
Data assimilation into physics-based
thermoacoustic models using Bayesian

neural network ensembles

Maximilian Louis Croci

Supervisor: Prof. Matthew P. Juniper

Advisor: Prof. Stewart Cant

Department of Engineering
University of Cambridge

This thesis is submitted for the degree of
Doctor of Philosophy

Pembroke College September 2022





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university. This thesis
is my own work and contains nothing which is the outcome of work done in collaboration
with others, except as specified in the text and Acknowledgements. This thesis contains
fewer than 65,000 words including appendices, footnotes, tables and equations and has fewer
than 150 figures.

Maximilian Louis Croci
September 2022





Abstract

Title: Data assimilation into physics-based thermoacoustic models using Bayesian neural
network ensembles
Author: Maximilian Louis Croci

Thermoacoustic instabilities, driven by the interaction between the heat release rate
from the combustion process with the combustion chamber pressure waves, have long been
a problem in jet and rocket engine design. Unacceptably large oscillations often appear
during full-scale engine tests, despite being absent during part-scale tests, leading to costly
re-designs. A physics-informed, data-driven model of a flame would allow for important
quantities, such as the fluctuating heat release rate of the combustion process, to be estimated
for a given burner geometry. This in turn would enable different geometries to be assessed for
susceptibility to thermoacoustic instabilities before any physical testing, ensuring a cheaper
design process.

In this thesis, data from artificial flame simulations and laboratory experiments
are assimilated into increasingly complex physics-based models of the flame front. These
physics-based models, based on the G-equation, are qualitatively correct. and their physical
parameters must be inferred from the data to render them quantitatively accurate. For
the artificial and laboratory Bunsen flames, the ensemble Kalman filter (EnKF) infers the
parameters of the physics-based model and their uncertainties from a sequence of images.
The method is reliable but computationally expensive: it takes hours for the EnKF to
converge to parameter estimates and uncertainties for each test case. An alternative method is
proposed, which uses a heteroscedastic Bayesian neural network ensemble (BayNNE) trained
on a library of simulated flame fronts with known parameters to infer the parameters and
uncertainties of the physics-based model. Generating the library of simulated flame fronts
and training the BayNNE on the library are both computationally expensive. However, once
trained, the BayNNE infers the parameters and uncertainties from an input sequence of six
flame front images in milliseconds, which is fast enough to be used in real-time applications.
The BayNNE method is applied to data from a version of the Volvo burner. The Volvo flame
is noisy, exhibits transient behaviour and is observed over a limited spatial window, which
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means that the EnKF is unable to converge. On the other hand, the BayNNE is able to robustly
infer the parameters and uncertainties from a sequence of ten flame front images. Using the
physics-based model with the inferred parameters, the flame front is extrapolated downstream
of the observation window. This allows for the n and τ fields of a distributed n− τ model for
the heat release of the burner to be calculated. These fields are entered into a Helmholtz solver
to predict the growth rates and frequencies of the thermoacoustic system. The BayNNE
method is then applied to the same data but with a more physically-informed model of
the velocity field using the discrete vortex method. Although this thesis’s conclusions for
thermoacoustic behaviour are unsurprising, the BayNNE method is a potentially cheap way
to combine sparse experimental measurements with complete numerical results and can
readily be extended to other experiments and to other models.

As increasingly large quantities of experimental data become available, the re-
searcher’s challenge is to extract useful information without becoming overwhelmed by
the quantity of data. Assimilation into physics-based models, as performed in this thesis,
is attractive because the models are physically-interpretable and extrapolatable. The work
presented shows one possible approach, and how it can be applied to a particularly long-
standing problem in engineering: the modelling, and ultimately the control of, thermoacoustic
instabilities.
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Chapter 1

Introduction

1.1 Thermoacoustics

1.1.1 Introduction

In a thermoacoustic system, temperature, density and pressure variations of acoustic waves
interact with a heat source. The acoustic fields, typically the pressure or the velocity fields,
cause the heat release rate at the heat source to fluctuate and this can cause acoustic waves to
amplify. The physical mechanism driving thermoacoustic instability was described by Lord
Rayleigh in 1878 [1]:

If heat be periodically communicated to, and abstracted from, a mass of air
vibrating (for example) in a cylinder bounded by a piston, the effect produced
will depend upon the phase of the vibration at which the transfer of heat takes
place. If heat be given to the air at the moment of greatest condensation, or
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged.

This mechanism is similar to that which drives an ideal piston engine. Mechanical work
is done on the gas by the piston as it compresses the gas. Next, the gas is ignited and its
temperature and pressure increase. Mechanical work is then done by the gas on the piston
as the gas expands to its original volume. If the work done by the gas on the piston is
greater than the work done by the piston on the gas, then heat released from combustion
has been converted to mechanical work. In a thermoacoustic system, the piston is replaced
with an acoustic wave. In the case of a ducted, premixed flame, the acoustic waves in the
duct (a) perturb the flame and (b) compress and expand the gas around the flame [2]. If the
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moments of higher (lower) than average heat release rate coincide with higher (lower) than
average local pressure, then there is net conversion of heat into work over the cycle. If this
work is not dissipated (for example via acoustic radiation from the open boundaries of the
duct) then this work increases the amplitude of the acoustic waves, and the system is known
as thermoacoustically unstable. Mathematically, the system is unstable if the following
inequality, known as the Rayleigh criterion [3, 4], is true:∫

T

∫
V

p′(x, t)q̇′(x, t)dxdt > dissipation , (1.1)

where p′(x, t) and q′(x, t) represent the fluctuations of pressure and heat release rate per unit
volume respectively, at position x and time t over a volume V and cycle of time T . This
phenomenon has been known since at least the 1800s, when glassblowers produced a sound
when blowing a hot bulb at the end of a cold narrow tube [5].

Thermoacoustic instabilities are a persistent problem in jet engine, rocket engine
and gas turbine design. These industrial applications have huge power densities, which
means that they become unstable even if a small proportion of heat is converted to work
over a cycle. At present, there is no realistic alternative to combustion engines that can offer
similar performance [2]. Despite decades of research, and the development of sophisticated
physics-based models, thermoacoustic instability in these engines remains difficult to predict
and eliminate. These instabilities are often absent during the design phase, only occurring
during full-scale engine tests [6–8]. These instabilities are difficult to predict, due to their
late appearance in the design stage and the sensitivity of the stability of the system to small
design changes. Fixes are often ad hoc.

The persistence of thermoacoustic instability has motivated research into both predic-
tion and elimination of instabilities. Research methods can be divided into three categories:

• Computational methods: Direct Numerical Simulation (DNS), Large Eddy Simulation
(LES), U/RANS (Un/Steady Reynolds-averaged Navier-Stokes). Knowledge of the
physics and chemistry of the system is modelled by governing equations (Navier-
Stokes), combustion mechanisms (the chemistry of the reaction) and boundary condi-
tions. This category includes low-order models such as the network model [9, 10] and
the G-equation model [11].

• Experimental methods: construction of small-scale and full-scale combustor rigs on
which experiments can be undertaken to observe thermoacoustic instabilities.

• Hybrid methods: data assimilation involves combining both simulations and experi-
ments to improve predictions of model parameters and uncertainties by recognising
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the limitations of experiments (noise, random and systematic) and simulations (lack
of knowledge of the physics, model errors) [12]. Data can be assimilated implicitly
into a low-order model through, for example, a flame transfer function (FTF) or n− τ

model [13].

This thesis is within the hybrid scope, and uses data from simulations and experiments to
improve predictions of the behaviour of thermoacoustic systems (Bunsen flames, gutter-
stabilised flames) by assimilating experimental data into a low-order model.

1.1.2 Computational methods

Direct numerical simulation (DNS) is a computational fluid dynamics (CFD) technique
that solves the discretised Navier-Stokes equations without any turbulence modelling. The
whole range of spatial and temporal scales of the flow must be resolved, which incurs a
huge computational cost [14]. Although this prohibits the use of DNS in industry, DNS
simulations can supply information that could not be obtained from a laboratory experiment.
In thermoacoustics research, the use of DNS is limited to small combustor designs, for
examples see Ref. [15].

Large eddy simulation (LES) combines simulation of the large scales with modelling
of the Reynolds stress due to turbulence at the small scales. The computational cost of
simulations is decreased compared to DNS by modelling turbulence at the smallest length
scales in the Navier-Stokes equations. However, the computational cost remains prohibitive
in thermoacoustics [16] meaning that Reynolds-averaged Navier-Stokes (RANS), a cheaper
alternative, has become the most widely used CFD technique in industry as a compromise
between accuracy, performance and ease of use [17, 18]. Comparisons between time-averaged
LES and RANS have been performed on simple combustor rigs such as the Volvo validation
rig [19]. Unsteady RANS (URANS) is a CFD technique which uses RANS turbulence
models in unsteady simulations. This simulates the long timescale motion, while modelling
the short timescale motions as increased Reynolds shear stresses. These have been used in
thermoacoustics, see for example [18, 20, 21]

All of these CFD methods require models of the coupling between heat release rate
fluctuations and acoustic fluctuations in the system. The modelling of this coupling inevitably
introduces model error. One of the simplest physics-based models of a flame’s heat release
rate is the distributed or point-wise n− τ model [13]: the heat release rate fluctuation is
a linear multiple of the velocity perturbation at the base of the flame some time τ earlier.
Although this model does not simulate the flame dynamics, the n and τ fields can be used in
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a Helmholtz solver or in a network model to determine the growth-rate of a thermoacoustic
perturbation in the system..

The flame transfer function (FTF) is another model. This specifies the relationship
between acoustic velocity and heat release rate fluctuations as function of the forcing fre-
quency [22–24]. The FTF is an extension of the n− τ model to include frequency-dependent
behaviour, and is valid over a specified range of frequencies. The flame describing function
(FDF) extends the FTF model by specifying the flame response as function of both the
forcing frequency and the amplitude [22, 25, 26].

Another physics-based model of a flame is the G-equation model [11], which is used
primarily for the study of laminar premixed flames [9, 27–29]. In this model, the flame’s
position in space and time is represented by the zero contour (or level-set) of a continuous
function that advects with the flow and propagates into the unburnt region. The flow velocity
field is an input to this model, and is usually specified using models for the (time-varying)
horizontal and vertical components of velocity at any point in the domain [26]. These models
restrict the velocity field to obey continuity, and are parameterised by parameters representing
physical quantities such as flame dimension, laminar flame speed, perturbation convection
speed and amplitude. This model allows the most influential flame dynamics to be simulated
cheaply. To render the model quantitatively accurate, the parameters of this model need to be
assimilated from experimental data.

1.1.3 Experimental methods

There are many experimental examples of thermoacoustic instability. For a detailed review
of these, the reader is referred to [30–32]. The Rijke tube [33] is a cylindrical tube with open
ends containing a heat source. Electric wires or Bunsen flames have been used as the heat
source. When the heat source is switched on, a sustained tone is sometimes produced, which
is driven by the coupling of the heat release rate fluctuations and the acoustic pressure or
velocity waves in the tube. The Rijke tube is useful to investigate thermoacoustic oscillations
because it contains much of the relevant physics present in a real engine. The Rijke tube
can be used to experimentally evaluate the sensitivity of the thermoacoustic stability of the
system to changes in tube geometry, boundary conditions and heat source positions in the
tube. If the Rijke tube is made of a transparent material such as glass, images of the Bunsen
flame can be taken and used to calibrate qualitative models (such as the G-equation model)
of the flame using data assimilation.

At the larger scale, the Volvo rig is a laboratory-scale combustor which comprises a
duct containing a bluff-body stabilised flame burning premixed gases [34, 35]. Intermittent
thermoacoustic instability can be observed by varying the gas composition (stoichiometry).
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Data from images of the flame taken through a window in the Volvo rig are assimilated into a
G-equation model of the bluff-body stabilised flame.

1.2 Bayesian inference and prediction

Bayesian inference is a framework in which Bayes’ theorem is used to calculate probabilities
of unknown quantities, such as model parameters, and to compare candidate models of the
data [36, Chapter 28]. The first level of inference involves calculating the likelihood of model
parameters, given a model and some data. The results of this inference are often described
in terms of the most likely parameter values and their uncertainties. If there are multiple
candidate models, this analysis is repeated for each model. The second level of inference
involves comparing candidate models that could describe the data. This is difficult because
it is not possible simply to choose the model that fits the data best: more complex models
can often fit the data better, but may be less plausible and give poor predictions on new data.
Different models are compared by calculating each model’s marginal likelihood. Predictions
about new data can be made either using a best candidate model [36, Chapter 41] or using all
candidate models [37].

1.2.1 First level of inference: model fitting

At the first level of inference, we wish to calculate the posterior probability of the parameters
θ of a model H , given some data D . In other words, we wish to find the parameters that
ensure the model best fits the data. Bayes’ theorem states:

p(θ |D ,H ) =
p(D |θ ,H )p(θ |H )

p(D |H )
, (1.2)

where p(D |θ ,H ) is the likelihood, p(θ |H ) is the prior, and p(D |H ) is the evidence or
marginal likelihood. The likelihood function gives the likelihood of the parameters, θ , given
the data, D . The prior encapsulates any a priori information about the values of θ , given the
model. The marginal likelihood ensures that the posterior probability distribution sums to 1:

p(D |H ) =
∫

p(D |θ ,H )p(θ |H )dθ . (1.3)

This quantity is ignored at this level of inference because it does not depend on the parameters.
The most probable parameters θ̂MAP (i.e. those which maximise the posterior) are chosen:

θ̂MAP = argmaxθ (p(θ |D ,H )) = argmaxθ (p(D |θ ,H )p(θ |H )) . (1.4)
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If a uniform prior is used then the parameters, θ̂MLE , that maximise the likelihood are also
those that maximise the posterior:

θ̂MLE = argmaxθ (p(D |θ ,H )) . (1.5)

When θ̂MAP (or θ̂MLE) are calculated, error bars on these parameters can be obtained from
the curvature of the log posterior. To do this, we start by Taylor-expanding the log-posterior
about θ̂MAP:

ln p(θ |D ,H )≈ ln p(θ̂MAP|D ,H )− 1
2
(
θ − θ̂MAP

)T A
(
θ − θ̂MAP

)
+ . . . , (1.6)

where the matrix A is the Hessian evaluated at θ̂MAP:

A =− ∂ 2

∂θ 2 ln p(θ |D ,H )

∣∣∣∣
θ=θ̂MAP

. (1.7)

By neglecting terms above second order in Eq. 1.6, we assume that the posterior can be
locally approximated as a Gaussian with expectation θ̂MAP and covariance matrix A−1:

p(θ |D ,H )≈ p(θ̂MAP|D ,H )exp
(
−1

2
(
θ − θ̂MAP

)T A
(
θ − θ̂MAP

))
. (1.8)

Error bars on the parameters θ̂MAP can be calculated from the diagonal entries of the covari-
ance matrix. This is method is known as Laplace’s method [36, Chapter 28].

Alternative methods for performing Bayesian inference in general data modelling
problems include exact methods [36, Chapter 25], Monte Carlo sampling [36, Chapter 29]
and variational methods [36, Chapter 33]. Neural networks can also be used as surrogate
models of the posterior p(θ |D ,H ) [38, Chapter 2]. However, there are few exact methods
for performing Bayesian inference using neural networks. These include Monte Carlo
methods [39] and Gaussian approximation methods [38, Chapter 3].

1.2.2 Second level of inference: model comparison

When a set of candidate models, {Hi} is being considered, we wish to infer which model is
most plausible given the data. By Bayes’ theorem:

p(H |D) =
p(D |H )p(H )

p(D)
. (1.9)
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The likelihood, P(D |H ), in this case is the marginal likelihood (Eq. 1.3). The prior, p(H ),
encapsulates our prior preference for each model, before any data are considered. The
denominator is a constant which ensures the posterior probability , p(H |D), sums to 1. If
we assume that each candidate model is equally probable, the best candidate model is found
as the one with the maximum marginal likelihood (MML):

HMML = argmaxH (p(D |H )) , (1.10)

The task therefore involves calculating the marginal likelihood p(D |H ) of each model:

p(D |Hi) =
∫

p(D |θ ,Hi)p(θ |Hi)dθ . (1.11)

In many cases, the posterior p(θ |D ,Hi) ∝ p(D |θ ,Hi)p(θ |Hi) has a strong peak at θ̂MAP

and is well approximated by a Gaussian. The marginal likelihood in these cases can be
approximated as follows:

p(D |Hi)≈ p(D |θ̂MAP,Hi)︸ ︷︷ ︸
Best fit likelihood

× p(θ̂MAP|Hi)√
detA/2π︸ ︷︷ ︸

Occam factor

, (1.12)

where A is the Hessian matrix evaluated at θ̂MAP, with jth row and kth column entry given
by:

A j,k =−
∂ 2

∂θ j∂θk
ln p(θ |D ,Hi)

∣∣∣∣
θ=θ̂MAP

. (1.13)

The Occam factor penalises complex models with many parameters more than simpler
models with fewer parameters. Therefore, the best model (the maximum marginal likelihood
candidate) will be the one which fits the data well (large best fit likelihood) without being so
complex as to be penalised heavily by the Occam factor.

1.2.3 Prediction and Bayesian model averaging

After the first and second level of Bayesian inference have been performed, the following are
available:

• a set of candidate models, {Hi}, from which the best candidate HMML is selected;

• posterior probability distributions, p(θ |D ,Hi), of the parameters of each model given
the data;
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• the set {θ̂i,MAP} of maximum a posteriori parameters of each model.

We now wish to predict some unknown variable y from input x. In the simplest case, we
can use the best model, HMML, and its MAP parameters θ̂MAP to calculate the predictive
probability distribution:

p(y|x,D , θ̂MAP,HMML) . (1.14)

However, this fails to take into consideration the uncertainty in the model parameters. Instead,
by marginalising over the model parameters, we can compute the following predictive
distribution:

p(y|x,D ,HMML) =
∫

p(y|x,D ,θ ,HMML)p(θ |D ,HMML)dθ . (1.15)

In this way, the uncertainty in the model parameters is propagated into uncertainty in the
predictions. In the Bayesian machine learning literature, this Bayesian marginalisation is
sometimes called Bayesian model averaging (BMA) [40]. However, this name has also been
used to describe the following two different marginalisations:

• Marginalising over models to find the posterior parameters given the data [41, Chapter
35]:

p(θ |D) = ∑
i

p(θ |D ,Hi)p(Hi|D) . (1.16)

• Marginalising over the parameters of each model and over every model for predic-
tion [37]:

p(y|x,D) = ∑
i

p(y|x,D ,Hi)p(Hi|x)

= ∑
i

[∫
p(y|x,D ,θ ,Hi)p(θ |D ,Hi)dθ

]
p(Hi|x) .

(1.17)

To avoid confusion, in this thesis the name Bayesian model averaging will only be used to
refer to the marginalisation in Eq. 1.15.

1.3 Hybrid methods

1.3.1 Hybrid methods in thermoacoustics

Quantifying uncertainties is an important part of scientific modelling. Data assimilation
allows for uncertainties in model parameters and predictions to be quantified. It is important
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to distinguish between the different sources of uncertainty in the modelling process. In
general, uncertainties fall into one of two categories:

• Epistemic uncertainty: The model is constructed based on our understanding of
the physical processes driving the system. A mismatch (or bias) between the model
predictions and experiments arises due to our limited understanding or modelling of
the physics of the system. This in turn can be due to limited data (experiments, from
which we build our understanding by identifying physical mechanisms expressed as
governing equations) and limited prediction capabilities (simulation, through which
we test the model predictions and compare with experiments). This uncertainty can
be reduced by including progressively more equations describing the physics into the
model, although this creates ever more complex models.

• Aleatoric uncertainty: Sources of aleatoric uncertainty include random measurement
error and stochastic behaviour in the physical system. This uncertainty can be reduced,
for example, by repeating experiments and taking an average measurement of a quantity
of interest.

