condition, ∂p/∂x = 0, on Ωin and a Dirichlet condition, p = 0, on Ωout.

This is, however, not appropriate for swirling flows because the swirl creates

a radial pressure gradient. To resolve this, a half-wave cosine transform is

used instead. This enforces a Neumann condition, ∂p/∂x = 0, on both Ωin

and Ωout.

Time-stepping is implemented through a fourth-order Runge-Kutta scheme.

The coupling between the pressure and the momentum boundary conditions,

however, restricts the code to being first order accurate in time. The full de-

tails of the code and the nonlinear solution algorithm can be found in Nichols

(2005) and Nichols et al. (2007).
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3.2 Base flow

3.2.1 Procedure

Two methods are used to obtain steady base flows in this thesis. For some

flows, it is sufficient to march the nonlinear equations of motion forward

in time, while constraining the flow variables to be axisymmetric at each

timestep. This works because these flows are globally stable to axisymmetric

disturbances. This is true for many uniform-density swirling flows and wake

flows.

Other flows, such as the low-density jet studied in Chapter 4, are glob-

ally unstable to axisymmetric disturbances. For such flows, standard time-

stepping would not lead to a steady base flow. A steady base flow can

be obtained for such cases by applying selective-frequency damping (SFD)

(Akervik et al., 2006) to the nonlinear DNS. At every timestep, unstable fre-

quencies are damped through the use of a low-pass filter. The advantage of

this method, compared to other techniques such as Newton iteration meth-

ods, is that it requires making very little changes to the existing code, is

easy to implement, does not require large computational memory, and does

not require a good initial guess to converge to a steady solution. In contrast,

Newton methods require a good initial guess to converge to a steady solution,

and require large computational expense becasue a large matrix problem has

to be solved at each iteration.

The steady axisymmetric base flow satisfies equation (2.3) in the limit

∂q/∂t = 0. Practically, a steady state is assumed when the l2-norm of the

difference between the base flow state vectors at two successive time-steps is

less than 10−6.
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3.2.2 Boundary Conditions

A suitable inlet flow profile is imposed on Ωin. This consists of specifying pro-

files for the three components of the velocity, and the temperature or mixture

fraction profile, which determines the density profile. This profile is specific

to each flow being studied. In this thesis, the cases studied are a low-density

non-swirling jet (Chapter 4), a uniform-density swirling jet model known as

the Grabowski profile (Chapter 5), a swirling jet model that represents ve-

locities measured in experiments (Chapter 6), and a diffusion flame formed

in a low-density non-swirling (Chapter 8), and swirling jet (Chapter 9).

The boundary conditions on the lateral and outlet boundaries are chosen

so as to model flow into a semi-infinite domain in the downstream and radial

directions. For the momentum, a traction-free boundary condition (τ · n̂ = 0,

where n̂ is the unit vector normal to the boundary) is applied on Ωlat, and

a convective boundary condition (∂m/∂t + Uc · ∂m/∂x = 0 with Uc set to

the maximum outlet axial velocity) is applied on Ωout. For the temperature,

a Dirichlet boundary condition (T = 0) is applied on Ωlat and a convective

boundary condition is applied on Ωout.

The introduction of swirl affects the boundary condition used for the in-

termediate momentum in the projection step. The boundary condition on

the intermediate momentum needs to be compatible with the actual momen-

tum and pressure boundary conditions. The momentum at the (n + 1)-th

time step is related to the intermediate momentum by

m̄n+1 = m̄∗ − ∆t∇p̄. (3.1)

Hence, the boundary conditions on the components of the intermediate mo-
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mentum are given by

m̄∗

x = m̄n+1
x + ∆t

∂p̄

∂x
, (3.2a)

m̄∗

r = m̄n+1
r + ∆t

∂p̄

∂r
, (3.2b)

m̄∗

θ = m̄n+1
θ +

∆t

r

∂p̄

∂θ
. (3.2c)

Because we are considering axisymmetric flow, the ∂p̄/∂θ term is zero

everywhere. On Ωin, the Poisson solver enforces ∂p/∂x = 0, but ∂p/∂r is

not zero for a swirling flow. Therefore, only the intermediate radial momen-

tum at Ωin needs to be corrected using ∂p/∂r from the previous time step.

The intermediate axial and azimuthal momentum boundary conditions are

identical to the actual momentum boundary conditions. For a domain of

sufficiently large radius Rmax, it has been found to be safe to use the same

boundary condition for the intermediate momentum and the actual momen-

tum. This relies on the azimuthal velocity being sufficiently small near Ωlat.

The convective boundary condition on Ωout is applied before the intermediate

momentum is calculated and an explicit boundary condition for the interme-

diate momentum is not required.

3.3 Direct and adjoint global modes

3.3.1 Procedure

The linear direct and adjoint global modes are calculated by solving the dis-

cretized versions of the eigenvalue problems (2.7) and (2.16). Instead of using

a large matrix approach, this is done using ARPACK, a software library that

implements the implicitly restarted Arnoldi method (IRAM) (Lehoucq et al.

(1998)) to obtain the eigenvalues and eigenmodes of a standard eigenvalue

problem

Ax = λx. (3.3)
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The Arnoldi method is an iterative method. It starts off with a guess solution

for the eigenmodes, and, at each iteration, produces a better approximation

to the actual eigenmodes of the problem. The convergence of the solution is

determined by computing a residual. The iterations are stopped when the

residual falls below a specified threshold.

In this thesis, the matrix A corresponds to the matrix exponential of the

discretized versions of the linear direct or adjoint operators Lm or L+
m over

a time-period ∆T . The matrix-vector product Ax is achieved by using the

linear direct or adjoint code to march an initial state vector provided by

ARPACK forward by a time ∆T = N∆t , where ∆t is the uniform time-step

employed for each of the N time-steps. None of these matrices is ever con-

structed in full.

The eigenfunctions of Lm or L+
m are the same as those of A, whereas the

eigenvalues are related by

λA = eλL∆T , (3.4a)

λL =
ln λA

N∆t
, (3.4b)

where the subscripts A and L refer to the corresponding matrices. In prac-

tice, the convergence of ARPACK is influenced by the time ∆T . If the value

of ∆T is too large or too small in comparison to the period of the eigenmode,

convergence will be slow. In practice, ∆T is set to a value that is around

60% of the period of the global mode for the flow case being investigated.

(Chandler, personal communication, 2010)

An alternative to this matrix-free time-stepping approach to obtain the

eigenmodes is to construct a large matrix. In both cases, the Arnoldi method

may be used. The latter approach requires a large amount of memory be-

cause the discretized versions of L are often dense matrices in practice (The-

ofilis, 2003). The boundary conditions on these matrices have to be treated

with care because these matrices can often be near-singular. The large-
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matrix approach also often leads to spurious pressure modes. In contrast,

these problems were not encountered with the time-stepping approach im-

plemented here. One disadvantage of the time-stepping approach, however,

is that the eigenmodes are affected by the temporal accuracy of the time-

stepping scheme. The code used for this thesis is only first-order accurate in

time, so small time-steps need to be used for high-accuracy. The choice of

time-step is further affected by the fact that, for three-dimensional pertur-

bations developing over a swirling base flow, the CFL number for numerical

stability is smaller than for two-dimensional perturbations developing over

a non-swirling base flow. Although the time-stepping approach is easier to

implement and has low memory usage, it can take more computational time.

The solution algorithms used are identical to those developed by Chandler

(2010). Complex versions of the direct linear and adjoint codes developed

by Chandler (2010) have been developed. Complex numbers are required

to handle the imaginary components that arise when non-zero azimuthal

modes of swirling flows are considered. Following the approach of Heaton

et al. (2009), this has been implemented by working with two sets of real

variables (representing the real and imaginary parts) rather than a single set

of complex variables. This is becase it was not clear how the low-level rou-

tines in Nichols’ DNS code would deal with complex variables. In terms of

computational costs, the two approaches are more or less equivalent because

FORTRAN deals with a complex variable by storing it as two real variables.

3.3.2 Boundary conditions

In the direct code, a homogenous Dirichlet boundary condition is used for

the momentum and temperature on Ωin, Ωlat, and Ωout. On Ωout, a con-

vective boundary condition is used. The pressure boundary conditions are

identical to those used for the base flow. The boundary conditions on the

intermediate momentum are derived in the same way as for the base flow.

On Ωin, the radial and azimuthal intermediate momentum fields need to be
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corrected with the pressure from the previous time-step. On Ωlat, only the

radial intermediate momentum is corrected with the pressure from the previ-

ous time-step. On Ωout, no correction is required as the convective boundary

condition sets the correct condition on the intermediate momentum.

In the adjoint code, the boundary conditions have to be chosen such that

the boundary terms arising from the derivation of the adjoint equations are

zero. It is sufficient to use homogeneous Dirichlet boundary conditions for

the adjoint momentum and temperature on all boundaries. The boundary

conditions on the intermediate momentum are derived in the same way as

for the base flow and direct code. The radial intermediate momentum field

is corrected on Ωlat, while the radial and azimuthal intermediate momentum

fields on Ωin and Ωout are corrected with the pressure from the previous

time-step.

The centreline boundary conditions have to be worked out for non-zero

azimuthal modes based on the asymptotic analysis of Constantinescu & Lele

(2002).

This gives, at the centreline r = 0

for m = 0,

mx = derived using asymptotics, (3.5a)

mr = 0, (3.5b)

mθ = 0, (3.5c)

T = derived using asymptotics, (3.5d)

for m = ±1,

mx = 0, (3.6a)

Re(mr) = m.Im(mθ), (3.6b)

Im(mr) = −m.Re(mθ), (3.6c)

T = 0, (3.6d)
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and for |m| > 1,

mx = 0 (3.7a)

mr = 0 (3.7b)

mθ = 0 (3.7c)

T = 0 (3.7d)

3.4 Adjoint base flow

The adjoint base flow is obtained by solving the discretized version of the

set of equations (2.28). A matrix-free time-stepping approach is used once

again. Time-derivative terms are added to the LHS of equations (2.28)b-c

and the adjoint time-stepping code is modified to solve this new set of equa-

tions. The equations are marched forward in time until the l2-norm of the

difference between the adjoint base flow state vectors at two successive time-

steps is less than 10−8.

As mentioned in section 2.4.1, for an axisymmetric base flow, the adjoint

base flow is also axisymmetric. The centreline conditions on the adjoint base

flow are obtained following equations (3.5). The boundary conditions are

identical to the boundary conditions in the adjoint code.

3.5 Local stability analysis

The local stability analysis is carried out using the MATLAB-based program

Instaflow, described in detail in Juniper et al. (2011). At each streamwise

location, the four ODEs arising from §2.6 are discretized on a Chebyshev-

spaced grid in the r-direction. This produces a generalized matrix eigenvalue

problem, which is the dispersion relation for this slice of the flow.

This dispersion relation is solved to obtain the complex absolute fre-
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quency, ω0, as a function of streamwise distance, x, by finding saddle points

in the complex k-plane and then checking that they are valid pinch points,

as defined by Briggs-Bers (Briggs, 1964).



4

Passive control of global

instability in low-density jets

This chapter is devoted to studying the passive control of low-density jets

near the point of instability. A low-density jet can either be a hot jet, in

which the temperature of the jet fluid is higher than that of the ambient

fluid, or a light jet, in which the molecular weight of the jet species is lower

than that of the surrounding fluid. In this chapter, an isothermal helium jet

near the threshold of global instability is considered. The structural sensitiv-

ity is obtained and compared with that from a local stability analysis. The

sensitivity of the marginally unstable eigenvalue to open-loop steady forcing

is obtained and this is used to study how a thin hot-wire can be used to

control the growth rate and frequency of the global mode.

The content of this chapter has been submitted as a journal article to

Physics of Fluids, co-authored with Gary Chandler and Matthew Juniper.

The local absolute growth rate has been obtained by Matthew Juniper.

4.1 Introduction

Many studies have shown that the stability of a jet discharging into an am-

bient fluid depends strongly on the jet’s density. For example, spectra of
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hot-wire velocity measurements in helium-air jets (Sreenivasan et al., 1989)

and pressure measurements in heated air jets (Monkewitz et al., 1990) showed

that low density jets exhibit sharp discrete peaks in the measured spectra,

while uniform density jets exhibit weak broad peaks. These sharp discrete

peaks are caused by self-excited varicose oscillations in the low-density jets,

which arise because the initially steady jet is globally unstable. (Lesshafft

et al., 2006)

Several experimental studies have examined the control of these self-

excited oscillations. These studies have used loudspeakers for active feed-

back control (Hallberg & Strykowski, 2008), and thin hot wires (Srinivasan

et al., 2010) or co-flow (Hallberg et al., 2007) for passive control. The goal of

such control is to render the jet globally stable, either by adding a feedback

mechanism or by perturbing the base flow. For this goal, a global linear

stability analysis around the steady base flow is the most appropriate tool,

both in the form of a structural sensitivity analysis (Giannetti & Luchini,

2007) and a base flow sensitivity analysis (Hill, 1992; Marquet et al., 2008a).

These analyses require the direct global mode and the adjoint global mode

to be calculated. Apart from one example in Chandler et al. (2012), which

was included in order to demonstrate the technique, equivalent results for

the low density jet have not yet been published.

In this numerical study, we perform a structural sensitivity analysis and a

base flow sensitivity analysis on a low-density jet. We use the low Mach num-

ber formulation of the Navier–Stokes (NS) equations. This is well-adapted

to studies of hydrodynamic instability in low-density jets and flames because

it permits density variations due to temperature and species composition

but excludes acoustic waves. This significantly reduces the computational

effort. By overlapping the direct and adjoint global modes, we determine the

wavemaker region. Then, by performing a base flow sensitivity analysis, we

identify the regions of the flow in which the introduction of a thin axisym-

metric control ring can change the frequency or growth rate of the global

instability. We also determine the influence of heat transfer from the ring,
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which has a particularly strong influence on the instability of a low-density

jet. By examining the sizes of advection and production terms in the gov-

erning equations, we identify the physical mechanisms that are responsible

for this influence.

4.2 Flow configuration

We study the axisymmetric motion of a low-density jet in a cylindrical do-

main that has radius Rmax and length Xmax. The jet fluid enters the domain

at x = 0 and is aligned along the axis, r = 0. The fluid in the domain is

described in terms of its velocity u = (ux, ur)
T , density ρ, and temperature

T . A difference in chemical species between the jet fluid and the surrounding

fluid is described using the mixture fraction, Z, which has a value of Z = 1

for the jet species and Z = 0 for the surrounding fluid. The reacting LMN

equations, with Da = 0, are used to describe the fluid motion.

The flow variables are nondimensionalized by the jet diameter, the jet

axial velocity at inlet, and the ambient density. The nondimensional tem-

perature is defined as T = (T ∗ − T0)/(T1 − T0), where T ∗ is the dimensional

temperature, T1 is the maximum temperature, and T0 is the ambient temper-

ature. The ratio of the ambient density to the jet density defines the density

ratio parameter, S1, and the ratio of the maximum temperature to the ambi-

ent temperature defines the temperature ratio parameter, S2. The Reynolds

number, Re, is defined in terms of the jet diameter, jet axial velocity at inlet

and jet density. The Prandtl number, Pr, and Schmidt number, Sc, describe

the ratio of the diffusivity of temperature and mass, respectively, to the dif-

fusivity of momentum and are assumed to be constant throughout the flow.

In this study, we consider an isothermal helium jet exiting into atmospheric

conditions. This flow has a density ratio of S1 = 7.0. For an isothermal flow,

S2 can be set to any value other than 1.0. This is because, for an isothermal

flow, it defines a nominal temperature to nondimensionalize the equations of

motion. We set S2 = 2.0 for simplicity and set Pr = Sc = 1.0, in line with
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Lesshafft et al. (2006).

The governing equations (see §2.5) are expressed in terms of the state

vector q ≡ (mx, mr, Z, T )T , as in chapter 2. We use a grid with 181× 1449

points for a domain measuring 8.0 × 36.0 in the radial and axial directions

respectively, which has been shown to produce results that are sufficiently

well-resolved (Chandler et al., 2012).

Along the lateral boundary, at r = Rmax, we use a viscous traction free

boundary condition for the momentum and set T = 0 and Z = 0. At the

outlet boundary, at x = Xmax, we use a convective boundary condition for

the momentum, temperature and species. These boundary conditions model

flow into a semi-infinite domain in the downstream and radial directions. The

pressure-projection scheme used in the code uses a discrete cosine transform

to set boundary conditions for the pressure at the inlet and outlet boundaries.

For this study, we use a half-wave cosine transform, which sets dp/dx = 0 at

the inlet and outlet boundaries. Along the lateral boundary, we set p = 0.

At the inlet to the domain, we impose velocity and mixture fraction profiles

formed from Michalke’s profile number two (Michalke, 1984), with a shear-

layer thickness parameter D/2θ0 = 14.0. This signifies that the momentum

thickness of the shear layer is 14 times smaller than the jet radius, which

corresponds to a thinner shear-layer than the ones considered in Chandler

et al ’s original study, which had D/2θ0 = 12.5 (Chandler et al., 2012). We

also add a co-flow velocity of 1% of the jet velocity around the jet to improve

numerical stability. This helps to convect numerical errors out of the com-

putational domain.

This study is performed near the threshold of global instability, at which

point a linear global stability analysis is most valid. For this set of parameters

and inlet profile, we find that this is at Re = 470. In comparison, Hallberg

& Strykowski (2006) (Figure 5) report the onset of global instability in a

helium jet of similar shear-layer thickness at approximately 550 ≤ Re ≤ 750.

We attribute the difference between our linear global stability analysis and
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Figure 4.1: (a) Streamlines of the base flow and (b) the local absolute growth
rate of an isothermal helium jet at Re = 470. (c) The direct global mode and
(d) the adjoint global mode, shown as the real part of the axial momentum
of the least stable mode. (e) The structural sensitivity.

their experimental observations to the effect of variable transport properties

and the differences in the jet velocity and density profiles. Both of these have

been found to have a significant effect on the onset of absolute instability in

low-density jets. (Coenen & Sevilla, 2012; Lesshafft & Marquet, 2010)

4.3 Global stability and structural sensitivity

We obtain a steady axisymmetric base flow, q̄(x, r), such that N(q̄) = 0, us-

ing selective frequency damping (SFD) (Akervik et al., 2006). The stream-

lines of this base flow are shown in figure 1(a). The entrainment of the

ambient fluid into the jet is significant and we will show later in the chapter

that it can have a strong effect on the stability of the flow. The local absolute

growth rate is shown in figure 1(b).
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Figure 4.2: Eigenvalue spectrum for m = 0 for the base flow shown in figure
4.1(a). The 25 least stable modes are shown.

The evolution of small perturbations q′ around this steady base flow is

governed by the linearized LMN equations. We consider axisymmetric per-

turbations (m = 0) and obtain the direct and adjoint global modes by solving

the associated eigenvalue problems using the numerical scheme described in

Chapter 3.

Figure 4.2 shows the eigenvalues corresponding to the 25 least stable

modes. At this Reynolds number, we find one mode that is marginally un-

stable, and a branch of low-frequency stable modes. These stable modes

arise from the continuous spectrum in the local analysis and correspond to

free-stream vortical modes - similar to those observed by Garnaud (2012) in

a uniform-density jet.

The direct global mode, q̂(x, r), corresponding to the marginally unsta-

ble mode is shown in figure 4.1(c). Its corresponding adjoint global mode,

q̂+(x, r), is shown in figure 4.1(d) and the structural sensitivity, defined here

as the Frobenius norm of the tensor Sij = m̂i(m̂
+
j )∗, is in figure 4.1(e).

The absolute growth rate decays monotonically from the entrance plane

and the flow is absolutely unstable for 0 ≤ x < 5.0. The structural sensi-
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tivity, however, is maximal in the shear layer, at x = 2.66. The structural

sensitivity identifies the region of the flow that is most sensitive to inter-

nal feedback mechanisms - where the direct global mode optimally excites

itself. (Giannetti & Luchini, 2007). This region can be referred to as the

core of the instability, or the wavemaker region, because it is most influen-

tial in determining the natural (uncontrolled) dynamics of the flow. In the

context of passive control, it is useful to identify this region as it provides

information about the origin of the global instability. This region does not,

however, necessarily correspond to the region where an external control force

has most influence on the growth rate and frequency of the unstable mode.

This is because a control force also changes the baseflow and this change in

the baseflow is not accounted for in the structural sensitivity.

4.4 Sensitivity to a control force

We now consider the effect of a small control force on the marginally unsta-

ble eigenvalue. We model the control force by adding source terms to the

right-hand side of the nonlinear LMN equations, following the approach in

Chapter 2. The source term in the species equation is set to zero. The sen-

sitivity of the eigenvalue to a small steady force is obtained from the adjoint

base flow, q̄+ =
(

m̄+
x , m̄+

r , Z̄+, T̄+
)T

.

Figure 4.3 shows the adjoint base flow fields for the marginally unstable

global mode of the isothermal helium jet at Re = 470. The real part of

the adjoint base flow fields determines the sensitivity of the growth rate to

steady forcing, which determines whether the unstable mode is promoted or

suppressed. The imaginary part determines the sensitivity of the frequency

to steady forcing. This is of interest from an experimental point of view, be-

cause changes in frequency are easier to measure than changes in growth rate.

