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Abstract

We demonstrate a new approach to thermoacoustic modelling, in which we use an efficient
Bayesian inference framework to assimilate experimental data into thermoacoustic models.
The framework provides three main tools: (i) parameter inference, (ii) model comparison,
and (iii) optimal experiment design. With Bayesian parameter inference, we use experimental
observations to infer the most probable parameters of a thermoacoustic model. At the same
time, we quantify the uncertainty in the parameters and the model. If there are several plausible
models, we use Bayesian model comparison to quantitatively rank the models to select the best
one. Parameter inference and model comparison can require a lot of data if the experiments are
not designed well. With Bayesian optimal experiment design, we use the model to identify the
most informative experiments, reducing the experimental cost and effort.

Bayesian inference is often considered too computationally expensive to be applied to
problems in fluid dynamics. This is because many Bayesian inference frameworks use sampling
techniques to construct the posterior, which require thousands of model evaluations. This is not
practical if the model evaluations are expensive, as is usually the case in fluid dynamics. We
reduce this cost significantly in two ways. Firstly, we use an approximate Bayesian inference
framework called Laplace’s method, which reduces the task of computing the posterior to
a quadratic optimization problem. We then solve this optimization problem with the fewest
model evaluations by using gradient-based optimization, with the gradients calculated using
adjoint methods.

We apply this framework to three simple thermoacoustic systems: an electrically heated
Rijke tube, a ducted laminar conical flame, and a ducted turbulent conical flame. With the
electrically heated Rijke tube, we demonstrate the full set of tools in the Bayesian framework.
Using these tools, we create a thermoacoustic model that (i) is quantitatively accurate over
the entire operating range, (ii) has quantified uncertainty bounds, (iii) can extrapolate beyond
the observed data, and (iv) can be trained on a few optimal experiments. This is a significant
improvement on previous attempts to model the electrically heated Rijke tube in the literature.
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With both sets of ducted flames, we demonstrate a second use for Bayesian inference in
thermoacoustics: obtaining flame transfer functions, and their uncertainties, from pressure
observations. We do this with the flame in-situ, without a need for optical access. If the flame’s
response is sensitive to its environment, which is usually the case, then this is preferable to
measuring flame transfer functions ex-situ using optical methods.

This thesis provides a proof of concept by applying adjoint-accelerated Bayesian inference
to a set of canonical problems in thermoacoustics. In doing so, we show that the Bayesian
framework provides a powerful set of tools for combining the work of the experimentalist and
the modeller in a mutually beneficial way. The resulting models are accurate, interpretable, and
capable of extrapolation. The models can be trained with only a few experimental observations,
making Bayesian inference feasible for applications where experiments are expensive.

This framework is currently being implemented on the Rolls–Royce SCARLET industrial
test rig, which will investigate how the tools handle more complex thermoacoustic systems.
Work is also being done on applying the framework to assimilate video footage of flames into
models of the flame dynamics. This will allow us to predict flame transfer functions at operating
conditions and frequencies that have not been observed experimentally. This, combined with
the acoustic network models presented in this thesis, would form a powerful design tool that
could be used to inform more elegant and robust interventions to thermoacoustic instability
with fewer prototyping iterations.
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Thesis structure

This thesis is divided into three parts. Part I contains two introductory chapters, which provide
context and motivation for the thesis. In chapter 1, we provide historical context of the problem
of thermoacoustic oscillations, with a focus on aerospace propulsion. We then discuss the
difficulty of producing quantitatively accurate models of thermoacoustic oscillations, and the
need for such models. In chapter 2 we introduce the adjoint-accelerated Bayesian inference
framework, which we use in this thesis to improve the accuracy of thermoacoustic models. The
framework provides three main tools: (i) parameter inference, (ii) model selection, and (iii)
optimal experiment design. We develop the key equations for each of the tools, and provide an
intuitive explanation of each one.