By quantifying the epistemic uncertainty in a model, the modeller can decide whether the
model needs improving or the systematic error needs to be reduced. By quantifying the
aleatoric uncertainty, the modeller can decide whether the random aspects of the experiment
need improving or the random error needs to be reduced for example by performing more
experiments.

Hybrid methods use data assimilation to calibrate a reduced-order model H using
data D . Once calibrated, the reduced-order model can be used to make predictions for an
unknown quantity y from an input quantity x. The causal graphical model describing these
assumptions is shown in Fig. 1.1. The first inference task is fitting the parameters of the
model to the data: given observations D , the posterior probability distribution, p(θ |D ,H ),
of the parameters θ of assumed model H must be found. Predictions can be made using
the fitted model. If only one set of parameters, θ̂ , is used when making predictions, then the
task involves finding the probability distribution, p(y|x,D , θ̂ ,H ), of quantity y given input
x, observations D and fitted model H with parameters θ̂ . If a probability distribution of
parameter values is considered when making predictions, then the task involves finding the
probability distribution p(y|x,D ,H ). These tasks can be solved in a Bayesian probability
framework, as described in the previous section.

The reduced-order modelling methods mentioned earlier in this chapter involve
uncertainty propagation. The uncertainties in model parameters are propagated to the model
predictions to calculate the sensitivities of the predictions to the parameters. This can be
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Fig. 1.1 Diagram of the causal graph of reduced-order modelling, reproduced from [42].
A reduced-order model H with parameters θ is assumed to be a suitable candidate for
explaining observations D , and can be used to make predictions y from an input x (for
example, x could be the current state of the system). The first inference task is the fitting
the model: given observations D , what is the posterior probability distribution, p(θ |D ,H ),
of the parameters θ of assumed model H ? The second inference task is the prediction:
given the observations and the model, what is the probability distribution, p(y|x,D ,H ), of
prediction y from input x, integrating over the posterior distribution of the model parameters?

done using, for example, Monte Carlo methods. First, parameters {θi} are sampled from the
posterior distribution p(θ |D ,H ). For each sample θi, we use the model to make a prediction
yi. These yi are samples from the predictive distribution p(y|x,D ,θ ,H ). By averaging these
sample predictions, we are performing the Monte Carlo estimation:

y∼ p(y|x,D ,H ) , y≈ 1
M ∑

i
yi , yi ∼ p(y|x,D ,θi,H ) , θi ∼ p(θ |D ,H ) (1.18)

This is sometimes written as [40] (for conciseness):

p(y|x,D ,H )≈ 1
M ∑

i
p(y|x,D ,θi,H ) , θi ∼ p(θ |D ,H ) . (1.19)

This allows for the uncertainty in the parameters to be propagated into uncertainty in the
predictions. If the predictive distribution is assumed to be Gaussian then these samples {yi}
can be fitted to a Gaussian distribution, which can be described by a set of expected values
and a covariance matrix.

For time series problems, inverse and forward uncertainty calculations are repeated
at every time step when observations become available. By doing this, data is assimilated
to reduce the uncertainty in model parameters and latent variables by combining model
predictions and experiments. The Kalman filter [43] is an iterative method for estimating
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the moments of the posterior distribution of the state x and parameters θ of a linear system
given a prior p(x,θ) and noisy observations y. We can append the state and parameters into
a single vector x. The method assumes that the forecast x f is equal to the true state and
parameters xt with some model error δ f :

x f = xt +δ
f . (1.20)

Similarly, the observations are assumed to be noisy measurements of the true state, with
measurement error ε:

y = xt + ε . (1.21)

The noise terms are both assumed Gaussian:

δ
f ∼N

(
0,Σ f

δ

)
, (1.22)

ε ∼N (0,Σε) . (1.23)

This means that the prior and likelihood are both Gaussian:

x∼N
(

x f ,Σ
f
δ

)
, (1.24)

y|x∼N (x,Σε) . (1.25)

Due to Bayes’ rule, this means that the posterior is also Gaussian:

x|y∼N
(
xa,Σa

δ

)
, (1.26)

xa = (I−K)x f +Ky , (1.27)

Σ
a
δ
= (I−K)Σ

f
δ

, (1.28)

where K is the Kalman gain:

K = Σ
f
δ

(
Σ

f
δ
+Σε

)−1
. (1.29)

Eq. 1.27 shows that the posterior estimate of the state and parameters is a weighted combi-
nation of the previous estimate and the noisy measurement. This is the statistically optimal
estimate given the modelling assumptions. With the moments of the posterior estimated,
forecasts can be generated by integrating in time using the linear operator F. This requires
the assumption that the model error in forecasting is Gaussian with mean 0 and covariance
Σw:

x f (t +1) = Fxa(t) , (1.30)
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Σ
f
δ
(t +1) = FΣ

a
δ
(t)FT +Σw(t) . (1.31)

Starting from initial guesses of the mean and covariance of the state and parameters, Eqs.
1.30 and 1.31 are applied until a measurement becomes available. Eqs. 1.27 and 1.28 are
then applied to find the optimal posterior estimate.

Despite the strengths of the Kalman filter, its use is hampered by the assumptions
of Gaussian distributions and linear models. Furthermore, the method is computationally
expensive for systems with a large number of state variables and parameters: the covariance
matrix requires O(N2) variables to be stored and O(N3) operations to be inverted in the
Kalman gain calculation (Eq. 1.29). The ensemble Kalman filter (EnKF [44]) is a variant
of the Kalman filter which was developed to avoid these limitations. Instead of storing
the mean vector and covariance matrix of the state and parameters, an ensemble of M <<

N approximately independent samples {xi}M are stored. These samples can be used to
approximate the mean and covariance matrix using the ensemble averaged quantities:

x f ≈ 1
M

M

∑
i=1

xi , (1.32)

Σ
f
δ
≈ 1

M−1

M

∑
i=1

(xi−x f )(xi−x f )T . (1.33)

In this way, the storage requirements are reduced to O(MN) and the Kalman gain calculation
requires O(M3) operations [45]. This means that for modest ensemble sizes, the EnKF is
more computationally efficient than the Kalman filter. For linear models, an EnKF with an
infinite ensemble size converges to the Kalman filter. The ensemble Kalman filter has been
used to assimilate data taken from direct numerical simulations (DNS) and the Rijke tube
into a qualitative model of the flame to render the model quantitatively accurate [42, 46, 47].

An alternative method for estimating model parameters and uncertainties uses
Bayesian inference and Laplace’s method [36, Chapter 27]. In this method, the poste-
rior of the parameters, θ , given the observations D and the assumption of a model H is:

p(θ |D ,H ) =
p(D |θ ,H )p(θ |H )

p(D |H )
. (1.34)

Given the likelihood function p(D |θ ,H ), the prior distribution p(θ |H ) and observations
D , a gradient-based optimisation algorithm is used to calculate θMAP, the parameters which
maximise this posterior distribution p(θ |D ,H ). The denominator of Eq. 1.34 is not a
function of the parameters, and so is not required when finding θMAP. Laplace’s method is
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used to find the uncertainties in θMAP. This assumes that the posterior is Gaussian around
θMAP and the covariance matrix is:

Σ =−

(
∂ 2

∂θ 2 ln p(θ |D ,H )

∣∣∣∣
θ=θ̂MAP

)−1

. (1.35)

The diagonal entries Σii of the covariance matrix are the epistemic uncertainties in the
parameter θi. The off-diagonal entries quantify the uncertainty between pairs of parameters.
The most important quantities of the covariance matrix are its eigenvalues, which are used
in principal component analysis (PCA, [48]). This method has been used to calculate the
uncertainties the parameters of n− τ models of a Rijke tube [12].

When the probability distributions are not Gaussian, alternative methods must be
used. The new task is to sample from the distributions, instead of estimating the moments of
an assumed distribution. The Markov Chain Monte Carlo (MCMC) method is a statistical
method for sampling from a target posterior distribution p(θ |D ,H ). This involves sampling
θ from distribution which approximates the target distribution but is easier to sample from.
The samples are corrected over time such that the approximate distributions converge to the
target distribution. Because the target distribution is not assumed Gaussian, MCMC can be
used to sample from nonlinear and multimodal distributions. However, the computational
cost of the method is such that it cannot be used for online data assimilation. Where online
data assimilation is required, particle filters generalise Kalman filters [49, 50]. MCMC has
been used to assimilate pressure measurements from the electrical heater Rijke tube into a
thermoacoustic network model for the acoustic oscillations [51].

1.3.2 Deep learning in fluid mechanics and combustion

Recently, deep learning methods have been applied in many fields. These include:

• Learning the chemical kinetics of combustion. For example, neural networks can
be used to predict ignition delay times from rate coefficients in kinetics models [52],
calculate the sensitivity of the kinetic model to its input parameters [53–55] or predict
unknown reaction pathways [56].

• Subgrid modelling of turbulence for LES. Neural networks have been trained to learn
probability distributions of mixture fraction and reaction progress variables, with
accuracy improvements over traditional methods [57, 58].

• Learning physics-aware surrogate models. Physics-informed neural networks (PINNs,
[59]) are neural networks trained with a loss function penalising predictions which do
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not satisfy the Navier-Stokes equations. PINNs have been used to learn latent vari-
ables [60] and velocity and pressure fields from flow visualisations [61]. Furthermore,
the learned PINNs can be used as surrogate models for simulation and uncertainty
quantification [62].

• Learning data-driven surrogate models for computer graphics. When only qualitatively
accurate simulations are required, simulating with data-driven surrogate models can be
much cheaper than with solvers or physics-aware surrogate models [63, 64]. Random
regression forests [65], long short-term memory networks (LSTMs [66]) and graph
neural networks [67] have all been used to simulate plausible fluid flows [63, 68–70].

1.4 Bayesian machine learning and probabilistic methods

1.4.1 Regression for homoscedastic data

Consider a dataset comprising N data points {xi,yi}N . Regression involves fitting a function
f (x;θ) with parameters θ to this dataset. We assume the following relationship:

y = f (x;θ)+ ε , (1.36)

where ε is assumed Gaussian with zero mean and variance σ2. The variance σ2 is the
aleatoric uncertainty in the prediction f (x;θ). When the variance is the same for each point
x, this is known as homoscedasticity. Alternatively, the variance can be a function of x:
ε ∼N (0,σ2(x)). This is known as heteroscedasticity. We wish to find the parameters θ̂

which minimise the sum of the squared error between the prediction f (x) and the correct
value y:

θ̂ = argminθL (θ) , (1.37)

L (θ) = ∑
i
(yi− f (xi;θ))2 . (1.38)

In linear regression, the function f (x;θ) takes the form f (x;θ) = θ1x+ θ2 and a closed
form solution to the value θ̂ which minimises Eq. 1.38 can be found by setting the partial
derivatives of L (θ) with respect to the parameters to zero and solving for θ1 and θ2. Where
a closed-form solution cannot be found, gradient-based optimisation methods must be used to
minimise L (θ). Under the homoscedastic assumption, θ̂ has a probabilistic interpretation:
it is the value of θ which maximises the likelihood of the data given the function f . This can
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be seen by first considering the likelihood function:

y|x,θ ∼N ( f (x;θ),σ2) , (1.39)

p(y|x,θ) = 1
σ
√

2π
exp
[
−(y− f (x;θ))2

2σ2

]
. (1.40)

Assuming the data are independent and identically distributed:

p({yi}|{xi},θ) = ∏
i

p(yi|xi,θ) . (1.41)

The negative log-likelihood (NLL) is:

NLL =−∑
i

log(p(yi|xi,θ))

= ∑
i

(
(yi− f (xi;θ))2

2σ2 +
1
2

log(2πσ
2)

)
=

1
2σ2 ∑

i
(yi− f (xi;θ))2 +

N
2

log(2πσ
2)

(1.42)

Maximising the likelihood means minimising the NLL. For homoscedastic σ2, this means
minimising:

∑
i
(yi− f (xi;θ))2 , (1.43)

which is identical to the objective function, Eq. 1.38.
It is possible to go one step further, and to find θMAP, the maximum a-posteriori

estimates of the parameters. To do this, we need to encapsulate any prior knowledge we may
have about the parameters: p(θ). Let us assume a Gaussian prior with mean µθ and variance
σ2

θ
: θ ∼N (µθ ,σ

2
θ
). We now wish to maximise the posterior:

p(θ |{xi,yi}) ∝ p({yi}|{xi},θ)p(θ) (1.44)

Taking the negative log of the posterior:

− log p(θ |{xi,yi}) = NLL− log p(θ)

=
1

2σ2 ∑
i
(yi− f (xi;θ))2 +

N
2

log(σ
√

2π)

+
(θ −µθ )

2

2σ2
θ

+
1
2

log(2πσ
2
θ )

(1.45)
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Thus, for homoscedastic data, maximising the posterior involves minimising:

L (θ) = ∑
i
(yi− f (xi;θ))2 +

σ2

σ2
θ

(θ −µθ )
2 (1.46)

This loss function combines the sum of squared errors with a regulariser term which penalises
large parameter deviations from the prior mean. The ratio λ = σ2/σ2

θ
determines the extent

to which we deviate from the prior: if we are confident in our prior knowledge, a small σ2
θ

is chosen which gives a larger λ and L (θ) is dominated by the regulariser. If we use an
uninformative prior, then σ2

θ
is large and the likelihood dominates over the prior. If the mean

of the prior is zero, the regularisation term becomes λθ 2. This is known as L2 regularisation
or weight decay, and is a successful method for avoiding neural network overfitting [71,
Chapter 7]. Overfitting occurs when a model of the data learns some or all of the aleatoric
noise in the data and poorly performs on new data not seen during training. Deep neural
networks have a huge number of model parameters and are therefore especially susceptible
to overfitting.

1.4.2 Regression for heteroscedastic data

In general, the aleatoric uncertainty in the data is heteroscedastic. Assuming, again, that
the aleatoric uncertainty is due to additive Gaussian noise, the regression task then involves
learning the mean µ(x;θ) and variance σ2(x;θ) functions of the Gaussian likelihood:

p(y|x,θ) = 1
σ(x;θ)

√
2π

exp
[
−(y−µ(x;θ))2

2σ2(x;θ)

]
. (1.47)

When the functional form of the mean and variance functions is not known, neural networks
can be used to learn these from the data. This is because neural networks are universal
approximators: they can be used to learn any function to any degree of accuracy, so long as a
large enough dataset of input-output pairs {xi,yi}N is available for training [72]. Learning the
mean and variance functions is known as Mean and Variance Estimation (MVE) [73]. Given
the dataset {xi,yi}N , we wish to maximise the probability of this data under the assumptions
of additive heteroscedastic aleatoric noise. Equivalently, this means minimising the Gaussian
NLL loss function:
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L (θ) =− log

(
∏

i
p(yi|xi,θ)

)
=−∑

i
log(p(yi|xi,θ))

= ∑
i

(
(yi−µ(xi;θ))2

2σ2(x;θ)
+

1
2

log(2πσ
2(x;θ))

)
= ∑

i

(
(yi−µ(xi;θ))2

σ2(x;θ)
+ log(σ2(x;θ))

)
+ const.

(1.48)

When trained with this loss function, a neural network will output the maximum likelihood
mean and variance estimates for any input data point. This means that the aleatoric uncertainty
in the data can be estimated. As before, maximum a-posteriori estimation can be performed
by adding our prior knowledge as a regularisation term to the Gaussian NLL loss. Assuming
a Gaussian prior θ ∼N (µθ ,σ

2
θ
), the loss function becomes:

L (θ) = ∑
i

(
(yi−µ(xi;θ))2

σ2(x;θ)
+ log(2πσ

2(x;θ))

)
+

(θ −µθ )
2

σ2
θ

+ log(2πσ
2
θ )

= ∑
i

(
(yi−µ(xi;θ))2

σ2(x;θ)
+ log(σ2(x;θ))

)
+

(θ −µθ )
2

σ2
θ

+ const.
(1.49)

Training in this way means we can learn any function of the data, whether the aleatoric noise
is homoscedastic or heteroscedastic. This method is general but does not provide estimates
of the model uncertainty or epistemic uncertainty in the predictions.

1.4.3 Bayesian model averaging: estimating epistemic uncertainty

In classical neural network training, an optimisation algorithm iteratively updates the param-
eters of the network until convergence to the MLE point estimate θMLE . For an input x, the
network with parameters θMLE is used to output a single value y, with no estimate of the
uncertainty in this value. Neural networks are usually highly underspecified by the available
data, and therefore have diffuse likelihoods p(D |θ). Different settings of the parameters can
provide similarly suitable hypotheses for the data. The posterior p(θ |D) ∝ p(D |θ)p(θ) is
therefore not well approximated by a delta function. By training multiple neural networks on
the same training data set but with different initial parameters, an ensemble can be trained.
During training, the parameters of each neural network in the ensemble will converge to
different values because the loss function has many local minima in general. This means that
each neural network will predict different values for y given the same input x. The uncertainty
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implied by the range of values predicted by the ensemble has been shown to be qualitatively
accurate [74]. Ensembling has been shown to improve both accuracy and generalisation of
neural networks [40]. However, this method only gives qualitative uncertainty estimates as it
does not have a Bayesian interpretation.

Approximately Bayesian ensembling of neural networks [75] extends neural network
ensembling and is a Bayesian model averaging method. In [75], the authors assume a
dataset with additive homoscedastic Gaussian noise such that the likelihood takes the form
y|x∼N (µ(x),σ2) where the variance is constant and known a-priori. The method involves
initialising an ensemble of M neural networks {µ j(x;θ j)}M each with unique initial weights
and biases θ0, j = [w0, j,b0, j]

T drawn from a prior distribution:

θ0 ∼N (µprior,Σprior) , (1.50)

with diagonal covariance matrix Σprior = diag(σ2
prior). Each neural network is trained in-

dependently. The loss function for the j-th member in the ensemble comprises the sum of
squared errors and an anchored regularisation term:

L (θ j) = ∑
i
(yi−µ j(xi;θ j))

2 +(θ j−θ0, j)
T

Λ(θ j−θ0, j) (1.51)

where Λ = diag( σ2

σ2
prior

). When trained in this way, the parameters of each neural network in

the ensemble converge to point estimates from the approximate Bayesian posterior p(θ |D).
The M sets of parameters {θ j} in the ensemble therefore represent M samples from the
posterior. These can be used as Monte Carlo estimates in the predictive distribution:

p(y|x,D) =
∫

p(y|x,θ)p(θ |D)dθ ≈ 1
M ∑

j
p(y|x,θ j) , θ j ∼ p(θ |D). (1.52)

The variance in the predictions p(y|x,θ j) is the epistemic uncertainty, or model error. In [76],
the authors extend this method to heteroscedastic data. The neural networks now estimate
both mean and variance functions, {µ j(x,θ j),σ

2
j (x,θ j)}M. The loss function becomes:

L (θ) = ∑
i

(
(yi−µ j(xi;θ j))

2

σ2
j (xi;θ j)

+ log(2πσ
2
j (xi;θ j))

)
+(θ j−θ0, j)

T
Λ(θ j−θ0, j) , (1.53)
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where Λ = diag( 1
σ2

prior
). As before, the predictive distribution is approximated using the M

posterior parameter estimates {θ j}M:

p(y|x,D)≈ 1
M ∑

j
p(y|x,θ j) , θ j ∼ p(θ |D). (1.54)

For ease of computing quantiles and predictive probabilities, this predictive distribution is
often approximated by a Gaussian distribution:

y|x,D ∼N (µ(x),σ2(x)) (1.55)

where the mean and variance functions are aggregated from the ensemble predictions:

µ(x) =
1
M ∑

j
µ j(x;θ j) , (1.56)

σ
2(x) =

1
M ∑

j
σ

2
j (x;θ j)︸ ︷︷ ︸

heteroscedastic aleatoric uncertainty

+
1

M−1 ∑
j

(
µ j(x;θ j)−µ(x)

)2

︸ ︷︷ ︸
epistemic uncertainty

. (1.57)

This method allows us to quantify both aleatoric and epistemic uncertainties in the predictions.