The sensitivities exhibit an oscillatory pattern. The global mode arises

due to contributions from feedback throughout the wavemaker region. These

contributions interact constructively and destructively to give, in aggregate,
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a global mode frequency and growth rate. If the steady force (to the non-

linear NS equations) is applied at one point in the wavemaker region, then

the effect on the global mode will depend on the amplitude and the phase

of the feedback from this point, relative to the aggregate feedback from the

other points. The phase relationship of the feedback oscillates in space, so

the effect of a small change in the feedback at a point also oscillates in space.

The adjoint base flow temperature describes the sensitivity to heat input.

The flow is most sensitive to heat input just outside the helium jet, up to

around 2 jet diameters from the injection plane. In this region, the figure 2(a)

(bottom left) shows that adding heat makes the flow more stable. Physically

this is because heat addition reduces the density of the outer fluid. This

agrees with the predictions of Srinivasan et al. (2010), who used a local sta-

bility analysis to predict that heating in the ambient fluid near the jet nozzle

can eliminate absolute instability. By comparing the bottom-left frame in

figure 4.3(a) with the streamlines in figure 4.1(a), it is clear that contours of

maximum influence approximately follow the streamlines. It appears there-

fore that the change induced by the heat source has most effect when it is

advected onto the region around (x, r) = (2, 0.5), which is the centre of the

wavemaker region as shown in figure 4.1(d). Consequently, the sensitivities

in the regions outside the jet depend quite sensitively on the streamlines here

and therefore on the degree of co-flow. The result that is most contrary to ex-

pectations is that heating the jet core around two diameters downstream has

a stabilizing effect. In order to verify this, we carried out checks (detailed in

§4.8) and found that heating the jet core two diameters downstream reduced

the growth rate of the linear global mode, as predicted by the sensitivity

analysis.

Unsurprisingly, radial momentum forcing has little influence, except in

the shear layer at the jet exit plane (figure 4.3 centre). Axial momentum

forcing has most influence just outside the jet, around the wavemaker region.

In this region, figure 4.3(b) (top-right) shows that adding a force in the

positive x-direction decreases the global mode frequency. The information in
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(b) Sensitivity to a steady radial force
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(c) Sensitivity to steady heat input
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Figure 4.3: The sensitivity of the marginally unstable eigenvalue of a helium
jet at Re=470 to steady forcing, ∇F̄λ. The colours show the sensitivity of
the growth rate, ∇σ (left), and frequency, ∇ω (right) to a (a) steady axial
body force, F̄x (b) steady radial body force, F̄r, and (c) steady heat input,
ψ̄T . The contour lines show the absolute value of ∇λ for each row.

these figures is most instructive when it is combined in order to calculate the

influence of a physical object, two of which we consider in the next section.

4.5 Passive control using an axisymmetric con-

trol ring

4.5.1 The effect of an adiabatic control ring

We now assume that the control force is provided by a thin ring at the

same temperature as the fluid, which we call an adiabatic ring. The ring

is at (xc, rc), centred on the jet axis, and provides a force on the flow that
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is equal and opposite to the drag force on the ring. The ring is thin, so

the nondimensional steady and unsteady components of this force can be

modelled by those on a cylinder:

F̄(x, r) = −αρ̄|ū|ūδ2(x − xc, r − rc), (4.1a)

f ′(x, r, t) = f̂(x, r)eλt, (4.1b)

where f̂(x, r) = −

(

αρ̂|ū|ū + αρ̄|ū|û + αρ̄
ū · û

|ū|
ū

)

δ2(x − xc, r − rc)

. (4.1c)

The coefficient α equals dwCD, where CD is the drag coefficient and dw is

the wire diameter nondimensionalized by the jet diameter. We set CD =

1.5, based on numerical drag calculations by Sheard et al. (2005). We set

dw = 0.1, which corresponds to a maximum local Reynolds number around

50, because this is below the Reynolds number at which the ring causes its

own self-excited oscillations (Sheard et al., 2005). Therefore, the linearized

drag force oscillates only at the frequency of the global mode, λ.

The changes in the eigenvalue due to the steady and unsteady components

of the drag force are δλF̄ = 〈m̄+, F̄〉 and δλf ′ = 〈m̂+, f̂〉. These are summed

to obtain the total change in the eigenvalue, δλdrag. Figure 4.4 shows the

change in the growth rate and frequency (scaled by CDdw) as a function of

the location of the control ring. This shows where the control ring has most

influence. The drag from the ring increases as the flow velocity at the ring

increases, so the ring has little effect where the base flow is slow, even if the

eigenmode is quite sensitive to momentum forcing there. This is why figure

4.4 (sensitivity to a control ring) has highest amplitudes in the jet region

(0 < r < 0.5) despite the fact that figure 4.3 (sensitivity to steady forcing)

has highest amplitudes outside the jet region.

The ring has maximum influence when placed at (xc, rc) = (1.54, 0.43),

at which point it is stabilizing. Furthermore, it decreases the oscillation fre-

quency when placed at 0 < x < 2.0 and increases the frequency when placed
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Figure 4.4: The predicted change (scaled by CDdw) in the marginally unstable
eigenvalue of a helium jet due to the drag on a thin axisymmetric control
ring, δλdrag. The colours show the real (left) and imaginary (right) parts
of the total change in the eigenvalue, δλdrag (top), the change due to the
steady component of the drag force, δλF̄ (middle), and the change due to the
unsteady component of the drag force, δλf ′ (bottom). The contours show
the absolute value of δλ for each row. The shading on all the plots is equal
and goes from -0.0043 (blue) to 0.0043 (red).
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at 2.0 < x < 3.2. These features could be tested in experiments, during

which it will be easier to measure changes in the frequency than changes in

the growth rate. It is interesting to note that the steady component of the

drag force influences the eigenvalue around 3 times more than the unsteady

component.

4.5.2 The effect of a heated control ring

We now consider the additional influence of heat transfer from a hot ring.

Chandler (2010) calculated the steady and unsteady components of the heat

transfer to be:

ψ̄T (x, r) = cψdη
w|m̄|η(Tw − T̄ )δ2(x − xc, r − rc), (4.2a)

ψ′

T (x, r, t) = ψ̂T (x, r)eλt, (4.2b)

where ψ̂T (x, r) = cψdη
w|m̄|η

(

(Tw − T̄ )η
m′ · m̄

|m̄|2
− T ′

)

δ2(x − xc, r − rc).

(4.2c)

Tw is the nondimensional wire temperature and cψ and η, which are func-

tions of the Nusselt and Reynolds numbers, are taken to be cψ = 58.3 and

η = 0.33 following Chandler (2010). We consider a small increase in the ring

temperature, Tw = 0.01.

The changes in the eigenvalue due to the steady and unsteady components

of the heat transfer are δλT̄ = 〈T̄+, ψ̄T 〉 and δλT ′ = 〈T̂+, ψ̂〉. These are

summed with the changes due to the drag, (δλdrag) to obtain the total change

in the eigenvalue, δλhotring. Figure 4.5 shows these total changes as a function

of the location of the hot ring. When it is hot, the wire has more influence

in the low speed regions outside the jet than when it is adiabatic, as shown

by the fact that figure 4.5 is more similar to figure 4.3(bottom) than figure

4.4 is to figure 4.3(top). This is because the heat transfer depends much less

on the local velocity than the drag force does (the exponent of velocity is

η = 0.33 in equation (4.2a) but 2 in equation (4.1a)). The hot ring stabilizes
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the flow when placed just outside the shear layer, around 0.5 < x < 2.0,

because it reduces the density there. It also has a strong effect when placed

at a larger radius. This is because the density reduction caused by the heat

transfer is advected along the streamlines to the jet. This advection depends

strongly on the streamlines and therefore on the degree of co-flow.

4.6 A physical interpretation of the control

in terms of the modification of the base

flow

In order to examine the physical mechanisms that cause the eigenvalue to

change, we study the effects of a drag force and heat source in more detail.

We only analyse the steady components because they contribute much more

than the unsteady components. Firstly, we consider the effect of a drag force

at (xc, rc) = (1.0, 0.5), which is in the shear layer. Secondly, we consider the

effect of a heat source at (xc, rc) = (0.5, 0.25), which is in the jet core. In each

case, we calculate the change in the base flow, δq̄ = (δm̄x, δm̄r, δZ̄, δT̄ , δρ̄)T ,

caused by the steady force. Then we use the sensitivity to base flow modi-

fications (equations (2.43) and (2.44)) to work out the contributions of the

change in axial momentum, radial momentum, mixture fraction and density

profiles to the change in the eigenvalue. The total change in the eigenvalue

is given by the sum of these contributions

δλtot = δλm̄x + δλm̄r + δλZ̄ + δλT̄ + δλρ̄ (4.3)

= 〈f̄+
x , δm̄x〉 + 〈f̄+

r , δm̄r〉 + 〈ψ̄+
Z , δZ̄〉 + 〈ψ̄+

T , δT̄ 〉 + 〈+̄+, δρ̄〉.(4.4)

We then split these contributions into production terms and advection

terms, as in previous studies on incompressible and compressible flows (Mar-

quet et al., 2008a; Meliga et al., 2010). The stability of the flow is determined

by a competition between the production of disturbances at a point and their

advection away from that point. An increase in production or a decrease in

advection are destabilizing, while a decrease in production or an increase in
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Figure 4.5: The predicted change in the marginally unstable eigenvalue of a
helium jet, δλhotring, due to the drag and heat transfer from a thin hot ring
with dw = 0.1 and Tw = 0.01. The colours show the real (left) and imaginary
(right) parts of the total change in the eigenvalue, δλhotring (top), the change
due to the steady components of the drag and heat transfer, δλF̄ + δλT̄

(middle), and the change due to the unsteady components of the drag and
heat transfer, δλf ′ + δλT ′ (bottom). The contours show the absolute value of
δλ for each row. The shading on all the plots is equal and goes from -0.0068
(blue) to 0.0068 (red).
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advection are stabilizing. To identify these terms in the LMN equations,

we express the direct linear equations in terms of the velocity, rather than

the momentum. The advective terms can then be identified easily and re-

expressed in terms of the momentum. The sensitivity of the advective terms

in the linearized LMN equations to base flow modifications are:

f̄+
i,Adv ≡ −m̂+

j

∂

∂xi

(

m̂∗

j

ρ̄

)

+
m̂+

i m̄j

ρ̄

∂

∂xj

(

ρ̂∗

ρ̄

)

+
m̂+

j m̄j

ρ̄

∂

∂xi

(

ρ̂∗

ρ̄

)

· · ·

· · · −

(

T̂+

ρ̄
+ K̄1p̂

+

)

∂T̂ ∗

∂xi
−

(

Ẑ+

ρ̄
+ K̄2p̂

+

)

∂Ẑ∗

∂xi
· · ·

· · · −
p̂+

ρ̄

∂

∂xi

(

ρ̂∗

ρ̄

)

−
ρ̂∗

ρ̄2

(

Ẑ+ ∂Z̄

∂xi
+ T̂+ ∂T̄

∂xi

)

, (4.5)

ψ̄+
Z,Adv ≡ m̄j

∂

∂xj

(

ρ̂∗Ẑ+

ρ̄2

)

− (S2 − 1)(S1 − 1)p̂+m̄j
∂T̂ ∗

∂xj
, (4.6)

ψ̄+
T,Adv ≡ m̄j

∂

∂xj

(

ρ̂∗T̂+

ρ̄2

)

− (S2 − 1)(S1 − 1)p̂+m̄j
∂Ẑ∗

∂xj
, (4.7)

+̄+
Adv ≡ −

m̂∗

i m̄j

ρ̄2

∂m̂+
i

∂xj
−

m̂+
i m̄im̄j

ρ̄2

∂

∂xj

(

ρ̂∗

ρ̄

)

+
m̄im̄j ρ̂∗

ρ̄2

∂

∂xj

(

m̂+
i

ρ̄

)

· · ·

· · · +
m̂+

i m̄j ρ̂∗

ρ̄2

∂m̄i

∂xj
+

p̂+m̄j

ρ̄2

∂

∂xj

(

ρ̂∗

ρ̄

)

−
ρ̂∗m̄j

ρ̄2

∂

∂xj

(

p̂+

ρ̄

)

· · ·

· · · +
T̂+

ρ̄2

(

m̄j
∂T̂ ∗

∂xj
+

2ρ̂∗m̄j

ρ̄2

∂T̄

∂xj

)

+
Ẑ+

ρ̄2

(

m̄j
∂Ẑ∗

∂xj
+

2ρ̂∗m̄j

ρ̄2

∂Z̄

∂xj

)

.(4.8)

The contributions of the advection terms to the change in the eigenvalue are

δλAdv = 〈f̄+
x,Adv, δm̄x〉+ 〈f̄+

r,Adv, δm̄r〉+ 〈ψ̄+
Z,Adv, δZ̄〉+ ψ̄+

T,Adv, δT̄ 〉+ 〈+̄+
Adv, δρ̄〉

(4.9)

The sensitivity of the production terms to base flow modifications is the

difference between the total sensitivity and the sensitivity of the advection

terms, ḡ+
Prod = ḡ+ − ḡ+

Adv. In the following sections, these are compared in

order to determine the mechanisms that most change the eigenvalue.
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Figure 4.6: The change in the steady base flow caused by a steady drag force

f̄x = −0.01e−100((x−1.0)2+(r−0.5)2).

×102 Advection Production Total

δλm̄x 2.46-0.85i -3.69+0.51i -1.23-0.34i
δλm̄r 0.72-0.62i -0.20+0.51i 0.52-0.11i
δλZ̄ -0.11+0.21i 0.07-1.00i -0.03-0.79i
δλρ̄ -4.28+0.63i 2.47-1.57i -1.81-0.93i

δλtot -1.21-0.62i -1.35-1.55i -2.56-2.17i

Table 4.1: The contributions to the change in the eigenvalue (×102) due to

a steady drag force f̄x = −0.01e−100((x−1.0)2+(r−0.5)2).
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4.6.1 The effect of a drag force in the shear layer

We start by considering the mechanisms through which the drag from the ring

affects the growth rate and frequency of the global mode. The radial velocity

in the jet is much smaller than the axial velocity so, when the ring is placed

in the jet, the axial component of the drag force is several orders of magni-

tude larger than the radial component. Therefore we consider only the axial

component. We add a small force f̄x = Ae−100((x−xc)2+(r−rc)2) to the nonlin-

ear axial momentum equation, with A = −0.01 and (xc, rc) = (1.0, 0.5), and

obtain a new steady base flow. Figure 4.4 shows that this drag force will

reduce the growth rate of the global mode. This change in the eigenvalue is

caused by a change in the steady base flow. This change in the steady base

flow is shown in figure 4.6. The force in the negative x-direction reduces

the axial momentum in the jet, causing the low-density jet to diverge. This

increases the mixture fraction in the fluid surrounding the jet and therefore

reduces the density there.

Table 4.1 shows the contributions of each component to the change in

the eigenvalue, from which physical conclusions can be drawn. For example,

the drag force causes the x-momentum in the jet to decrease, the effect of

which is measured by δλm̄x . On the one hand, this tends to decrease Re(λ)

through the production terms because the shear is weaker. On the other

hand, this tends to increase Re(λ) through the advection terms because the

perturbations are advected downstream less quickly. Table 4.1 shows that

the former outweighs the latter, so the net effect of the decreased jet velocity

is stabilizing. As another example, the low density jet expands more rapidly,

which reduces the density in the surrounding flow, making it more similar to

that of the jet. On the one hand, this tends to increase Re(λ) through the

production terms. On the other hand, this tends to decrease Re(λ) through

the advection terms because the outer flow, which is slow, has less influence

on the perturbation advection speed when its density reduces. The latter

outweighs the former so the net effect of the lower density outside the jet

is stabilizing. Although this is unlikely to be a general result for all drag
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×103 Advection Production Total

δλm̄x -1.00-1.23i 1.83+3.01i 0.83-4.23i
δλm̄r 1.93+0.18i -1.39-0.32i 0.54-0.15i
δλZ̄ -0.26-0.01i 2.21-0.05i 1.95-0.06i
δλT̄ 0.10+0.09i -0.10+0.31i 0.00+0.40i
δλρ̄ -11.3-6.15i 10.6+2.10i -0.64-4.04i

δλtot -10.5-7.12i 13.2+5.05i 2.68-8.08i

Table 4.2: The contributions to the change in the eigenvalue (×103) due to

a steady heat source ψ̄T = 0.01e−100((x−0.5)2+(r−0.25)2).

forces, this demonstrates how this technique can shed light on the physical

mechanisms behind the influence of a given drag force at a given position.

4.6.2 The effect of a heat source in the jet core

We now consider how a heat source in the jet core affects the growth rate and

frequency of the global mode. We add a Gaussian source term ψ̄T (x, r) =

0.01e−100((x−0.5)2+(r−0.25)2) to the energy equation. Figure 4.3 shows that this

heat source will increase the growth rate of the global mode. The sensitivity

of the base flow at this location is less than at the location where the drag

force was applied in the previous section. The change in the eigenvalue will

thus be less than the change caused by the drag force in the previous section.

The change in the steady base flow caused by this heat source is shown in

figure 4.7.

Table 4.2 shows the contributions of each component to the change in

the eigenvalue. Unsurprisingly, the advection and production terms are in-

fluenced mostly by the change in the density profile (δλρ̄), through the same

mechanisms as before. This time, however, the increase in Re(λ) due to the

production terms is almost exactly balanced by the decrease in Re(λ) due to

the advection terms. Again, this is unlikely to be a general result for all heat

sources, but it shows how the technique can be used to investigate the phys-

ical mechanisms behind the influence of a heat source at a given position.
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Figure 4.7: The change in the steady base flow caused by a steady heat

source ψ̄T = 0.01e−100((x−0.5)2+(r−0.25)2).

4.7 Summary

In this chapter we have performed a structural sensitivity analysis and a

base flow sensitivity analysis of the stability of a low-density jet. We have

used direct numerical simulations of the direct and adjoint low Mach number

Navier–Stokes equations: in nonlinear form to find the steady base flow, and

linear form to simulate the evolution of infinitesimal perturbations. With an

Arnoldi algorithm, we have calculated the direct and adjoint global modes for

the structural sensitivity analysis and have combined this with a Lagrangian

approach for the base flow sensitivity analysis. We have produced maps of

the regions of the flow that are most sensitive to localized closed loop feed-

back, and localized open loop steady forcing. This forcing can take the form

of a body force, a mass source, and a heat source.

We have found that the maximum of the structural sensitivity, which

is sometimes known as the wavemaker region, lies in the shear layer 2.66

jet diameters downstream of the exit plane. This flow is locally absolutely

unstable from the exit plane to 5 jet diameters downstream and has maxi-

mum absolute growth rate at the exit plane. In a local analysis of this flow

(Monkewitz et al., 1993), the wavemaker region would be taken to be at the

exit plane, highlighting a significant difference between the local and global
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approaches. Our global analysis shows that the most sensitive location for

open loop steady forcing is the area around the shear layer, around 2 jet

diameters downstream of the exit plane. This forcing can change the growth

rate and frequency of the primary global mode. We find that the influence of

steady forcing and heat injection is advected by the flow outside the jet. As

a word of caution, this means that these results depend on the streamlines

around the jet, which are very sensitive to the degree of co-flow.

We have used these maps to calculate the influence of a ring placed in

the flow. When the ring is at the same temperature as the flow, it influ-

ences the flow only through its drag. In this case, the influence of the steady

component of the drag force far outweighs the influence of the unsteady com-

ponent. Depending on its axial position, the ring changes the growth rate or

frequency of the primary global mode, in a manner that should be possible

to measure experimentally. This result depends very little on the streamlines

outside the jet because the velocity is small there, so there is little drag. By

examining the relative magnitudes of the advection and production terms in

the governing equations when the ring is placed at a point where it stabilizes

the flow, we find that the changes induced in the axial momentum and mean

density fields have most influence on the eigenvalue. We propose mechanisms

in this particular case but note that these mechanisms will depend on the

ring’s position.

When the ring is hotter than the flow, it also influences the flow through

heat input. Again, the influence of the steady component far outweighs the

influence of the unsteady component. The hot ring has most influence when

placed in the outer edge of the shear layer. It is also influential when placed

outside the jet because the expanded gas is advected towards the jet. In the

slow-moving outer flow, heat transfer from the ring is more influential than

drag from the ring because heat transfer depends less strongly on the local

velocity than the drag does. Again, this should be possible to measure ex-

perimentally, although when the ring is placed outside the jet, its predicted

influence depends significantly on the streamlines, which may be difficult to
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replicate in an experiment. For the hot ring, as for the adiabatic ring, we

find that the changes induced in the axial momentum and mean density fields

have the most influence on the eigenvalue.

This study provides a basis for hypotheses that can be tested through

an experimental study of the passive control of a low density jet with an

adiabatic ring and a hot ring. In these experiments, changes in the frequency

will probably be easier to measure than changes in the growth rate, so it is

pleasing to see in figures 3 and 4 that a ring should affect the frequency

as much as the growth rate. This study is also a stepping stone for the

theoretical study of hydrodynamic stability of jet diffusion flames, for which

extensive experimental work has already been done in our research group by

Li & Juniper (2012).

4.8 Appendix

In this section, we validate our sensitivity maps and check whether the pre-

dicted changes in the eigenvalue are the same as those found by numerical

simulation.