Part II contains three results chapters, which are based on a set of papers that were written
during the course of this research. In each of the chapters, we apply adjoint-accelerated
Bayesian inference to a different canonical problem in thermoacoustics. In chapter 3 we
study a hot wire Rijke tube, on which we demonstrate all three of the tools in our framework.
In chapter 4 we study a ducted laminar conical flame, on which we demonstrate parameter
inference and model selection. In chapter 5 we study a ducted turbulent conical flame, on which
we demonstrate parameter inference.

Part III contains one conclusion chapter. We begin with a summary of the main conclusions
drawn in each of the results chapters (detailed conclusions can be found in each of the results
chapters). We then provide an outlook on the current state of this research, and its potential in
the future.





PART I:

INTRODUCTION





Chapter 1

Thermoacoustics

This chapter provides a historical context of the problem of thermoacoustic oscillations in
aerospace propulsion, and discusses the challenge of generating quantitatively accurate ther-
moacoustic models. Further literature review on the specific systems studied in this thesis is
provided in Chapters 3 and 4.

1.1 Historical background

Thermoacoustic oscillations were first reported in the 1800s by Higgins [1], Sondhauss [2] and
Rijke [3]. Nearly eighty years later, the first physically correct description of the underlying
mechanism was provided by Rayleigh [4]:

“If heat be periodically communicated to, and abstracted from, a mass of air

vibrating (for example) in a cylinder bounded by a piston, the effect produced will

depend upon the phase of the vibration at which the transfer of heat takes place. If

heat be given to the air at the moment of greatest condensation, or taken from it

at the moment of greatest rarefaction, the vibration is encouraged. On the other

hand, if heat be given at the moment of greatest rarefaction, or abstracted at the

moment of greatest condensation, the vibration is discouraged.”

Rayleigh’s insight reveals that if heat release rate fluctuations are sufficiently in phase
with pressure oscillations, the flame drives the acoustic oscillations. If the driving exceeds
the dissipation of acoustic energy through damping or acoustic radiation, the amplitude of the
acoustic oscillations grow, and the system is thermoacoustically unstable.
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In the 1800s, thermoacoustic oscillations were only a curious phenomenon experienced by
glass blowers and demonstrated in laboratories. With the advent of rocket engines in the 1930s,
however, they became a significant engineering challenge [5]. Rocket engines are essentially
hard-walled pressure vessels with little acoustic damping, and the mean heat release rates are
exceptionally high. If even a small percentage of the mean heat release rate is converted to
work, the system becomes unstable (about 0.1%, according to Huang and Yang [6]).

Historically, gas turbine engines were relatively impervious to thermoacoustic instability,
predominantly because the highly perforated liners of early designs provided ample acoustic
damping. In the drive for higher efficiencies and lower emissions, however, designers have
been pushed towards making gas turbine combustion chambers look more like their rocket
counterparts. As a result, thermoacoustic instability has become increasingly problematic for
gas turbine manufacturers, often preventing them from exploiting higher performance designs
and operating regimes [7].

Despite over a century of research, thermoacoustic instability remains a significant challenge
today [8]. Designers are typically unable to predict thermoacoustic instability early in the design
cycle. Instead, it is often only discovered during the first full-scale prototype testing [9, 10].
This requires design changes late in the development cycle, increasing cost and causing delays.
The most famous example of this is the F1 rocket engine, which was developed by Rocketdyne
for the Apollo program. The development program was plagued by combustion instabilities,
which required over 2000 full scale tests to remove. This process took 4 years and cost around
2 billion US dollars in the 1960s [11].

In the hope of achieving stability at lower cost and with less delay, active feedback control
was proposed [12, 13]. This involves, in its simplest form, introducing intentional perturbations
to the system with an actuator. A controller selects the phase of these perturbations such
that they cancel the thermoacoustic oscillations, and stabilize the system. This has been
demonstrated on full scale engines through modulation of the fuel flow [14, 15]. It has not been
widely adopted, however, because the actuators present a single point of failure with potentially
catastrophic consequences. More recently, active control of thermoacoustics has been revisited,
but with the control achieved through plasma discharge near the base of the flame [16–18]. It
remains to be seen whether this will face the same trepidation as its predecessor.