1.4.4 Alternative uncertainty quantification methods in deep learning

One of the simplest methods for estimating the epistemic uncertainty in neural network
predictions is Monte Carlo dropout [77]. In standard dropout [78], the outputs of each hidden
layer node in a neural network are set to zero with some probability α each time the network
is evaluated during training. This helps prevent overfitting by reducing the sensitivity of
the output to nodes in the network that would otherwise dominate due to a large weight
parameter. Monte Carlo dropout extends this method so that the random switching off of
nodes in the network also happens at test time. Multiple evaluations of the network on the
same input give a range of outputs, the variance of which is the epistemic uncertainty in
the prediction. Although the method performs approximate Bayesian model averaging, the
extent to which the method obeys Bayesian theory is debated [79].

Bayesian neural networks [39] are neural networks where each parameter in the
network is replaced by a random variable with a probability distribution parameterised by
parameters which are learned during training. The likelihood of such a network is intractable
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and so no closed form solution to the predictive distribution

p(y|x) =
∫

p(y|x,θ)p(θ |D)dθ (1.58)

exists. In practice, Monte Carlo sampling of each parameter in the network must be performed,
which is prohibitively computationally expensive for Bayesian neural networks of practical
size (thousands of hidden layer nodes, tens or hundreds of layers). Gaussian processes are
more general than Bayesian neural networks (a single layer, infinitely wide Bayesian neural
network is a Gaussian process). They are seen as the gold standard method for learning a
predictive distribution, though suffer from prohibitive computational costs.

Variational inference (VI) is an alternative, Bayesian, sampling-free method. The
method involves learning a tractable, proxy distribution q(θ) for the posterior distribution
of the parameters, p(θ |D). The optimisation task involves maximising the evidence lower
bound (ELBO):

ELBO =
∫

q(θ) log p(D |θ)dθ +KL(q(θ)||p(θ |D)) (1.59)

where KL(q(θ)||p(θ |D)) is the Kullback-Leibler divergence, which measures the similarity
between two probability distributions. The main disadvantages of the method are that the
the quality of approximation of the posterior is limited by both how restrictive the proxy
distribution is, and the extent to which the optimisation routine converged. Both of these are
difficult to evaluate in practice [80].



Chapter 2

Parameter inference for a kinematic
model of a Bunsen flame

This chapter is based upon the following conference and journal publications. The first two
were double-blind peer-reviewed by at least one reviewer. However, the reviews are not made
available to the authors, but are used by the conference organisers to decide on acceptance.

• U. Sengupta, M. L. Croci, and M. P. Juniper, “Real-time parameter inference in
reduced-order flame models with heteroscedastic Bayesian neural network ensembles,”
in Machine Learning and the Physical Sciences workshop at the 34th Conference on
Neural Information Processing Systems (NeurIPS), (Virtual), 2020 [81];

• M. L. Croci, U. Sengupta, and M. P. Juniper, “Online parameter inference for the
simulation of a Bunsen flame using heteroscedastic Bayesian neural network ensem-
bles,” in Deep Learning for Simulation workshop at the 9th International Conference
Conference on Learning Representations (ICLR), (Virtual), 2021 [82].

The third conference paper was submitted to the Machine Learning and Data Assimilation in
Dynamical Systems (MLDADS) at the International Conference of Computer Science (ICCS
2021), and was peer reviewed by 3 reviewers before being further selected for publication
in the Lecture Notes in Computer Science (LNCS) journal. The conference and journal
publications are the following:

• M. L. Croci, U. Sengupta, and M. P. Juniper, “Data Assimilation Using Heteroscedastic
Bayesian Neural Network Ensembles for Reduced-Order Flame Models,” in Machine
Learning and Data Assimilation in Dynamical Systems (MLDADS) at the International
Conference of Computer Science (ICCS), (Virtual), 2021;
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• M. L. Croci, U. Sengupta, and M. P. Juniper, “Data Assimilation Using Heteroscedastic
Bayesian Neural Network Ensembles for Reduced-Order Flame Models,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 12746 LNCS, pp. 408–419, 2021 [83].

In this chapter, Mr Ushnish Sengupta conducted the Bunsen flame experiments and
co-designed and co-implemented the neural network ensembles, using a method originally
proposed in [76]. I implemented the ensemble Kalman filter [47], LSGEN2D [84] and the
image processing.

2.1 Introduction

In this chapter, the parameters of a G-equation model of a Bunsen flame are inferred using
two different methods: the ensemble Kalman filter [44] and heteroscedastic Bayesian neural
network ensembles [76]. The Bunsen flame experiment is chosen as a precursor to larger
experiments, such as the Volvo combustor in Chapters 3 and 4. Previously, the ensemble
Kalman filter method has been used to assimilate data from G-equation simulations [46],
direct numerical simulations (DNS) [85] and Bunsen flame experiments [47]. Heteroscedastic
Bayesian neural networks ensembles are implemented for faster real-time inference than can
be achieved with the ensemble Kalman filter. The method requires the creation of a library
of simulated flame fronts with known G-equation parameters, which is computationally
expensive. The heteroscedastic Bayesian neural networks are trained using supervised
machine learning, which is also computationally expensive. However, once these two steps
have been performed, the neural networks can infer the the parameters of the G-equation
model six orders of magnitude faster than the ensemble Kalman filter.

2.2 The Bunsen flame

2.2.1 Experiment

Fig. 2.1 shows the configuration of the Bunsen experiment: a Bunsen burner is placed inside
a transparent duct and images of the flame are taken with a high-speed camera at fs = 2500
frames per second and a resolution of 1200×800 pixels. The flame is forced acoustically
with a speaker from 250 Hz to 450 Hz. For this range of frequencies, the frame rate is high
enough to avoid aliasing effects. The gas composition (methane, ethene and air) and flow
rate are varied using mass flow controllers. By varying the forcing frequency and amplitude
and gas composition and flow rate, as shown in Table 2.1, flames with different aspect ratios,
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propagation speeds and degrees of cusping of the flame front are observed. In some cases,
the flame front cusping leads to pinch-off at the flame tip. For each of the 270 different flame
operating conditions, 500 images are taken.

Table 2.1 Bunsen flame experiment gas and air flow rates, unstretched flame speeds s0
L and

excitation frequencies. The unstretched flame speeds are calculated using Cantera [86].

Fig. Ethene (NL/min) Methane (NL/min) Air (NL/min) s0
L (m/s) Exc. Freq. (Hz)

2.11 0.300 0.300 600 0.726 450
2.12 0.400 0.200 600 0.710 425
2.13 0.267 0.400 600 0.585 300
2.14 0.300 0.150 450 0.810 400
2.15 0.200 0.300 450 0.663 325
2.16 0.225 0.225 450 0.848 275
2.17 0.150 0.150 300 1.122 350
2.18 0.200 0.100 300 1.217 375
2.19 0.133 0.200 300 0.764 250
2.20 0.133 0.200 300 0.764 -

The flame images are processed and the flame front is extracted as a radial location
x, which is a single-valued function of the axial co-ordinate y: x = f (y). First, the pixel
intensities are thresholded and the flame location x for every vertical co-ordinate y is found by
weighted interpolation of the thresholded pixels, where the weights are the pixel intensities.
Next, splines with 28 knots are used to smooth x(y). Each flame image is therefore converted
into a 90× 1 vector of flame front x locations x. The y co-ordinates are the same for all
flames, so are discarded. Observation vectors z are created by stacking ten consecutive x
vectors. These observation vectors are the inputs to the neural networks. All 500 images of
each Bunsen flame are processed in this way.

2.2.2 Non-dimensionalisation

The characteristic scales of the problem are the radius of the burner R, the length of the
unstretched unforced flame, L, the excitation angular frequency 2π f and the time taken by
a particle to convect from the base to the tip of the flame, L/V , and its inverse V/L which
is called here the spatial frequency. The Strouhal number is the ratio of the spatial time
scale to the excitation time scale (where the time scales are the reciprocal of the frequencies)
St = 2π f L/V . By defining the aspect ratio of the unstretched, unforced flame β = L/R, the
Strouhal number may be written equivalently as St = 2π f βR/V .
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Fig. 2.1 Diagram of the Bunsen flame experiment setup: a Bunsen burner is placed inside
a tube and a high-speed camera takes images of the flame through a glass window. The
fuel composition (air, methane and ethene) and flow rate are controlled using mass flow
controllers (MFCs). The flame is forced acoustically using a loudspeaker. This diagram is
due to Mr Ushnish Sengupta.

2.3 The G-equation and LSGEN2D, the G-equation solver

2.3.1 G-equation model

In this thesis the flame front is defined to be the G = 0 contour (or level-set) of a scalar
field G(x,y, t). Regions of negative and positive G correspond to unburnt and burnt gases
respectively (the magnitude of G has no physical significance). The evolution of G is
governed by:

∂G
∂ t

+v ·∇G = sL|∇G|, (2.1)

where v is a prescribed velocity field and sL is the laminar flame speed: the speed at which
the flame front propagates normal to itself into the reactants. The flame speed sL is a function
of the unstretched (adiabatic) flame speed s0

L, the flame curvature κ and the Markstein length
L , and is insensitive to pressure variations:

sL = s0
L (1−L κ) . (2.2)

The unstretched flame speed s0
L depends only on the flame chemistry. The velocity field v

comprises a parabolic base flow profile V (x) and superimposed continuity-obeying velocity
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perturbations u′(x,y, t) and v′(x,y, t):

v =
(
V (x)+ v′

)
j+u′i, (2.3)

V (x)
V

= 1+α

(
1−2

( x
R

)2
)
, (2.4)

v′(x,y, t)
V

= ε sin
(

St
(

Ky
R
− t
))

, (2.5)

u′(x,y, t)
V

=−εKStx
βR

cos
(

St
(

Ky
R
− t
))

, (2.6)

where α determines the shape of the base flow profile (α = 0 is uniform flow, α = 1 is
Poiseuille flow), ε is the amplitude of the vertical velocity perturbation with phase speed
V/K, St = 2π f Rβ/V is the Strouhal number with forcing frequency f and flame radius
R, and β is the aspect ratio of the unperturbed flame. These velocity perturbations model
experimental observations [87, 24] and DNS results [29].

The parameters K,ε,L ,α,St and β are tuned to fit an observed flame shape. Fig.
2.2 shows a diagram of the flame front under the G-equation model. This model allows cusps
to form at the flame front and pockets of unburnt reactants to detach from the flame tip, as is
observed in some experiments. It has proven to be a versatile flame front model in several
previous studies, despite having only a few parameters [88].

2.3.2 LSGEN2D: the G-equation solver

Starting from a valid G field state that satisfies Eq. 2.1, LSGEN2D ([84]) evaluates ∂G/∂ t
and then updates G in a narrow band around the G = 0 contour. The flame wrinkling and
cusping are assumed to be symmetric about the centre-line. Axial and radial oscillations
of the flame (but not non-axisymmetric oscillations) are therefore modelled. Because the
imposed velocity field is periodic, the states converge to a forced cycle, typically within 4
periods. The normalised area variation over one period can be calculated from the forced
cycle states, which for uniform sL

1 is proportional to the normalised heat release rate [9, 27].
LSGEN2D iterates the G-equation for a non-dimensional flame, scaled vertically by

βR, horizontally by R and with V = 1. The transformation from non-dimensional LSGEN2D
coordinates (x∗,y∗) into dimensional coordinates (x,y) of a flame with parameters R and β is
(x,y) = (Rx∗,βRy∗). The x coordinates take values between 0 and 2R (0 corresponds to the

1Although sL is not uniform in regions of high curvature, such as at the flame tip, this effect is small.
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Fig. 2.2 Left: An image of a Bunsen flame. Middle: In the G-equation model, the flame
front is represented by the G = 0 contour (or level-set) of a continuous scalar field G(x,y, t).
Unburnt and burnt gases are regions where G < 0 and G > 0 respectively. The flame front
travels normal to itself into the unburnt gases with speed sL. The flame front advects under
the prescribed velocity field, which comprises continuity-obeying velocity perturbations
u′(x,y, t) and v′(x,y, t) superimposed onto a steady base flow profile V (x). Right: A G field
solution in LSGEN2D, a level-set solver. Blue and red regions are unburnt and burnt gases
respectively, and the thin white band represents the flame front.

centreline, R to the radius width and 2R to G field domain boundary), and the y coordinates
range from 0 to 1.8βR.

2.3.3 Evidence of transients and implications for data assimilation

Starting from a steady G field solution and forcing the flame with a prescribed oscillating
velocity field, the G field shows transient behaviour before reaching a forced cycle. A linear
perturbation analysis (see appendix A) predicts this transient behaviour to last for a duration
tc:

tc =
(1+β 2)

β

R
V

. (2.7)

This agrees with our intuition for flames with large β (tall, slender flames): tc ≈ βR/V is the
time it takes for a perturbation travelling with speed V to travel from the base of the flame to
its tip, a distance βR downstream. For a forced cycle with period T = 1/ f , the number of
periods it takes for the system to reach the forced cycle, pc, is:

pc =
tc
T

=
(1+β 2)

β

f R
V

.
(2.8)
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These transients are indeed found when solving the G-equation with LSGEN2D, as shown in
Fig. 2.3. This happens with both pinned and floating (where the flame attachment point is
free to move along the burner lip) boundary conditions at the burner lip. Furthermore, if the
parameters of the model are varied at any point in the simulation, transients reappear until
the system reaches a new forced cycle for this new set of parameters. This same behaviour is
confirmed using the MATLAB solver, as seen in Fig. 2.4.

(a) t = 0.1T . (b) t = 0.5T . (c) t = 0.8T . (d) t = T .

Fig. 2.3 One cycle of transient nature in the LSGEN2D solution.

The implication of this fact is that when assimilating data into the G-equation
model, one must either study cases for which the transients are very short-lived, or the data
assimilation process must be slowed down to allow for the transients to die away.

2.4 Library of forced flame simulations

A library of flame front locations is created with the flame front model at known parameter
values K,ε,L ,α, St,β and f/ fs in the same format as the observation vectors, z. The
parameter values are sampled using quasi-Monte Carlo sampling to ensure good coverage of
the parameter space. The parameters are sampled from the ranges in Table 2.2. The values of
St are calculated using St = 2π f Rβ/V . The parameters are sampled 8500 times, normalised
to between 0 and 1 and recorded in target vectors {p = [K,ε,L ,α,St,β ]}.

The G field is iterated forward in time for a duration of tc seconds (Eq. 2.7) (pc

periods , Eq. 2.8, where the period is 1/ f ). This allows any transient flame behaviour to
die away. For parameters sampled according to Table 2.2, pc varies between 0.2 and 20.
Then, the G field is iterated forward for a further period. The value of the G field (which
varies between the range of -0.03 and 0.03) at NT = 200 equally spaced timesteps within
this period is recorded: {G1,G2, . . . ,GNT }. For each G field in the sequence {Gi}, the flame
front y = f (x) is extracted from the G = 0 contour for all x in the range of the experiment
observation window. The flame front y coordinates are recorded in a column vector xi. The
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(c) t = 0.3
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(d) t = 0.45
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Fig. 2.4 MATLAB solution (blue solid line) to the G-equation flame model with parameters
R = 1.335, β = 13.2, St = 40, K = 0.5 and ε = 0.03. The LSGEN2D solution (red circles)
is superposed onto one half of the MATLAB solution for comparison. Note that only the
G = 0 contour is shown, and the plots are scaled vertically by 1/β . A long-lasting transient
can be seen, with period of 0.3 seconds.

resulting sequence {x1,x2, . . . ,xNT } represents the flame front position at NT equally spaced
timesteps in the period. Next, the sum of squared errors between the first and last G fields in
the sequence {Gi} is calculated. If this error is below a tolerance tol, the frame sequence
{Gi} is deemed to be a valid forced cycle. If the error is above the tolerance, the frame
sequence is deemed unconverged, and is discarded along with its target parameters. The
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frame rate of the forced cycle sequence is NT/T which is not, in general, equal to the frame
rate of the experimental data ( fs = 2.5× 103 Hz). To create a sequence of ten simulated
flame fronts with the same frame rate as the experimental data starting from a timestep t1, we
calculate the ratio ∆ = NT f/ fs and select the sequence {xt1,xt1+∆, . . . ,xt1+9∆}. The vectors
in this sequence are appended together to make a column vector z. This is repeated for all NT

of the starting timesteps t1, t2 . . . tNT , and for P = 8500 combinations of parameters sampled
from the ranges shown in Table 2.2. The result is a library of PNT = 1.7×106 observation -
parameter pairs. This is summarised in algorithm 1.

The algorithm can be trivially parallelised because each iteration of the for loop
(sampling the parameters, iterating LSGEN2D and calculating the flame fronts) is inde-
pendent and can be performed on a single CPU core. The library is generated using the
Cambridge Service for Data Driven Discovery’s Peta4 supercomputer2. The computational
budget allows for a maximum of 320 Intel Xeon Skylake CPU cores3 to be used concurrently.
One loop of algorithm 1 takes one to two hours, depending on the transient dissipation time tc.
An upper bound for the library generation’s computational cost is 8500×2 = 1.7×104 CPU
core-hours. This takes approximately 54 hours when at the limit of maximum concurrent
CPU core usage.

Table 2.2 Ranges of parameter values. The parameters are sampled using quasi-Monte Carlo
sampling from between these ranges.

Parameter ranges Description

0.0 < K ≤ 1.5 Ratio of mean base flow speed to perturbation phase speed
0.0 < ε ≤ 1.0 Amplitude of the vertical velocity perturbation
0.0≤ α ≤ 1.0 Base flow shape

0.02≤L ≤ 0.08 Markstein length
2.0≤ β ≤ 10.0 Aspect ratio of the unperturbed flame

0.002 m < R≤ 0.004 m Flame radius
1.0 m/s <V ≤ 5.0 m/s Mean base flow speed
200 Hz ≤ f ≤ 500 Hz Excitation frequency

2https://www.hpc.cam.ac.uk/systems/peta-4
3Following an upgrade in November 2021, this number was increased to 448 Intel Xeon Platinum CPU

cores.

https://www.hpc.cam.ac.uk/systems/peta-4
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Algorithm 1: Generate a library of simulated Bunsen flame fronts with
known parameters.

Data: Number of parameter samples P, number of timesteps per period NT ,
frame rate fs, tolerance tol.

Result: Library of pairs (pi,zi)
PNT
i=1

for 1≤ p≤ P do
K,ε,L ,α, f ,β ,R,V ← sample(); ▷ Sample parameters from Tab. 2.2.
St← 2π f βR/V ;
p← [K,ε,L ,α,St,β ]; ▷ Record the target parameters.
T ← 1/ f ;
tc← R(1+β 2)/βV ; ▷ Calculate the transient duration (see Appendix A).
t← 0;
dt← T/NT ;
LSGEN2D.initialise(p); ▷ Initialise LSGEN2D with target parameters.
while t ≤ tc do

▷ Iterate the G-equation forward in time for the duration of the transient
period.

LSGEN2D.iterate();
t← t +dt;

end
while tc ≤ t ≤ tc +T do

▷ Once the transient period is over, iterate for a further period and record
the flame front x coordinates.

LSGEN2D.iterate();
Gt ← LSGEN2D.G;
xt ← Gt .extractFront();
t← t +dt;

end
if |Gtc+T −Gtc |< tol. then

▷ Verify that the convergence of the forced cycle by comparing the first
and last G fields in the cycle.