First, we validate the sensitivity to arbitrary base flow modfications. We

add a Gaussian of the form δm̄x = −Ae−100((x−1.5)2+(r−0.25)2) to the base flow

axial momentum and calculate the new eigenvalue using our direct eigenvalue

solver. We compare the normalized change in the eigenvalue δλact/A to the

predicted change in the eigenvalue δλpred/A = 〈f̄+
x , δm̄x〉/A. The results

for A = 0.005, 0.01, 0.05 are shown in Table 4.3 and show good agreement

between the predicted and actual eigenvalues. We notice, however, that

even for a small base flow modification, there is a small discrepancy in the

frequency. We attribute this to the first-order temporal accuracy of the direct

and adjoint timesteppers (Chandler et al., 2012).

Next, we validate the sensitivity to steady forcing. First, we consider the

effect of a momentum source term described by f̄x = −0.01e−100((x−1.0)2+(r−0.5)2).
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δλpred A = 0.005 A = 0.01 A = 0.05

0.5506-0.4252i 0.5549-0.4358i 0.5543-0.4352i 0.5555-0.4499i

Table 4.3: Comparison between the predicted and actual change in the
eigenvalue due to an arbitrary base flow modification of the form δm̄x =

−Ae−100((x−1.5)2+(r−0.25)2).

Steady force δλpred,SF δλpred,BFM δλact

f̄x = −0.01e−100((x−1.0)2+(r−0.5)2) -0.0252-0.0222i -0.0256-0.0218i -0.0204-0.0053i

ψ̄T = 0.005e−100((x−0.5)2+(r−0.25)2) 0.0011-0.0046i 0.0013-0.0041i 0.0006-0.0022i

ψ̄T = 0.005e−100((x−2.0)2+(r−0.25)2) -0.0050-0.0011i -0.0039-0.0010i -0.0022-0.0004i

Table 4.4: Comparison between the predicted and actual change in the eigen-
value due to a steady force. We compare the actual change in the eigen-
value (δλact) with the change predicted using the sensitivity to steady forc-
ing (δλpred,SF ) and the change predicted using the sensitivity to base flow
modifications with the forced base flow (δλpred,BFM)

The change in the eigenvalue due to this steady forcing can be calculated in

three ways. Firstly, we predict the change in the eigenvalue using the sensi-

tivity to steady forcing framework, δλpred,SF = 〈m̄+
x , δf̄x〉. Secondly, we add

the forcing term to the RHS of the NS equations and obtain a new steady

base flow, q̄ + δq̄. The change in the eigenvalue can then be predicted using

the sensitivity to base flow modifications, δλpred,BFM = 〈ḡ+, δq̄〉. Thirdly,

the new eigenvalue can be calculated using the direct eigenvalue solver on

the new steady base flow. In the linear approximation, all three methods

should give the same answer. We also test two heat sources described by

ψ̄T = 0.01e−100((x−0.5)2+(r−0.25)2) and ψ̄T = 0.01e−100((x−2.0)2+(r−0.25)2). The

results are shown in Table 4.4. The predicted change in the eigenvalue using

the sensitivity to steady forcing and base flow modifications agree reasonably

well. The actual change in the eigenvalue calculated using the direct eigen-

value solver is less than the predictions.

To investigate this further, we test the effect of a drag force f̄x = · · ·
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Figure 4.8: Comparison of predicted and actual change in growth rate and

frequency due to a drag force f̄x = −Ae−100((x−xc)2+(r−rc)2) for varying A, at
three locations, (xc, rc): (a) L1 ≡ (1.0, 0.5) (top), (b) L2 ≡ (1.5, 0.25) (mid-
dle), and (c) L3 ≡ (1.87, 0.67)(bottom). The solid line shows the predicted
change using the sensitivity to steady forcing (δλpred,SF ), and the circles show
the actual change in the eigenvalue (δλact), calculated using the the direct
eigenvalue solver on the modified steady base flow.
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−Ae−100((x−xc)2+(r−rc)2) for a range of amplitudes A at three different loca-

tions, L1 ≡ (1.0, 0.5), L2 ≡ (1.5, 0.25) and L3 ≡ (1.87, 0.67). We compare

the predicted change using the sensitivity to steady forcing with the actual

change calculated using the direct eigenvalue solver. The results are shown

in figure 4.8. At all the locations, we find that the sensitivity to steady

forcing predicts the sign of the change correctly, but the magnitude of the

change is not predicted well for increasing amplitudes. At L1, we find that

the agreement in the growth rate is good but the agreement in the frequency

is poor. This is because L1 lies in a region where the real part of m̄+
x has a

large magnitude and its imaginary part is changing sign. At L3, we find that

the agreement in the frequency is good but the agreement in the growth rate

is poor. This is because L3 lies in a region where the imaginary part of m̄+
x

has a large magnitude and its real part is changing sign. At L2, the phase

of m̄+
x is almost π/4, and we find that the agreement in both the growth

rate and frequency is similar. In general, the results show that the sensi-

tivity to steady forcing is somewhat inaccurate in predicting the magnitude

of the change in the eigenvalue. One cause of this discrepancy may be the

continuous adjoint formulation, which is not a perfect adjoint to the direct

equations.
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Spiral vortex breakdown: its

physical origin and control

This chapter is devoted to studying the structural sensitivity and passive

control of spiral vortex breakdown in a uniform-density swirling flow. The

flow profile used has been studied extensively in previous studies. This allows

the techniques described in Chapters 2 and 3 to be validated for a swirling

flow.

The global stability and structural sensitivity results for m = −1 in this

chapter have been published as a journal article in the Journal of Fluid Me-

chanics (Qadri et al., 2013), co-authored with Dhiren Mistry and Matthew

Juniper . The local stability analysis was done by Dhiren Mistry and Matthew

Juniper. The sensitivity to a control force for m = −1 has been presented

at the UKACC Conference 2012 (Qadri & Juniper, 2012), co-authored with

Matthew Juniper.

5.1 Introduction

If a jet of fluid rotates with sufficient azimuthal velocity (swirl), a stagna-

tion point and a recirculation bubble form within it, around one or two jet
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diameters downstream from the start of the jet. In this thesis, the transition

from the flow without a breakdown bubble to the flow with a breakdown

bubble is labelled axisymmetric vortex breakdown. Furthermore, in some

conditions the steady flow around this vortex breakdown bubble is unstable

to helical or double-helical perturbations. In this study, the development of

these helical or double-helical perturbations on top of the vortex breakdown

bubble is labelled spiral vortex breakdown.

Vortex breakdown was first observed in the flow over a gothic wing at

high angles of attack by Peckham & Atkinson (1957). The spiral mode was

first identified by Lambourne & Bryer (1961) in the flow over delta wings.

Since then, several different forms of vortex breakdown have been observed

in a variety of experimental settings such as tubes, nozzles and combustion

chambers. Investigators often observed the axisymmetric and spiral modes

of breakdown to occur almost simultaneously. Some saw spiral breakdown

before axisymmetric breakdown, while others saw axisymmetric breakdown

before spiral breakdown. This led to disagreements over the nature of vor-

tex breakdown (see reviews by Escudier, 1988; Hall, 1972; Leibovich, 1978;

Lucca-Negro & O’Doherty, 2001).

Two main explanations have been proposed for vortex breakdown: hydro-

dynamic instability (Ludwieg, 1960) and a supercritical to subcritical transi-

tion (Benjamin, 1962). Experimental evidence reviewed by Escudier (1988)

indicates that the flow upstream of the breakdown bubble is marginally stable

or completely stable. Together with the fact that the onset of vortex break-

down is sudden, this suggests that hydrodynamic instability is not responsi-

ble for causing axisymmetric vortex breakdown. Benjamin (1962) compared

vortex breakdown to the hydraulic jump seen in channel flows. He proposed

the idea of vortex breakdown being a transition from a super-critical flow

configuration to a sub-critical flow configuration and derived a criterion for

vortex breakdown.

Numerical studies allow vortex breakdown to be studied in a more con-
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trolled manner. Grabowski & Berger (1976) observed axisymmetric break-

down bubbles in their steady incompressible simulations and tried, unsuccess-

fully, to apply Benjamin’s criticality criterion to these flows. Over the next 20

years, increased computing power led to a large number of numerical studies

in which vortex breakdown was simulated in a variety of domains (Spall &

Snyder, 1999). More recently, Ruith, Chen, Meiburg & Maxworthy (2003)

carried out both steady axisymmetric and unsteady three-dimensional direct

numerical simulations of vortex breakdown using the inlet flow profile defined

by Grabowski & Berger (1976), which is labelled the Grabowski profile. They

used constant inlet conditions and open lateral boundary conditions. They

showed that Benjamin’s criticality criterion works when applied locally to

the flow profiles upstream of breakdown. Following this, Vyazmina, Nichols,

Chomaz & Schmid (2009) studied the bifurcation sequence of axisymmetric

vortex breakdown using the Grabowski inlet profile. Apart from noting that

axisymmetric vortex breakdown is a robust transition phenomenon from one

steady state to another, we do not investigate it further here.

Ruith et al. (2003) considered the local absolute/convective stability (Huerre

& Monkewitz, 1990) of the flow field created by the axisymmetric vortex

breakdown. By comparing the flow profiles to those of a Batchelor vortex,

they concluded that spiral breakdown is caused by a sufficiently large pocket

of absolute instability in the wake of the axisymmetric breakdown bubble.

They also obtained eigenfunctions corresponding to a helical (with azimuthal

wavenumber m = −1) and double helical breakdown mode (m = −2). The

minus sign indicates that the spiral winds in the opposite direction to the

swirl.

Gallaire, Ruith, Meiburg, Chomaz & Huerre (2006) performed a local sta-

bility analysis of the flow fields obtained by Ruith et al. (2003) using linear

direct numerical simulations (lDNS). For a particular swirl parameter, they

found two regions of absolute instability, one centred on the bubble and one

centred on the wake that develops behind it. By using the frequency selec-

tion criterion of Pier, Huerre & Chomaz (2001) and by comparing the spatial
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growth rate obtained from the local analysis with amplitudes extracted from

Ruith’s DNS results, they interpreted spiral vortex breakdown as a nonlinear

global mode that arises from the region of absolute instability in the wake

of the bubble. In a similar study, Herrada & Fernandez-Feria (2006) used

DNS and a local stability analysis to investigate the spiral modes of vortex

breakdown in a swirling flow in a pipe using the Batchelor vortex profile. In

contrast to Gallaire et al. (2006), they found that the helical mode arises due

to a region of local absolute instability in the bubble.

Meliga & Gallaire (2011) performed a linear global stability analysis

around the vortex breakdown bubble and its wake using the Grabowski pro-

file. They confirmed that spiral vortex breakdown is caused by an unstable

eigenmode. The growth rate and frequency from their global stability anal-

ysis agreed well with the growth rate seen in Ruith’s DNS. Recently, these

researchers have extended their analysis to consider weakly nonlinear mech-

anisms that are responsible for competition between the helical and double

helical breakdown modes in the Grabowski family of flows (Meliga, Gallaire

& Chomaz, 2012a).

In this chapter, we investigate spiral vortex breakdown in laminar, in-

compressible flows by performing linear global stability analyses around the

vortex breakdown bubble and its wake. In contrast to Meliga & Gallaire

(2011) and Meliga et al. (2012a), our aim is to determine the regions that

are most influential in causing spiral breakdown as observed in the simula-

tions of Ruith et al. (2003) and to identify the physical mechanisms that are

responsible for causing it.

For this purpose, we use the linear direct and adjoint global modes to

obtain the structural sensitivity of the flow (Giannetti & Luchini, 2007; Hill,

1992). This provides a two-dimensional map of the wavemaker region of the

flow, showing the regions of the flow in which force-momentum feedback has

most influence on the frequency and growth rate of the mode. We also per-

form a local stability analysis, which allows us to work out which regions
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of the flow are absolutely unstable and extract local spatial growth rates of

perturbations, given the frequency of the global mode. This is a useful diag-

nostic tool, particularly in identifying the wavefront of the nonlinear global

mode. We compare our results with those of Ruith et al. (2003) and Gal-

laire et al. (2006) and, although we agree with Gallaire et al. (2006) that

the nonlinear behaviour is governed by the wake, we discover that the linear

behaviour is governed by the bubble for moderate swirls.

This study is at Re = 200 and the primary motivation is scientific. There

are important industrial motivations, however. Vortex breakdown occurs

in wingtip vortices behind aircraft, in vacuum cleaners, and in gas turbine

combustion chambers. In the case of combustion chambers, hydrodynamic

instabilities in the flow can lock into acoustic resonances within the com-

bustion chamber, causing high amplitude thermoacoustic instabilities, which

can be catastropic. This fundamental study of spiral vortex breakdown will

reveal the regions of the flow that are responsible for these hydrodynamic

instabilities and could help designers to control them, either actively or pas-

sively.

5.2 Flow configuration

We study the motion of a fluid of uniform density in a cylindrical domain of

length Xmax and radius Rmax. On Ωin, we impose the density and velocity

profiles used by Grabowski & Berger (1976) and subsequently by Ruith et al.

(2003). This Grabowski profile has uniform density, ρ1, uniform temperature,

T1, and uniform axial velocity, U1, beyond a characteristic radius R. Using

these quantities as reference scales, the nondimensional base flow inlet profile
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is

ρ̄(0, r) = 1, (5.1a)

T̄ (0, r) = 0, (5.1b)

ūx(0, 0 ≤ r ≤ 1) = α + (1 − α)
(

6 − 8r + 3r2
)

r2, (5.1c)

ūx(0, r > 1) = 1, (5.1d)

ūr(0, r) = 0, (5.1e)

ūθ(0, 0 ≤ r ≤ 1) = r
(

2 − r2
)

Sw, (5.1f)

ūθ(0, r > 1) = Sw/r, (5.1g)

where Sw is a nondimensional swirl parameter and α is a nondimensional

coflow parameter. In this study, which is at Re = 200, we keep α = 1, which

corresponds to a uniform axial velocity. In the past, the use of constant inlet

conditions for simulating vortex breakdown has been criticized. However,

Ruith et al. (2003) showed that this is a safe assumption as long as the inlet

is super-critical, which is true for all the inlet profiles that we consider.

On the lateral and outlet boundaries, we impose boundary conditions

that model flow into a semi-infinite domain in the downstream and radial

directions.

The steady axisymmetric base flow is obtained by marching the equations

forward in time, while constraining the flow variables to be axisymmetric at

each timestep. This works because the base flow is stable to axisymmetric

perturbations.

5.3 Validation

Figure 5.1 shows the steady base flow at Sw = 1.0. There is an axisym-

metric breakdown bubble around x = 2, which creates a wake downstream.

The streamline pattern and the size and location of the bubble match that

obtained in previous axisymmetric simulations (Grabowski & Berger, 1976;
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Figure 5.1: Nondimensional base flow for Sw = 1.0, calculated with mesh
M1. The streamlines represent the axial and radial velocities. The shading
(colour online) represents the azimuthal velocity.

Meliga & Gallaire, 2011; Ruith et al., 2003). For this reference case, we

calculate the base flow and linear global stability on three different meshes

in order to assess the reliability and convergence of the results. The linear

global stability analysis predicts one unstable eigenmode for m = −1 and no

unstable eigenmodes for m *= −1. Table 5.1 compares the unstable global

mode frequency obtained using these meshes with results from Ruith et al.

(2003), Gallaire et al. (2006) and Meliga & Gallaire (2011). The eigenvalue

depends very weakly on the grid resolution and spatial domain size and we

conclude that mesh M1 is sufficient for this study.

Ruith et al. (2003) performed fully three-dimensional nonlinear DNS.

They perturbed the axisymmetric steady state solution with white noise and

then extracted the linear growth rate and frequency from the initial rate of

increase of the kinetic energy per unit mass. Our eigenvalue is within 1.3%

of theirs. Gallaire et al. (2006) carried out a local stability analysis on the

same axisymmetric steady state solution and used the frequency selection

criterion of Pier et al. (2001) to predict the frequency of the nonlinear global

mode. This is not expected to be exactly the same as the linear global mode

but, nonetheless, is also close to our calculations. Meliga & Gallaire (2011)

used a finite-element solver to obtain the base flow and global mode in a do-

main that was twice as long (axially) as that used in this study and by Ruith

et al. (2003). As the domain length increases, the convective non-normality

of the linearized N–S operator also increases. This makes the eigenvalues

more sensitive to perturbations and this could be the reason for the slight

discrepancy between our results and theirs.
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Xmax Rmax Sx Sr Growth rate σ Frequency ω
M1 20.0 8.0 513 127 0.035214 1.165476
M2 20.0 8.0 257 127 0.035177 1.165453
M3 25.4 10.4 257 127 0.034348 1.162470

NL DNS 20.0 10.0 193 61 0.0359 1.18
Local NL - - - - - 1.22
L global 40.0 6.0 - - 0.0335 1.17

Table 5.1: Domain size (Xmax, Rmax) and number of gridpoints (Sx, Sr)
of the three meshes (M1 − M3) used in this study, and those used by Ruith
et al. (2003) (nonlinear (NL) DNS), Gallaire et al. (2006) (local nonlinear
(NL) analysis) and Meliga & Gallaire (2011) (linear global stability). Growth
rate, σ, and frequency, ω, of the unstable m = −1 mode in each study.

Table 5.2 compares the linear growth rates obtained from mesh M1 with

those in table 1 of Meliga & Gallaire (2011) and those in figure 28 of Ruith

et al. (2003), for three swirls and two azimuthal wavenumbers, m. As dis-

cussed earlier, the difference between Meliga’s growth rates and ours can

be attributed to the difference in domain lengths. Ruith et al.’s extraction

of the linear growth rate from the rate of growth of white noise works well

near the point of linear stability, which is at Sw = 0.915, because only the

m = −1 mode is unstable and this mode grows relatively slowly. It becomes

less accurate as the swirl increases, however, because the m = −2 mode also

becomes unstable. The evolution therefore depends on how the initial white

noise projects onto each of the modes and it is harder to distinguish between

the growth rates of each individual mode. This could explain why Ruith et

al.’s growth rates at Sw = 1.2 and Sw = 1.3 are slightly different to ours.

We conclude that the agreement is as good as can be expected.

In the absence of truncation errors, the adjoint eigenvalues would be the

complex conjugates of the direct eigenvalues. In this study, the adjoint equa-

tions are derived algebraically from the direct equations and then discretized,

which means that the truncation errors of the adjoint algorithm differ from

those of the direct algorithm. We must check, therefore, that the adjoint
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Swirl 1.0 1.2 1.2 1.3 1.3
m -1 -1 -2 -1 -2
σ from M1 0.0352 0.114 0.0249 0.123 0.0693
σ from Ruith et al. 0.0359 0.106 0.0331 0.110 0.0674
σ from Meliga & Gallaire 0.0335 0.118 0.0264 0.125 0.0729

Table 5.2: Comparison of most unstable linear growth rates from a global
stability analysis with growth rates observed in 3D DNS. The growth rates
have been obtained from figure 28 of Ruith et al. (2003) and table 1 of Meliga
& Gallaire (2011) .

Growth rate σ Frequency ω Abs. discrepancy Rel. discrepancy (%)
M1 0.037663 -1.165434 0.002449 0.210064
M2 0.037048 -1.165592 0.001876 0.160908
M3 0.038603 -1.161601 0.004343 0.373424

Table 5.3: The most unstable adjoint eigenvalue for m = −1 and the dis-
crepancy with respect to the complex conjugate of the direct eigenvalue, for
meshes M1 − M3. The discrepancy is abs(λadj − λ∗

dir) where λ ≡ σ + iω.

eigenvalues are close to the complex conjugate of the direct eigenvalues. Ta-

ble 5.3 shows the adjoint eigenvalues and the discrepancy with the direct

eigenvalues for the three meshes. This discrepancy is due to the first order

time accuracy of the numerical scheme and decreases as the timestep de-

creases (Chandler et al., 2012). The discrepancy for mesh M1 is 0.2%, which

is sufficiently small for us to be confident that the adjoint eigenmodes are

close to correct.
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Figure 5.2: (a) Baseflow at Sw = 0.8944 and Re = 200, (b) axial velocity
along the axis, r = 0, (c) absolute growth rate of the dominant saddle point
(solid line) and the next saddle point (shown by a dashed line where it is a
valid pinch point and by crosses where it is not).

5.4 Global stability and structural sensitivity

5.4.1 Helical mode, m = −1

5.4.1.1 Onset of instability

In this study, we increase the swirl from Sw = 0.8, which is stable and before

the onset of vortex breakdown. At Sw = 0.8944, a stagnation point forms on

the centreline, which is the first sign of an axisymmetric breakdown bubble;

figure 5.2. This agrees with the results of Ruith et al. (2003). The complex

absolute growth rate, ω0i, is obtained as a function of streamwise distance,

x, using the local analysis. This reveals that a region of absolute instability

(which also exists for lower values of swirl) is centred around the bubble.

The flow is globally stable, however, for all azimuthal wavenumbers, showing

that this region of absolute instability is not large enough or strong enough

to cause a global instability.