The reluctance to adopt active feedback control motivates a continual search for passive
control mechanisms. Acoustic dampers, such as liners and Helmholz resonators, are widely
used in practice as a mitigation strategy for thermoacoustic instability. If an engine is found to
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be thermoacoustically unstable during full scale testing, it can be retro-fitted with a Helmholz
resonator, or a series of Helmholz resonators, tuned to damp the unstable mode(s). This is,
however, dependent on the resonator(s) fitting within the packaging constraints and mass budget
of the engine.

The goal of engine manufacturers, therefore, is to be able to design systems that are linearly
stable throughout the operating envelope, without having to retro-fit dampers or avoid certain
operating conditions. We now explore why this is so difficult to achieve.

1.2 Modelling thermoacoustic oscillations

Thermoacoustic instabilities are extremely sensitive to small changes in the system’s design
or operating conditions [19]. From the designer’s perspective, this extreme sensitivity can
be beneficial, because only small design changes are required to stabilize the system [9, 11].
The challenge, however, lies in devising the appropriate design change to make. This can be
done elegantly by using adjoint shape optimization [20], if a quantitatively accurate model is
available.

The modeller, however, is typically unable to achieve quantitative accuracy. This is largely
a consequence of the extreme sensitivity mentioned above, which makes model predictions
sensitive to the model parameters. The values of the model parameters are not known a-priori,
and often depend on detailed dynamics. For example, it is clear from Rayleigh’s description
that we need to know the phase difference between velocity perturbations and heat release rate
fluctuations. In a typical flame, this phase difference depends on phenomena such as spray
dynamics, droplet evaporation, detailed flame kinematics and flame-flow interactions. These
detailed dynamics occur over a wide range of spatio-temporal scales and involve many physical
processes, presenting a significant modelling challenge.

Recent studies have used large eddy simulations (LES) to resolve these effects in laboratory
burners [21–26], and even industrially relevant geometries [8, 27–29]. This research has
provided valuable insight into the detailed interactions described above. The computational
cost of LES, however, continues to prevent its widespread adoption by industry [8, 30]. While
it is currently used for spot-checks at the detailed design phase, it cannot feasibly be used as
the design tool that industry needs.

The acoustic network model is a versatile reduced-order modelling framework, which is
suitable for use as a design exploration tool. In this framework, the system is modelled as a
network of 1D or 2D axisymmetric acoustic elements [31, 32]. The acoustic waves are modelled
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as forward and backward travelling waves of constant strength within each acoustic element.
Adjacent elements are connected through jump conditions, enforcing the conservation of
momentum and energy1. The complex amplitudes of the waves in each element are determined
by solution of the linear system comprising the jump and boundary conditions. This framework
has been widely applied in both industry and academia, but requires a reduced-order model for
the detailed flame dynamics described above.

The approach proposed by Crocco and Cheng [33], variations of which are still largely in
use today, is to lump together all the detailed dynamics, and model the flame response as a
“black-box” input-output system. In Crocco’s framework, the relationship between velocity
perturbations and heat release rate fluctuations is modelled as a time lag: Q0 = nu0(t � t),
where Q0 is the fluctuating heat release rate, u0 is the acoustic velocity, n is the interaction
index and t is the time delay. This has since been extended to account for dependence on
forcing frequency (the flame transfer function) [34], dependence on forcing amplitude (the
flame describing function) [35–37], and dependence on pressure fluctuations (the flame transfer
matrix) [38, 39]. More recently, Polifke [40] proposed a distributed time delay approach, where
several discrete time delays replace the single time delay in Crocco’s model. Polifke describes
this as a “grey-box” model, because the discrete time delays can often be linked to physical
length and velocity scales in the system.