∆← NT f/ fs;
for t0 = 1 : NT do

z← concatenate(xt0,xt0+∆, . . . ,xt0+9∆); ▷ Create observation vector.
library.addPair(p,z); ▷ Save the parameter - observation pair.

end
end

end
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2.5 Parameter inference for the G-equation model of the
Bunsen flame

2.5.1 The heteroscedastic Bayesian neural network ensemble (BayNNE)
methodology

We assume that the posterior probability distribution of the parameters, given the observations,
can be modelled by a neural network, pθ (p|z), with its own parameters θ . Here, θ comprises
all of the weights and biases in the neural network. We assume that this posterior distribution
has the form:

pθ (p|z) = N (µµµ(z),ΣΣΣ(z)) , (2.9)

where ΣΣΣ(z), the posterior covariance matrix of the parameters given the data, is diagonal
with σσσ2(z) on its diagonal. This enforces our assumption that the parameters are mutually
independent, given the observations z. We use an ensemble of M = 20 neural networks. The
architecture of each neural network is shown in Fig. 2.5. Each neural network comprises
an input layer, four hidden layers with ReLU activations and two output layers: one for the
mean vector µµµ(z) and one for the variance vector σσσ2(z). The output layer for the mean uses
a sigmoid activation to restrict outputs to the range (0,1). The output layer for the variance
uses an exponential activation to ensure positivity. Each neural network in the ensemble is
initialised with unique weights θθθ j,anc sampled from a Gaussian prior distribution N (0, 1

NH
)

and biases b j,anc sampled from a uniform prior distribution in the range [− 1√
NH

, 1√
NH

].
For a single observation z, the j-th neural network in the ensemble produces a mean

and variance estimate of the G-equation parameters:

µµµ j(z),σσσ
2
j(z). (2.10)

This is achieved by minimising the loss function L j:

L j =
(

µµµ j(z)−p
)T

ΣΣΣ j (z)−1
(

µµµ j(z)−p
)
+ log

(
|ΣΣΣ j (z) |

)
+
(
θθθ j−θθθ anc, j

)T
ΣΣΣ
−1
prior

(
θθθ j−θθθ anc, j

)
.

(2.11)

The first two terms of the loss function are the negative logarithm of the normalised Gaussian
likelihood function up to an additive constant. The third term is a regularising term that
penalises deviation from prior anchor values θθθ anc, j. The NNs produce samples from the
posterior distribution. This is called randomised maximum a-posteriori (MAP) sampling [75].
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Fig. 2.5 Architecture of each neural network in the ensemble of 20. The input and hidden
layers have 900 nodes each, while each output layer has six nodes each. All layers are fully
connected (FC). Rectified Linear Unit (ReLU) activation functions are used for the hidden
layers and sigmoid and exponential (Exp) activation functions are used for the mean and
variance output layers respectively.

For a single observation vector z, the prediction from the ensemble of neural net-
works is therefore a distribution of M Gaussians, each centred at their respective means
µµµ j(z). Following similar treatment in [74], this distribution is then approximated by a
single multivariate Gaussian posterior distribution p(p|z)≈N (µµµ(z),ΣΣΣ(z)) with mean and
variance:

µµµ(z) =
Σ jµµµ j(z)

M
, ΣΣΣ(z) = diag

(
σσσ

2(z)
)
, (2.12)

σσσ
2(z) =

Σ jσσσ
2
j(z)

M
+

Σ jµµµ
2
j(z)

M
−
(

Σ jµµµ j(z)
M

)2

. (2.13)

This is repeated for every observation vector z. The posterior distribution p(p|zi) with the
smallest total variance σ2

i,tot = ||σσσ2(zi)||1 is chosen as the best guess to the true posterior.
The M parameter samples from the chosen posterior are used for re-simulation, which allows
us to check the predicted flame shapes and to calculate the normalised area variation over
one cycle.

2.5.2 The ensemble Kalman filter

The Kalman filter iteratively performs Bayesian inference to find the probability distribution
of the state of a system given noisy observations of the system and an imperfect model of the
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system dynamics. In this study, the state comprises the location of the flame front and the
parameters K and ε . These parameters are assumed to be independent given the observations
of the flame front and constant for each of the Bunsen flame experiments. The flame front is
modelled using the G-equation (Eq. 2.1). The ensemble Kalman filter [44] (EnKF) evolves
an ensemble of simulations forward in time. The covariance matrix of these ensembles is
assumed to approximate the covariance matrix of the state evolved over the same period of
time. The EnKF is more practical when the state contains many variables and the evolution is
nonlinear, as discussed in Chapter 1, subsection 1.3.1. In this study, the state contains O(102)

variables and the governing equation (Eq. 2.1) is nonlinear.
The parameters L ,α,β and St are calculated by solving the G-equation (Eq. 2.1)

when steady and do not need to be inferred with the EnKF. This reduces the cost of the
EnKF but increases the number of steps compared with the BayNNE method. The forcing
frequency f is manually set when running the Bunsen flame experiments. The unperturbed
laminar flame speed s0

L is calculated using Cantera4 and knowledge of the methane and
ethene flow rates. V is calculated from s0

L and β : V = s0
L

√
1+β 2. The Strouhal number can

then be calculated: St = 2π f βR/V . Ref. [42] contains details about the implementation of
the EnKF.

An ensemble size of 32 is used in this study. A multiplicative inflation factor of 1%
is chosen to mitigate the underestimation of the error covariances due to the finite ensemble
size [89]. Once the EnKF has converged, the parameters K and ε calculated by each ensemble
member are recorded. These are samples from the posterior distribution of the parameters
given all the flame x-location vectors: p(K,ε|x1,x2, . . . ,xN). This differs from the BayNNE,
which was given x-location vectors in groups of ten.

2.6 Results and discussion

2.6.1 Neural network training and evaluation

The ensemble of 20 Bayesian neural networks is trained on the forced cycle library for
5000 epochs, with a 80 : 20 train-test split and an Adam optimiser with learning rate 10−3.
Training takes approximately twelve hours per neural network on an NVIDIA P100 GPU. The
ensemble is trained in parallel on the Cambridge Service for Data Driven Discovery’s GPU-
accelerated cluster (Wilkes5). Once the neural networks are trained, ensemble prediction
takes O(10−3) seconds on an Intel Core i7 processor on a laptop.

4Cantera is a suite of tools for problems involving chemical kinetics, thermodynamics, and transport
processes [86].

5https://www.hpc.cam.ac.uk/systems/wilkes-2
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2.6.2 Ensemble Kalman filter training and evaluation

For each test case, the ensemble Kalman filter technique requires an hour to calculate
estimates of L ,α,St and β on an Intel Core i7 processor on a laptop, followed by 2 hours of
data assimilation on a pair of Intel Xeon Skylake 6142 processors to produce estimates of K
and ε . The EnKF is fully parallelised: the processors have 32 cores in total, one for each
member in the ensemble.

2.6.3 Results on simulated data

To confirm the validity of the EnKF and BayNNE methods, twin experiments are performed:
the EnKF and BayNNE ensembles must recover the parameters of simulated flames generated
in LSGEN2D. These flames do not appear in the BayNNE’s library but have parameters
within the library’s parameter space. The parameter estimates are then re-simulated using
LSGEN2D to compare the flame shapes and the normalised flame surface area variation over
one period, a(t)/ā. Twin experiments are performed for ten different simulated flames, of
which five are reported in this thesis, which cover a wide range of flame shapes and behaviour.
The ground truth parameters for each of the five reported twin experiments are shown in
Table 2.3.

Table 2.3 Ground truth parameter values of the twin experiments.

Twin experiment β α L St K ε Fig.

Steady 9.217 0.319 0.058 - - - 2.6
1 8.128 0.707 0.029 28.83 0.306 0.490 2.7
2 9.833 0.462 0.070 21.05 0.095 0.474 2.8
3 4.389 0.931 0.043 17.03 0.892 0.214 2.9
4 9.359 0.992 0.053 33.92 0.681 0.268 2.10

Both methods perform equally well in recovering the ground truth parameters. The
normalised surface area variations agree with the ground truth as well. For cases where
pinch-off of the flame tip occurs (figures 2.9, 2.10), the BayNNE predicted parameters are
more uncertain. This is expected because pinch-off is a rare occurrence and so there will
be fewer examples of pinch-off in the simulated flame-front library than examples without
pinch-off. This means that the BayNNE will have had less training data with which to learn to
infer the ground truth parameters. This limitation could be addressed by identifying regions
of parameter space which give rise to pinch-off behaviour and sampling parameters more
frequently in these regions. In contrast, the EnKF predicted parameters are more certain.
This is also to be expected because rare behaviour contains more information compared to
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common behaviour. By assimilating multiple periods of data during which pinch-off occurs,
the EnKF can converge to the ground-truth parameters much more quickly by learning from
this information. These results give us confidence in the validity of both methods, which can
now be use to assimilate data from experiments.
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Fig. 2.6 Results of inference on the steady state twin experiment. Top four rows: LSGEN2D
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.7 Results of inference on the first forced twin experiment. The non-dimensional forcing
frequency f R/V (= St/2πβ ) is 0.564. Top four rows: LSGEN2D flame whose parameters are
to be estimated, the detected flame front, predicted flames using EnKF estimated parameters
and predicted flames using BayNNE estimated parameters. The green and orange bands
are regions of high likelihood of the flame in the EnKF and BayNNE plots. Fifth row: area
variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.8 Results of inference on the second forced twin experiment. The non-dimensional
forcing frequency f R/V is 0.341. Top four rows: LSGEN2D flame whose parameters are to
be estimated, the detected flame front, predicted flames using EnKF estimated parameters
and predicted flames using BayNNE estimated parameters. The green and orange bands
are regions of high likelihood of the flame in the EnKF and BayNNE plots. Fifth row: area
variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.9 Results of inference on the third forced twin experiment. The non-dimensional
forcing frequency f R/V is 0.614. Top four rows: LSGEN2D flame whose parameters are to
be estimated, the detected flame front, predicted flames using EnKF estimated parameters
and predicted flames using BayNNE estimated parameters. The green and orange bands
are regions of high likelihood of the flame in the EnKF and BayNNE plots. Fifth row: area
variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.10 Results of inference on the fourth forced twin experiment. The non-dimensional
forcing frequency f R/V is 0.577. Top four rows: LSGEN2D flame whose parameters are to
be estimated, the detected flame front, predicted flames using EnKF estimated parameters
and predicted flames using BayNNE estimated parameters. The green and orange bands
are regions of high likelihood of the flame in the EnKF and BayNNE plots. Fifth row: area
variations over one period. Bottom: table of assimilated parameters.
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2.6.4 Results on experimental data

Figs. 2.11 to 2.20 show the results of inference on ten different Bunsen flames. Both
techniques produce good parameter estimates, in that the predicted flame shapes are in
good agreement with the experiments. Furthermore, the BayNNE predicts normalised
area variation curves at least as accurate as those predicted by the EnKF. However, the
EnKF’s predictions of K and ε are more confident than the BayNNE’s predictions of all six
parameters. The difference between the predicted uncertainties of the EnKF and BayNNE
can be explained by the difference between the posterior distributions calculated by both
techniques. The EnKF calculates p(K,ε|x1,x2, . . . ,x500): the probability distribution of the
parameters K and ε given the location vectors x from all 500 images. For the BayNNE
technique, the posterior p(p|zi) = p(p|xi,xi+1, . . . ,xi+9) with the smallest total variance is
chosen. This is the probability distribution of the parameters p given only ten image location
vectors, as opposed to the 500 used by the EnKF. Therefore, it is expected that the BayNNE
technique produces more uncertain parameter estimates.

This raises the question as to whether it is possible to increase the certainty of
the parameters by providing the BayNNE with more data. It is not possible to infer a
posterior p(p|z1,z2, . . . ,zN) from the individual posteriors p(p|zi) without knowledge of
the dependence between any two observations, p(zi|z j). Two observation vectors are not
independent, because the information gained from a first observation restricts the expected
subsequent observations to a likely set of forced cycle states. One solution is to increase the
number of location vectors x in each observation vector, which increases the computational
cost of training the neural networks. Another solution is a recurrent neural network, which
can have variable length sequences of data as inputs. However, a Bayesian ensembling
method with recurrent neural networks has not yet been proposed.
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Fig. 2.11 Results of inference on the first Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.12 Results of inference on the second Bunsen flame experiment. Top four rows:
Bunsen flame whose parameters are to be estimated, the detected flame front, predicted
flames using EnKF estimated parameters and predicted flames using BayNNE estimated
parameters. The green and orange bands are regions of high likelihood of the flame in the
EnKF and BayNNE plots. Fifth row: area variations over one period. Bottom: table of
assimilated parameters.
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Fig. 2.13 Results of inference on the third Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.14 Results of inference on the fourth Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.15 Results of inference on the fifth Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.16 Results of inference on the sixth Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.17 Results of inference on the seventh Bunsen flame experiment. Top four rows:
Bunsen flame whose parameters are to be estimated, the detected flame front, predicted
flames using EnKF estimated parameters and predicted flames using BayNNE estimated
parameters. The green and orange bands are regions of high likelihood of the flame in the
EnKF and BayNNE plots. Fifth row: area variations over one period. Bottom: table of
assimilated parameters.
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Fig. 2.18 Results of inference on the eighth Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.19 Results of inference on the ninth Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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Fig. 2.20 Results of inference on the steady Bunsen flame experiment. Top four rows: Bunsen
flame whose parameters are to be estimated, the detected flame front, predicted flames using
EnKF estimated parameters and predicted flames using BayNNE estimated parameters. The
green and orange bands are regions of high likelihood of the flame in the EnKF and BayNNE
plots. Fifth row: area variations over one period. Bottom: table of assimilated parameters.
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2.7 Conclusions

To summarise, this chapter proposed a Bayesian machine learning method for assimilating
data from a Bunsen flame experiment into a physics-based model of the flame. The method
uses a heteroscedastic Bayesian neural network ensemble (BayNNE) trained on a library of
simulated forced cycle flame fronts. Both generating the library of simulated flame fronts and
training the neural networks on the library are computationally expensive steps. However,
once the BayNNE has been trained on the forced cycle library it can be used to reliably infer
all six parameters of the flame front model based on ten consecutive snapshots of the Bunsen
flame experiments in O(10−3) seconds. If more snapshots are provided, this method finds the
sequence of ten snapshots that minimises the uncertainty in the parameters. The method is
compared with the ensemble Kalman filter (EnKF) method, another data assimilation method
which has been demonstrated to work well on this data (both in this chapter and previous
publications, such as [47]). The EnKF requires hours to infer the parameters of each Bunsen
flame. The trained BayNNE provides similarly accurate parameter estimates at a fraction
of the computational cost. Because the BayNNE infers parameters and their uncertainties
in milliseconds, it can be used in real-time tasks, such as the control of thermoacoustic
instabilities.

With the BayNNE method demonstrated on data from a Bunsen flame, the next
chapter will demonstrate the method on data from a version of the Volvo combustor, which is
more complex than the Bunsen burner. Possible improvements to the method, for example
incorporating recurrent neural network architectures to address the limitations discussed in
the previous section, will also be investigated.



Chapter 3

Parameter inference for a kinematic
model of a bluff-body-stabilised flame

This chapter is based upon the following conference publications, which were peer-reviewed
by at least 1 reviewer:

• M. L. Croci, U. Sengupta and M. P. Juniper, “Real-time parameter inference of non-
linear bluff-body-stabilized flame models using Bayesian neural network ensembles”,
in Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC
2021), (Munich, Germany), 2021 [90];

• M. L. Croci, U. Sengupta and M. P. Juniper, “Bayesian inference in non-linear flame
models”, in Deep Learning and Inverse Problems workshop at the 35th Conference on
Neural Information Processing Systems (NeurIPS), (Virtual), 2021 [91].

The experimental data is supplied by Mr Brett Rankin (United States Air Force Office
for Scientific Research). As in the previous chapter, the neural network method is that
which was first proposed in [76] and LSGEN2D is implemented as in [84]. The heat
release model was primarily implemented by Professor Matthew Juniper, and the code for
calculating the normalised flame surface area was written by Mr Alexandros Kontogiannis.
The implementation of, and results from, the Helmholtz solver are due to Mr Ekrem Ekici.

3.1 Introduction

In the previous chapter, a Bayesian machine learning method was used to infer the parameters
of a physics-based model of a Bunsen flame, as a precursor to applying the method to
more complex burner rigs. In this chapter, a G-equation model of a version of the Volvo
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burner [92, 93, 34, 35] is proposed. Whereas the Bunsen flame which was studied in the
previous chapter was fully observed, this version of the Volvo burner has an observation
window through which the flame is only partially observed. This means quantifying the
uncertainty in any inferred parameters is especially important, as we do not have information
on the downstream behaviour of the flame.

A library of partially-observed, simulated flame fronts is generated using the model,
from which a heteroscedastic Bayesian neural network ensemble is trained to infer the model
parameters from 10 flame front snapshots. The trained ensemble is then used to infer the
G-equation model parameters that best fit experimental data from the Volvo burner. Due to
the abrupt changes in behaviour observed in the turbulent flame data, the ensemble Kalman
filter method cannot be used to assimilate the data into a G-equation model. By re-simulating
the flames using the inferred parameters, distributed n− τ models are calculated which
can be used in a Helmholtz solver to calculate eigenmodes and eigenfrequencies of the
thermoacoustic instability of the burner.

3.2 The Volvo burner

3.2.1 Experiment

This data is taken from experiments performed on a version of the Volvo burner shown
schematically in Fig. 3.1. Premixed air and propane flow into the burner and are burned by a
flame stabilised on a triangular bluff body with side length D = 3.8 cm. The depth of the
duct is 4D. Images of the flame such as those in Fig. 3.2(a) are recorded at 10 kHz using OH
planar laser-induced fluorescence (OH PLIF) through a window 3D tall and 3.4D wide. A
sequence of 7998 images each with resolution 69×58 pixels is recorded. Additionally, the
horizontal and vertical velocities within the observation window at a resolution of 69×58
pixels are recorded at each timestep. As the air-fuel mixture flows through the burner, vortices
are shed periodically from the bluff body. These vortices cause wrinkling and cusping of the
flame front. For full details of the Volvo experiment, the reader is referred to: [34, 35].

The Volvo flame images are processed and the flame front is extracted as a radial lo-
cation y, which is a singularly-valued function of the axial co-ordinate x: y = f (x). Although
the flame shows greater wrinkling than the Bunsen flame, it does not wrinkle back onto itself
and so a y = f (x) discretisation of the flame front is still possible. Starting from an OH
PLIF intensity image, the bottom half is discarded because the G-equation model assumes
a symmetric flame front. Furthermore, the rightmost 9 columns of data are discarded from
each image due to the fact that the flame front is occasionally too faint to be detected here.
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The flame front is found by thresholding the magnitude of the gradient vector, as shown in
3.2(b). Next, splines with 10 knots are used to smooth y(x). Each flame image is therefore
converted into a 60×1 vector of flame front y locations y. The x coordinates are the same for
all flames, so are discarded. Observation vectors z are created by appending 10 consecutive y
vectors together. All 7998 images taken from the Volvo burner experiment are processed in
this way.

Fig. 3.1 Diagram of the Volvo burner rig and G-equation model of the flame. A flame burns
premixed air and propane stabilised on a triangular bluff body. In the G-equation model, the
flame front is represented by the G = 0 contour (or level-set) of a continuous scalar field
G(x,y, t). Unburnt and burnt gases are regions where G < 0 and G > 0 respectively. The
flame front travels normal to itself into the unburnt gases with speed sL. The flame front
advects under the prescribed velocity field, which comprises continuity-obeying velocity
perturbations u′(x, t) and v′(x,y, t) superimposed onto a steady base flow U .