As the swirl is increased, an unstable mode (σ > 0) first appears at

Sw = 0.915 with m = −1. Figure 5.3 shows the eigenvalue spectrum for

this flow configuration. Figure 5.4 shows the base flow at this swirl together

with the absolute growth rate, the unstable direct mode, the corresponding
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Figure 5.3: Eigenvalue spectrum for |m| = 1 for the base flow at Sw = 0.915
and Re = 200. The 50 least stable modes are shown. Modes with ω < 0
correspond to m = +1, while modes with ω > 0 correspond to m = −1.

adjoint mode, and the structural sensitivity map. For the direct and adjoint

modes, the upper frame shows contours of the positive (solid) and negative

(dotted) real parts of the azimuthal vorticity. (The imaginary parts have a

similar structure but are a quarter wavelength out of phase.) The lower frame

shows the kinetic energy, Ek(x) =
∫ Rmax

0 |u|2rdr as a function of streamwise

distance, and the contributions from the axial, radial, and azimuthal com-

ponents. This is a convenient measure of the amplitude of the global mode.

At Sw = 0.915, the region of absolute instability around the breakdown

bubble is sufficiently large to cause a global instability. The direct global

mode starts to grow in the bubble region and is amplified further in the

wake region, reaching a maximum around x = 12. It is worth noting that

the wake region is convectively unstable, but not absolutely unstable. The

adjoint global mode represents the receptivity of the direct mode to exter-

nal forcing, or equivalently, the initial condition that most optimally excites

the direct mode (Chomaz, 2005). It is localized between the inlet and the

upstream edge of the bubble. The spatial separation of the direct and ad-

joint global modes is characteristic of flows with convective non-normality

(Chomaz, 2005). For both the direct and adjoint global modes, the three

velocity components have roughly the same order of magnitude, indicating
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Figure 5.4: (a) Base flow at Sw = 0.915 and Re = 200; (b) absolute growth
rate for m = −1; (c) azimuthal vorticity contours of the most unstable direct
global mode (solid lines are positive values and dotted lines are negative
values); (d) kinetic energy of this direct global mode, separated into the
different velocity components; (e) azimuthal vorticity contours of the most
unstable adjoint global mode; (f) kinetic energy of this adjoint global mode,
separated into the different velocity components; (g) structural sensitivity
map as defined by (2.24).
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Figure 5.5: The real part (growth rate) of the components of the sensitivity
tensor Sij = m̂i(m̂

+
j )∗ for the m = −1 mode at Sw = 0.915. The shading

on all the plots scales from -2256 (blue) to 2256 (red). The thick black line
shows the breakdown bubble.

that component-wise non-normality is not influential. If it were influential,

one would expect different velocity components to dominate in the direct and

adjoint global modes. The structural sensitivity map shows that the wave-

maker region, as defined in (2.24), is located just upstream of the breakdown

bubble, in the region of absolute instability.

5.4.1.2 Mechanisms of instability

In order to understand the physical mechanism by which a small perturbation

to the linear operator affects the global mode, we consider the real and imag-

inary parts of the nine components of the structural sensitivity tensor, shown

in Figures 5.5 and 5.6. The nine components quantify the sensitivity of the

eigenvalue to changes in the feedback between the three components of the
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Figure 5.6: The imaginary part (frequency) of the components of the sen-
sitivity tensor Sij = m̂i(m̂

+
j )∗ for the m = −1 mode at Sw = 0.915. The

shading on all the plots scales from -2256 (blue) to 2256 (red). The thick
black line shows the breakdown bubble.
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perturbation momentum vector and the three components of the linearized

momentum equations. The real part describes the sensitivity of the growth

rate, while the imaginary part describes the sensitivity of the frequency. For

example, the figure in the top right corner shows the effect of changing the

amount of feedback from the streamwise momentum (mx) to the azimuthal

momentum equation (mθ).

It can be seen that these sensitivities are in spatial quadrature: the imag-

inary component is large where the real component is zero, and vice-versa.

These oscillatory sensitivity patterns are characteristic of convective flows

and are caused by constructive or destructive interference (Tammisola, 2012).

The global mode arises due to contributions from feedback throughout the

wavemaker region. These contributions interact constructively and destruc-

tively to give, in aggregate, a global mode frequency and growth rate. If

the feedback at one point in this wavemaker region changes, then the ef-

fect on the global mode will depend on the amplitude and the phase of the

feedback from this point, relative to the aggregate feedback from the other

points. The phase relationship of the feedback varies in space, so the effect

of a small change in the feedback at a point also varies in space.

The phase information is interesting, but a clearer picture of the influ-

ences of feedback between the components is given by the absolute value

of the structural sensitivity. This is shown in figure 5.7. In order to under-

stand the physical mechanisms that may be responsible for causing the global

instability, it is worth comparing this with the nine components of the rate-

of-strain tensor of the base flow, εij = 1
2

[

∇ū + (∇ū)T
]

, which are shown in

figure 5.8. The three frames along the leading diagonal show the axial, radial

and azimuthal strain, while the off-diagonal frames show the shear. We will

start by considering four features. Firstly, at the entry plane, there is strong

shear in the r − θ component at the edge of the vortex core. Secondly, just

outside the edge of the bubble (at r = 0.5), there is very strong shear in

the x − r component and weak shear in the r − θ component. Thirdly, the

frames in the left column of figure 5.7, which correspond to the influences on
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Figure 5.7: The absolute value of the components of the sensitivity tensor
Sij = m̂i(m̂

+
j )∗ for the m = −1 mode of the flow at Sw = 0.915. The shading

on all the plots scales from 0 (grey) to 2317 (red). The thick black line shows
the breakdown bubble.
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Figure 5.8: The components of the rate-of-strain tensor εij =
1
2

[

∇ū + (∇ū)T
]

for the base flow at Sw = 0.915. The shading on all the
plots scales from -1.6 (blue) to 1.6 (red). The thick black line shows the
breakdown bubble.
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(a) Counterflow wake (b) Solid body rotation

Figure 5.9: The absolute value of the components of the sensitivity tensor
Sij = m̂i(m̂

+
j )∗ for the m = −1 mode of (a) a parallel counterflow non-

swirling wake, and (b) a vortex with solid body rotation. The single figures
on the left in each subfigure show (a) the axial velocity profile of the wake
base flow, and (b) the azimuthal velocity profile of the vortex base flow.

the axial momentum equation, have high amplitudes in the region in which

there is strong shear in the x− r component. Fourthly, the frames in the top

row of figure 5.7 , which correspond to the influence of the axial momentum,

have moderate amplitudes in this region.

This can be compared with figure 5.9, which shows the nine components

of the structural sensitivity tensor for the m = −1 mode in two parallel

flows. The nine components have the same meaning that they have for the

two-dimensional case in figures 5.5, 5.6 and 5.7: they quantify the sensitivity

of the eigenvalue to changes in the feedback between the three components of

the perturbation momentum vector and the three components of the pertur-

bation momentum equations. The only differences are that the flow is parallel

and that the perturbations are assumed to be of the form u exp(ikx) in the

axial direction. This gives the local structural sensitivity. If the flow were

non-parallel, this would be a cross-stream slice through the two-dimensional

structural sensitivity.

The flow in figure 8(a) is a parallel non-swirling counterflow wake. This
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flow has uniform velocity in the axial direction and zero velocity in the radial

and azimuthal directions. Therefore, all shear is concentrated in the x − r

component and only the Kelvin-Helmholtz (KH) mechanism is active. The

frames in the left column of figure 5.9(a) have high amplitudes in the region

in which there is strong shear in the x− r component and the frames in the

top row have moderate amplitudes in this region. It is also worth noting that

the r − r and r − θ components have low amplitudes. The centre-top frame

of figure 5.8 shows that the x − r component of shear is strong just outside

the recirculation bubble (at r = 0.5). Figure 5.7 shows that the structural

sensitivity is large in this region, particularly in the left column and top row.

The comparison with figure 5.9(a) leads us to believe that the feedback in

this region is caused by the KH mechanism.

The four bottom-right frames in figure 5.7 have high amplitudes around

the upstream stagnation point of the recirculation bubble. From figure 5.8,

we notice that this does not correspond to regions of large shear. Hence, this

cannot be explained by a KH mechanism. To explain this, we consider the

nine components of the sensitivity tensor for the m = −1 mode in a flow with

solid body rotation but no axial shear, shown in figure 5.9(b). For this flow,

the highest sensitivities are in the r−r, r−θ, θ−r and θ−θ components, and

they all have very similar magnitudes. This is typical of feedback that arises

from the conservation of angular momentum. Specific examples of such a

mechanism include the fictitious Coriolis force (Batchelor, 1967, §7.6) and

the generalized centrifugal instability mechanism proposed by Leibovich &

Stewartson (1983), who derived a criterion for the temporal instability of a

parallel Batchelor vortex in the limit of large azimuthal wavenumber, m, and

large axial wavenumber, k. In these limits, the perturbation is only affected

by the local flow. The perturbations in this paper, however, are far from

the large m and k limit and are therefore not localized. Consequently, it is

questionable whether they can be identified with the generalized centrifugal

instability. Even if we ignore these concerns, we find, in this flow, that the

criterion is only satisfied in regions of strong axial flow, where the perturba-

tions have large group velocity. When deriving global properties from a local



92

analysis, only the waves with zero group velocity contribute. On this basis,

it seems unlikely that the generalized centrifugal instability is responsible for

the strong feedback upstream of the breakdown bubble. We conclude simply

that a mechanism involving conservation of angular momentum is active in

the region just upstream of the breakdown bubble.

We can now explain why the adjoint global mode is large in the region

upstream of the recirculation bubble, near the centreline (figure 5.4e). Let

us consider the effect of a small open loop perturbation in this region. In this

region, the axial vorticity of the base flow is an order of magnitude larger

than the radial and azimuthal vorticity of the base flow. The perturbation

vorticity is superposed on this. As a perturbation passes through this region,

the fluid is compressed in the axial direction and stretched in the radial and

azimuthal directions. By conservation of angular momentum, the vorticity in

the radial and azimuthal directions increases, while the vorticity in the axial

direction decreases. This increases the amplitude of the perturbation vortic-

ity. The amplified perturbation then passes through the ‘KH’ region, where

it is amplified by the classic Kelvin-Helmholtz mechanism. This description

agrees with observations from experiments on vortex breakdown in swirling

jets by Oberleithner, Sieber, Nayeri, Paschereit, Petz, Hege, Noack & Wyg-

nanski (2011). These researchers found the wavemaker to be upstream of the

breakdown bubble and the surrounding flow field to behave as an amplifier

of upstream disturbances.

In summary, the nine components of the structural sensitivity reveal that,

at the point of instability, two mechanisms are active in the wavemaker region

of the global mode. The first is due to conservation of angular momentum

in regions of strong strain in the flow, particularly upstream of the break-

down bubble. This mechanism is most sensitive to feedback involving the

radial and azimuthal components of the perturbation momentum. The sec-

ond is a classic KH mechanism in regions of strong shear. This mechanism is

most sensitive to feedback involving the axial component of the perturbation

momentum. We find that the first mechanism has more influence than the
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Figure 5.10: As for figure 5.4 but for Sw = 1.0. Frame (c) can be compared
directly with Fig. 29(b) of Ruith et al. (2003) (but note that the vertical
axis has been stretched in their figure)

second on the growth rate and frequency of spiral vortex breakdown.

5.4.1.3 Comparison with nonlinear behaviour

We now consider the reference case of Sw = 1.0 in light of the sensitivity

analysis at Sw = 0.915. The main purpose of this section is to compare

our linear global analysis with the nonlinear local analysis of Gallaire et al.

(2006) and the weakly nonlinear global analysis of Meliga et al. (2012a).

Figure 5.10 presents the results of the stability analysis for Sw = 1.0 in the

same format as figure 5.4. The global mode shapes and spatial wavelengths

agree very well with the DNS results in the linear regime shown in figure 29

of Ruith et al. (2003).
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Figure 5.11: Local absolute growth rate, ω0,i, (thick line) as a function of
streamwise distance for the m = −1 azimuthal wavenumber and Sw = 1.0.
The thick line represents ω0,i for the dominant saddle point (s1). The sub-
dominant saddle points are shown by a dashed line where they are valid
k+/k− pinch points and by crosses where they are not. The subdominant
saddle points are located in regions of the flow in which there are two solu-
tions of linear instability from the temporal analysis: the recirculation bubble
(saddle s2a) and the wake (s2b). The streamwise domain of this flow extends
to x = 20 but is not shown in this figure.

In agreement with Gallaire et al. (2006), figure 5.10(b) shows that the

flow at Sw = 1.0 has two finite regions of absolute instability: a small region

corresponding to the recirculation bubble and a large region corresponding

to the wake. This is shown in more detail in figure 5.11, where our results

are compared with results from figure 5 of Gallaire et al. (2006). Our results

were obtained by locating saddle points of ω in the complex k-plane. Gallaire

et al.’s results were obtained by extracting ω0i from linear DNS of locally-

parallel flows created from the actual flow at 15 streamwise locations. The

results are in very good agreement with each other, even capturing saddle

switching around x = 1.

The structural sensitivity map in figure 5.10(g) shows that there is a re-

gion of high sensitivity around the upstream end of the bubble, and regions

of lower sensitivity downstream in the wake. In order to understand how

each of these regions affects the global mode, we consider the components of

the sensitivity tensor.
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Figure 5.12: The absolute value of the components of the sensitivity tensor
Sij = m̂i(m̂

+
j )∗ for the m = −1 mode at Sw = 1.0. The shading on all

the plots scales from 0 (grey) to 1670 (red). The thick black line shows the
breakdown bubble.

The real and imaginary parts (which are not shown here) are similar to

figures 5.5 and 5.6 for Sw = 0.915 but show that the sensitive regions are

not localized to just the bubble or just the wake in any component of the

sensitivity tensor. This is evident in figure 5.12, which shows the absolute

value of the sensitivity tensor at every point in the domain. In every plot,

the regions around the bubble have greater sensitivity than the regions in

the wake. Although both the bubble and the wake affect the instability, we

deduce that the bubble is more influential than the wake in affecting both

the growth rate and the frequency of the linear global mode.

In contrast to the linear results, Gallaire et al. (2006) concluded that

the nonlinear global behaviour is governed by the wake and not by the bub-

ble. They extracted the spatial growth rate of perturbation kinetic energy

from Ruith’s saturated nonlinear DNS. They compared this with the spatial

growth rates at the two points where the flow transitions from convective to

absolute instability, in accordance with the nonlinear mode selection crite-
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rion of Pier et al. (2001). The spatial growth rate at the leading edge of the

wake region matches that of the saddle point of the local analysis there. Our

local analysis gives the same results as that of Gallaire et al. (2006).

In summary, as the results in Table 5.1 show, the frequency predicted

by the nonlinear local analysis in the wake is very close to the limit-cycle

frequency measured in Ruith’s DNS. The frequency predicted by our linear

global analysis is also close to this limit-cycle frequency. However, our sen-

sitivity analysis finds that the bubble is more influential than the wake in

determining this frequency. We have not yet been able to find a convincing

explanation for this behaviour. One possibility is to consider the nonlinear

modification of the baseflow due to the direct global mode. This would be

largest in the wake, close to where the direct global mode reaches a max-

imum. In our flow, the linear wavemaker region is quite far upstream of

this location. For small steps beyond the bifurcation point (at Sw = 0.915),

we would expect the flow to be significantly modified in the wake (Chomaz,

2005), which Meliga et al. (2012a) found to be the case.

5.4.2 Double-helical mode, m = −2

At lower Reynolds number, Meliga & Gallaire (2011) have shown that the

double-helical mode, with m = −2, becomes globally unstable before the

m = −1 mode. In this section, we consider a flow with Re = 60.

5.4.2.1 Onset of instability

As the swirl is increased, an unstable mode first appears at 1.50 < Sw ≤ 1.55

with m = −2. Figure 5.13 shows the eigenvalue spectrum at Sw = 1.55.

Figure 5.14 shows the base flow at this swirl together with the results of the

stability analysis in the same format as previous figures. The vortex break-

down bubble is larger and extends further downstream than at lower swirl.

The structural sensitivity map shows that the wavemaker lies near the ‘neck’

of the bubble, between 2.0 ≤ x ≤ 4.0. The maximum value of the structural

sensitivity is an order of magnitude lower than the maximum for Sw = 1.0
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Figure 5.13: Eigenvalue spectrum for |m| = 2 for the base flow at Sw = 1.55
and Re = 60. The 50 least stable modes are shown. Modes with ω < 0
correspond to m = +2, while modes with ω > 0 correspond to m = −2.

Figure 5.14: As for figure 5.4 but for m = −2 at Sw = 1.55 and Re = 60.
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Figure 5.15: The absolute value of the components of the sensitivity tensor
Sij = m̂i(m̂

+
j )∗ for the m = −2 mode at Sw = 1.55 and Re = 60. The

shading on all the plots scales from 0 (grey) to 270 (red). The thick black
line shows the breakdown bubble.

and Sw = 0.915 at Re = 200. This is because the Reynolds number is lower

and the flow is more nonparallel. This means that the flow is less non-normal

and less sensitive to perturbations of the linear operator.

5.4.2.2 Mechanisms of instability

To understand more about the physical mechanisms that are active in the

wavemaker, we consider the components of the sensitivity tensor. Figure

5.15 shows the absolute value of the sensitivity tensor for the m = −2 mode.

Large sensitivities are seen in the four frames in the top left-hand corner.

These correspond to feedback between the axial and radial components of

the momentum. The largest magnitude is for feedback of the axial momen-

tum into the axial momentum equation. There is moderate sensitivity to

feedback of the axial and radial momentum into the azimuthal momentum

equation. The smallest magnitudes are seen in the frames in the bottom

row. These correspond to feedback of the azimuthal momentum into the

other components of momentum and also to itself. We conclude that the
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Figure 5.16: The components of the rate-of-strain tensor Sij =
1
2

[

∇ū + (∇ū)T
]

for the base flow at Sw = 1.55 and Re = 60. The shading
on all the plots scales from -5 (blue) to 5 (red). The thick black line shows
the breakdown bubble.

feedback mechanisms that are most influential in causing double-helical vor-

tex breakdown involve the axial and radial components of the perturbation

momentum.

The strain rate tensor for the base flow is shown in figure 5.16. The

strain is greatest in the region just upstream of the bubble, while the shear

is largest near the inlet at r = 1 and around the head of the bubble, x ≤ 2.0.

Neither of the these correspond to regions where the sensitivity is high. The

regions with high sensitivity correspond to a region of weak strain: the flow

accelerates over the neck of the bubble (top left frame). The flow also has

moderate shear in this region: in the x− r and r− θ components at the edge

of the bubble. This suggests that conservation of angular momentum and

the K-H mechanism reinforce each other in this region.
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Figure 5.17: The sensitivity of the marginally unstable eigenvalue of the
m = −1 mode at Sw = 0.915 and Re = 200 to steady forcing, ∇F̄λ. The
colours show the sensitivity of the growth rate (left), and frequency (right).

5.5 Sensitivity to a control force

We now consider the effect of a small control force on the marginally unstable

eigenvalue for the m = −1 mode at Re = 200 and for the m = −2 mode at

Re = 60.

5.5.1 Helical mode, m = −1

Figure 5.17 shows the real and imaginary parts of the adjoint base flow mo-

mentum fields for the m = −1 mode at Sw = 0.915 and Re = 200. These

represent the sensitivity of the growth rate and frequency of the helical mode

of vortex breakdown to a steady body force. The eigenvalue is most sensitive

to a steady axial force near the axis upstream of the breakdown bubble. In

this region, a positive axial force (in the direction of the flow) makes the heli-

cal mode more stable, while positive radial and azimuthal forces have a weak

destabilizing effect. This is due to conservation of angular momentum, which

is the dominant mechanism responsible for destabilization of this mode. At

the edge of the bubble around r = 0.5, positive radial and azimuthal forces

have a strong stabilizing influence. Downstream of the bubble, positive axial
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Figure 5.18: The predicted change (scaled by CDdw) in the marginally un-
stable eigenvalue of the m = −1 mode at Sw = 0.915 and Re = 200 due to
the drag on a thin axisymmetric control ring, δλdrag. The shading on all the
plots is equal and goes from -0.0085 (blue) to 0.0085 (red).

and azimuthal forces have a weak stabilizing effect. Physically, this is be-

cause these forces increase the advection of perturbations downstream.

These sensitivity maps are now used to model the effect of the drag from

a thin axisymmetric control ring on the marginally unstable eigenvalue. The

drag from the control ring is modelled as described in §4.5.1. The predicted

effect of the drag from the control ring on the growth rate and frequency is

shown in figure 5.18. We find that the control ring causes a greater change

in the frequency than in the growth rate. There is a narrow region upstream

of the bubble where the control ring has a stabilizing effect. There is also a

large region downstream of the bubble where the control ring has a destabi-

lizing effect. Although this is a region of weak sensitivity (see figure 5.17),

the base flow axial and azimuthal velocities are relatively high here and so,

the axial and azimuthal components of the drag force from the ring are also

relatively high. These lead to a relatively large predicted change in growth

rate and frequency. It is also interesting to note that the effect of the steady

components of the drag force is at least 3 times greater than the effect of the
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Figure 5.19: The sensitivity of the marginally unstable eigenvalue of the
m = −2 mode at Sw = 1.55 and Re = 60 to steady forcing, ∇F̄λ. The
colours show the sensitivity of the growth rate (left), and frequency (right).

unsteady components.

5.5.2 Double-helical mode, m = −2

Figure 5.19 show the real and imaginary parts of the adjoint base flow for the

m = −2 mode at Re = 60 and Sw = 1.55. The sensitivity to steady forcing

is around an order of magnitude smaller than the sensitivity seen in figure

5.17. However, large regions of the flow, including regions inside the vortex

breakdown bubble, are moderately or highly sensitive to steady momentum

sources. The largest sensitivity is seen in the top frame of figure 5.19(b):

this represents the sensitivity of the frequency to a steady axial force. This

sensitivity is maximum near the axis just upstream of the vortex breakdown

bubble.