While all these approaches simplify the analysis, they introduce new parameters, to which
model predictions are sensitive. These parameters are typically obtained experimentally
[37, 41–43] or using computational fluid dynamics (CFD) [41, 44–46]. The response of a flame
to acoustic forcing has, however, been shown to change sensitively (i) with changes in the
operating condition [47, 48], (ii) with changes to the confinement of the flame [49, 50], and
(iii) when the flame is combined with other flames [37, 43]. Therefore, unless experiments or
simulations are representative of the full system, the parameters will be inaccurate, and the
overall thermoacoustic model will be qualitatively accurate at best.

The modeller can, however, exploit the extreme sensitivity of thermoacoustics if a data-
driven modelling approach is taken. This is because the sensitivity makes the uncertain model
parameters easy to observe from the experimental data. While there has been a lot of interest
in data-driven methods in the thermoacoustics community, this has mostly focussed on early
prediction [51–55], or applying physics-agnostic frameworks with millions of parameters [56–
59]. In this thesis we adopt a probabilistic data-driven framework that allows us to assimilate

1It is only necessary to enforce the conservation of mass when the Mach number of the mean flow is significant.
This is beyond the scope of this thesis, where we study systems with negligible mean flow.
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experimental data into physics-based models with few parameters, making them quantitatively
accurate.





Chapter 2

Bayesian Inference

Bayesian probability theory has been applied to scientific problems since the late 1700s. Laplace
wrote extensively on its use in astronomy, and developed an elegant set of tools for scientific
inference [60, 61]. These tools, however, were largely abandoned in favour of the frequentist
framework shortly after Laplace’s death [62]. Beginning in the early 20th century, Laplace’s
approach was revived, updated and expanded upon by several authors [63–67]. The latest of
these, the work of MacKay [67], is the approach to Bayesian inference that we use in this thesis.
In its broader forms, Bayesian inference is still actively applied in astronomy and astrophysics
[68–71], but has also been adopted in biology [72–74], economics [75–77], geophysics and
meteorology [78–81], and engineering, where it has predominantly been applied in structural
mechanics [82–84].

By comparison, engineers working in fluid dynamics have made very little use of the
Bayesian framework. In their review of machine learning in fluid dynamics, Brunton et al.
[85] argue that, for fluid mechanics problems, Bayesian inference may be superior to other
machine learning techniques because of its robustness, but that it is hampered by the cost
of the thousands of model evaluations required to compute the posterior distribution. While
this is true of typical sampling methods, such as Markov Chain Monte Carlo, it is not true
in the approximate inference framework of Laplace. This framework reduces the required
model evaluations, making Bayesian inference feasible for computationally expensive models
[81, 86].

In this chapter we provide an overview of the Bayesian inference framework that we use
in this thesis. In § 2.1 we present three tools that allow us to use noisy, sparse experimental
observations to improve the accuracy of physics-based models. With these tools, we can (i) infer
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the most probable parameters of a model, (ii) quantify the uncertainty in the parameters and
model predictions, (iii) estimate the systematic and structural uncertainty in the experiments
and model, and (iv) compare several candidate models and select the best one. In § 2.2 we
extend the framework to Bayesian optimal experiment design, which allows us to minimize the
experimental effort required to apply Bayesian inference.

2.1 Adjoint-accelerated Bayesian inference

We consider the case where we have a set of candidate models, H j, each with a set of unknown
parameters, a. Each model predicts the system state, s, which we test against noisy, sparse
experimental observations, z. We apply Bayesian inference at two levels. At the first level, we
infer the most probable parameters of each model, aMP, and quantify the uncertainty in these
parameters. At the second level, we compare the candidate models to select the best model,
given the data.