3.2.2 Non-dimensionalisation

The characteristic scales of the problem are the side length D of the bluff body, the length
of the unstretched unforced flame, L, the spatial frequency U/L where U is mean base flow
speed and the excitation angular frequency 2π f . The Strouhal number is the ratio of the
spatial time scale to the excitation time scale (where the time scales are the reciprocal of the
frequencies) St = 2π f L/U . By defining the aspect ratio of the unstretched, unforced flame
β = L/D, the Strouhal number may be written equivalently as St = 2π f βD/U .
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Fig. 3.2 (a) Plots of OH planar laser-induced fluorescence (OH PLIF) intensity images of
the flame taken through the observation window of the rig. (b) Plots of the magnitude of the
gradient vector of OH intensity, which is taken to be the flame front [34].

3.3 The G-equation model of the Volvo burner

3.3.1 The G-equation model

The flame front is assumed to be a thin boundary between unburnt and burnt gases (see
Fig. 3.1). The flame travels normal to itself into the unburnt gases with laminar flame
speed sL, which depends on the gas composition. The velocity in the burnt gases does not
affect the flame kinematics. The unburnt and burnt gases are assumed to travel with velocity
u(x,y, t). Under these assumptions, the flame front is modelled by the G(x,y, t) = 0 contour
(or level-set) of a continuous scalar field G whose motion is governed by the G-equation:

∂G
∂ t

+u ·∇G = sL|∇G|. (3.1)

The flame speed sL is equal to the unstretched (adiabatic) flame speed s0
L but is no longer a

function of the local flame curvature. We make this assumption because the flame is turbulent,
as opposed to the laminar Bunsen flame studied in the previous chapter. The flow velocity
field u is assumed to comprise a constant and uniform base flow U and super-imposed
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continuity-obeying velocity perturbations u′(x, t) and v′(x,y, t):

u(x,y, t)
U

=
(
1+u′(x, t)

)
i+ v′(x,y, t)j, (3.2)
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where U is a characteristic speed, ε is a non-dimensional amplitude, St is the Strouhal
number of the flame with characteristic length D, excitation frequency f , and nominal aspect
ratio β : St = 2π f βD/U , and K is the ratio of the characteristic speed U to the perturbation
phase speed. The parameter γ is introduced to the flame perturbation model to allow for
the horizontal velocity perturbations to increase in size with distance from the flame holder,
which is the qualitative behaviour observed in the experiment. To make the G-equation model
quantitatively accurate, the parameters K,ε,γ,St and β must be tuned to fit an observed
flame shape over the observation window for which data is supplied.

3.3.2 Transients in the model and the data

It can be shown that transients occur in the G-equation model of the Volvo burner, see A.3.
The transient dissipation time tc is:

tc =
(1+β 2)

β

D
U

. (3.5)

Therefore, according to a linear perturbation analysis, the number of periods, pc, it takes for
the G-equation model of the system to reach the forced cycle with forcing frequency f is:

pc =
tc
T

=
(1+β 2)

β

f D
U

.
(3.6)

We observe transient behaviour in the experimental data: although the operating
conditions (fuel flow rate and equivalence ratio) are constant, the flame exhibits large
amplitude oscillations at a frequency of 120− 125 Hz between equally long periods of
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aperiodic behaviour. This makes it difficult for traditional data assimilation methods such
as the ensemble Kalman filter to converge. Instead, by assimilating the data 10 images at
a time, the Bayesian neural network ensemble can infer different values for the parameters
depending on what the flame behaviour is within the 10 images.

3.4 Library of forced flame simulations

A library of flame front locations is created with the flame front model at known parameter
values K,ε,γ,St,β and f/ fs in the same format as the observation vectors, z. The parameter
values are sampled using quasi-Monte Carlo sampling to ensure good coverage of the
parameter space. The parameters are sampled from the ranges in Table 3.1. The values of St
are calculated using St = 2π f Dβ/U . The parameters are sampled 2300 times, normalised
to between −1 and 1 and recorded in target vectors {p = [K,ε,γ,St,β ]}. Fewer parameter
samples are required compared to the Bunsen flame experiment due to the flame being only
partially observed.

The G field is iterated forward in time for a duration of tc seconds (Eq. 3.5) (pc

periods, Eq. 3.6, where the period is 1/ f ). This allows any transient flame behaviour to die
away. For parameters sampled according to Table 3.1, pc varies between 0.85 and 4.88. Then
the G field is iterated forward for a further period. The value of the G field at NT = 200 equally
spaced steps, dt = 1/ f NT , within this period is recorded: {G1,G2, . . . ,GNT }. For each G
field in the sequence {Gi}, the flame front y = f (x) is extracted from the G = 0 contour for
all x in the range of the experiment observation window. The flame front y coordinates are
recorded in a column vector yi. The resulting sequence {y1,y2, . . . ,yNT

} represents the flame
front position at NT equally-spaced timesteps in the period. Next, the sum of squared errors
between the first and last G fields in the sequence {Gi} is calculated. As before, the frame
sequence {Gi} is deemed to be a valid forced cycle only if this sum of squared errors falls
below a tolerance tol, otherwise it is discarded along with its target parameters. The frame
rate of the forced cycle sequence is NT/T which is not, in general, equal to the frame rate
of the experimental data ( fs = 104 Hz). To create a sequence of 10 simulated flame fronts
with the same frame rate as the experimental data starting from a timestep t1, we calculate
the ratio ∆ = NT f/ fs and select the sequence {yt1,yt1+∆, . . . ,yt1+9∆}. Any flame coordinates
which are outside of the experimental observation window are discarded. The vectors in
this sequence are appended together to make a column vector z. This is repeated for all NT

of the starting timesteps t1, t2 . . . tNT , and for P = 2300 combinations of parameters sampled
from the ranges shown in Table 3.1. The result is a library of PNT = 4.6×105 observation -
parameter pairs. This is summarised in algorithm 2.
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As with the algorithm to generate a library of simulated Bunsen flame fronts, the
algorithm can be trivially parallelised. One loop of algorithm 2 takes up to one hour,
depending on the transient dissipation time tc. An upper bound for the library generation’s
computational cost is 2300×1 = 2.3×103 CPU core-hours. This takes approximately seven
hours when at the limit of maximum concurrent CPU core usage.

Table 3.1 Parameters of the G-equation model that are varied in this chapter and the range
over which they are varied in order to generate the simulated flame front library.

Parameter ranges Description

0.5≤ K ≤ 2.0 Ratio of mean base flow speed to perturbation phase speed
0.0 < ε ≤ 0.5 Amplitude of the vertical velocity perturbation
0.0≤ γ ≤ 3.0 Perturbation growth exponent
4.0≤ β ≤ 8.0 Aspect ratio of the unperturbed flame

0.03 m ≤ D≤ 0.04 m Bluff-body side length
10 m/s ≤U ≤ 15 m/s Mean base flow speed
100 Hz ≤ f ≤ 150 Hz Excitation frequency (self-excited)

3.5 Parameter inference for the G-equation model of the
Volvo burner using BayNNEs

The heteroscedastic Bayesian neural network ensemble method is unchanged compared
to that described in the previous chapter. The architecture of each neural network in the
ensemble is changed in light of the differences in the size of the input data vectors compared to
that in the previous chapter. First, the each neural network in the ensemble’s input and hidden
layers are 600 units wide, and each output layer is 5 units wide. For full hyperparameter
details, see Table 3.2.

At this stage, the alternative neural network architectures that were explored were:
the recurrent neural network (RNN, [94]), the long short-term memory network (LSTM, [66]),
the gated recurrent unit (GRU, [95]) and the transformer [96]. These architectures were
developed for sequence to sequence tasks, such as machine translation, where for some input
sequence an output sequence is produced. For our purposes the input sequence would be
the flame images and the output sequence would be parameter predictions for each input
image. Although each of these architectures can be used for regression tasks, no Bayesian
uncertainty quantification variant has been developed. I attempted to extend the Bayesian
neural network ensemble method theory to the RNN architecture but without success: it is
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Algorithm 2: Generate a library of simulated, partially observed Volvo flame
fronts with known parameters.

Data: Number of parameter samples P, number of timesteps per period NT ,
frame rate fs, tolerance tol.

Result: Library of pairs (pi,zi)
PNT
i=1

for 1≤ p≤ P do
K,ε,γ, f ,β ,D,U ← sample(); ▷ Sample parameters from Tab. 3.1.
St← 2π f βD/U ;
p← [K,ε,γ,St,β ]; ▷ Record the target parameters.
T ← 1/ f ;
tc← D(1+β 2)/βU ; ▷ Calculate the transient duration (see Appendix A.3).
t← 0;
dt← T/NT ;
LSGEN2D.initialise(p); ▷ Initialise LSGEN2D with target parameters.
while t ≤ tc do

▷ Iterate the G-equation forward in time for the duration of the transient
period.

LSGEN2D.iterate();
t← t +dt;

end
while tc ≤ t ≤ tc +T do

▷ Once the transient period is over, iterate for a further period and record
the flame front y coordinates.

LSGEN2D.iterate();
Gt ← LSGEN2D.G;
yt ← Gt .extractFrontWithinWindow();
t← t +dt;

end
if |Gtc+T −Gtc |< tol. then

▷ Verify that the convergence of the forced cycle by comparing the first
and last G fields in the cycle.

∆← NT f/ fs;
for t0 = 1 : NT do

z← concatenate(yt0,yt0+∆, . . . ,yt0+9∆); ▷ Create observation vector.
library.addPair(p,z); ▷ Save the parameter - observation pair.

end
end

end

not clear that the strong assumptions made in [97] about correlations between the weights
of the hidden layers must necessarily hold between recurrent layers. Ensembling of each
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of these architectures can still be performed to provide qualitative uncertainty estimates,
however.

Another architectural choice is the choice of input layer(s) to the neural networks.
Convolutional neural network (CNN) layers [98, 99] were developed to allow images, stored
as matrices of pixel intensities, to be used as inputs into neural networks directly. For
our purposes, this would avoid the pre-processing of the flame images into flame front
coordinates. However, the G-equation model of the flame front models the flame as a thin
boundary between unburnt and burnt gases. An N×N image of the flame generated with
this model would only have O(N) pixels of useful information (the thin line representing the
flame), whereas the image contains N2 pixels. Training the CNNs on a library of simulated
flame images would be more computationally expensive than training the fully-connected
neural networks used earlier in the chapter.

Table 3.2 Hyperparameter settings used for neural network training.

Hyperparameter Value

Training
Train-test split 80:20
Batch size 256
Epochs 100
Optimiser Adam
Learning rate 10−4

Architecture
Input units 600
Hidden layers 4
Units per hidden layer 600
Output layers 2
Units per output layer 5
Ensemble size 20

3.6 The heat release model

The heat release model is based on a distributed n− τ model proposed in [100, 101]. The
local heat release rate perturbation per unit volume ˜̇qh is assumed to be proportional to the
horizontal velocity perturbation ũ(x, t), where x = (x,y), integrated over a measurement
region w(x) some time τ(x) earlier:



62 Parameter inference for a kinematic model of a bluff-body-stabilised flame

˜̇qh(x, t) = ηh(x)
∫

Ω

w(x̂)ũ(x̂, t− τ(x))dx̂ , (3.7)

where h(x) is a distribution of heat release in space which integrates to one over the whole
domain (

∫
Ω

h(x)dx = 1), w(x) is a distribution of measurement in space which integrates to
one over the whole domain (

∫
Ω

w(x)dx = 1) and η is a constant that contains the amplitude
of the relationship between the the horizontal velocity perturbation and the heat release rate
perturbation. Here the measurement region is defined to be a pair of Gaussians, one each
side of the centre-line:

w(x,y) = exp
(
−ar(x− x0)

2−ar(|y|− y0)
2)
)
, (3.8)

where ar = 6200, and (x0,y0) = (D/2,D) where D is the bluff-body side length. This is
somewhat arbitrary so long as the measurement region is the same in the thermoacoustic
model as it is in the heat release model.

An estimate for the heat release h(x) and time delay τ(x) fields is calculated from
one period of re-simulated flame shapes, the re-simulated horizontal velocity field and the
experiment horizontal velocity field. First, the normalised heat release rate q̇h(x, t)/ ¯̇Qh is
calculated from the flame front positions over one period (see appendix B.1 for a derivation)
using a level-set integration method implemented by Mr Alexandros Kontogiannis. The
mean heat release rate ¯̇Qh of the Volvo burner is 1.125 MW (see appendix B.2 for a detailed
calculation). By taking the Fourier transform of the normalised heat release rate at the
fundamental frequency and multiplying by ¯̇Qh, the (un-normalised) heat release perturbation
˜̇qh(x,ω) is calculated. Next, the Fourier transform of the re-simulated horizontal velocity
field at the fundamental frequency ũ(x,ω) is calculated to find the phase between the
horizontal velocity field and the heat release rate perturbation field. In the simulations, the
amplitude of the oscillating velocity field at the bluff-body is too small to be used. Instead,
the measurement region is set one grid cell downstream of the bluff body in order to obtain
the correct phase relationship between the velocity perturbation field and heat release rate
perturbation field, and then is re-scaled to the experimental velocity amplitude. This ensures
that the thermoacoustic model has the correct phase and amplitude relationships between
velocity and heat release rate. Using this information, and calculating:

I =
∫

Ω

w(x̂)|ũ(x̂,ω)|dx̂ , (3.9)
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where |ũ(x̂, t)| is the amplitude of the experiment horizontal velocity field, n and τ fields are
calculated:

n(x) =
∣∣∣∣ ˜̇qh(x,ω)

I

∣∣∣∣ , (3.10)

τ(x) = ∠

( ˜̇qh(x,ω)

I

)
. (3.11)

The phase of ˜̇qh(x,ω)/I is wrapped between ±π and is unwrapped with the algorithm
in [102]. The phase is then divided by ω , the angular frequency of the velocity field, to give
the spatially-distributed time delay τ(x). Finally, n(x) is normalised to find h(x) and η :

h(x) =
n(x)∫

Ω
n(x̂)dx̂

=
n(x)

η
. (3.12)

The growth rates and frequencies of thermoacoustic instabilities of the system can be esti-
mated by using n(x),τ(x) and w(x) in a Helmholtz solver, as described in the next section.

3.7 The Helmholtz solver

The thermoacoustic Helmholtz equation, which is the frequency-domain equivalent of the
thermoacoustic wave equation, is used to model the Volvo burner system. For a given heat
release model, such as the distributed n− τ model described in the previous section, the
Helmholtz equation is solved with a Helmholtz solver. The solution is a set of eigenmodes,
each of which comprises an eigenvalue and an eigenfunction. The real and imaginary parts
of the eigenvalue are the frequency and growth rate respectively of the thermoacoustic mode
whose shape is given by the eigenfunction. The growth rate allows us to determine the
thermoacoustic stability of the mode: a positive (negative) growth rate means an unstable
(stable) mode. For further details on the Helmholtz solver, the reader is referred to: [103,
Chapter 2].

3.8 Results and discussion

3.8.1 Neural network training and evaluation

The ensemble of 20 Bayesian neural networks is trained on the forced cycle library for 100
epochs, with a 80 : 20 train-test split and an Adam optimiser [104] with learning rate 10−4.
Training takes approximately one hour per neural network on an NVIDIA P100 GPU. The
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ensemble is trained in parallel on GPU clusters available through Google Colaboratory1.
Once the neural networks are trained, ensemble prediction takes O(10−3) seconds on an Intel
Core i7 processor on a laptop.

3.8.2 Results on experimental data

The top-left quadrant of each image in figure 3.3 shows the experimental flame position for
four of the 430 timesteps in an experimental run. The BayNNE recognises the parameters
(K, ε , γ , St, β ) of the simulations that best match this experimental data and also outputs
its uncertainty in those parameters, in the form of a standard deviation. These parameter
values tend to remain approximately constant for many timesteps and then change abruptly.
This concurs with a visual inspection of the experimental data which also exhibits periods
of similar behaviour interspersed with moments of abrupt change. The BayNNE is able to
assimilate the data reliably through these abrupt changes.

From figure 3.3, we observe that ε and γ appear strongly correlated. This is as
expected, as these both relate to the amplitude of the perturbation. The Strouhal number
is inferred with higher uncertainty than the other parameters in most of the 430 timesteps.
This suggests that this parameter is less easily recovered from the input sequences of 10
flame front snapshots. Increasing the number of flame front snapshots in one observation
vector input into the neural network ensembles could be one way of reducing this uncertainty.
However, this would not be appropriate for such cases where the flame behaviour changes
rapidly because a constant value of the parameters may not be a valid assumption over this
longer sequence of snapshots. Additionally, this would increase the computational cost of
training the neural networks: doubling the size of the input and hidden layers of a neural
network increases the number of weights and biases by a factor of four.

Using the re-simulated flame shapes, the shapes of the flame envelope, h(x), and
the time delay fields, τ(x), of the distributed n− τ heat release model described earlier in
this chapter can be calculated (recall that n(x) = ηh(x), where η is a constant which ensures
h(x) integrates to 1). Figs. 3.4 to 3.7 show the re-simulated flame shapes and h(x) and τ(x)
fields at the four timesteps of interest. Additionally, the flame shapes are re-simulated at
1/4,1/2 and 3/4 the amplitude inferred by the BayNNE (all other inferred parameters are
kept constant). The h(x) and τ(x) fields calculated from these flame shapes are shown in
figures 3.8 and 3.9. At a given timestep, h(x) becomes narrower as the amplitude ε reduces,
but retains high amplitude regions on its inner and outer edges. On the other hand, η increases
only slightly with amplitude. This shows that, once h(x) has been fixed, the amplitude of

1https://colab.research.google.com
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the global fluctuating heat release rate depends only slightly on the amplitude of oscillation.
The time delay field, τ(x), becomes narrower as the amplitude reduces and has the same
envelope as the h(x) field. The influential region of τ(x) is simply the region in which h(x)
is large, which is primarily the outer edge of the envelope of h(x). In this region, the value of
τ(x) at a given x-position depends very little on amplitude and only slightly on the timestep.
This is because τ(x) is determined by the convection speed, K. The small dependence on
amplitude is expected because the K is not affected at all by the amplitude of oscillation, ε .
The dependence on timestep is also expected to be small because the convection speed is
similar at each timestep

The h(x) and τ(x) fields calculated at the four timesteps and amplitudes can be used
to calculated the eigenfrequencies and growth rates of the thermoacoustic system using a
Helmholtz solver. This is discussed in the next section.

Table 3.3 Parameter values and uncertainties inferred by the BayNNEs at four different
timesteps. The variation in the inferred parameters with time suggests that the flame behaviour
changes during the time series between moments of higher and lower amplitude oscillations.

Parameter t = 48 t = 108 t = 216 t = 312

K 0.953±0.083 0.716±0.084 0.690±0.016 0.932±0.013
ε 0.133±0.005 0.102±0.003 0.314±0.003 0.184±0.001
γ 1.117±0.140 1.009±0.105 1.577±0.016 1.145±0.010
St 21.243±8.417 16.409±5.315 25.656±4.865 14.267±1.859
β 7.932±0.024 7.694±0.115 7.739±0.046 6.714±0.116
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Fig. 3.3 Experimental flame images (top-left quadrant of each image) and level-set model
predictions (remainder of image) at four timesteps within a sequence of 430 timesteps.
The graphs show the means and ± 2 standard deviations of the five parameters of the
G-equation simulation, which are assimilated from the experimental data. The level-set
model predictions use these assimilated values to simulate the flame downstream, beyond the
observation window. The inferred parameter values are listed in Table 3.3.
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Fig. 3.4 (a) Re-simulated flame shape at t = 48. (b) and (c): n and τ fields calculated from
the re-simulated flame shape at t = 48. The centre (x0,y0) of the measurement region w(x,y)
is also shown. Part of the flame is upstream of the measurement point, which leads to a
negative time delay.
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Fig. 3.5 (a) Re-simulated flame shape at t = 108. (b) and (c): n and τ fields calculated
from the re-simulated flame shape at t = 108. The centre (x0,y0) of the measurement region
w(x,y) is also shown. Part of the flame is upstream of the measurement point, which leads to
a negative time delay.
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Fig. 3.6 (a) Re-simulated flame shape at t = 216. (b) and (c): n and τ fields calculated
from the re-simulated flame shape at t = 216. The centre (x0,y0) of the measurement region
w(x,y) is also shown. Part of the flame is upstream of the measurement point, which leads to
a negative time delay.
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Fig. 3.7 (a) Re-simulated flame shape at t = 312. (b) and (c): n and τ fields calculated
from the re-simulated flame shape at t = 312. The centre (x0,y0) of the measurement region
w(x,y) is also shown. Part of the flame is upstream of the measurement point, which leads to
a negative time delay.