For practical purposes, it is clearer to plot the effect of the drag from a

control ring on the growth rate and frequency. This is shown in figure 5.20.

Many features are similar to those seen in figure 5.18 for the m = −1 mode.

There is a narrow stabilizing region that extends from the inlet to the head of
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Figure 5.20: The predicted change (scaled by CDdw) in the marginally un-
stable eigenvalue of the m = −2 mode at Sw = 1.55 and Re = 60 due to
the drag on a thin axisymmetric control ring, δλdrag. The shading on all the
plots is equal and goes from -0.0102 (blue) to 0.0102 (red).

the breakdown bubble, and a larger destabilizing region further downstream.

The effect of the steady components of the drag force is once again dominant

compared to the unsteady components. The main point to note from this

analysis is that, despite the wavemaker being further downstream around the

neck of the breakdown bubble, the global mode can be effectively controlled

by placing a suitable controller near the inlet.

5.6 Summary

In this chapter, we have studied the linear global stability of the steady ax-

isymmetric vortex breakdown bubble observed in the simulations of Ruith

et al. (2003). We have confirmed that, at moderate swirls, spiral vortex

breakdown is caused by an unstable eigenmode of azimuthal wavenumber

m = −1, which we call the helical mode. At higher swirls, spiral vortex

breakdown is caused by an unstable eigenmode of azimuthal wavenumber

m = −2, which we call the double-helical mode. For both these cases, the

adjoint of this direct global mode has also been calculated. By overlapping



104

the direct and the adjoint global modes, we have found the location of the

wavemaker, which can be interpreted as the region responsible for causing

spiral vortex breakdown (Giannetti & Luchini, 2007). By considering the

nine components of the structural sensitivity tensor, we have identified the

physical mechansisms that are responsible for causing spiral vortex break-

down. We have also used a local stability analysis to work out the regions

of absolute instability in the flow. We have then used the adjoint base flow

to identify the regions where a control force will have the most influence on

the growth rate and frequency of the global mode. In particular, we have

considered the case of a thin axisymmetric control ring, and identified regions

where it could be placed to stabilize the helical and double-helical modes of

vortex breakdown.

When the m = −1 mode first goes unstable, at Sw = 0.915, the wave-

maker is located just upstream of the breakdown bubble, which is the only

region of the flow that is absolutely unstable. The structural sensitivity ten-

sor reveals that this mode is caused by two physical mechanisms. The first

mechanism is most sensitive to feedback between the radial and azimuthal

components of the perturbation momentum, corresponding to the region of

strong strain just upstream of the breakdown bubble. We interpret this

mechanism to be related to conservation of angular momentum. The second

is the classic Kelvin-Helmholtz mechanism, which is most sensitive to feed-

back involving the axial component of the perturbation momentum. This

corresponds to the regions of strong shear around the bubble. We find that

the former mechanism is dominant.

We have also considered the case of Sw = 1.0, which has two regions

of absolute instability, one in the bubble and one in the wake. Our linear

analysis has found that the region around the bubble is more influential than

the wake in determining the growth rate and frequency. Previously, Gallaire

et al. (2006) had found that the nonlinear frequency for this case is deter-

mined by the wake and our local analysis agrees with theirs. The frequencies

from our analysis and Gallaire’s analysis are both close to the limit-cycle
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frequency observed in Ruith et al.’s 3D DNS.

When the m = −2 mode goes unstable, at Re = 60 and Sw = 1.55, the

wavemaker is located along the neck of the breakdown bubble, which is larger

than at Sw = 0.915. The structural sensitivity tensor reveals that this mode

is most sensitive to feedback between the axial and radial components of the

perturbation momentum, corresponding to regions of weak strain and shear.

This leads us to conclude that both conservation of angular momentum and

the K−H mechanism are equally dominant and reinforce one another in the

wavemaker.

We have also considered the sensitivity of the m = −1 and m = −2

modes of spiral vortex breakdown to open loop steady forcing. For the

m = −1 mode, we find that the region upstream of the breakdown bub-

ble is highly sensitive to steady forcing whereas for the m = −2 mode, large

regions of the flow are highly sensitive to steady forcing. Both modes are

most sensitive to a steady axial force. We have used these maps to calculate

the effect of a control ring placed in the flow. We find that both modes can

be stabilized by placing a ring of suitable radius just downstream of the inlet.

The motivation for this work is to extend this analysis to devices such

as fuel injectors. This implies that small changes to the injector will have a

strong influence on the hydrodynamic stability of the flow, and that we can

use these techniques to predict the influence of such changes.
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6

Global stability and control of

swirling jets

This chapter is devoted to studying the global stability, structural sensitivity

and control of swirling jets, whose velocity profiles are more representative

of the velocity profiles observed in experiments on swirling jets. The local

stability analysis has been performed by Matthew Juniper.

6.1 Introduction

In the previous chapter, the Grabowski profile was used to study the global

stability and structural sensitivity of the spiral modes of vortex breakdown

in a uniform-density swirling flow. The Grabowski profile is a good model for

swirling flow in tubes and ducts. However, it is not representative of the flow

field near the exit plane of a swirling jet. Figure 6.1 shows velocity profiles

measured in an experiment on swirling water jets by Billant et al. (1998).

The azimuthal velocity reaches a maximum at around half jet radius and

then decays to zero at the edge of the jet. This differs from the Grabowski

profile, which features a 1/r decay rate for the azimuthal velocity and a larger

azimuthal shear layer. The aim of this chapter is to study the linear global

stability and structural sensitivity of swirling jets whose velocity profile is

similar to the ones shown in figure 6.1.
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Figure 6.1: Taken from Billant et al. (1998). (a) Azimuthal and (b) axial
velocity profiles obtained in experiments on swirling water jets, for various
swirl paramters, near the exit plane.

The background for this chapter is the experimental study of Billant et al.

(1998). These researchers studied the effect of increasing swirl on the dynam-

ics of a swirling water jet exiting into a large tank of water, at Reynolds num-

bers 300 < Re < 1200. In agreement with previous studies, they found that

vortex breakdown set in above a critical value of swirl. Below this threshold,

at moderate swirls, they observed that the swirling jet took the form of a

double-helix. Above this threshold, they observed four distinct forms of vor-

tex breakdown: an axisymmetric bubble, an axisymmetric conical sheet, and

asymmetric forms of the bubble and cone states. They observed that the up-

stream end of the axisymmetric bubble was steady, but that the downstream

end of the bubble led to an unsteady precessing spiral tail. In contrast, they
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observed that the cone mode was inherently unsteady: its stagnation point

oscillated along the jet axis and this was accompanied by a change in the

angle of the conical sheet. These oscillations, however, were very slow, with

periods of the order of a few hundred seconds. The asymmetric states only

appeared at Re ! 800 and due to the axisymmetric nature of the code, are

not considered in this thesis.

The double-helical mode observed before vortex breakdown forms the

motivation for section 6.3 of this chapter. Gallaire & Chomaz (2003) used

a local linear stability analysis to study a velocity profile that was a good

model for the velocities measured by Billant et al. (1998) near the exit plane

in their experiments. Gallaire & Chomaz (2003) found that this velocity pro-

file, which we label the Billant jet profile, was locally absolutely unstable to

a mode of azimuthal wavenumber m = −2 and suggested that this accounted

for the experimental observation of a double-helix before the onset of vortex

breakdown. In a recent experimental investigation of swirling jets in water

at Re = 1000, Liang & Maxworthy (2005) observed the same qualitative

features as those observed by Billant et al. (1998). An important differ-

ence, however, was that Billant et al. (1998) observed a counter-rotating,

co-winding double-helical mode while Liang & Maxworthy (2005) observed

a counter-rotating counter-winding double-helical mode before vortex break-

down. Liang & Maxworthy (2005) attributed this to the differences in the

velocity profiles between their experiments and those of Billant et al. (1998)

- the relative location of the azimuthal and axial shear layers was different

between these two studies. Liang & Maxworthy (2005) also studied spec-

tra of the flow field to determine whether the double-helical mode that they

observed before vortex breakdown was self-excited. The results were not

conclusive but suggested that the double-helical mode was self-excited and

globally unstable. In this chapter, the velocity profiles used by Gallaire &

Chomaz (2003) are used to study the linear global stability of a uniform-

density swirling jet before the onset of vortex breakdown. The aim is to

confirm whether the double-helical mode observed in the experiments of Bil-

lant et al. (1998) is due to a linear global instability.
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The bubble and cone states of vortex breakdown form the motivation

for the second part of this chapter. In agreement with Billant et al. (1998),

Liang & Maxworthy (2005) observed a counter-rotating m = 1 mode after

the onset of vortex breakdown. They suggested that this mode was globally

unstable and due to the existence of a region of local absolute instability in

the wake of the breakdown bubble. These observations agree qualitatively

with the simulations of vortex breakdown using the Grabowski profile by

Ruith et al. (2003) and with the results of the previous chapter. In this

chapter, the bubble and cone states obtained using the Billant jet profile are

studied using the tools discussed in chapters 2 and 3. The sensitivity maps

that are obtained are compared to those obtained in the previous chapter for

the Grabowski profile. These would be expected to be of more interest for

fuel injectors and experimental investigations of swirling jets.

6.2 Flow configuration

The linear global stability of a swirling jet is studied in a cylindrical domain of

length Xmax and radius Rmax. On Ωin, the velocity profiles used by Gallaire

& Chomaz (2003) are imposed. The axial velocity is modelled using a top-

hat profile that was originally proposed by Monkewitz & Sohn (1986). The

azimuthal velocity is modelled using a profile that was first proposed by

Carton & McWilliams (1989). The density profile is modelled using the

same top-hat profile as that used for the axial velocity. The flow variables

are nondimensionalized by the centreline jet axial velocity, the jet diameter,

and the ambient density. The nondimensional base flow inlet profile is then
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given by

y(0, r) =
1

1 + (e4r2 log(2) − 1)N
, (6.1a)

T̄ (0, r) = y(0, r), (6.1b)

ρ̄(0, r) =
1

(S1 − 1)T (0, r) + 1
, (6.1c)

m̄x(0, r) = ρ̄(0, r) (uc + (1 − uc)y(0, r)) , (6.1d)

m̄r(0, r) = 0, (6.1e)

m̄θ(0, r) = ρ̄(0, r)
(

2qre−(2r/rv)α)

, (6.1f)

where N models the thickness of the axial shear layer, S1 is the ratio of the

ambient-density to jet-density, uc is a co-flow velocity, q is a swirl parameter,

rv models the vortex-core size and α models the thickness of the azimuthal

shear layer. The Reynolds number, Re, is defined in terms of the jet diame-

ter, jet axial velocity, and jet density.

Gallaire & Chomaz (2003) used a second axial velocity profile to model

the overshoot observed by Billant et al. (1998) in their experimentally mea-

sured axial velocity profiles. However, Gallaire & Chomaz (2003) found that

the linear stability analyses of these two model profiles were very similar and

suggested that the basic profile captured most of the physics of the problem.

In this chapter, therefore, only the basic profile (without the overshoot) is

used.

The base flow inlet profile is defined such that it matches the experimental

measurements of Billant et al. (1998). Gallaire & Chomaz (2003) found values

of N = 3, rv = 0.9 and α = 4 to fit well with the experimental profiles and

these values are used here too. The density ratio is set to S1 = 1.0 and

the temperature profile at the inlet is set to zero to model a uniform-density

swirling jet. A small coflow velocity of uc = 0.01 is used to improve numerical

stability.
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Figure 6.2: The steady base flow for a swirling jet with Re = 667 and
q = 1.48. The streamlines show the axial and radial velocities and the colour
shows the azimuthal velocity.

6.3 Before vortex breakdown

In this section, the linear global stability of a swirling jet before the onset of

vortex breakdown is investigated. A grid measuring 127 × 513 is used for a

domain with Xmax = 30 and Rmax = 8. The value of Xmax is chosen to be

approximately equal to that in the experiments of Billant et al. (1998). The

value of Rmax is larger than that used in the previous two chapters because the

amount of fluid entrained into the jet is greater and the traction-free lateral

boundary condition is not suitable for very large entrainment velocities. A

steady axisymmetric base flow is obtained for Re = 667 and q = 1.48. This

corresponds to the flow regime where Billant et al. (1998) observed a double-

helical mode. The base flow is shown in figure 6.2.

6.3.1 Global stability

The growth of small perturbations of azimuthal wavenumber m = 2 on top of

the steady base flow are considered. Instead of looking at just the most un-

stable linear eigenmode, for this case, it is more appropriate to look at the 50

most unstable eigenmodes. The eigenvalues are plotted in figure 6.3, together

with the eigenvalues for a domain with Xmax = 15. For both domain lengths,

the eigenvalue solver finds a hoop of eigenvalues with a positive growth rate,

which indicates global instability. Figure 6.4 shows the spatial structure of

one of these unstable modes. The mode reaches maximum amplitude near

the exit plane. This would suggest that the domain length is insufficient to

capture the true location of maximum amplitude. However, the amplitude
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Figure 6.3: Eigenvalue spectrum for m = 2 for the base flow shown in figure
6.2 for a domain with Xmax = 30.0 (crosses) and a domain with Xmax = 15.0
(circles).

of the mode grows over 9 orders of magnitude between the inlet and outlet.

This shows that the mode experiences large exponential growth in space.

Such large growth has also been observed in several previous studies.

In a study on the uniform-density Batchelor vortex, Heaton et al. (2009)

found that their eigenvalue solver, which was based on an incompressible

version of the code developed by Nichols et al. (2007)), could not resolve

modes which varied over 6 orders of magnitude. These unresolved modes

appeared in the form of a hoop of eigenvalues and were not affected by using

a finer mesh. They suggested that this was related to the non-normality of

the linear operator and that this hoop was actually part of the 106 pseudo-

spectrum of the linear operator. They found that decreasing the axial length

of the domain reduced the convective non-normality and for a sufficiently

small axial length, the true global mode could be obtained.

In a study on uniform-density non-swirling jets, which are known to be

linearly globally stable, Garnaud et al. (2013) faced similar problems when
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Figure 6.4: From top, (a) The real part of the axial momentum of the most
unstable mode for m = 2 at Re = 667 and q = 1.48 in a domain with
Xmax = 15.0, and (b) the amplitude of the direct global mode, A(x) =
√

∫ Rmax

0 |u|2rdr through the domain.

obtaining the linear global eigenmodes for m = 0. The linear eigenmodes that

were obtained all had maximum amplitude at or near the outlet boundary

and were dependent on the axial length of the domain. Strong exponential

growth in space was shown to be possible even in regions of the flow that are

locally stable.

These indicate that the unstable modes in figure 6.3 are not the eigen-

modes of the streamwise-unconfined flow and that these modes must be re-

lated to the flow being convectively unstable. In order to confirm this, the

linear impulse response is calculated for perturbations with m = 2 develop-

ing on top of the base flow in figure 6.2. This is performed by imposing an

initial condition of a Gaussian of unit magnitude at (x, r) = (1.0, 0.5) in the

axial velocity. The linearized equations are then marched forward in time

using the direct time-stepping code described in chapter 3.

Figure 6.5(a) plots the amplitude of the wavepacket in the domain for

10 < t < 90. Between 10 < t < 40, the maximum amplitude of the

wavepacket increases and the location of maximum amplitude moves down-

stream. The amplitude of the wavepacket at a point upstream of the max-

imum decreases with increasing time. This is typical of local convective
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Figure 6.5: The linear impulse response for m = 2 of the Billant Jet before
vortex breakdown at Re = 667 and q = 1.48 for a domain with (a) Xmax =
30.0, and (b) Xmax = 100.0. The amplitude of the wavepacket in the domain
is shown for 10 ≤ t ≤ 100. The impulse was localized at (x0, r0) = (1.0, 0.5).

Figure 6.6: The linear impulse response for m = 2 of the Billant Jet before
vortex breakdown at Re = 667 and q = 1.48. for a domain with (a) Xmax =
30.0, and (b) Xmax = 100.0. The amplitude of the wavepacket is plotted
against the group velocity for 10 ≤ t ≤ 100. The impulse was localized at
(x0, r0) = (1.0, 0.5).
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instability. For 40 < t < 50, the leading edge of the wavepacket has a signifi-

cant amplitude when it reaches the outlet boundary. The convection velocity

used in the boundary condition at the outlet is equal to the maximum axial

base flow velocity. The perturbation velocities, however, are now significantly

larger than this convection velocity and so, the outlet boundary perturbs the

inlet through pressure feedback. This causes the amplitude in the upstream

part of the domain to increase for 60 < t < 90. This reflection can be avoided

by obtaining the base flow for a longer domain. For example, figure 6.5(b)

shows the impulse response for a grid with 253 × 2049 points for a domain

with Xmax = 100.0 and Rmax = 8.0. The impulse response can now clearly

be seen to be convective in nature.

Figure 6.6 plots the amplitude of the wavepacket against the group ve-

locity of the wavepacket. With increasing time, a group velocity of around

0.30 < vg < 0.35 is seen to dominate the dynamics of the m = 2 mode. It is

important to note that the amplitude of the wavepacket increases by almost

9 orders of magnitude during this time. Only waves of zero group velocity

contribute towards global instability. For this case, the waves of zero group

velocity decay and it is only the reflection of waves off the boundaries in the

shorter domain that causes the zero group velocity waves to be amplified.

It is also important to note that it is sufficient to run simulations only for

m = +2. If a mode with m = −2 was more unstable, it would be seen in

the linearized DNS, and the eigenvalue spectrum would show this mode as

having negative frequency. Such a mode has not been found. The results in

this section, therefore, show that both the m = +2 and m = −2 modes are

linearly globally stable in an unconfined domain.

6.3.2 Local stability

Gallaire & Chomaz (2003) carried out a local stability analysis of the inlet

profile and found that the m = −2 mode was absolutely unstable. They cal-

culated the linear impulse response of a parallel base flow in a long domain
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Figure 6.7: The local absolute growth rate, Im(ω0), for m = −2 for the base
flow shown in figure 6.2 up to x = 20.0. The saddle swaps around x = 7.0.

Figure 6.8: The saddle point and the resonant modes for m = −2 for the
base flow shown in figure 6.2, near the inlet at x = 0.5273. The figure on
the left shows the saddle point (circle), the local angular frequency, ω0 (solid
line), and resonant modes (dashed line) in the complex k-plane. The figure
on the right shows the growth rate, Im(ωres), and frequency, Re(ωres), of
the resonant modes relative to the saddle point. The saddle point is not
absolutely unstable and the resonant modes (right) are never more unstable
than the saddle point.
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and tracked the leading and trailing edges of the wavepacket. The found that

the trailing edge of the wavepacket had a negative group velocity and thus

concluded that the profile was linearly absolutely unstable.

A local stability analysis is performed on the flow in figure 6.2 in order to

confirm whether the flow is locally absolutely unstable anywhere. In contrast

to Gallaire & Chomaz (2003), who calculated the linear impulse response,

the local stability analysis presented here finds the saddle points of the local

angular frequency, ω, in the complex k-plane. The local absolute growth rate

is shown in figure 6.7 up to x = 20.0. In contrast to the results of Gallaire &

Chomaz (2003), the local stability analysis performed here shows that that

the flow is never absolutely unstable.

In a study on the local stability of a lifted diffusion flame, Nichols et al.

(2009) showed that streamwise confinement can have a destabilizing effect,

through beating between resonant modes. Figure 6.8(left) shows the sad-

dle point for a streamwise location near the inlet at x = 0.5273. It is not

absolutely unstable (ω0,i = −1.00). The dashed line is the resonant line (cal-

culated in the same way as in (Nichols et al., 2009)). It extends only into

the valleys, and therefore, the resonant modes all have more negative growth

rate than the saddle point (right frame). This confirms that resonant modes

are not responsible for the unstable modes in figure 6.3.

Figure 6.9 shows the amplitude of the wave packet from the linear im-

pulse response in figure 6.5(b) at the location of the impulse, x = 1.0, and

just downstream of the inlet, x = 0.05, over time. The amplitude at the im-

pulse location decreases rapidly, then increases slightly, then decreases again.

Near the inlet, the amplitude increases and then decreases. The discrepancy

between our results and those obtained by Gallaire & Chomaz (2003) could

possibly be related to the increase observed at intermediate times. Figure 13

of their study shows the impulse response for 18 ≤ t ≤ 30. In our nondimen-

sionalization, this corresponds to 9 ≤ t ≤ 15. In figure 6.9(b), the amplitude

near the inlet does increase slightly. For longer times, though, the amplitude
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Figure 6.9: The amplitude of the wavepacket for m = 2 of the Billant Jet
before vortex breakdown at Re = 667 and q = 1.48. at (a) x = 1.0, and
(b) x = 0.05. The amplitude of the wavepacket is plotted against time for
10 ≤ t ≤ 100. The impulse was localized at (x0, r0) = (1.0, 0.5).

decreases.

The results in this section show that the double-helical mode observed

before vortex breakdown is not due to linear global instability or local abso-

lute instability. The large convective growth suggests that transient growth,

related to the highly non-normal linear operator, may be responsible for this

mode. This would agree with observations by Billant et al. (1998) that this

mode is highly sensitive to the experimental set up and the flow conditions.