2.1.1 Parameter inference

At the first level of inference we assume that the candidate model, H j, is structurally correct,
and we attribute all model inaccuracy to errors in the unknown parameters. This assumption
will rarely be correct, so we will revisit it later. We encode our level of uncertainty in the
parameter values through a probability distribution, which we denote p(•). Using any prior
knowledge we have about the unknown parameters (which may be none at all), we propose a
prior probability distribution over the parameter values, p(a|H j). We then assimilate the data,
z, by performing a Bayesian update on the parameter values:

p(a|z,H j) =
p(z|a,H j)p(a|H j)

p(z|H j)
(2.1)

The quantity on the left-hand side of Eq. (2.1) is the posterior probability of the parameters,
given the data. It is generally computationally intractable to calculate the full posterior,
because it requires integration over parameter space. The integral typically cannot be evaluated
analytically, and requires thousands of model evaluations to compute numerically. At the
parameter inference stage, however, we are only interested in finding the most probable
parameters, which are those that maximize the posterior. We therefore use an optimization
algorithm to find the peak of the posterior without evaluating the full distribution. This process
is made computationally efficient by (i) assuming that the experimental uncertainty is Gaussian
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distributed, and (ii) choosing the prior parameter distribution to be Gaussian. Assumption (i) is
reasonable for well-designed experiments in which the uncertainty is dominated by random
error, which is typically Gaussian distributed. For assumption (ii) we note that the choice of
prior is often the prerogative of the researcher, and we are free to exploit the mathematical
convenience offered by the Gaussian distribution.

When finding the most probable parameters, we neglect the denominator of the right-hand
side of Eq. (2.1), because it does not depend on the parameters. It is then convenient to define a
cost function, J , as the negative log of the numerator of Eq. (2.1), which we minimize:

J =
1
2
(s(a)� z)T C�1

ee (s(a)� z)

+
1
2
(a�ap)

T C�1
aa (a�ap)+K

(2.2)

where s and z are column vectors of the model predictions and experimental observations
respectively, Cee is the covariance matrix describing the experimental uncertainty, a and ap are
column vectors of the current and prior parameter values respectively, Caa is the covariance
matrix describing the uncertainty in the prior, and K is a constant from the Gaussian pre-
exponential factors, which has no impact on the most probable parameters.

To find the minimum of J with the fewest model evaluations, we use gradient-based
optimization. We see from Eq. (2.2) that the cost function gradient, ∂J /∂a, depends on
the model’s parameter sensitivities, ∂ s/∂a. We obtain these cheaply using first order adjoint
methods, which allow us to evaluate the gradient of a function with respect to many parameters,
with a computational cost that is independent of the number of parameters [87, 88]. In fluid
mechanics, the adjoint method been widely applied to shape optimization [20, 89, 90], so
adjoint codes are readily available. We note that automatic differentiation presents similar
opportunities, but care must be taken that the code is structured such that it is differentiable.
Careful application of the adjoint approach always produces a well-posed differentiable code.

The parameter inference process is illustrated in Fig. 2.1 for a simple system with a
single unknown parameter, a, and a single observable variable, z. In (a) we show the marginal
probability distributions of the prior, p(a) and the data, p(z). The prior and data are independent,
so we construct the joint distribution, p(a,z) by multiplying the two marginals. In (b), we
overlay the model predictions, s, for various values of a. Marginalizing along the model
predictions yields the true posterior, p(a|z). This is possible for a cheap model with a single
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parameter, but exact marginalization quickly becomes intractable as the number of parameters
increases. In (c) we plot the cost function, J , which is the negative log of the unnormalized
posterior. We show the three steps of gradient-based optimization that were required to find the
local minimum, which corresponds to the most probable parameters, aMP.

(a) (b) (c)

Fig. 2.1 Illustration of parameter inference on a simple univariate system. (a) the marginal probability
distributions of the prior and data, p(a) and p(z), as well as their joint distribution, p(a,z) are plotted
on axes of parameter value, a, vs observation outcome, z. (b) the model, H , imposes a functional
relationship between the parameters, a, and the predictions, s. Marginalizing along the model predictions
yields the true posterior, p(a|z). This cannot be done for computationally expensive models with even
moderately large parameter spaces. (c) instead of evaluating the full posterior, we use gradient-based
optimization to find its peak. This yields the most probable parameters, aMP.