3.8 Results and discussion 71

Fig. 3.8 Plots of h(x) at four different timesteps t and at four amplitudes: ε/4,ε/2,3ε/4
and ε , the amplitude inferred by the BayNNE. The values of η are also displayed for each
timestep and amplitude.
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Fig. 3.9 Plots of τ(x) at four different timesteps t and at four amplitudes: ε/4,ε/2,3ε/4 and
ε , the amplitude inferred by the BayNNE.
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3.8.3 Helmholtz solver results

Fig. 3.10 shows a typical eigenfunction for the first thermoacoustic mode. This has the same
structure as the natural modes observed experimentally in a similar configuration by [35].
The eigenfunctions at the other timesteps and amplitudes are nearly identical. Fig. 3.11
shows the first pure acoustic eigenmode (red square) and the thermoacoustic eigenmodes
(grey) at the four amplitudes and four timesteps. The grey symbols deviate from the red
square, showing that the thermoacoustic effect is active. At each timestep, the thermoacoustic
effect stabilises the mode and shifts the frequency slightly.

We expect the shape of h(x) to have little influence on the thermoacoustic behaviour
because this behaviour is determined by the integral of h(x) multiplied by the pressure p(x, t)
over an acoustic wave, and p(x, t) has a long wavelength, as seen in figure 3.10. On the other
hand, τ(x)/T typically ranges from 0 to 4.5 in the region in which h(x) has high amplitude.
Small changes in τ(x) would therefore cause big changes in the phase between the heat
release rate ˜̇qh(x, t) and p(x, t), and therefore big changes in the thermoacoustic growth rate,
as described in [2]. However, τ(x) does not change with amplitude or timestep in the inner
and outer regions of its envelope because it is determined by the convection speed, which is
the same through the experimental run. The thermoacoustic behaviour is therefore similar at
all four timesteps and all four amplitudes.

Fig. 3.10 Real (top) and imaginary (bottom) components of the first mode of the acoustic
pressure eigenfunctions for the flame at t = 312 and amplitude ε . The eigenfunction is
normalised such that

∫
p2dx = 1. This figure is due to Mr Ekrem Ekici.
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Fig. 3.11 The eigenvalues for the first mode at four timesteps and amplitudes. The horizontal
and vertical axes denote the frequency and the growth rate of the system. The red squares in
each subplot show the eigenfrequecies of the system when no flame is present. Each frame
corresponds to a different timestep, while the greyscale within each frame corresponds to a
different velocity forcing amplitude, ε . The lightest grey corresponds to ε/4 and the darkest
to ε . This figure is due to Mr Ekrem Ekici.

3.9 Conclusions

In this chapter, the Bayesian machine learning method proposed in the previous chapter
was applied to data from a version of the Volvo burner. In this burner, the flame is only
partially observed and exhibits some turbulent, transient behaviour. The velocity model
used in the G-equation model of the flame front is adapted to better describe the data: a
parameter γ is introduced which determines the growth rate of the velocity perturbations
with downstream coordinate. The ensemble Kalman filter is unable to assimilate this data
because the flame behaviour varies too quickly for the Kalman filter to converge to parameter
estimates. Instead, the G-equation model is used to generate a library of forced cycle frame
fronts from which the heteroscedastic Bayesian neural network ensembles (BayNNEs) are
trained. The BayNNEs learn to infer the five parameters of the velocity model and their
uncertainties from 10 consecutive flame front snapshots. By re-simulating the flame fronts
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using the inferred parameters, the behaviour of the flame downstream of the observation
window is predicted. Using the predicted flame shapes over one period, the flame envelope,
n, and time delay, τ , of a distributed n− τ heat release model are calculated. Furthermore,
the n− τ fields are calculated for flames with the same parameters as those inferred by the
BayNNE but with 1/4, 1/2 and 3/4 of the inferred amplitude. By entering these data into
a Helmholtz solver, the growth rates and frequencies of the thermoacoustic instability of
the system are calculated. Crucially, we observe that the growth rate and frequency of the
thermoacoustic instability do not show a strong dependency on the amplitude of forcing.
This suggests that a flame transfer function derived at high amplitude, when it is observable,
is also valid at low amplitude, when it is not observable.

Assimilation into physics-based models, as performed here, is attractive because the
models are physically-interpretable and extrapolatable. In addition, this provides a cheap way
to store CFD data: the parameters of the most relevant CFD solution for a given experiment
can be extracted cheaply, and the CFD solution then re-calculated. Secondly, it shows how
sparse experimental results can be combined with complete numerical results to extrapolate,
with defined confidence levels, beyond experimental observations. This chapter described a
robust way and potentially cheap method to achieve this, which can readily be extended to
other experiments and to other models.





Chapter 4

Parameter inference for a kinematic
model of a bluff-body stabilised flame
augmented with a discrete vortex velocity
model

This chapter is based upon the following conference paper, which was double-blind peer-
reviewed by at least one reviewer:

• M. L. Croci, J. V. Vasanth, U. Sengupta, E. Ekici and M. P. Juniper, "Bayesian parame-
ter inference of a vortically perturbed flame model for the prediction of thermoacoustic
instability", in AI for Science workshop at the 36th Conference on Neural Information
Processing Systems (NeurIPS), (New Orleans, USA), 2022 [105].

As in the previous chapter, the experimental data is supplied by Mr Brett Rankin, the
neural network method is that which was first proposed in [76] and LSGEN2D is implemented
as in [84]. The heat release model was primarily implemented by Professor Matthew Juniper,
and the code for calculating the normalised flame surface area was written by Mr Alexandros
Kontogiannis. The implementation of, and results from, the Helmholtz solver are due to
Mr Ekrem Ekici. The discrete vortex method was developed and implemented by Mr Joel
Vasanth. I incorporated the discrete vortex method code within LSGEN2D and compiled the
the code into a single executable program.
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discrete vortex velocity model

4.1 Introduction

In the previous chapter, the parameters of a physics-based model of a version of the Volvo
burner were inferred from experiments using a heteroscedastic Bayesian neural network
ensemble. This has the advantage of simplicity and periodicity, but lacks flame wrinkling and
other dynamics that may be important in this flow. In this chapter, an alternative model of the
velocity field is used which wrinkles the flame while retaining incompressibility, which is
physically realistic in the fresh gases before dilatation at the flame. In the experiments, large-
scale flame front oscillations due to vortices shedding from the bluff body are observed. A
discrete vortex method with five tunable parameters is therefore used to calculate the velocity
field in an attempt to model this behaviour more faithfully. Aside from this difference, the
Bayesian machine learning method is unchanged: a library of simulated flame fronts using
LSGEN2D and the discrete vortex method is produced, from which the neural networks
are trained to recover the parameters of the discrete vortex method. By re-simulating the
flame fronts using these inferred parameters, the behaviour of the flame downstream of the
observation window is evaluated. As was performed in the previous chapter, the h(x) and
τ(x) fields of the heat release model are calculated and entered into a Helmholtz solver to
calculate the frequency and growth rate of the thermoacoustic instability of the system.

4.2 The G-equation model of the Volvo burner augmented
with a discrete vortex velocity model

4.2.1 The G-equation model

The G-equation model of flame front is unchanged except for the velocity field u. The
G-equation is:

∂G
∂ t

+u ·∇G = sL|∇G| , (4.1)

and u is now calculated using a discrete vortex method instead of the continuity-obeying
sinusoidal horizontal and vertical velocity perturbations used in the previous chapter. As
before, the flame speed sL is equal to the unstretched flame speed s0

L but is no longer a
function of the local flame curvature.

4.2.2 The discrete vortex method

The velocity field u(x, t) is calculated using a discrete vortex method (DVM, [106, 107]). This
method aims to model the large-scale vortical structures that drive flame front oscillations
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using the vorticity formulation of the incompressible Euler equations in two dimensions:

∂ωωω

∂ t
+u ·∇ωωω = ωωω ·∇u , (4.2)

∇ ·u = 0 , (4.3)

where ωωω(x, t) is the vorticity field. This vorticity field is discretised into NV individual fluid
elements, each with position xi(t), core radius rD,0 and circulation Γi, where i = 1,2 . . .NV :

ωωω =
NV

∑
i

Γi fδ (r) , (4.4)

where the core function fδ (r) is the distribution of vorticity within the vortex element. The
vortices are advected by the flow, whose velocity field is the solution to the Poisson equation
∇2u =−∇×ωωω :

u(x, t) = u(x, t)irr +u(x, t)rot . (4.5)

The irrotational velocity field u(x, t)irr is the solution to the potential flow problem, calcu-
lated via a Schwartz-Christoffel conformal mapping [108]. The assumption that this base
flow is irrotational ignores the gradually increasing turbulent behaviour which is observed
downstream of the bluff body. The acoustic forcing on the flow field is modelled with a
harmonically oscillating inlet flow velocity u(t)/U = 1+α sin(St t) where α is the amplitude
of forcing. The rotational velocity field is:

u(x, t)rot = ∇G (x,x′)∗ωωω
h , (4.6)

where ∗ is the convolution operator and G (x,x′) is the Green’s function for the Laplacian
operator in two dimensions:

∇
2G (x,x′) = δ (x−x′) . (4.7)

The vortices advect with the flow according to:

dxi

dt
= u(xi, t) i = 1, . . . ,NV (4.8)

Vortices enter the domain at each timestep ∆t with circulation Γ0 = −u0(t)2∆t/2. The
velocity u0 is computed at a location x0 = (0,z0,i), which is directly above the bluff body lip.
For further details on the method, see appendix C.
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4.2.3 Transients in the flame fronts simulated with the discrete vortex
method

Despite the periodic forcing of the base flow, the effect of the vortices on the velocity field
is not periodic. This is illustrated in figure 4.1: for a given set of parameter values, the
flame shows aperiodic behaviour over four periods. The effect is particularly strong starting
from a distance of 4D downstream of the bluff body. However, over the window for which
experimental data are available (a distance 3.4D downstream), the flame front is almost
perfectly periodic. For this reason, it is possible to generate a library of simulated flame
fronts in the same way as was done in previous chapters. This goes some way to modelling the
uncertainty in the flame front position downstream of the observation window. An alternative
library generation method would calculate phase-averaged flame front coordinates, taken
over many periods of simulation. The computational cost and storage requirements of the
library generation are linear in the number of periods simulated, however. Furthermore, the
turbulent, nearly periodic behaviour in the experiments cannot be as faithfully modelled if
it is used. Therefore, we choose to generate the simulated flame front library by assuming
perfectly periodic flame front behaviour, as was assumed in the previous chapters.

4.3 Library of forced flame simulations

A library of flame front locations is created with the flame front model at known parameter
values α,rD,0,z0,i,St,β and f/ fs in the same format as the observation vectors, z. The
parameter values are sampled using quasi-Monte Carlo sampling to ensure good coverage
of the parameter space. The parameters are sampled from the ranges in Table 4.1. The
values of St are calculated using St = 2π f Dβ/U . The parameters are sampled 104 times,
normalised to between −1 and 1 and recorded in target vectors {p = [α,rD,0,z0,i,St,β ]}. A
larger number of parameter samples are required compared to the previous method due to
the range of flame shapes produced with the discrete vortex method.

The G field is iterated forward in time for a duration of seven periods, where the
period is 1/ f . This allows any transient flame behaviour to die away. Then the G field is
iterated forward for a further two periods. The value of the G field at NT = 200 equally-
spaced timesteps within the first period is recorded: {G1,G2, . . . ,GNT }. For each G field in
the sequence {Gi}, the flame front y= f (x) is extracted from the G= 0 contour for all x in the
range of the experiment observation window. The flame front y coordinates are recorded in a
column vector yi. The resulting sequence {y1,y2, . . . ,yNT

} represents the flame front position
at NT equally spaced timesteps within the two periods recorded. Next, the sum of squared
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errors between the first G field and the G field one period after is calculated. As before,
the frame sequence {Gi} is deemed to be a valid forced cycle only if this sum of squared
errors falls below a tolerance tol, otherwise it is discarded along with its target parameters.
The frame rate of the forced cycle sequence is NT/T which is not, in general, equal to the
frame rate of the experimental data ( fs = 104 Hz). To create a sequence of ten simulated
flame fronts with the same frame rate as the experimental data starting from a timestep t1, we
calculate the ratio ∆ = NT f/ fs and select the sequence {yt1 ,yt1+∆, . . . ,yt1+9∆}.
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Fig. 4.1 Flame fronts (red line) one period apart simulated using the G-equation and the
discrete vortex method. The blue dots are the centres of the vortices, advected by the
velocity field shown by the grey arrows. Despite constant parameter values, the figures show
increasingly aperiodic behaviour with downstream distance from the bluff body. This is due
to the non-linear response of the flame dynamics to the velocity field induced by the discrete
vortices.
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Any flame coordinates which are outside of the experimental observation window
are discarded. The vectors in this sequence are appended together to make a column vector z.
This is repeated for all NT of the starting timesteps t1, t2 . . . tNT , and for P = 104 combinations
of parameters sampled from the ranges shown in Table 4.1. The result is a library of
PNT = 2×106 observation - parameter pairs. This is summarised in algorithm 3.

As before, the algorithm can be trivially parallelised. One loop of algorithm 3
takes up to 90 minutes. An upper bound for the library generation’s computational cost is
1.5×104 CPU core-hours. This takes approximately 23 hours when at the limit of maximum
concurrent CPU core usage.

Table 4.1 Parameters of the discrete vortex method used in the G-equation model that are
varied in this chapter and the range over which they are varied in order to generate the
simulated flame front library.

Parameter ranges Description

0.05≤ α ≤ 0.5 Amplitude of base flow forcing
0.01≤ rD,0 ≤ 0.2 Vortex radius
0.6≤ z0,i ≤ 0.7 Initial velocity coordinate

4≤ β ≤ 8 Aspect ratio of the unperturbed flame
0.03 m ≤ D≤ 0.04 m Bluff-body side length
10 m/s ≤U ≤ 15 m/s Mean base flow speed
100 Hz ≤ f ≤ 150 Hz Frequency of base flow forcing

4.4 Parameter inference for the G-equation model of the
Volvo burner using BayNNEs

The heteroscedastic Bayesian neural network ensemble method is unchanged compared
to that described in the previous chapter. The architecture of each neural network in the
ensemble is unchanged: the output layers are five units wide, one for each parameter to be
inferred, although three of the five parameters are different to those from the previous chapter.
For full hyperparameter details, see Table 4.2.
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Algorithm 3: Generate a library of simulated, partially observed Volvo flame
fronts with known discrete vortex method parameters.

Data: Number of parameter samples P, number of timesteps per period NT ,
frame rate fs, tolerance tol.

Result: Library of pairs (pi,zi)
PNT
i=1

for 1≤ p≤ P do
α,rD,0,z0,i, f ,β ,D,U ← sample(); ▷ Sample parameters from Tab. 4.1.
St← 2π f βD/U ;
p← [α,rD,0,z0,i,St,β ]; ▷ Record the target parameters.
T ← 1/ f ;
t← 0;
dt← T/NT ;
LSGEN2D.initialise(p); ▷ Initialise LSGEN2D with target parameters.
while t ≤ 7T do

▷ Iterate the G-equation forward in time for the duration of the transient
period.

LSGEN2D.iterate();
t← t +dt;

end
while tc ≤ t ≤ tc +2T do

▷ Once the transient period is over, iterate for a further two periods and
record the flame front y coordinates.

LSGEN2D.iterate();
Gt ← LSGEN2D.G;
yt ← Gt .extractFrontWithinWindow();
t← t +dt;

end
if |G7T −G8T |< tol. then

▷ Verify that the convergence of the forced cycle by comparing G fields
one period apart.

∆← NT f/ fs;
for t0 = 1 : NT do

z← concatenate(yt0,yt0+∆, . . . ,yt0+9∆); ▷ Create observation vector.
library.addPair(p,z); ▷ Save the parameter - observation pair.

end
end

end
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Table 4.2 Hyperparameter settings used for neural network training.

Hyperparameter Value

Training
Train-test split 80:20
Batch size 256
Epochs 40
Optimiser Adam
Learning rate 10−4

Architecture
Input units 600
Hidden layers 4
Units per hidden layer 600
Output layers 2
Units per output layer 5
Ensemble size 20

4.5 Results and discussion

4.5.1 Neural network training and evaluation

The ensemble of 20 Bayesian neural networks is trained on the forced cycle library for 40
epochs, with a 80 : 20 train-test split and an Adam optimiser with learning rate 10−3. The
ranges from which the G-equation model parameters are sampled from are listed in Table 4.1
Training takes approximately 20 minutes per neural network on an NVIDIA P100 GPU. The
ensemble is trained in parallel on GPU clusters available through Google Colaboratory. Once
the neural networks are trained, ensemble prediction takes O(10−3) seconds on an Intel Core
i7 processor on a laptop.

4.5.2 Results on experimental data

For five of the 430 timesteps in an experimental run, the top-left quadrant of each image in
figure 4.2 shows the experimental flame position. The BayNNE recognises the parameters
(α , rD,0, z0,i, St, β ) of the simulations that best match this experimental data and also outputs
its uncertainty in those parameters, in the form of a standard deviation. As observed in the
previous chapter, these parameter values tend to remain approximately constant for many
timesteps and then change abruptly. The BayNNE is able to assimilate the data reliably
through these abrupt changes.
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From figure 4.2, we see that the uncertainties in rD,0, the vortex core radius, are high:
the two standard deviation range covers nearly the whole range from which the parameter
was sampled (see Table 4.1). This suggests that this parameter is difficult to recover because
it only has a weak effect on the flame front over ten consecutive images.

Between t ≈ 100 and t ≈ 340 we observe approximately periodic behaviour in the
plots of the inferred values of α and z0,i . The period of this behaviour is 80 timesteps, which
is equal to the period of the oscillations observed in the experiment. This implies that there
is some model error present: the neural network ensemble predicts different flame shapes
for different moments in the period because no single shape describes the whole period
well. However, unlike the core radius parameter rD,0, these two parameters are more easily
recovered, implying that their effect on the flame front over ten consecutive images is strong.

In general, all five parameters are inferred with higher uncertainties than the pa-
rameters of the previous model. This is explained by the nearly periodic behaviour in the
flame fronts simulated using the discrete vortex method and the G-equation. For a given set
of parameters in the training library, the corresponding flame fronts are recorded over two
periods. Simulating the flame fronts over a further two periods would give rise to slightly
different flame behaviour. Table 4.3 lists the parameter values and uncertainties inferred by
the BayNNEs at five different moments in the time series, with the Strouhal number being
particularly sensitive to the time at which the parameters are inferred. This is due to the
rapidly changing behaviour of the flame front from one period to the next. The BayNNE
cannot learn the parameters with very high certainty from these flame fronts because it does
not have enough examples of all possible flame behaviour. One remedy would be to simulate
many periods of the flame front for a given set of target parameters and use a phase-averaged
period for training. However, the computational cost of generating the training library is
linear in the number of periods over which the flame front is simulated. Given that the current
library takes 23 hours to generate, this is prohibitively expensive.