Transient growth calculations for this flow, however, are out of the scope of

this thesis, but can be pursued in future work.

6.4 Bubble state

At higher values of the inlet swirl parameter, q, a stagnation point forms

along the jet centreline, leading to an axisymmetric bubble in the jet. A

grid with 255 × 257 points for a domain measuring 20.0 × 20.0 in the radial

and axial directions is used. A steady base flow is obtained for Re = 437

and q = 2.10 by time-stepping the axisymmetric equations of motion. The

streamlines of this steady base flow are shown in figure 6.10(a).
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Figure 6.10: (a) The steady base flow, and, for m = −1, the unstable (b)-
(c) direct, (d)-(e) adjoint global modes, and (f) structural sensitivity for the
bubble state in a Billant jet at Re = 437 and q = 2.10.
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Figure 6.11: Eigenvalue spectrum for |m| = 1 for the bubble state in a Billant
jet at Re = 437 and q = 2.10. The 36 least stable modes are shown. Modes
with ω < 0 correspond to m = +1, while modes with ω > 0 correspond to
m = −1.
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Figure 6.12: The components of the structural sensitivity tensor for the
unstable m = −1 mode of a Billant jet at Re = 437 and q = 2.10.

6.4.1 Global stability and structural sensitivity

The evolution of small perturbations of wavenumber m = −1 around this

steady base flow are considered. Figure 6.11 shows the eigenvalue spectrum

that is obtained for this flow configuration. A hoop of unstable modes with

negative imaginary parts is found, similar to that observed in the previous

section. These modes corresponded to modes of wavenumber m = +1, have

maximum amplitude at the outlet, and grow exponentially over several orders

of magnitude between the inlet and outlet. These modes are convectively un-

stable modes, dependent on the position of the outlet boundary.

One unstable mode is also found corresponding to m = −1. This mode

is a true physical global mode of the unconfined flow. This is confirmed by

using a numerical sponge layer between x = 15.0 and the outlet at x = 20.0.

This sponge layer reduces the amplitude of perturbations smoothly down to

zero at the outlet. A Dirichlet boundary condition can then be used at the

outlet instead of a convective boundary condition. Using this procedure, only

one mode with m = −1 is found that is marginally unstable. The validity
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of this mode is checked by varying the damping ratio of the sponge and

checking that there is no change in the eigenvalue. This has an eigenvalue of

λ = 0.002 + 2.38i. The real part of the axial momentum of this global mode

is shown in figure 6.10(b), and the amplitude of the global mode is plotted

in figure 6.10 (c). The mode reaches maximum amplitude around 3.5 jet

diameters downstream of the exit plane, and has large amplitudes inside the

jet region and small amplitudes outside it. The corresponding adjoint global

mode is shown in figure 6.10(d). The adjoint mode has maximum amplitude

upstream of the bubble, near the jet centreline. The structural sensitivity

has largest magnitude in the wake of the bubble, around 2 jet diameters

downstream of the exit plane. This region corresponds to a local minimum

of the centreline axial velocity. This is a sign that a second bubble may form

here, downstream of the primary bubble, at higher values of q and Re . The

structural sensitivity tensor, shown in figure 6.12, shows that, just as for the

m = −1 mode in the Grabowski profile, feedback between the radial and

azimuthal components of perturbation momentum are the most influential

in determining the stability of this mode. This corresponds to conservation

of angular momentum in the wake of the bubble.

6.4.2 Sensitivity to a control force

The sensitivity of the eigenvalue to steady forcing is shown in figure 6.13.

As expected, a steady force in the wavemaker region, around x = 2.0, has a

strong effect on both the growth rate and frequency of the global mode. The

eigenvalue is most sensitive to a steady axial force. Upstream of the bubble,

this has a stronger effect on the frequency than on the growth rate. Around

the wavemaker region, both the growth rate and frequency are equally af-

fected. The alternating regions of sensitivity downstream of the bubble corre-

spond to alternating regions of acceleration and deceleration around the local

minimum of the axial velocity. It is interesting to note that the sensitivity

maps are not related to the streamline pattern around the jet, in contrast to

the low-density jet considered in chapter 4.
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Figure 6.13: The sensitivity of the marginally unstable eigenvalue of the
m = −1 mode of the bubble state at q = 2.10 and Re = 437 to steady
forcing, ∇F̄λ. The colours show the sensitivity of the growth rate (left), and
frequency (right).

Figure 6.14: The predicted change (scaled by CDdw) in the marginally un-
stable eigenvalue of the m = −1 mode of the bubble state at q = 2.10
and Re = 437 due to the drag on a thin axisymmetric control ring, δλdrag.
The shading on the plots is equal and goes, for (a) the change in growth rate
(left), from -0.0164 (blue) to 0.0164 (red), and for (b) the change in frequency
(right), from -0.0545 (blue) to 0.0545 (red).
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Figure 6.15: A snapshot of the cone state of vortex breakdown in a Billant
jet at Re = 500 and q = 2.30. The colours show the axial momentum of the
flow.

These sensitivity maps are used to model the effect of the drag a thin

axisymmetric control ring on the unstable eigenvalue, as in section 4.5.1.

The predicted change in the growth rate and frequency are shown in figure

6.14. This figure is qualitatively similar to figure 5.18 for the Grabowski

profile. There is a region near the inlet where the control ring will have a

stabilizing effect.

6.5 Cone state

The bubble state was only found to exist for a small range of parameters.

For small increases in q and similar proportional increases in Re, a cone

state of vortex breakdown is observed. This cone state is shown in figure

6.15, which is a snapshot of the axial momentum field at Re = 500 and

q = 2.30. This state is axisymmetrically unsteady and a steady axisymmetric

base flow could not be obtained by simply time-stepping the axisymmetric

equations of motion. Instead, selective frequency damping (SFD) was used

to filter out the unsteady temporal fluctuations in the velocity and obtain a

steady axisymmetric base flow. A grid with 255 × 257 points is used for a

domain measuring 20.0×20.0 jet diameters in the radial and axial directions
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respectively. The steady base flow is shown in figure 6.16(a) and has two

breakdown bubbles. It should be emphasized that this steady base flow is

an artificial state and will not exist in practice. Ideally, we would like to

carry out our analysis around the cone state, but for this thesis, we content

ourselves with considering this steady base flow.

6.5.1 Global stability and structural sensitivity

The eigenvalue spectrum, shown in figure 6.17, is similar to that obtained for

the bubble state. As for the bubble state, a sponge layer is used at the outlet

to damp out the hoop of convective m = +1 modes. It is important to point

out that the steady base flow was not found to be linearly globally unstable

to m = 0, even though SFD had to be used to obtain the steady base flow.

This suggests that the cone state does not arise out of linear instability of

the bubble state.

The most unstable global mode has an eigenvalue of λ = 0.151 + 2.37i.

The results of the global stability analysis are shown in figure 6.16. The

direct and adjoint global modes are very similar to the ones seen for the

bubble state. The wavemaker region is just upstream of the 2nd breakdown

bubble. The maximum structural sensitivity is greater than that observed for

the bubble state, which suggests that the linear operator is more non-normal

for this flow than for the flow in figure 6.10.

6.5.2 Sensitivity to a control force

The sensitivity of the eigenvalue to steady forcing is shown in figure 6.18. The

eigenvalue is most sensitive to a steady axial force in the region upstream of

both breakdown bubbles in the steady base flow. For practical purposes, the

region upstream of the first breakdown bubble is of most interest. In this

region, both the growth rate and frquency can be controlled effectively. For

example, figure ref shows the effect of the drag from a control ring on the

eigenvalue. The stabilizing regions are strongest near the second recircula-
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Figure 6.16: (a) The steady base flow, and, for m = −1, the (b)-(c) direct,
and (d)-(e) adjoint global modes, and (f) structural sensitivity for the cone
state in a Billant jet at Re = 500 and q = 2.30.
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Figure 6.17: Eigenvalue spectrum for |m| = 1 for the cone state in a Billant
jet at Re = 500 and q = 2.30. The 40 least stable modes are shown. Modes
with ω < 0 correspond to m = +1, while modes with ω > 0 correspond to
m = −1.
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Figure 6.18: The sensitivity of the marginally unstable eigenvalue of the
m = −1 mode of the cone state at q = 2.30 and Re = 500 to steady forcing,
∇F̄λ. The colours show the sensitivity of the growth rate (left), and frequency
(right).

Figure 6.19: The predicted change (scaled by CDdw) in the marginally unsta-
ble eigenvalue of the m = −1 mode of the cone state at q = 2.30 and Re = 500
due to the drag on a thin axisymmetric control ring, δλdrag. The shading
on the plots is equal and goes, for (a) the change in growth rate (left), from
-0.0188 (blue) to 0.0188 (red), and for (b) the change in frequency (right),
from -0.1065 (blue) to 0.1065 (red).
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tion bubble, but moderately stabilizing regions are also present upstream of

the first recirculation bubble.

6.6 The effect of variable-density and heat

addition

In many applications, the swirling jet may have a different density to that of

the surrounding fluid. This section considers the effect of this difference in

density on the sensitivity maps for the m = −1 mode of instability.

The governing equations are discretized on a grid with 255×257 points for

a domain measuring 20.0×15.0 in the radial and axial directions respectively.

A steady base flow is obtained using SFD, setting S1 = 2.0, Re = 400 and

q = 2.20. The density ratio is similar to the density ratio of methane in air.

The base flow and linear global stability results are almost identical to the

results in figure 6.10. The wavemaker is located in the wake of the breakdown

bubble.

The sensitivity to steady forcing and heat addition is shown in figure

6.20. The sensitivity to momentum forcing (a-c) is similar to that for the

uniform-density jet in figure 6.13. The sensitivity to heat addition (d) shows

that heat addition upstream of the breakdown bubble, near the inlet, is sta-

bilizing. The stabilizing effect of the drag from a thin control ring near the

inlet can, therefore, be enhanced by heating the wire.

6.7 Summary

This chapter has looked at the global stability and control of swirling jets

whose velocity profiles match experimental measurements of velocities near

the exit plane of a swirling jet Billant et al. (1998). At swirl levels below the
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Figure 6.20: The sensitivity of the marginally unstable eigenvalue of the
m = −1 mode of the bubble state in a low-density Billant jet, with S1 = 2.0
at q = 2.20 and Re = 400 to steady forcing, ∇F̄λ. The colours show the
sensitivity of the growth rate (left), and frequency (right).
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onset of vortex breakdown, experiments by Billant et al. (1998) and Liang

& Maxworthy (2005) have shown that the swirling jet takes the form of

a double-helix, which has m = 2. A previous study by Gallaire & Chomaz

(2003) found that this swirling jet profile was absolutely unstable for m = −2

and suggested that the double-helical mode observed in the experiments was

a global mode. This hypothesis has been tested in this chapter using a linear

global stability analysis around a steady base flow. Several unstable modes

with m = 2 are found, but these modes reach maximum amplitude near the

outlet boundary and show large convective growth. The linear impulse re-

sponse for m = 2 shows the wavepacket convecting downstream. The energy

at the site of the impulse grows for a short period of time, but then decays.

A local stability analysis has also been performed around a steady base flow,

revealing that, in contrast to the results of Gallaire & Chomaz (2003), the

flow is not absolutely unstable anywhere for m = 2 or m = −2. These results

show that the m = 2 mode is linearly globally stable and locally convectively

unstable everywhere. The large convective growth and strong non-normality

suggest that transient growth may explain the experimental observations.

At swirl levels above the onset of vortex breakdown, two states of vortex

breakdown are observed. In the first state, a steady axisymmetric bubble

forms in the flow. In the second state, an unsteady axisymmetric cone forms

in the flow. Both these states of vortex breakdown have been observed by

Billant et al. (1998). A steady base flow is obtained for both these states.

The steady base flow for the cone state has two recirculation bubbles. These

steady base flows are linearly globally unstable for m = −1, similar to the

Grabowski profile in the previous chapter. In the bubble state, in contrast to

the previous chapter, the wavemaker is located in the wake of the breakdown

bubble. In the cone state, the wavemaker is located just upstream of the

second recirculation bubble.

The sensitivity of the growth rate and frequency of the global modes in

the bubble state and cone state to a control force has also been considered.

The growth rate and frequency are most sensitive to a steady axial force
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in the region upstream of the breakdown bubble. The sensitivity maps are

qualitatively similar to those obtained for the Grabowski profile in chapter

5 and do not depend on the streamline pattern around the jet. These maps

have been used to predict the influence of the drag from a thin axisymmetric

control ring on the growth rate and frequency of the global mode. For both

the bubble state and the cone state, the ring has most influence when placed

in the wavemaker region and influences the frequency more than the growth

rate. For both these states, however, there are regions near the inlet where

the ring is moderately stabilizing. This stabilizing effect is enhanced in a

low-density swirling jet by heating the ring.
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7

Global stability and control of

a lifted jet diffusion flame

This chapter revisits the lifted jet diffusion flame that was originally consid-

ered by Chandler (2010). A linear global stability analysis is used to study

the origin of the modes of instability, and their possible control. The results

of this linear global stability analysis are used to explain the nonlinear be-

haviour observed in these flames. The local stability analysis and resonant

mode calculations have been performed by Matthew Juniper.

7.1 Introduction

A diffusion flame is a type of flame that forms when the fuel and oxidizer

are not mixed before ignition. The fuel and oxidizer mix by diffusion and

the reaction rate is greatest where the fuel and oxidizer are in stoichiometric

proportion. In this thesis, the case considered is that of a jet of fuel exiting

into a supply of oxidizer and being ignited. In this configuration, when the

flow rate of fuel is too large, the flame lifts off the jet nozzle and stabilizes

at some distance downstream of the jet exit plane. The region between the

exit plane and the flame base is referred to as the premixing zone.
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Figure 7.1: Taken from Nichols & Schmid (2008) (a) Time histories of the
lift-off height, H , for five reacting simulations with Da = 3, 4, 5, 6, 7 × 105

represented by blue, red, green, magenta, and black, respectively. (b) PSD
vs Stouhal number for four of the signals displayed in (a).

Downstream of the premixing zone, the flame changes the density profile

of the jet. If the jet of fuel exits upwards, buoyancy leads to changes in the

velocity profile. In particular, the velocity profile gains additional inflexion

points. These can lead to global instability through the Kelvin-Helmholtz

mechanism. In this thesis, however, the effects of buoyancy are neglected.

Nichols & Schmid (2008) carried out direct numerical simulations of non-

buoyant flames in reacting low-density jets. By varying the Damkohler num-

ber, Da, flames with different lift-off heights were obtained. Flames with

sufficiently large lift-off heights were found to be unstable - the flame base

oscillated around a mean axial position and the stoichiometric surface devel-

oped folds. For a range of Damkohler numbers, the axial location of the flame

base was monitored over time, and an FFT of this time trace was used to ob-

tain spectra for flames with different mean lift-off heights. The results (shown

in figure 7.1 for reference) show that increasing the Damkohler number re-

duces the flame lift-off height. Flames with smaller lift-off heights (higher

Da) have less sharp spectral peaks than flames with larger lift-off heights

(lower Da). For the unstable flames at Da = 400, 000 and Da = 500, 000,

and the marginally unstable flame at Da = 600, 000 there is a peak at

around 0.25 < St < 0.30 (with harmonics) and another peak at around
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0.0 < St < 0.05. For sufficiently small lift-off heights (Da = 700, 000), the

flame is steady and no oscillations are observed. Nichols & Schmid (2008)

performed a local stability analysis around steady solutions for these lifted

flames and showed that the premixing region upstream of the flame base is

locally absolutely unstable and that reducing the lift-off height shortens the

region of absolute instability. Since the flame with smallest lift-off height

is stable, they concluded that the flame itself cannot support self-sustained

oscillations and that flame oscillations for the unstable cases must be caused

by the absolutely unstable premixing zone.

Chandler (2010) performed a linear global stability analysis around the

marginally stable case (Da = 600, 000) in Nichols et. al.’s simulations and

found an unstable mode whose frequency was within 10% of the spectral peak

at St = 0.284 observed in the nonlinear simulations. Chandler (2010) found

that the structural sensitivity of this mode is maximum in the shear-layer

in the premixing zone. This confirmed the hypothesis of Nichols & Schmid

(2008) that the strong spectral peak observed at St = 0.284 in their simu-

lations was due to global instability caused by the non-reacting low-density

jet upstream of the flame base.

In a a subsequent study, Nichols et al. (2009) used a local stability anal-

ysis to show that the flame base imposes streamwise confinement on the jet

in the premixing zone. They showed that this streamwise confinement can

lead to low-frequency resonant modes being set up and suggested that the

nonlinear interaction of those resonant modes with the jet mode of instability

could cause the spectral peaks at 0 < St < 0.05 observed in the nonlinear

simulations.

In this chapter, a linear global stability analysis is used to show that the

spectral peaks at 0 < St < 0.05 are caused by an unstable global mode and

not by resonant modes. This is supported by a local stability analysis that

calculates the resonant modes and shows that the predicted frequencies of

the resonant modes do not match the frequencies observed in the nonlinear
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simulations. The structural sensitivity of the unstable global mode is found

to be maximum in the flame, suggesting that, in contrast to Nichols et al ’s

conclusion, the flame itself does support self-sustained oscillations.

Finally, the sensitivity of both the global modes to steady forcing is ob-

tained. This provides information about how the growth rates and frequen-

cies of these modes may be controlled.

7.2 Flow configuration

An axisymmetric jet of fuel exits into a large cylindrical domain, of length

Xmax and radius Rmax, that is filled with oxidizer. The flow variables are

nondimensionalized by the jet diameter, jet axial velocity and ambient den-

sity. The nondimensional flow parameters are set to match exactly the cases

studied in the nonlinear simulations of Nichols & Schmid (2008). The ratio

of the ambient density to jet density at the inlet defines the density ratio

parameter, S1 = 7.0. The Reynolds number, Re = 1000, is defined in terms

of the jet diameter, jet axial velocity and jet density. The Prandtl number,

Pr = 0.7, and Schmidt number, Sc = 0.7, describe the ratio of the diffusivity

of temperature and mass, respectively to the diffusivity of momentum.

The ratio of the adiabatic flame temperature to the ambient temperature

defines the temperature ratio parameter S2 = 6.0. The reaction chemistry is

described by the mass stoichiometric ratio, s = 2, the equilibrium constant,

κ = 0.01, the heat release parameter, α = 0.833, and the Zeldovich number

β = 3. As noted by Nichols & Schmid (2008), this choice of parameters pro-

duces flames that are thicker than those found in nature. This is acceptable

as these flames are sufficiently thin in comparison to the wavelength of the

hydrodynamic instabilities that are being investigated. This is particularly

relevant if the wavemaker region is in the flame, as it is for mode B (figure

7.6). In this case, it is important that the thickness of the flame relative to

the thickness of the wavemaker region is checked a posteriori.
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Figure 7.2: The steady baseflow for a lifted diffusion flame at Re = 1000 and
Da = 600, 000. The streamlines show the axial and radial velocity and the
colour shows contours of reaction rate, log(ω̄). The thick black line shows
the stoichiometric surface, which corresponds to a contour of Z̄ = 0.333.

The equations are discretized on a grid with 511 × 1025 points for a

domain measuring 10.0×10.0 jet diameters in the radial and axial directions

respectively. At the inlet, the velocity and mixture fraction profiles used by

Nichols & Schmid (2008) are imposed. These top-hat profiles are formed from

Michalke’s profile number two, with a small coflow of oxidizer surrounding

the jet. The coflow velocity is 1% of the jet velocity. The temperature

profile at the inlet is set to be uniform but a Gaussian-shaped impulse at

(x, r) = (2.0, 0.5) is applied to ignite the fuel-oxidizer mixture in order to

obtain the base flow.

A steady base flow was obtained for a Damkohler number Da = 600, 000

by Chandler (2010) using SFD. This steady lifted diffusion flame is shown in

figure 7.2. This matches the flame found in Nichols & Schmid (2008).

7.3 Global stability and structural sensitivity

The global stability of this steady base flow is studied for perturbations with

m = 0. Figure 7.3 shows the eigenvalue spectrum obtained. Two families

of modes are found that go unstable - a high-frequency branch and a low-

frequency branch. The most unstable mode in each of these families are
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Figure 7.3: Eigenvalue spectrum for m = 0 for the flame shown in figure 7.2
at Da = 600, 000 (crosses), and the same flame calculated at Da = 500, 000
(circles). The 50 least stable modes are shown.

shown in figures 7.4 and 7.5.

The first of these modes, labelled mode A, has an eigenvalue of λ =

−0.0833 + 1.978i at Da = 600, 000 and was first identified by Chandler

(2010). It becomes globally unstable for 500, 000 < Da < 600, 000. The real

parts of the direct and adjoint global modes for mode A are shown in figure

7.4. The direct mode shape is most dominant downstream of the flame base,

and grows radially towards the axis of the jet. The adjoint mode shape,

however, is most dominant in the premixing zone between the inlet and the

flame base. The Strouhal number is St = Im(λ)/2π = 0.315, which is within

approximately 10% of the nonlinear Strouhal number (St = 0.284) observed

by Nichols & Schmid (2008) in their nonlinear simulations. This Strouhal

number is very close to the Strouhal number corresponding to the global

instability of the non-reacting low-density jet in Chapter 4.