2.1.2 Uncertainty quantification

Uncertainty quantification can be split into three steps: (i) quantifying the uncertainty in the
parameters, (ii) propagating the parametric uncertainty to the model predictions, and (iii)
estimating the systematic and structural uncertainty in the experiments and model predictions.
We will deal with these separately.

Parametric uncertainty

Once we have found the most probable parameter values by minimizing J in Eq. (2.2), we
estimate the uncertainty in these parameter values using Laplace’s method [63, 67]. This
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method approximates the posterior probability distribution as a Gaussian, centred around the
most probable parameters, aMP. Laplace showed that the inverse covariance of the Gaussian
that best approximates the true posterior is given by the Hessian of J :

CMP
aa

�1 ⇡ ∂ 2J

∂al∂am

= C�1
aa +JT C�1

ee J+(s(aMP)� z)T C�1
ee H

(2.3)

where J is the Jacobian matrix containing the parameter sensitivities of the model predictions,
∂ sl/∂am, and H is the rank three tensor containing the second order sensitivities, ∂ 2sl/∂am∂an.
Both J and H are evaluated at aMP.

Equation (2.3) provides the first evidence of a claim that was made at the end of Chapter 1:
the extreme sensitivity of thermoacoustics can be beneficial to the modeller, because it makes
the parameters easy to observe from the data. The inverse covariance matrix quantifies the
precision to which the parameters are known. It is then clear from Eq. (2.3) that we can infer
the parameters more precisely when the model is sensitive to the parameter values.

The accuracy of Laplace’s method depends on the functional dependence of the model
on the parameters. This is shown graphically in Fig. 2.2, where we compare the uncertainty
quantification process for three univariate systems. In (a), the model is linear in the parameters.
Marginalizing a Gaussian joint distribution along any intersecting line produces a Gaussian
posterior distribution, so Laplace’s method is exact. In (b), the model is weakly nonlinear in
the parameters. The true posterior is skewed, but the Gaussian approximation is still reasonable.
This panel also shows a geometric interpretation of Laplace’s method: the approximate posterior
is given by linearizing the model around aMP, and marginalizing the joint distribution along the
linearized model. In (c), the model is strongly nonlinear in the parameters, so the true posterior
is multi-modal and the main peak is highly skewed. Laplace’s method underestimates the
uncertainty in this case. Furthermore, the cost function has two local minima, but the parameter
inference step will only find one peak, which will depend on the choice of initial condition for
the optimization.

This simple example seems to imply that Laplace’s method is only suitable for weakly
nonlinear models. It has, however, only considered the case where a single data point is
assimilated. In many cases, the true posterior tends to a Gaussian distribution as the number
of observations increases, even for models that are strongly nonlinear in the parameters [91,
§ 10.2]. For a given model, the accuracy of Laplace’s method can be checked a-posteriori
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(a) (b) (c)

Fig. 2.2 Illustration of uncertainty quantification for three univariate systems. (a) the model is linear
in the parameters, so the true posterior is Gaussian and Laplace’s method is exact. (b) the model is
weakly nonlinear in the parameters, the true posterior is slightly skewed, but Laplace’s method yields
a reasonable approximation. (c) the model is strongly nonlinear in the parameters, the posterior is
multi-modal and Laplace’s method underestimates the uncertainty.

using a sampling method such as Markov Chain Monte Carlo (MCMC). Previous work has
applied MCMC to thermoacoustic network models [92] and more complex models in fluid
mechanics [93], both of which showed the posteriors to be approximately Gaussian. If the
true posterior is found to be poorly approximated by a Gaussian, the researcher can attempt to
reduce the extent of the nonlinearity captured by the joint distribution by (i) shrinking the joint
distribution by providing more precise prior information or more precise experimental data, or
(ii) re-parameterizing the model to reduce the strength of the nonlinearity [67, Chapter 27].