From the re-simulated flame images we notice that the flame front position is pre-
dicted with low uncertainty up to a distance approximately 2D downstream of the bluff body.
Further downstream, the uncertainty increases. This is expected because the flame experi-
ments are more turbulent in this region and so do not show perfectly periodic behaviour here.
The flame shapes produced with the discrete vortex model are only nearly periodic, which
matches this observed behaviour. Downstream of the observation window, the uncertainty in
the flame position continues to increase, as expected.

Using the re-simulated flame shapes, h(x) and τ(x) fields of the distributed n− τ

heat release model (which is unchanged from the previous chapter) are calculated. Figs. 4.3
to 4.7 show the re-simulated flame shapes and h(x) and τ(x) fields at the five timesteps of
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interest. Additionally, the flame shapes are re-simulated at 1/4,1/2 and 3/4 the amplitude
inferred by the BayNNE for a duration of ten periods and a phase-average of the flame shapes
is taken. The h(x) and τ(x) fields calculated from these flame shapes are shown in figures
4.8 and 4.9. Due to computer storage limits, phase averaging more than ten periods of flame
shape data is impractical. This leads to noisy artefacts seen in the inner regions of the h(x)
and τ(x) fields. However, the regions of highest h(x) are on the inner and outer edges of the
envelope of h(x), as was the case in the previous chapter. The influential region of τ(x) is, as
before, primarily the outer edge of the envelope of h(x). In this region, the value of τ(x) at a
given x-position depends more on the amplitude and on the timestep than was seen in the
previous chapter.

The envelopes of the h(x) and τ(x) fields are smaller than those of the previous
chapter: the perturbations decay faster with downstream distance than under the previous
model. The effect of the amplitude of velocity forcing, ε , on the envelopes of h(x) and τ(x)
is less pronounced. This suggests that the shapes of the envelopes are more sensitive to the
rotational part of the velocity field than to the irrotational part. Under the discrete vortex
model, the flame dynamics are driven more by the flow induced by the vortices than by the
oscillating base flow.

As in the previous chapter, the h(x) and τ(x) fields at each timestep and amplitude
can be used to determine the eigenfrequencies and growth rates of the thermoacoustic system
calculated with a Helmholtz solver. This is discussed in the next section.

Table 4.3 Parameter values and uncertainties inferred by the BayNNEs at five different
timesteps.

Param. t = 32 t = 60 t = 304 t = 376 t = 416

α 0.433±0.105 0.303±0.142 0.435±0.092 0.452±0.089 0.305±0.137
rD,0 0.099±0.049 0.096±0.061 0.100±0.069 0.092±0.052 0.078±0.035
z0,i 0.615±0.022 0.614±0.017 0.612±0.021 0.613±0.021 0.635±0.028
St 14.30±3.458 16.19±4.413 15.78±5.411 15.29±5.860 13.17±4.156
β 7.974±0.050 7.931±0.156 7.918±0.221 7.913±0.210 7.957±0.109
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Fig. 4.2 Experimental flame images (top-left quadrant of each image) and level-set model
predictions (remainder of image) at five timesteps within a sequence of 430 timesteps. The
graphs show the means and ± 2 standard deviations of the five parameters of the discrete
vortex method velocity model, which are assimilated from the experimental data. The level-
set model predictions use these assimilated values to simulate the flame downstream, beyond
the observation window. The inferred parameter values are listed in Table 4.3.



4.5 Results and discussion 89

Fig. 4.3 (a): Re-simulated flame shape at t = 32. (b) and (c): n and τ fields calculated from
the re-simulated flame shape at t = 32. The centre (x0,y0) of the measurement region w(x,y)
is also shown. Part of the flame is upstream of the measurement point, which leads to a
negative time delay.
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Fig. 4.4 (a): Re-simulated flame shape at t = 60. (b) and (c): n and τ fields calculated from
the re-simulated flame shape at t = 60. The centre (x0,y0) of the measurement region w(x,y)
is also shown. Part of the flame is upstream of the measurement point, which leads to a
negative time delay.
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Fig. 4.5 (a): Re-simulated flame shape at t = 304. (b) and (c): n and τ fields calculated
from the re-simulated flame shape at t = 304. The centre (x0,y0) of the measurement region
w(x,y) is also shown. Part of the flame is upstream of the measurement point, which leads to
a negative time delay.
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Fig. 4.6 (a): Re-simulated flame shape at t = 376. (b) and (c): n and τ fields calculated
from the re-simulated flame shape at t = 376. The centre (x0,y0) of the measurement region
w(x,y) is also shown. Part of the flame is upstream of the measurement point, which leads to
a negative time delay.
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Fig. 4.7 (a): Re-simulated flame shape at t = 416. (b) and (c): n and τ fields calculated
from the re-simulated flame shape at t = 416. The centre (x0,y0) of the measurement region
w(x,y) is also shown. Part of the flame is upstream of the measurement point, which leads to
a negative time delay.
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Fig. 4.8 Plots of h(x) at five different timesteps t and at four amplitudes: ε/4,ε/2,3ε/4
and ε , the amplitude inferred by the BayNNE. The values of η are also displayed for each
timestep and amplitude.
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Fig. 4.9 Plots of τ(x) at five different timesteps t and at four amplitudes: ε/4,ε/2,3ε/4 and
ε , the amplitude inferred by the BayNNE.



96
Parameter inference for a kinematic model of a bluff-body stabilised flame augmented with a

discrete vortex velocity model

4.5.3 Helmholtz solver results

Fig. 4.10 shows the first pure acoustic eigenmode (red square) and the thermoacoustic
eigenmodes (grey) at the four amplitudes and five timesteps. The grey symbols deviate
from the red square, showing that the thermoacoustic effect is active. At each timestep, the
thermoacoustic effect stabilises the mode and shifts the frequency more so than was observed
in the previous chapter. In all but the t = 416 case, there is no clear relationship between
the velocity forcing amplitude and the growth rates and frequencies of the thermoacoustic
system. The seemingly erroneous values of the growth rate and frequency in the t = 416,
amplitude ε/4 and ε/2 cases could be due to the larger jumps seen in all regions of the
corresponding τ(x) fields. To improve the quality of these τ(x) fields, phase averaging over
more periods than was performed here would have to be done. This is currently impractical
due to storage limitations.

4.6 Conclusions

This chapter built upon the previous chapter by using a more complicated but more physically-
informed model of the velocity field in the Volvo burner: the discrete vortex method. The
methodology for assimilating the data into the improved model is otherwise unchanged. The
heteroscedastic Bayesian neural network ensembles, trained on a library of flame fronts
simulated using this new model, learn to infer the five parameters of the velocity model
and their uncertainties from ten consecutive flame front snapshots. Because the model is
physics-based, it can extrapolate in physical space (i.e. beyond the observation window) and
in parameter space (in this case to lower amplitudes) to obtain distributed heat release rate
models that can be used successfully in a thermoacoustic model. Once again, we observe
that the growth rate and frequency of the thermoacoustic instability do not show a strong
dependency on the amplitude of forcing. This suggests that, with this model, a flame transfer
function derived at high amplitude, when it is observable, is also valid at low amplitude,
when it is not observable.



4.6 Conclusions 97

Fig. 4.10 The eigenvalues for the first mode at five timesteps and four amplitudes. The
horizontal and vertical axes denote the frequency and the growth rate of the system. The red
squares in each subplot show the eigenfrequecies of the system when no flame is present.
Each frame corresponds to a different timestep, while the greyscale within each frame
corresponds to a different velocity forcing amplitude, ε . The lightest grey corresponds to
ε/4 and the darkest to ε . This figure is due to Mr Ekrem Ekici.





Chapter 5

Conclusions

5.1 Summary

This thesis demonstrates a Bayesian machine learning method for assimilating data from
progressively more complex burners into physics-based flame models. The method uses
heteroscedastic Bayesian neural network ensembles (BayNNEs) trained on a library of
simulated flame fronts to infer tunable parameters and their uncertainties from pre-processed
images of the flame. Generating the library of simulated flame fronts and then training the
neural networks on the library are both computationally expensive steps. However, once
the BayNNE has been trained on the forced cycle library it can be used to reliably infer the
tunable parameters of the flame front model based on consecutive snapshots of the Bunsen
flame experiments in O(10−3) seconds. If more snapshots are provided, this method finds
the sequence of snapshots that minimises the uncertainty in the parameters.

In chapter 2, the method is first applied to artificial images of flames simulated with
a kinematic, physics-based model and compared to the ensemble Kalman filter (EnKF). The
EnKF is another data assimilation method which has been demonstrated to work well on this
data (both in this chapter and previous publications, such as [47]). Both methods recover
the ground-truth parameters, and the flames re-simulated with these inferred parameters
match the input flame shapes. Next, both methods are applied to data from a Bunsen burner
experiment with varying operating conditions. The re-simulated flame shapes using the
inferred parameters from both methods match the experiment images well but model error
still exists, as seen in the plots of normalised surface area over time. The EnKF requires
hours to infer the parameters of each Bunsen flame. The trained BayNNE provides similarly
accurate parameter estimates at a fraction of the computational cost and can be used in
real-time tasks, such as the control of thermoacoustic instabilities.
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In chapter 3, data from a version of the Volvo burner experiment, which is more
complex than the Bunsen burner experiment, is assimilated. The flame is observed over a
limited window and exhibits some turbulent, transient behaviour. The velocity model used in
the G-equation model of the flame front is adapted to better describe the data: a parameter η

is introduced which determines the growth rate of the velocity perturbations with downstream
coordinate. The ensemble Kalman filter is unable to assimilate this data because the flame
behaviour varies too quickly for the Kalman filter to converge to parameter estimates. The
BayNNE, trained on a library of simulated flame fronts, is able to infer the parameters of the
physics-based model and their uncertainties robustly. Using the physics-based model, the
flame front is extrapolated downstream of the observation window. This allows for the n and
τ fields of a distributed n− τ model for the heat release of the burner to be calculated. These
fields are entered into a Helmholtz solver to predict the growth rates and frequencies of the
thermoacoustic system. The growth rates and frequencies do not show a strong dependency
on the amplitude of velocity forcing. This suggests that a flame transfer function derived
at high amplitude, when it is observable, is also valid at low amplitude, when it is not
observable.

In chapter 4, the physics-based model of the velocity field used in the previous
chapter is replaced with one due to the discrete vortex method. This aims to model better the
vortex shedding behind the bluff body in the Volvo burner, which drives the flame response.
The flames simulated with this model are more complicated than with the previous model:
despite an oscillating base flow, the flame shapes exhibit aperiodic behaviour. The BayNNE
trained on a library of simulated flame fronts using this model infers the parameters of
the model and their uncertainties robustly, and the n and τ fields of the heat release model
are calculated using flame shapes re-simulated with these parameters. By entering these
into a Helmholtz solver, the growth rates and frequencies of the thermoacoustic system are
calculated and compared with the previous chapter’s results: a greater shift in frequency is
predicted with the discrete vortex method but, as with the previous model, the growth rates
and frequencies do not show a strong dependency on the amplitude of velocity forcing.

To summarise, this thesis has demonstrated the validity and usefulness of a Bayesian
machine learning method for parameter inference and uncertainty quantification across
different burner experiments and physics-based models of the flames inside these burners.
This contribution aims to bridge the gap between cheap, qualitatively-accurate, physics-
based models and expensive, state-of-the-art CFD models through data assimilation using
principled, Bayesian machine learning.
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5.2 Future work

As increasingly large quantities of experimental data become available, the researcher’s
challenge is to extract useful information without becoming overwhelmed by the quantity
of data. Assimilation into physics-based models, as performed in this thesis, is attractive
because the models are physically-interpretable and extrapolatable. Firstly, this provides a
cheap way to store CFD data: for example, the parameters of the most relevant CFD solution
for a given experiment can be extracted cheaply, and the CFD solution then re-calculated. The
method may be applied to infer any number of parameters: the number of nodes in the output
layers of the neural networks scales linearly with the number of parameters to be inferred.
Secondly, it shows how sparse experimental results can be combined with complete numerical
results to extrapolate, with defined confidence levels, beyond experimental observations. A
promising next step is to apply the Bayesian machine learning method used in this thesis
to incrementally more complex data from larger burners used in industry. Ultimately, such
a method could be used in real-time within the design process of gas turbines in order to
eliminate thermoacoustic instability.

Graph neural networks (GNNs) [67] offer an alternative, promising avenue for
simulating physics. GNNs are a class of neural network for processing data that can be
represented as graphs. Here, a graph is defined to be a set of vertices and a set of edges
connecting these to each other. GNNs encode assumptions about the local properties of the
graph. For example, in a social network where users and their relationships are represented
by vertices and edges respectively, the size of a user’s network may be defined as the number
of users immediately connected to the user (the user’s neighbourhood). This property holds
true for every user in the network, and so is called invariant in the graph. Furthermore, this
property is not a function of the order in which the users in the neighbourhood are counted:
the property is said to be equivariant. In physics, invariance and equivariance can be found
in the familiar laws of mass conservation (continuity) and Newton’s second law. In fluid
mechanics, both of these are encapsulated by the Navier-Stokes equations. In the former,
mass is conserved everywhere within a fluid, irrespective of the size and position of the
local volume over which the law is considered. In the latter, the change in momentum of
the local volume due to the forces acting on it does not depend on the order in which the
individual forces are considered. By encoding these assumptions, GNNs are particularly well
designed for physics simulation. In CFD, the mesh over which computations are performed
is a graph. By training on URANS simulations, GNNs learn a surrogate model which can be
used to simulate fluid flows much more quickly than the solver which produced the URANS
simulations [63, 70]. Furthermore, these surrogate models can be used for gradient-based
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optimisation [109]. Augmenting such methods with Bayesian uncertainty quantification is
an open problem which, if solved, could provide a useful tool in many a design process.

The volume of data, from simulations and experiments combined with the ever-
increasing and ever-cheaper supply of computer processing power means that the intersection
of machine learning and scientific modelling contains many opportunities for useful progress.
The work presented in this thesis shows one possible approach, and how it can be applied
to a particularly long-standing problem in engineering: the modelling, and ultimately the
control of, thermoacoustic instabilities.
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Appendix A

Transients in the G-equation model

A.1 Linear perturbation analysis of the G-equation model
of the Bunsen flame

The following analysis is based upon work in [27], in which the results of a linear perturbation
analysis of the G-equation model using a purely vertical velocity perturbation are stated.
This analysis considers instead a velocity perturbation with both horizontal and vertical
components, and uses the same Laplace transform method suggested by [27] to solve the
governing PDE.

The G-equation is:
∂G
∂ t

+v ·∇G = sL | ∇G | . (A.1)

If the flame position can be represented as a single-valued function of x then G= y−ψ(x, t) =
0 and v = [u v]T . Substituting into the above gives:

− ∂ψ

∂ t
+ v−u

∂ψ

∂x
= sL

(
1+
(

∂ψ

∂x

)2
)1/2

. (A.2)

Steady state conditions have ψ = ψ̄ ̸= f (t), u = 0 and v =V , which leads to:

V = sL

(
1+
(

∂ψ̄

∂x

)2
)1/2

. (A.3)
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In the perturbed state u = u′, v =V + v′ and ψ = ψ̄ +ψ ′. Substituting this into (2) gives:

− ∂ (ψ̄ +ψ ′)

∂ t
+V + v′−u′

∂ (ψ̄ +ψ ′)

∂x
= sL

(
1+
(

∂ (ψ̄ +ψ ′)

∂x

)2
)1/2

, (A.4)

or

− ∂ψ ′

∂ t
+V + v′−u′

∂ψ̄

∂x
= sL

(
1+
(

∂ (ψ̄ +ψ ′)

∂x

)2
)1/2

. (A.5)

To linearise the RHS requires the approximation, for small z′:

f (z+ z′)≈ f (z)+
d f (z)

dz
z′ , (A.6)

where
f (z) =

(
1+ z2)1/2

. (A.7)

Therefore
f (z+ z′)≈

(
1+ z2)1/2

+
z

(1+ z2)
1/2 z′ . (A.8)

Thus(
1+
(

∂ (ψ̄ +ψ ′)

∂x

)2
)1/2

≈

(
1+
(

∂ψ̄

∂x

)2
)1/2

+

∂ψ̄

∂x(
1+
(

∂ψ̄

∂x

)2
)1/2

∂ψ ′

∂x
. (A.9)

Equation (A.5) becomes

− ∂ψ ′

∂ t
+V + v′−u′

∂ψ̄

∂x
= sL


(

1+
(

∂ψ̄

∂x

)2
)1/2

+

∂ψ̄

∂x(
1+
(

∂ψ̄

∂x

)2
)1/2

∂ψ ′

∂x

 , (A.10)

or, using the steady state result:

− ∂ψ ′

∂ t
+ v′−u′

∂ψ̄

∂x
=

sL
∂ψ̄

∂x(
1+
(

∂ψ̄

∂x

)2
)1/2

∂ψ ′

∂x
, (A.11)

and hence:
∂ψ ′

∂ t
− s̄L

∂ψ ′

∂x
= v′+βu′ . (A.12)
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Where we note that −∂ψ̄

∂x ≡ β ≥ 0, the ratio of flame length to flame width, and define:

s̄L =
β

(1+β 2)1/2 sL . (A.13)

We prescribe the following continuity-obeying velocity perturbations:

u′ =−KStε
β

xcos(St(Ky− t)) ; (A.14)

v′ = ε sin(St(Ky− t)) . (A.15)

Substituting these into (A.12):

∂ψ ′

∂ t
− s̄L

∂ψ ′

∂x
= ε sin(St(Ky− t))−KStεxcos(St(Ky− t)) . (A.16)

This PDE is of the form:

∂ψ ′

∂ t
− s̄L

∂ψ ′

∂x
= a1 sin(ωt +b)+a2xcos(ωt +b) , (A.17)

where a1 =−ε , a2 =−KStε , ω = St and b =−StKy. As this PDE is linear, we can separate
the solution ψ ′ = ψ ′1 +ψ ′2:

∂ψ ′1
∂ t
− s̄L

∂ψ ′1
∂x

= a1 sin(ωt +b) ; (A.18)

∂ψ ′2
∂ t
− s̄L

∂ψ ′2
∂x

= a2xcos(ωt +b) , (A.19)

and consider these problems individually. We now tackle PDE (A.18) by applying the
Laplace transform to both sides, noting that x and y remain parameters when the Laplace
transform is taken over variable t. PDE (A.18) becomes:

sΨ
′
1−ψ

′
1(x, t = 0)− s̄L

dΨ′1
dx

= a1
ssinb+ω cosb

s2 +ω2 (A.20)

using standard results. We note that the initial condition for ψ ′1 is ψ ′1(x, t = 0) = 0. This
leads to:

− s
s̄L

Ψ
′
1 +

dΨ′1
dx

=−a1

s̄L

ssinb+ω cosb
s2 +ω2 . (A.21)



116 Transients in the G-equation model

This is solved using the integration factor exp(−sx/s̄L):

d
dx

(e−sx/s̄LΨ
′
1) =−

a1

s̄L

ssinb+ω cosb
s2 +ω2 e−sx/s̄L (A.22)

e−sx/s̄LΨ
′
1 =−

a1

s̄L

ssinb+ω cosb
s2 +ω2

∫
e−sx/s̄L dx (A.23)

e−sx/s̄LΨ
′
1 =−

a1

s̄L

ssinb+ω cosb
s2 +ω2

[
− s̄L

s
e−sx/s̄L +C

]
(A.24)

or:

Ψ
′
1 =

a1

s̄L

ssinb+ω cosb
s2 +ω2

[
s̄L

s
− esx/s̄LC

]
. (A.25)

Using the initial condition Ψ′1(x = R,y,s) = 0 results in:

Ψ
′
1 =

a1

s̄L

ssinb+ω cosb
s2 +ω2

[
s̄L

s
− s̄L

s
e−s(R−x)/s̄L

]
(A.26)

Ψ
′
1 = a1

ssinb+ω cosb
s(s2 +ω2)

[
1− e−s(R−x)/s̄L

]
, (A.27)

which is of the form:
Ψ
′
1 = F1(s)− e−csF1(s) . (A.28)

This implies a solution of the form:

ψ
′
1(x,y, t) = f1(x,y, t)− f1(x,y, t− c)H(t− c) , (A.29)

where c = R−x
s̄L

and H(t− c) is the Heaviside step function:

H(t− c) =

{
1 t ≥ c
0 t < c

and f1 is found to be (see appendix A.2.1):

f1(t) =
a1

ω
(cosb− cos(ωt +b)) . (A.30)

We next tackle PDE (A.19):

∂ψ ′2
∂ t
− s̄L

∂ψ ′2
∂x

= a2xcos(ωt +b) .
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Applying the Laplace transform to both sides:

sΨ
′
2−ψ

′
2(x, t = 0)− s̄L

dΨ′2
dx

= a2
scosb−ω sinb

s2 +ω2 x . (A.31)

This leads to:

− s
s̄L

Ψ
′
2 +

dΨ′2
dx

=−a2

s̄L

scosb−ω sinb
s2 +ω2 x , (A.32)

which is again solved using the integration factor exp(−sx/s̄L):

d
dx

(e−sx/s̄LΨ
′
2) =−

a2

s̄L

scosb−ω sinb
s2 +ω2 xe−sx/s̄L (A.33)

e−sx/s̄LΨ
′
2 =−

a2

s̄L

scosb−ω sinb
s2 +ω2

∫
xe−sx/s̄L dx (A.34)

e−sx/s̄LΨ
′
2 =−

a2

s̄L

scosb−ω sinb
s2 +ω2

[
− s̄L

s
xe−sx/s̄L−

(
s̄L

s

)2

e−sx/s̄L +C

]
(A.35)

Ψ
′
2 =−

a2

s̄L

scosb−ω sinb
s2 +ω2

[
− s̄L

s
x−
(

s̄L

s

)2

+Cesx/s̄L

]
. (A.36)

The initial condition Ψ′2(x = R,y,s) = 0 results in:

Ψ
′
2 =−

a2

s̄L

scosb−ω sinb
s2 +ω2

[
− s̄L

s
x−
(

s̄L

s

)2

+

(
s̄L

s
R+

(
s̄L

s

)2
)

e−s(R−x)/s̄L

]
(A.37)

Ψ
′
2 = a2

scosb−ω sinb
s2 +ω2

[
R
s

( x
R
− e−s(R−x)/s̄L

)
+

s̄L

s2

(
1− e−s(R−x)/s̄L

)]
,

(A.38)

which is of the form:

Ψ
′
2 = F2(s)(x/R− e−cs)+F3(s)(1− e−cs) . (A.39)

This implies a solution of the form:

ψ
′
2(x,y, t) =

x
R

f2(x,y, t)− f2(x,y, t− c)H(t− c)

+ f3(x,y, t)− f3(x,y, t− c)H(t− c) ,
(A.40)
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and f2 and f3 are found to be (see appendix A.2.2 and A.2.3):

f2(t) =
a2R
ω

(sin(ωt +b)− sinb) ; (A.41)

f3(t) =
a2s̄L

ω2 (cosb−ωt sinb− cos(ωt +b)) . (A.42)

The overall solution is then:

ψ
′ =

a1

ω
(cosb− cos(ωt +b))

+
a2x
ω

(sin(ωt +b)− sinb)

+
a2s̄L

ω2 (cosb−ωt sinb− cos(ωt +b))

− a1

ω
(cosb− cos(ω(t− c)+b))H(t− c)

− a2R
ω

(sin(ω(t− c)+b)− sinb)H(t− c)

− a2s̄L

ω2 (cosb−ω(t− c)sinb− cos(ω(t− c)+b))H(t− c) .

(A.43)

To see why this solution is transient, we note that at any point on the flame surface where
t < R−x

s̄L
:

ψ
′ =

a1

ω
(cosb− cos(ωt +b))

+
a2x
ω

(sin(ωt +b)− sinb)

+
a2s̄L

ω2 (cosb−ωt sinb− cos(ωt +b)) ,

(A.44)

whereas at any point on the surface where t > R−x
s̄L

, the solution is:

ψ
′ =

a1

ω
(���cosb− cos(ωt +b))

+
a2x
ω

(sin(ωt +b)− sinb)

+
a2s̄L

ω2 (���cosb−����
ωt sinb− cos(ωt +b))

− a1

ω
(���cosb− cos(ω(t− c)+b))

− a2R
ω

(sin(ω(t− c)+b)− sinb)

− a2s̄L

ω2 (���cosb−ω(�t− c)sinb− cos(ω(t− c)+b)) ;

(A.45)
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ψ
′ =

a1

ω
(cos(ω(t− c)+b))− cos(ωt +b))

+
a2

ω
(xsin(ωt +b)−Rsin(ω(t− c)+b)+(R− x)sinb)

+
a2s̄L

ω2 (cos(ω(t− c)+b)−ωcsinb− cos(ωt +b)) ,

(A.46)

which is different to the initial oscillation in (A.44). Equation (A.46) applies everywhere on
the flame surface when the system reaches its forced cycle after a time tc:

tc =
R
s̄L

(A.47)

Using the definition of s̄L (A.13) and the steady result (A.3), tc is:

tc =
R
s̄L

=
R
√

1+β 2

sLβ

=
R(1+β 2)

βV
.

(A.48)

This agrees with our intuition for flames with large β (tall, slender flames): tc ≈ βR/V is the
time it takes for a perturbation travelling with speed V to travel from the base of the flame to
its tip, a distance βR downstream. For a forced cycle with period T = 1/ f , the number of
periods it takes for the system to reach the forced cycle, pc, is:

pc =
tc
T

=
f R(1+β 2)

βV
.

(A.49)
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A.2 Inverse Laplace transforms

A.2.1 f1(t), the inverse Laplace transform of F1(s)

F1(s) = a1
ssinb+ω cosb

s(s2 +ω2)

= a1
sinb

s2 +ω2 +a1
ω cosb

s(s2 +ω2)

=
a1 sinb

ω

ω

s2 +ω2 +
a1 cosb

ω

(
1
s
− s

s2 +ω2

) (A.50)

Thus:

f1(t) =
a1 sinb

ω
sinωt +

a1 cosb
ω

(1− cosωt)

=
a1

ω
(cosb− cos(ωt +b))

(A.51)

A.2.2 f2(t), the inverse Laplace transform of F2(s)

F2(s) = a2R
scosb−ω sinb

s(s2 +ω2)

= a2R
cosb

s2 +ω2 −a2R
ω sinb

s(s2 +ω2)

=
a2Rcosb

ω

ω

s2 +ω2 −
a2Rsinb

ω

(
1
s
− s

s2 +ω2

) (A.52)

Thus:

f2(t) =
a2Rcosb

ω
sinωt− a2Rsinb

ω
(1− cosωt)

=
a2R
ω

(sin(ωt +b)− sinb)
(A.53)

A.2.3 f3(t), the inverse Laplace transform of F3(s)

F3(s) = a2s̄L
scosb−ω sinb

s2(s2 +ω2)

= a2s̄L
cosb

s(s2 +ω2)
−a2s̄L

ω sinb
s2(s2 +ω2)

=
a2s̄L cosb

ω2

(
1
s
− s

s2 +ω2

)
− a2s̄L sinb

ω

(
1
s2 −

1
s2 +ω2

) (A.54)
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Thus:

f3(t) =
a2s̄L cosb

ω2 (1− cosωt)− a2s̄L sinb
ω

(t− 1
ω

sinωt)

=
a2s̄L

ω2 (cosb−ωt sinb− cos(ωt +b))
(A.55)
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A.3 Linear perturbation analysis of the G-equation model
of the Volvo combustor

By considering a vertically-aligned Volvo combustor, the linear perturbation analysis follows
that of the Bunsen flame up until the prescribing of the velocity perturbations. Due to the
addition of the parameter η , the linearised PDE now takes the following form (c.f. equation
A.17):

∂ψ ′

∂ t
− s̄L

∂ψ ′

∂x
= a1 sin(ωt +b)+a2xcos(ωt +b)+a3xsin(ωt +b) , (A.56)

for appropriate terms a1,a2 and a3. As this PDE is linear, the solution can be separated,
as was done in the Bunsen flame perturbation analysis. We note from the Bunsen flame
perturbation analysis that the transient dissipation time tc is only a function of the laminar
flame speed s̄L and the Bunsen flame radius, R. The transient dissipation time is not a
function of the sinusoids on the right and side of equation A.56. For the Volvo combustor,
the equivalent length is the bluff-body side length, D. Therefore, the transient dissipation
time tc for transients in the Volvo combustor model is:

tc =
D
s̄L

=
D
√

1+β 2

sLβ

=
D(1+β 2)

βU
.

(A.57)

For a forced cycle with period T = 1/ f , the number of periods it takes for the system to
reach the forced cycle, pc, is:

pc =
tc
T

=
f D(1+β 2)

βU
.

(A.58)



Appendix B

Calculating ¯̇Qh, the mean heat release rate
of the Volvo burner

B.1 Derivation of q̇h(x, t)/ ¯̇Qh, the normalised distribution
of heat release rate field

B.1.1 Nomenclature

x : coordinate (x,y) lying on the flame front in the domain Ω.
t : time [s]
q̇h(x, t) : the heat release rate at coordinate x and time t [J/s]
¯̇Qh: the mean heat release rate of the Volvo burner (or the total power output) [J/s]

T : period [s]
sL : laminar flame speed [m/s]
a(x, t) : surface area of the flame at coordinate x and time t [m2]
dt : infinitesimal change in time [s]
V (x) : volume of premixed gas per unit depth consumed in a period (time T ) [m3]
E(x) : energy output per unit volume of premixed gas at coordinate x [J/m3]

B.1.2 Derivation

Energy output over a period = ¯̇QhT .
Volume of premixed gases consumed in time dt at coordinate x: dV = sLa(x, t)dt
Volume of premixed gases consumed over a period at coordinate x: V (x) = sL

∫ T
0 a(x, t)dt

Energy per unit volume of unburnt gas at coordinate x: E(x) = ¯̇QhT/V (x)
Energy released in time dt at coordinate x: q̇h(x, t) = sLa(x, t)dtE(x)/T
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Energy released in time dt
¯̇Qh

=
q̇h(x, t)

¯̇Qh
=

sLa(x, t)dtE(x)
¯̇QhT

(B.1)

q̇h(x, t)
¯̇Qh

=
sLa(x, t)dt

V (x)
(B.2)

q̇h(x, t)
¯̇Qh

=
sLa(x, t)dt∫ T

0 sLa(x, t)dt
(B.3)

q̇h(x, t)
¯̇Qh

=
a(x, t)dt∫ T

0 a(x, t)dt
(B.4)

Therefore, the normalised heat release rate at any location on the flame surface x and for any
time t is found by calculating the normalised flame surface area at the same location and
time.

B.2 Calculation of ¯̇Qh

The following data about the Volvo burner are from [35]:

• Air flow rate ṁair of 0.35 kg/s;

• Fuel-air equivalence ratio φ of 1.0;

• Fuel: propane (C3H8), with heat of combustion 50430 kJ/kg1).

Air by mass is 23.1% oxygen so mO2 = 0.231mair. For our combustion data, the fuel-air
equivalence ratio φ is 1.0, which is defined as:

φ =
fuel-to-oxidiser ratio

(fuel-to-oxidiser ratio)stoich
=

m f uel/mox

(m f uel/mox)stoich
=

n f uel/nox

(n f uel/nox)stoich
(B.5)

where m. and n. are the molecular mass and the moles in the reaction equation:

C3H8 +5O2 = 3CO2 +4H20. (B.6)

The stoichiometric molar fuel to oxidiser ratio, FORstoich = 0.2 (as combustion of propane
requires 5 O2 molecules for every C3H8 molecule). The (non-stoichiometric) molar fuel to

1https://www.engineeringtoolbox.com/propane-d_1423.html
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oxidiser ratio FOR is therefore FOR = φFORstoich = 1.0×0.2 = 0.2. Now, as

m f uel

mox
=

n f uel

nox
× mass of C3H8

mass of O2
= FOR× mass of C3H8

mass of O2
(B.7)

then m f uel/mox = 0.2×44.1/32 = 0.276. Finally:

m f uel = 0.276mox = 0.276×0.231×mair. (B.8)

This means that, for our combustion data which has an air mass flow rate of 0.35 kg/s the
mass flow rate of fuel is 0.276×0.231×0.35 = 0.0223 kg/s. For a energy density of 50430
kJ/kg, this suggests a power output ¯̇Qh = 50430×0.0223 = 1125 kW = 1.125 MW.





Appendix C

The discrete vortex method

This appendix is due to Mr Joel Vasanth.

C.1 Modelling

We begin with the incompressible 2D Euler equations in vorticity form:

∂ωωω

∂ t
+u ·∇ωωω = ωωω ·∇u, ∇ ·u = 0, (C.1)

where the term on the right hand side is the stretching of vorticity due to velocity gradients and
the terms on the left form the material derivative Dωωω/Dt, or the Lagrangian transport term.
The vorticity in the domain is discretised into a number of vortex elements at locations xi,
each carrying an elementary amount of vorticity within a core of radius rD,0. The distribution
of vorticity within the vortex element is given by a core function fδ , which ensures a finite
velocity at the core centre. The discrete vorticity field ωωωh is then

ωωω
h =

NV

∑
i=1

Γi fδ (r), (C.2)

where Γi are the vortex circulations and the summation is over the total number of vortices in
the domain. The advection of the vortices are given by the solution of the NV ODEs

dxi

dt
= u(xi, t). (C.3)

The local flow velocities u(xi, t) are obtained from the solution of the Poisson equation
∇2u =−∇×ωωω:

u = ∇G(x,x′)⋆ωωω
h +up, (C.4)
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where G(x,x′) is the Green’s function for the Laplacian operator in 2D, i.e., ∇2G(x,x′) =
δ (x−x′); and ⋆ is the convolution operator. In the absence of any boundaries, G(x−x′) =
ln(|x−x′|)/2π . The first term is the rotational component of the flow and the velocity up

is the irrotational part of the flow field, which is uniquely chosen such that the wall-normal
boundary condition u · n̂ = 0 is satisfied.

The solution of the potential flow problem can be found via a Schwartz-Christoffel
transformation (SCT). Here, the physical domain is modelled in a complex plane z = x+ y j
(Fig. C.1(a)). Symmetry about the x-axis is assumed, since the experimental oscillating flame
shapes are similarly symmetric. The z-plane is mapped onto the upper-half of a transformed
s-plane (Fig. C.1(c)). If sV, i i = 1, . . . ,NV represents the vortex locations, an image system
of vortices at their conjugates s∗V, i is then defined in the lower-half of the s-plane, such that
the resulting wall-normal velocity cancels to 0. The mapping is performed in two steps via
an intermediate mapping to an infinite-strip in the ξ -plane (Fig. C.1(b)), which simplifies
the mathematical expression for the SCT ([108]). The mapping from z to ξ is obtained by
integrating the expression

dz
dξ

= 1.5
[
sinh

π

2
ξ

]−1/4 [
sinh

π

2
(ξ −ξE)

]3/4 [
sinh

π

4
(ξ −ξF)

]−1/2
, (C.5)

and the mapping from ξ to s is simply s = eπξ . The values ξE , ξF and ξB in Fig. C.1(b) are
obtained numerically using the SCT toolbox developed by [108]. These are 0.95, 0.63 and
0.58+ j respectively.

The potential flow velocity field is then given by a spatially-uniform inlet flow U(t)
in the ξ -plane and induced velocities from vortex elements and their images in s-plane. Both
are transformed to the physical z-plane using the chain rule.The chain rule is applied to
transform these velocities into the physical domain. The inlet flow is given as

σinlet =U(t)
dξ

dz
, (C.6)

where σ represents complex velocities. The flow due to the vortices and their images as
([110])

σvort =
NV

∑
i=1

j
Γi

2π

[
− 1

s− sV, i
+

1
s− s∗V, i

]
ds
dξ

dξ

dz
. (C.7)

In Eq. C.7, the sum is over all the vortex elements each with circulation Γi and location
sV, i. The x and y components of the physical velocity field u are then Re(σinlet +σvort) and
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Fig. C.1 Illustration of the Schwartz-Christoffel mappings from (a) the physical z plane to
(b) the transformed ξ plane, which is an infinite strip, and then to (c) the upper half of the s
plane. The dotted line in (a) is a line of symmetry. The subscripts in the labels in the ξ and s
planes correspond to the respective vertices in the z-plane. Marked dimensions in the z plane
in (a) are scaled by the size D of the bluff body.

−Im(σinlet +σvort) respectively. The vortices advect with the flow as

dxi

dt
= u(xi, t) i = 1, . . . ,NV (C.8)

A generalised Kutta condition is used to model the vortex generation process. According
to this, the vorticity is discretised by introducing a single vortex element into the domain
at each time step ∆t with a circulation Γ0 = −u0(t)2∆t/2. The velocity u0 is computed at
a location z0 = z0,r + z0,i j directly above the bluff body edge E as in Fig. C.1(a) (z0,r = 0).
The vortex elements are then advected as per Eq. C.8.

The above gives a point vortex description of the potential flow field. The singularity
at the center of the vortex elements is removed using a refined Lamb-Oseen model. According
to this model, a vortex ‘core’ of size rD is defined, along with an azimuthal velocity uθ that
varies smoothly with distance r from the center as

uθ =
Γ0

2πr
(1− e−r2/r2

D) (C.9)

In the model in Eq. C.9 the velocity field tends to that of a rotational vortex as r→ 0, and it
tends to that of the potential flow solution as r→ ∞. We implement a linear temporal growth
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of the core radius as rD(t) = rD,0 +2
√

νt, where ν is the kinematic viscosity and rD,0 is the
initial core radius of the vortex elements at the instant of being introduced into the domain.
The linear temporal growth model thus accounts for the viscous diffusion of vorticity ([111]).

To incorporate the effect of the boundary layer on the vorticity, we model the decay
of vorticity at the walls as dΓ/dt =−Γ, when the distance between the vortex center of any
vortex element and the wall is less than rD. All lengths in the DVM are non-dimensionalised
with the bluff body side length D, velocities with the mean inlet U and time with U/D.

The acoustic forcing on the flow field is modelled with a harmonically oscillating
inlet flow velocity u(t)/U = 1+α sin(St t) in Eq. C.6, where St = 2π f βD/U is the forcing
Strouhal number expressed in terms of the forcing frequency f and the nominal aspect ratio
β . This adds a time-dependent potential to the existing potential flow, while still fulfilling
the boundary conditions. The oscillatory flow u0(t) at z0 produces vortices of varying Γ0

and so the strengths of the vortex elements are also affected by the forcing. The effect of the
forcing is thereby incorporated into the vortex shedding process. In order to ensure that NV

does not increase without bound, vortices are deleted when they cross a streamwise location
xmax/D = 25.

The time integration in Eq. C.8 is solved using a 4th-order Runge-Kutta method,
and the numerical integration of the SCT in Eq. C.5 is performed using Simpson’s rule. The
accuracy of the DVM in predicting the velocity field depends especially on its discretisation
parameters - the core size, the core function and the number of vortex elements shed per time
step ([112]). In many studies ([111, 113, 114]), these parameters are hand-tuned and pre-set
before the model is used for predictions. In order to render the flame-vortex model more
quantitatively accurate in its predictions, the parameters rD,0, z0,i, St, a and β are inferred
from a machine learning model in this work.
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