The second of these modes, labelled mode B, has an eigenvalue of λ =

0.0098 + 0.216i. The real parts of the direct and adjoint global modes for

mode B are shown in figure 7.5. In contrast to mode A, the direct mode

shape of mode B is localized further downstream, along the outer part of the

flame and grows radially away from the axis of the jet. The adjoint mode
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(a) Direct global mode (b) Adjoint global mode

Figure 7.4: The real parts of the direct and adjoint global modes for mode
A, with λ = −0.0833 + 1.978i

(a) Direct global mode (b) Adjoint global mode

Figure 7.5: The real parts of the direct and adjoint global modes for mode
B, with λ = 0.0098 + 0.216i
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shape is dominant in both the premixing zone as well as just downstream

of the flame base. This imaginary part of the eigenvalue corresponds to a

Strouhal number of St = 0.034, which agrees well with the Strouhal number

(St = 0.035) of the low-frequency oscillations observed by Nichols & Schmid

(2008) in their nonlinear simulations. In recent experiments on buoyant

globally unstable methane diffusion flames, Li & Juniper (2012) found that

the flames oscillate at around St = 0.049. This is not expected to match the

results here because buoyancy is neglected in this thesis. Nevertheless, the

similar order of magnitude of the Strouhal numbers suggests that mode B

may be similar to the global instability that arises in buoyant jet diffusion

flames. In Chandler’s original study, a local stability analysis around the

steady base flow in figure 7.2 found a region of absolute instability in the

flame region (§4.5 of Chandler (2010)). Chandler, however, did not find

the global mode B, and therefore, concluded that this region of absolute

instability in the flame was too weak to cause global instability. The results

of this section, however, show that this region of local absolute instability

does support a linear global mode.

The structural sensitivity, as defined by Giannetti & Luchini (2007) for

the incompressible Navier–Stokes equations in the velocity-pressure formu-

lation, is given by the dyadic product of the direct and adjoint global mode

velocity vectors. For the LMN formulation used in this thesis, the equiv-

alent quantity is the dyadic product of the direct and adjoint global mode

momentum vectors, Sij = m̂im̂
+
j . The components of this tensor represent

the effect of changes in the feedback between the different components of the

momentum on the eigenvalue of the global mode. The Frobenius norm of this

tensor for modes A and B are shown in figure 7.6. For mode A, this quantity

is maximal at (x, r) = (0.35, 0.58), while, for mode B, this quantity is max-

imal at (x, r) = (3.27, 1.03). According to Giannetti & Luchini (2007), this

identifies the region in space which is most sensitive to perturbations in the

inherent feedback mechanism driving the instability: the wavemaker region.

This means that the wavemaker for mode A lies is the shear layer in the pre-

mixing region of the lifted flame, while the wavemaker for mode B lies in the
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Figure 7.6: The wavemaker, as defined by 2.24 for modes A and B. This is
equivalent to the definition of Giannetti & Luchini (2007).

shear layer along the outer surface of the flame. This confirms the conclusion

of Nichols & Schmid (2008) that mode A corresponds to the jet imparting its

global instability frequency onto the flame but shows that, in contrast to the

conclusions of Nichols & Schmid (2008), that the flame can support a self-

sustaining mode - mode B corresponds to an an instability of the flame itself.

For variable-density and reacting flows, however, more information about

the nature of the instability can be obtained by considering the structural

sensitivity for the entire state vector and not just the momentum vector. For

the flames in this chapter, this leads to a 4 × 4 tensor, which represents the

effect of changes in the feedback between mx, mr, Z and T on the eigenvalue

of the global mode. Comparison between sensitivities involving momentum,

temperature and mixture fraction are valid as long as the adjoint global mode

has been normalized according to 2.21, which is true for the results presented

here. The sensitivity tensors for modes A and B are shown in figures 7.7 and

7.8 respectively. For mode A, the eigenvalue is most sensitive at the flame

base to changes in the feedback of the temperature into the axial and radial
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Figure 7.7: The components of the structural sensitivity tensor q̂(q̂+)∗ for
mode A. The shading on all the plots is equal and goes from 0 (grey) to
24606 (red).

momentum equations. In the shear layer in the premixing zone, changes in

the feedback of the mixture fraction into the momentum equations have a

moderate effect. The temperature and mixture fraction, however, only affect

the momentum equations indirectly through the density. Both these types of

feedback, therefore, involve feedback involving the perturbation density and

momentum. For mode B, the same feedback mechanism is dominant but in

a different location - the outer shear layer of the flame.

7.3.1 Comparison to previous studies

In order to confirm that mode B accounts for the spectral peaks at the low

Strouhal number in the nonlinear simulations of Nichols & Schmid (2008),

the global modes are calculated for two other values of Damkohler number,
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Figure 7.8: The components of the structural sensitivity tensor q̂(q̂+)∗ for
mode B. The shading on all the plots is equal and goes from 0 (grey) to 5287
(red).
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Da = 500, 000 and Da = 700, 000. For both cases, the growth rates and fre-

quencies for modes A and B are compared to the spectra obtained by Nichols

& Schmid (2008). The results are summarized in tables 7.1 and 7.2.

The linear growth rates for mode A match the observations in the non-

linear DNS which show flames with higher Da being more stable. The agree-

ment between the linear global mode frequency and the nonlinear frequency

is better for Da = 600, 000 than for Da = 500, 000 because the flame at

Da = 500, 000 is more unstable and is far from the bifurcation point.

The linear growth rates for mode B decrease as Da is increased. This

agrees with the results in figure 3 of Nichols & Schmid (2008) which show

that the low-frequency spectral peak for Da = 600, 000 is smaller than the

low-frequency spectral peak for Da = 500, 000. The linear global mode

frequencies for mode B agree well with those observed in the nonlinear sim-

ulations for Da = 500, 000 and Da = 600, 000.

Nichols et al. (2009) suggested that the low-frequency oscillations in the

nonlinear simulations could be due to beating between resonant modes that

arise due to the streamwise confinement that the flame base imposes on the

low-density jet in the premixing zone. In order to confirm this theory, res-

onant mode calculations were performed for the flame with Da = 500, 000.

The results are shown in figure 7.9, at a location x = 0.0391, which cor-

responds to the closest grid slice to the results reported in Nichols et al.

(2009). This location was used based on the value of k and ω of the saddle

point. Figure 7.9(a) shows the saddle point of the local angular frequency

at ω0 = 1.05 + 0.281i. The solid line shows the line of constant local growth

rate, ωi, that pass through the saddle point, and the dashed line shows the

resonant line, which satisfies criteria 1 and 3 in equation (5) of Nichols et al.

(2009). The solid dots show the resonant modes that are allowed, according

to criterion 2 in equation (5) of Nichols et al. (2009), for the lift-off height

of the flame (H = 1.913). The solid dots in figure 7.9(b) show the resonant

modes along the resonant line: there are 2 unstable resonant modes, with
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Figure 7.9: The saddle point and resonant modes for a lifted diffusion flame
with Da = 500, 000 at x = 0.039 near the inlet. (a) The saddle point (circle),
which is at (ω0i, k0i), the lines of constant ωi that pass through the saddle
point (solid lines), and the resonant line (dashed line), with valid resonant
modes (solid dots) in the complex k-plane. (b) The growth rate, ωi, and
frequency, ωr, of the resonant line and modes relative to the saddle point.
(c) The resonant line and modes in the (ωr, ∆kr) plane. The resonant modes
(solid dots) are equidistant in the vertical direction. This determines the
spacing along the ωr axis, which is then used in (b).
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ωg = 1.31 + 0.31i and ωg = 2.04 + 0.06i, and an infinite number of stable

resonant modes.

Nichols et al. (2009) suggest that the low-frequency mode could be due

to beating between the two unstable resonant modes. The difference in fre-

quency between the 2 unstable resonant modes is 0.73, which corresponds

to a Strouhal number of St = 0.12. This is almost 5 times greater than the

frequency in the nonlinear simulations for this Da (St = 0.025). Calculating

the difference in frequencies between the other stable resonant modes also

gives frequencies which are several times larger than the nonlinear frequency.

Similar results are obtained for a streamwise location x = 0.97, which is

roughly half way within the premixing region.

These results show that the low-frequency oscillations observed in the

nonlinear simulations are not caused by beating between resonant modes,

and support the conclusion that the low-frequency oscillations observed in

the simulations of Nichols & Schmid (2008) are caused by a linear global

instability, originating in the outer shear layer of the flame. Although the

theory of resonant modes put forward by Nichols et al. (2009) is valid, it is

not responsible for the low-frequency oscillations observed in Nichols et al.’s

simulations.

7.4 Sensitivity to a control force

In this section, the sensitivity of the growth rate and frequency of modes A

and B to steady forces is presented. Figure 7.10 shows the sensitivity of mode

A to steady body forces and a steady heat source. As for the low-density

jet considered in chapter 4, the sensitivity pattern for mode A of the lifted

diffusion flame, in particlar the sensitivity to axial forcing and heat input,

roughly follows the streamline pattern in figure 7.2. The eigenvalue is most

sensitive to a steady axial force in the lean side of the fuel-oxidizer shear

layer upstream of the flame base. A radial force has most effect at the jet
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Linear global stability analysis Nichols et al (2008)
Da Growth rate σ Frequency, St Nonlinear St

500, 000 0.159 0.217 0.284
600, 000 −0.083 0.315 0.284
700, 000 −0.459 0.141 stable

Table 7.1: Comparison of growth rates and frequencies for mode A from a
linear global stability analysis with frequencies from table 1 of Nichols &
Schmid (2008).

Linear global stability analysis Nichols et al (2008)
Da Growth rate σ Frequency, St Nonlinear St

500, 000 0.020 0.027 0.025
600, 000 0.010 0.034 0.035
700, 000 −0.010 0.037 stable

Table 7.2: Comparison of growth rates and frequencies for mode B from a
linear global stability analysis with the low-frequency oscillations observed
in figure 3 of Nichols & Schmid (2008).

Figure 7.10: The sensitivity of the marginally stable eigenvalue of mode A for
the lifted flame in figure 7.2 at Da = 600, 000, to steady forcing, ∇F̄λ. The
colours show the sensitivity of the growth rate (left), and frequency (right).
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Figure 7.11: The sensitivity of the marginally stable eigenvalue of mode B for
the lifted flame in figure 7.2 at Da = 600, 000, to steady forcing, ∇F̄λ. The
colours show the sensitivity of the growth rate (left), and frequency (right).

exit plane and at the flame base. Heating the core of the fuel jet upstream

of the flame base is destabilizing. This is similar to the low-density jet in

chapter 4. In general, the sensitive regions are concentrated around the jet

shear layer and flame base. From a practical point of view, however, it would

be difficult to use a control device in these regions because the flame would

tend to attach to the control device.

For mode B, on the other hand, regions of moderate to high sensitivity

extend up to two jet diameters away from the jet axis and beyond. Passive

control of this mode may, therefore, be a feasible option. A previous study

by Toong et al. (1965) found that the flicker of a diffusion flame on a burn-

ing cylinder could be stabilized by placing a non-burning control cylinder on

either side of the burning cylinder. From the top frame of figure 7.11, it can

be deduced that the drag force from a thin control ring has a strong effect

on the eigenvalue: close to the flame it stabilizes mode B, while further from

the flame, it destabilizes mode B. The drag force from a control ring also

has a equivalently strong effect on the frequency of this mode: close to the

flame, it increases the frequency, while further from the flame, it decreases
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the frequency. For reference, Toong et al. (1965) observed the frequency of

oscillations to increase but this is expected to depend on the exact location

of the control cylinders. It is interesting that, in contrast to mode A, heating

the core of the fuel jet (which may not be feasible), or the flow around the

fuel jet just downstream of the exit plane is stabilizing.

It is worth noting that the sensitivity to steady forcing for both modes of

the lifted-flame have a very large magnitude ( O(1010)) compared to the sen-

sitivity to steady forcing for the non-reacting flows considered in chapters 4, 5

and 6 ( O(105)−O(107)). This high sensitivity is caused by the linearization

of the reaction rate around the base flow mixture fraction and temperature

profiles. In particular, the eigenvalue is extremely sensitive to changes in the

base flow mixture fraction profile. Physically, this means that, a control de-

vice affects the growth rate and frequency of the global modes by affecting the

base flow mixture fraction profile, which then affects the reaction rate. The

high sensitivity also means that even a tiny perturbation will cause a large

change in the base flow, making these linear sensitivity maps inaccurate in

predicting the magnitude of the change in the eigenvalue. This is because the

linear stability analysis is strictly valid only for infinitesimal perturbations.

For finite perturbations, the accuracy of the linear analysis can be improved

by incrementing the magnitude of the perturbation in stages, calculating a

new steady base flow, and performing the linear sensitivity analysis around

this new steady base flow at each stage.

7.5 Summary

A linear global stability analysis has been performed around a steady base

flow for a lifted diffusion flame with Da = 600, 000. The flow configuration

studied is identical to that considered by Nichols & Schmid (2008) in a pre-

vious study. Two modes with m = 0 are found to be near the threshold of

instability. The direct and adjoint global modes have been calculated for each

of these modes. These have been used to identify the wavemaker responsible
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for causing each mode and to calculate the sensitivity of the growth rate and

frequency of each mode to steady control forces. The results from the linear

global stability analysis have been used to identify the modes of instability

observed in the nonlinear simulations of Nichols & Schmid (2008).

The first of these modes, labelled mode A, has a linear global frequency

which is close to the frequency of the dominant mode observed in Nichols et

al.’s nonlinear simulations. The wavemaker for this mode is located in the

shear-layer in the premixing zone. This confirms that, in agreement with

the local stability analysis used by Nichols & Schmid (2008), this mode is

caused by instability of the low-density jet upstream of the flame base. The

components of the structural sensitivity tensor reveal that the eigenvalue is

most sensitive to feedback of the perturbation density into the linearized mo-

mentum equations at the flame base.

The second of these modes, labelled mode B, has a linear global frequency

which is close to the frequency of the low-frequency oscillations observed in

Nichols et al.’s nonlinear simulations. The wavemaker for this mode is located

in the outer part of the shear layer in the flame. The components of the sensi-

tivity tensor reveal that the eigenvalue is most sensitive to the same feedback

mechanism as that of mode A, but in the shear layer in the flame. This shows

that, in contrast to the conclusions of Nichols & Schmid (2008), the flame

does support self-sustained oscillations. Nichols et al. (2009) suggested that

the low-frequency oscillations observed in the nonlinear simulations could be

caused by the streamwise confinement of the flow upstream of the flame base

leading to resonant modes. This theory has been tested by calculating reso-

nant modes for a lifted flame at Da = 500, 000 and comparing the difference

in frequencies between these resonant modes with the frequency observed in

the nonlinear simulations. The resonant mode frequencies are several times

larger than the frequency observed in the nonlinear simulations. The results

from the linear global stability analysis in this chapter, however, show that

the low-frequency oscillations observed in the nonlinear simulations can be

more simply explained by linear global instability of mode B. This is con-
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firmed by comparing the linear global mode growth rates and frequencies for

both modes A and B to nonlinear results from Nichols & Schmid (2008) for

flames at Da = 500, 000 and Da = 700, 000. The good agreement supports

the conclusion that the low-frequency oscillations observed in the nonlinear

simulations are due to a global instability of the flame.

For mode A, the growth rate and frequency are most sensitive to steady

forces near the jet shear layer upstream of the flame base. This suggests that

passive control of this mode may not be feasible because the flame is likely

to attach to any control devices placed at or near the flame base. For mode

B, on the other hand, regions upto two or three diameters away from the fuel

jet are moderately sensitive to steady forces. Passive control of this mode

may, therefore, be feasible. The sensitivity map shows a large region where

the drag force from a thin axisymmetric control ring can stabilize this mode

of instability.
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8

Global stability and control of

swirling diffusion flames

8.1 Introduction

In many combustion applications, swirl is used to improve mixing between

fuel and oxidizer and to stabilize the flame through the influence of the vortex

breakdown bubble. The use of swirl promotes non-axisymmetric modes of in-

stability. These modes have been observed in previous numerical (Ranga Di-

nesh et al., 2009) and experimental (Al-Abdeli & Masri, 2003) studies on

non-premixed turbulent swirling flames, where they have been referred to

as the precessing vortex core (PVC). Due to the complexity of the problem,

there has not been, until now, a fundamental study of the hydrodynamic

instability in swirling flames.

In this chapter, the techniques described in chapters 2 and 3 are used

to study the origin and control of global instability in swirling diffusion

flames. Two qualitatively different types of steady swirling flames are ob-

tained. These are globally unstable to helical modes of instability, with

m = −1. A structural sensitivity analysis is used to identify the origin of the

helical modes of instability. Finally, the sensitivity of these helical modes to

steady body forcing and heat input is calculated.
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8.2 Flow configuration

A swirling jet of fuel exits into a large cylindrical domain of length Xmax and

radius Rmax. The velocity profiles used at the inlet are the same as those

in chapter 6. The mixture fraction of the fuel is chosen to have the same

top-hat profile as the axial velocity. The temperature profile at the inlet is

set to be uniform. The nondimensional base flow inlet profile is then given

by:

y(0, r) =
1

1 + (e4r2 log(2) − 1)5
, (8.1a)

Z̄(0, r) = y(0, r), (8.1b)

ρ̄(0, r) =
1

(S1 − 1)Z(0, r) + 1
, (8.1c)

m̄x(0, r) = ρ̄(0, r) (uc + (1 − uc)y(0, r)) , (8.1d)

m̄r(0, r) = 0, (8.1e)

m̄θ(0, r) = ρ̄(0, r)
(

2qre−(2r/0.9)4
)

. (8.1f)

The flow variables are nondimensionalized by the jet diameter, jet centreline

axial velocity and ambient density. The Reynolds number is defined in terms

of the jet diameter, jet centreline axial velocity and jet density. The Prandtl

number, Pr = 0.7, and Schmidt number, Sc = 0.7, describe the ratio of the

diffusivity of temperature and mass, respectively to the diffusivity of momen-

tum.

The density ratio parameter S1 = 7.0 defines the ratio of the oxidizer

density to fuel density. The reaction chemistry is chosen to be identical to

that used in the previous chapter: the ratio of the adiabatic flame temper-

ature to the ambient temperature defines the temperature ratio parameter

S2 = 6.0. The reaction chemistry is described by the mass stoichiometric

ratio, s = 2, the equilibrium constant, κ = 0.01, the heat release parameter,

α = 0.833, and the Zeldovich number β = 3. The fuel-oxidizer mixture is
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ignited by a Gaussian shaped impulse in the initial temperature profile at

(x, r) = (2.0, 0.5). The flames in this chapter are therefore similar to those

in the previous chapter, with the exception that the flames are now swirling.

Two qualitatively different types of swirling flames are studied in this chap-

ter: the first is a swirling jet diffusion flame without co-flow, the second is a

lifted swirling diffusion flame with strong co-flow.

8.3 Swirling jet diffusion flame, without coflow

The first type of swirling flame considered is obtained for Re = 175, q = 2.05

and Da = 100, 000. The axial coflow parameter in (8.1d) is set to uc = 0.01

to improve numerical stability. The governing equations are discretized on a

grid with 255 × 513 points for a domain measuring 20 × 10 jet diameters in

the radial and axial directions respectively.

A steady base flow is obtained using SFD. This is shown in figure 8.1. A

vortex breakdown bubble exists between 0.5 < x < 3 within the core of the

fuel jet. The azimuthal velocity within the flame is less than half of the peak

azimuthal velocity at inlet. The flame base is at (x, r) = (1.0, 0.75). The

flame has two distinct branches downstream of the flame base: the outer

branch forms the outer surface of the flame, while the inner branch sur-

rounds the vortex breakdown bubble. The flame is thicker and broader than

the flame in the previous chapter because the flame in this chapter has been

obtained for lower Da and Re.

8.3.1 Global stability and structural sensitivity

The steady base flow is found to be unstable to perturbations with m = −1.

Figure 8.2 shows the eigenvalue spectrum that is obtained. The only unstable

mode has an eigenvalue of λ = 0.01 + 0.08i. The imaginary part of the

eigenvalue corresponds to St = 0.013, which is a low frequency of oscillation.

The real parts of the direct and adjoint global modes are shown in figure 8.3.
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Figure 8.1: The steady baseflow for a swirling diffusion flame at Re = 175,
q = 2.05 and Da = 100, 000. The streamlines show the axial and radial ve-
locity and the colours show, from the top, contours of (a) azimuthal velocity,
(b) density, and (c) reaction rate, log(ω̄). The thick black line shows the
vortex breakdown bubble.
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Figure 8.2: Eigenvalue spectrum for |m| = 1 for the flame shown in figure
8.1. The 25 least stable modes are shown. Modes with ω < 0 correspond to
m = +1, while modes with ω > 0 correspond to m = −1.

The direct global mode has a large wavelength of around 8 jet diameters, and

evolves along the flame surface. For this case, the adjoint global mode has

been obtained by power-iteration rather than the Arnoldi method because

power-iteration produced a converged mode in less computational time than

ARPACK. The adjoint global mode has a similar structure to the adjoint

global mode for mode B in figure 7.5(b).