Uncertainty propagation

To quantify the parametric uncertainty in the model predictions, we propagate the parameter
uncertainties through the model. This is done cheaply by linearizing the model around aMP

and propagating the uncertainties through the linear model. The uncertainty in the model
predictions is given by:

Css = JT CaaJ (2.4)
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where Css is the covariance matrix describing the variance in the model predictions due to the
variance in the parameters. The marginal variance in each predicted variable, sl , is given by
the diagonal elements of Css, because the prediction uncertainty is Gaussian distributed [94,
Theorem 1.2.6 & 1.2.7].

This allows us to quantify the uncertainty in the model predictions due to the uncertainty
in the parameters, but we have still been working under the assumption that the model is
structurally correct. We now relax this assumption, and introduce a method for estimating the
systematic and structural uncertainty in the experiments and model predictions.

Systematic uncertainty

In most cases, experimental data will contain some systematic uncertainty, and models will
contain some structural uncertainty. These uncertainty sources cannot be quantified a-priori,
and are often referred to as “unknown unknowns”. We can, however, construct a total covariance
matrix, Ctt , which encodes the total uncertainty due to (i) the known experimental uncertainty,
(ii) the unknown systematic experimental uncertainty, and (iii) the unknown structural model
uncertainty. We can then estimate this total covariance from the posterior discrepancy between
the model and the data. This must be done simultaneously with parameter inference, because
the posterior parameter distribution depends on the total uncertainty in the model and data. We
therefore replace Cee with Ctt in Eq. (2.2), and estimate the total uncertainty by simultaneously
minimizing J with respect to a and C�1

tt .
We begin by calculating the derivative of J with respect to C�1

tt , assuming that the
observed variables are uncorrelated, and keeping in mind that the normalizing constant, K,
contains the term log(|Ctt |1/2). This gives:

∂J

∂C�1
tt

=
1
2
(s(a)� z)(s(a)� z)T � I� 1

2
Ctt (2.5)

where I is the identity matrix, and � denotes the Hadamard product. For a given set of
parameters, the most probable Ctt sets Eq. (2.5) to zero. This gives the estimate:

Ctt = (s(a)� z)(s(a)� z)T � I (2.6)

which is the expected result that the total variance in the model and data is the square of the
discrepancy between the model predictions and the data. Although we cannot directly identify
the source of the unknown uncertainty because the experimental and model uncertainties cannot
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be disentangled, the inferred total uncertainty can assist the researcher with identifying potential
error sources. For example, if the unknown error in a single sensor is unexpectedly large, this
could indicate a faulty sensor or bad installation. If the unknown error at a certain experimental
operating condition is large, this could prompt the researcher to repeat that experiment. If the
unknown error grows with one of the input variables, the researcher might investigate the model
to see if any important physical phenomena may have been neglected.

In Fig. 2.3, we demonstrate this with a toy problem in which we infer the parameters and
total uncertainty of two polynomial models. We generate data by sampling a ground truth
polynomial, which is of degree seven, and corrupting the data with random error. In (a) the
model is structurally correct, so when we infer the parameters and total uncertainty we find
that the model can fit the data, and the inferred total uncertainty is close to the known error. In
(b) the model is a fifth degree polynomial, so it is structurally incorrect. We find that the total
uncertainty is much larger than the known random error, indicating systematic or structural
error.