The origin of this mode is identified using the structural sensitivity. The

Frobenius norm of the structural sensitivity tensor, containing only momen-

tum terms, is shown in figure 8.4. The wavemaker is located at the flame

base. The full sensitivity tensor is shown in figure 8.5. It is clear that the

eigenvalue is most sensitive to feedback from the temperature into the mo-

mentum equations, particularly the azimuthal momentum equation, at the

flame base. This highlights the importance of density fluctuations in deter-

mining the growth rate and frequency of the unstable mode. The results

suggest that this mode of instability arises from the flame rather than the

breakdown bubble. It is not related to the spiral mode of vortex breakdown

observed in chapters 5 and 6.
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(a) Direct global mode (b) Adjoint global mode

Figure 8.3: The real parts of the direct and adjoint global modes for the
only unstable mode, with m = −1, for the flow in figure 8.1. The mode has
eigenvalue λ = 0.01 + 0.08i.
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Figure 8.4: The wavemaker, as defined by 2.24 for the unstable mode shown
in figure 8.3. This is equivalent to the definition of Giannetti & Luchini
(2007).The thick white line shows the stoichiometric surface, which corre-
sponds to Z̄ = 0.333.

Figure 8.5: The components of the structural sensitivity tensor, q̂i(q̂
+
j )∗, for

the unstable mode shown in figure 8.3. The shading on all the plots is equal
and goes from 0 (grey) to 305800 (red).
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Figure 8.6: The sensitivity of the marginally unstable eigenvalue of the
m = −1 mode in figure 8.3 to steady forcing, ∇F̄λ. The colours show the
sensitivity of the growth rate (left), and frequency (right). The thick white
line shows the stoichiometric surface, which corresponds to Z̄ = 0.333. The
thick black line shows the vortex breakdown bubble.

8.3.2 Sensitivity to a control force

The direct and adjoint global modes are used to calculate the sensitivity of the

growth rate and frequency of the unstable mode to steady body forcing and

heat addition. The results are shown in figure 8.6. The mode is most sensitive

to a steady axial force just upstream of the vortex breakdown bubble. Just

as for mode B in the previous chapter, there are large regions away from

the flame where the drag from a thin control ring can stabilize this mode.

The sensitivies have very large magnitudes, just as in the previous chapter.

This is again due to the eigenvalue being extremely sensitive to changes in

the base flow mixture fraction profile. The sensitivity to a steady azimuthal
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force is several orders of magnitude smaller than the sensitivity to steady

axial and radial forces. This is because the base flow, and any change to it,

is assumed to be axisymmetric. An axisymmetric steady azimuthal force does

not affect the axisymmetric base flow mixture fraction profile and, therefore,

has a smaller direct effect on the eigenvalue.

8.4 Swirling diffusion flame, with strong coflow

The second swirling flame considered is obtained for Re = 200 and q = 2.00

with Da = 600, 000. The axial coflow parameter is set to uc = 1.0. This

means that the swirling jet of fuel is surrounded by a non-swirling flow of

oxidizer with the same axial velocity as the fuel. The governing equations are

discretized on a grid with 127 × 513 points for a domain measuring 10 × 10

jet diameters in the radial and axial directions respectively.

A steady base flow is obtained by time-stepping the axisymmetric equa-

tions of motion. This is shown in figure 8.7. A vortex breakdown bubble ex-

ists between 2.0 < x < 3.5 within the core of the fuel jet. Compared to figure

8.1, this flame is stabilized further downstream at around (x, r) = (4.0, 0.75).

The flame has a conical base that sits partly within the breakdown bubble.

The flame is visibly thinner than the flame in figure 8.1 because the Da used

is higher here.

It can be seen that the flame base is not well-resolved. Ideally, a finer grid

should be used. However, it was found that the grid resolution strongly lim-

its the timestep used for the continuous adjoint of swirling reacting flows. A

grid with 1.5 times the resolution presented here was tried - but the timestep

used had to be around 50 times smaller for stability. The sixth-order spatial

accuracy places a tight constraint on the maximum stable timestep that can

be used in the code. If the grid-spacing changes by a factor N , the maximum

stable time-step, theoretically, changes by a factor N6. In addition, it has

been found that adjoint codes typically require a time-step of around half the

length of the time-step used in the direct code (Chandler, personal commu-
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Figure 8.7: The steady baseflow for a swirling diffusion flame, with strong
coflow, at Re = 200, q = 2.00 and Da = 600, 000. The streamlines show the
axial and radial velocity and the colours show, from the top, contours of (a)
azimuthal velocity, (b) density, and (c) reaction rate, log(ω̄). The thick black
line shows the vortex breakdown bubble.
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Figure 8.8: Eigenvalue spectrum for |m| = 1 for the flame shown in figure
8.7. The 25 least stable modes are shown. Modes with ω < 0 correspond to
m = +1, while modes with ω > 0 correspond to m = −1.

nication, 2010). As a result of these complications, the adjoint global mode

could not be obtained for the higher-resolution case in time for the completion

of this thesis. The direct global mode, however, was obtained and is shown,

together with the higher-resolution base flow in the appendix to this chapter.

The discrepancy between the eigenvalues of the higer-resolution and lower-

resolution direct global mode, calculated as abs(λhigh − λlow)/abs(λhigh), is

1.79%.

8.4.1 Global stability and structural sensitivity

The steady base flow is found to be unstable to perturbations with m = −1.

Figure 8.8 shows the eigenvalue spectrum obtained. The only unstable mode

has an eigenvalue of λ = 0.11 + 2.09i. The real part of the eigenvalue is

relatively large, suggesting that the flow is far from the bifurcation point, and

that the steady base flow shown in figure 8.7 will not exist in practice. The

imaginary part of the eigenvalue corresponds to a higher frequency than that

for the mode in §8.3. The real parts of the direct and adjoint global modes

are shown in figure 8.9. The adjoint global mode has maximum amplitude

near the axis, upstream of the vortex breakdown bubble and has a similar

structure to the adjoint global mode for the m = −1 mode of spiral vortex
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(a) Direct global mode (b) Adjoint global mode

Figure 8.9: The real parts of the direct and adjoint global modes for the
only unstable mode, with m = −1, for the flow in figure 8.7. The mode has
eigenvalue λ = 0.11 + 2.09i.

Figure 8.10: The wavemaker, as defined by 2.24 for the unstable mode shown
in figure 8.9. This is equivalent to the definition of Giannetti & Luchini
(2007).The thick white line shows the stoichiometric surface, which corre-
sponds to Z̄ = 0.333.

breakdown in chapters 5 and 6.

The origin of this mode is identified using the structural sensitivity. The

Frobenius norm of the structural sensitivity tensor, containing only momen-

tum terms, is shown in figure 8.10. The wavemaker is located at the upstream

end of the recirculation bubble, just as for the spiral mode of vortex break-

down in the Grabowski profile in chapter 5. The full sensitivity tensor is

shown in figure 8.11. The eigenvalue is most sensitive to feedback from the

temperature into the momentum equations, particularly the azimuthal mo-

mentum equation, along the edge of the recirculation bubble. However, it



165

Figure 8.11: The components of the structural sensitivity tensor, q̂i(q̂
+
j )∗,

for the unstable mode shown in figure 8.9. The shading on all the plots is
equal and goes from 0 (grey) to 2979 (red).
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can be seen that feedback between the components of the momentum vec-

tor is only slightly less influential than feedback from temperature into the

momentum. The nine frames in the top left corner are quite similar to the

components in figure 5.7 in chapter 5. This confirms that this mode of insta-

bility arises from the vortex breakdown bubble and can be interpreted as the

spiral mode of vortex breakdown - it is the same instability as that observed

in chapters 5 and 6.

The origin of this mode is further investigated by setting Da = 0 in the

linear global stability analysis. This sets the linearized heat release terms

in the linearized LMN equations to zero. The unstable mode now has an

eigenvalue of λ = 0.07 + 2.08i, which means that it has a lower growth rate

and almost similar frequency to the mode in figure 8.9. The direct and ad-

joint global modes are qualitatively similar to those in figure 8.9 and the

wavemaker is found to be in the same location - the upstream stagnation

point of the vortex breakdown bubble. Local stability analyses on reacting

flows, for example Nichols & Schmid (2008) and Emerson et al. (2012), often

neglect the linearized heat release terms in the stability analysis. The linear

global stability for Da = 0 calculated here confirms that, for a mode that is

not caused by the flame itself, such an approach can give useful predictions.

However, such a local stability analysis is not expected to be accurate when

the instability arises from the flame itself - such as the mode in figure 8.3.

8.4.2 Sensitivity to a control force

The direct and adjoint global modes are used to calculate the sensitivity of

the growth rate and frequency of the unstable mode to steady body forc-

ing and heat addition. The results are shown in figure 8.12. The mode is

most sensitive to a steady axial force just upstream of the vortex breakdown

bubble. In contrast to figure 8.6, however, most of the sensitive regions are

located within the fuel jet and near the stoichiometric surface. Experimental

validation of these sensitivity maps would, therefore, be difficult.
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Figure 8.12: The sensitivity of the marginally unstable eigenvalue of the
m = −1 mode in figure 8.9 to steady forcing, ∇F̄λ. The colours show the
sensitivity of the growth rate (left), and frequency (right). The thick white
line shows the stoichiometric surface, which corresponds to Z̄ = 0.333. The
thick black line shows the vortex breakdown bubble.
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8.5 Summary

This chapter has looked at the linear global stability of swirling diffusion

flames. Two qualitatively different types of swirling flames have been consid-

ered. Both flames have vortex breakdown bubbles and are globally unstable

to helical perturbations, with m = −1. The most unstable direct and adjoint

global modes have been obtained. These have been used to identify the origin

and mechanism of the global instability for each flame and to consider where

a control force may be applied to either suppress or promote the instability.

The first type of flame that has been considered has negligible coflow of

oxidizer around the fuel jet. In the steady base flow, the flame base sits

close to the jet exit plane. This flame is unstable to a low-frequency, long-

wavelength mode that grows radially outwards from the flame base along the

flame surface. The wavemaker of this mode is located at the flame base. The

components of the structural sensitivity tensor show that this mode of in-

stability is caused by density fluctuations at the flame base, suggesting that

this mode of instability is related to the flame itself and not to the vortex

breakdown bubble. This mode of instability is sensitive to steady forcing

away from the flame, and can, therefore, be practically controlled.

The second type of flame that has been considered has strong coflow of

oxidizer around the fuel jet. In the steady base flow, the flame sits far down-

stream of the jet exit plane and vortex breakdown bubble. This flame is

unstable to a high-frequency, short-wavelength mode that grows from up-

stream of the flame base. The wavemaker of this mode is located at the

upstream stagnation point of the vortex breakdown bubble. The compo-

nents of the structural sensitivity tensor show that this mode of instability

is similar to the spiral mode of vortex breakdown observed in chapters 5 and

6.
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(a) Base flow (b) Direct global mode

Figure 8.13: (a) The steady base flow, and (b) The real parts of the direct
global mode for the only unstable mode, with m = −1, for a higher resolution
simulation of the flow in figure 8.7. This mode has eigenvalue λ = 0.14+2.10i.

Appendix

The base flow and most unstable direct global mode for the flame considered

in §8.4 are obtained on a grid with 181× 725 points for a domain measuring

10×10 jet diameters in the radial and axial directions respectively. The base

flow is shown in figure 8.13(a), and can be compared directly with figure 8.7.

The most unstable direct global mode is shown in figure 8.13(b), and can be

compared directly with figure 8.9(a).
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9

Concluding remarks

9.1 Summary of work completed

The work presented in this thesis is part of a wider project that aims to

calculate sensitivity maps for hydrodynamic instability in flows with strong

density and velocity gradients, such as the flows found in fuel injectors in

gas turbine combustion chambers. The aim of this thesis has been to extend

the tools developed from a previous project (Chandler, 2010), and to apply

these tools to study the origin and control of global instabilities in swirling

jets and flames.

As a first step, though, these tools have been used to study the control of

global instability in a low-density Helium jet. The direct and adjoint global

modes have been used to identify the regions of the flow where the drag and

heat transfer from a thin control ring can stabilize the flow. An adiabatic

control ring has most effect in the shear layer just inside the jet, while a

hot control ring has most effect just outside the jet. Heat transfer outside

the jet has a strong effect on the growth rate and frequency of the unstable

mode through entrainment. The control ring affects the eigenvalue primarily

through changing the axial velocity and density profile of the base flow.

For the first time, these tools have also been applied to study the origin

and passive control of spiral vortex breakdown using two model velocity pro-
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files. The first is the Grabowski profile: this is well-studied numerically and

is a good model for swirling flow in ducts. The second is the Billant profile:

this is a good model for experimental measurements of velocities near the

exit plane of swirling jets.

In each case, the direct and adjoint global modes have been calculated

and combined using the structural sensitivity framework to identify the re-

gion of the flow that is responsible for causing spiral vortex breakdown, also

known as the wavemaker. In order to identify the physical mechanisms that

are active in the wavemaker, the separate components of the structural sen-

sitivity have been examined for the first time. The direct and adjoint global

modes have also been used to identify the regions of the flow where steady

and unsteady control, such as a drag force or heat addition, can suppress or

promote spiral vortex breakdown.

For both profiles, a steady breakdown bubble forms near the jet axis,

and the flow around this bubble is globally unstable to a helical mode, with

m = −1. For the Grabowski profile, at the point of instability, the wave-

maker of this spiral mode is located just upstream of the vortex breakdown

bubble. For the Billant profile, the wavemaker is located in the wake of the

breakdown bubble. For both profiles, however, the same feedback mecha-

nism is responsible for causing the spiral mode of vortex breakdown: this

mechanism is related to conservation of angular momentum, and makes the

eigenvalue most sensitive to feedback between the radial and azimuthal com-

ponents of the perturbation momentum.

This helical mode of vortex breakdown is most sensitive to steady axial

forcing in the wavemaker region. For both profiles, there are regions near

the inlet where the drag from a thin control ring can affect the growth rate

and frequency of the helical mode of vortex breakdown. Heat addition has

no effect on the growth rate and frequency of the helical mode in a uniform-

density flow. In a low-density swirling jet, however, heat addition near the

inlet has a strong stabilizing effect on the helical mode of vortex breakdown.
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These studies on non-reacting flows have provided a good background to

investigate hydrodynamic instability in flames. The global stability of a non-

swirling lifted diffusion flame, which was first studied by Chandler (2010),

has been revisited, revealing more interesting physics. The lifted diffusion

flame supports two modes of global instability. The first mode, originally

identified by Chandler (2010), is a high-frequency mode caused by the insta-

bility of the low-density jet shear layer in the premixing zone. The second

mode, identified for the first time in this thesis, is a low-frequency mode

caused by an instability of the outer shear layer in the flame. The compo-

nents of the structural sensitivity highlight the importance of feedback from

the density fluctuations to the perturbation momentum in influencing the

eigenvalue. The growth rates and frequencies of both these modes are ex-

tremely sensitive to changes in the base flow mixture fraction profile. Any

control influence will, therefore, act primarily through the effect of the control

device or technique on the mixture fraction, which affects the rate of reaction.

Finally, this thesis has considered the hydrodynamic stability of swirling

diffusion flames with vortex breakdown. This is a good model for flames in

real fuel injectors, albeit at much lower Reynolds numbers. The two types of

swirling flames considered in this thesis show qualitatively similar behaviour

to the lifted jet diffusion flames. The first type of flame is unstable to a low-

frequency long-wavelength mode, with wavemaker located at the flame base.

The second type of flame is unstable to a high-frequency, short-wavelength

mode, with wavemaker located at the upstream edge of the vortex breakdown

bubble. The first mode of instability is caused by density fluctuations at the

flame base, while the second mode of instability is similar to the helical mode

of vortex breakdown occuring in a reacting flow.

These results support the conclusion that, in addition to changing the ve-

locity and density profiles of the base flow, the presence of reaction increases

the influence of changes in the mixture fraction of the base flow on the eigen-

mode. This increased influence acts through the reaction term. In the flows
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that have been considered in this thesis, the presence of reaction also adds an

additional mode of hydrodynamic instability to flows. This additional mode

has a low frequency of oscillation, and is sensitive to steady forcing even far

from the flame. This suggests that passive control of this mode can be tested

experimentally.

9.2 Main conclusions

The aim of this thesis has been to demonstrate the use of linear global sta-

bility and sensitivity analyses to study hydrodynamic instability in swirling

reacting flows using the low Mach number equations, which is a significant

advance on the state of the art. The main findings can be summarized as

follows.

• Feedback from density perturbations has a strong influence on the hy-

drodynamic instability of reacting flows.

• Eigenmodes in reacting flows are very sensitive to changes in the species

mixture fraction because these changes strongly influence the base flow.

• In a reacting flow, the wavemaker region is very sensitive to the flame

configuration. In some cases, the wavemaker responsible for causing

hydrodynamic instability in a reacting flow is very similar to its non-

reacting counterpart. In other cases, however, the wavemakers of the

reacting and non-reacting flows are quite different. This means that

non-reacting or ‘cold’ simulations and experiments may not always

capture the physical mechanisms that are important in the reacting

flow.

• In stability analyses on flow profiles taken from reacting simulations

and experiments, it may be very important to include the effect of heat

release terms in the stability analysis.
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9.3 Further work

From a scientific point of view, the structural sensitivity analysis presented in

this thesis can be extended to derive more information about the mechanisms

driving the global instability. In this thesis, the components of the structural

sensitivity tensor have been compared to understand how feedback between

the components of the state vector affects the global eigenvalue. This is the

simplest way of interpreting the results, but it may not be the best way of

interpreting the results. It is likely that more efficient ways of extracting

physically relevant information can be derived.

From a computational point of view, the tools developed here can be made

more efficient for the study of reacting flows. The main extension would

involve improving resolution and accuracy, without increasing the overall

computational effort. The use of a finite-element package, such as FEniCS,

may seem, at first glance, an easy solution - especially with the advent of

automatic differentiation softwares that automatically calculate the adjoint.

However, the use of such a package for a reacting flow would be extremely

computationally expensive. One possibility that can be implemented in the

existing code is the use of a stretched grid or adaptive meshing. This would

allow a higher resolution to be used only where it is needed. The Poisson

solver in the code would then need to be replaced by a multigrid solver.

The techniques described in chapter 2 and 3 can be used to study hy-

drodynamic instability in premixed flames. This would require significant

modification of the existing code because the mixture fraction equation is

redundant: premixed flames have a uniform mixture fraction. Instead, the

flame front needs to be tracked - for example by using a level-set method.

Alternatively, an easier approach may be to use a progress variable instead.

The progress variable is a scalar quantity that is equal to zero in the un-

burned fluid and one in the burned fluid. Its evolution obeys a conservation

law. In these ways, it is similar to the mixture fraction used to study diffu-

sion flames. Premixed flames also tend to be thinner than diffusion flames
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and so, it is likely that the computational effort required to study premixed

flames would be greater than that required to study the diffusion flames in

this thesis.

In terms of the wider aim of obtaining sensitivity maps of real fuel in-

jectors, the work in this thesis can be extended in two main ways. Firstly,

the tools can be extended to consider flows with higher Reynolds numbers,

which are turbulent. The large-scale coherent structures in these flows are

most influential in determining the mixing properties and global dynamics

of the flow. These large-scale coherent structures are affected by the fine

scale turbulence in the flow. Direct numerical simulation of all the spatial

scales in such a flow is not feasible. Therefore, turbulence models need to

be included to model the effect of the fine-scale turbulence on the large-scale

coherent structures. A linear global stability analysis can then be performed

around the turbulent mean flow, and the techniques described in chapter

2 can then be applied to the least stable or most unstable modes that are

found. Several recent studies have attempted this on incompressible flow

around bluff-bodies (for example, Meliga et al. (2012b)), and, with the tools

developed here, the same could be done for flames. Some work has already

begun in this regard. For example, Gupta & Juniper (2013) have considered

the use of explicit algebraic Reynolds Stress models in a local stability anal-

ysis of turbulent channel flows. Such a model is suitable for swirling flows

typical of fuel injectors. The inclusion of such a model in the equations of

motion is not conceptually difficult.

Secondly, the tools can be extended to include complex geometry and the

possibility of shape modification. This favours the use of spectral element

methods over the finite difference schemes used in this thesis. The adjoint

base flow pressure provides the sensitivity of the eigenvalue to steady blowing

and suction. This idea can be extended by including some form of a shape

parameter in the derivation of the sensitivity functions in chapter 2. The

sensitivity of the eigenvalue to a small change in this shape parameter can

then be calculated. This can be used in an optimization routine to progres-
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sively make small changes to the design, until a local maximum or minimum

is reached. These ideas are currently being worked on in the research group.

Finally, the tools developed here can be useful in studying thermoacoustic

oscillations. For a flame, the adjoint global mode represents the receptivity

to external forcing close to the frequency of the global mode. It can be used

to identify the regions of the flow that are most receptive to perturbations. In

a thermoacoustic system, such perturbations may be caused by, for example,

acoustic waves impinging on boundaries. The response of the flame to acous-

tic perturbations forms part of the feedback loop that drives thermoacoustic

oscillations. By mapping this response, the tools can be used to better under-

stand thermoacoustic oscillations. On a lighter note, this may perhaps even

be of interest to Lord Rayleigh, wherever he may be, whose seminal work on

thermoacoustic oscillations (Rayleigh, 1878a) preceded, and arguably, moti-

vated his work on hydrodynamic stability. In his own words, ‘Many, it may

even be said, most of the still unexplained phenomena of acoustics are con-

nected with the instability of jets of fluid.’ (Rayleigh, 1878b)

“The work may be hard, and the discipline severe; but the interest

never fails, and great is the privilege of achievement.”

-Lord Rayleigh
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