Ground truth Model ± 2 Exp ± 2 Exp ± 2

x x

(a) (b)

Fig. 2.3 Demonstration of systematic uncertainty estimation on a toy problem of inferring the coefficients
of a polynomial. In each case we collect data by sampling the ground truth polynomial (orange) at
10 points, and corrupting the data with Gaussian random noise (red dots and error bars). The model
predictions (blue lines) are shown with two standard deviations of parametric uncertainty (blue patch).
The inferred total uncertainty is plotted as a second set of data points (yellow dots and error bars). In
(a) we infer the parameters and systematic error of a polynomial of the correct degree, and we find that
the model can fit the data, and the inferred total uncertainty is close to the known error. In (b) we infer
the parameters and systematic error of a polynomial of the wrong degree, and we find that the total
uncertainty is much larger than the known random error, indicating systematic or structural error.
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2.1.3 Model selection

At the second level of inference, we calculate the posterior probability of each model, given
the data. This allows us to compare several candidate models quantitatively. We use Bayes’
theorem applied to the models, H j, and data, z:

p(H j|z) µ p(z|H j)p(H j) (2.7)

The first factor on the right-hand side of Eq. (2.7) is the denominator of Eq. (2.1), which is
referred to as the marginal likelihood, or evidence. The second factor is the prior probability
that we assign to each model. If we have no reason to prefer one model over another, we assign
equal probabilities to all models and rank them according to their evidence. The evidence
is calculated by integrating the numerator of Eq. (2.1) over parameter space. Recalling that
the posterior distribution has been approximated as a Gaussian, we can cheaply calculate the
evidence using Laplace’s approximation for the integral of a multivariate Gaussian:

p(z|H j)⇡ p(z|aMP,H j)⇥ p(aMP|H j)
��CMP

aa
��1/2 (2.8)

The first factor on the right-hand side of Eq. (2.8), called the best fit likelihood, is a measure
of how well the model fits the data. The second factor, called the Occam factor, penalizes the
model based on its parametric complexity, where the complexity is measured by how precisely
the parameter values must be tuned for the model to fit the data to within the experimental
uncertainty. The model with the largest evidence is the simplest model that is capable of
describing the data, for given measurement error and given priors. This process therefore
naturally enforces Occam’s razor to select the best model.

We once again demonstrate this with a toy problem in which we infer the parameters and
total uncertainty of several polynomial models. The ground truth polynomial has degree seven,
and we generate synthetic data by sampling the ground truth and corrupting the samples with
random noise. We then assimilate the data into models of degree two to degree twelve, and
calculate the model comparison metrics for each model. Fig. 2.4 shows the posterior predictions
of three of the candidate models: (a) degree five, (b) degree seven, and (c) degree twelve.

The model comparison metrics are plotted for all eleven models in Fig. 2.5. We see that
models of degree lower than ground truth (1-6) are penalized by a small best fit likelihood
(orange), but their simplicity is rewarded by a small negative Occam factor. Their simplicity
does not, however, make up for the poor fit, and their log-evidence (marginal likelihood) is
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Ground truth Model ± 2 Exp ± 2 Exp ± 2

(a) (b) (c)

x

s

x x

Fig. 2.4 As for Fig. 2.3, but showing three candidate models of degree (a) five, (b) seven, and (c) twelve.
Ground truth is a polynomial of degree seven.

small. Models of degree higher than ground truth fit the data well, but their complexity is
penalized by a large negative Occam factor. We see that the model that is structurally correct,
degree seven, has the largest evidence and would be selected as the best model. Of course, the
outcome of this toy problem depends on the random noise that is added. If a more flexible model
happens to fit the noise well, it can become more likely than the structurally correct model. We
repeat this process with 100 realizations of random noise, and find that the structurally correct
model is chosen 88% of the time. Of the remaining cases, seven are marginal (less than 5%
difference in evidence), while in five cases the more flexible model has significantly higher
evidence.

2.2 Bayesian optimal experiment design

The framework described in § 2.1 allows the modeller to benefit from the work of the experi-
mentalist by using experimental observations to improve the accuracy of physics-based models.
We now extend this framework to enable the modeller to inform the experimental design process
in order to minimize the experimental cost. For this section, we add to our notation the vector
of experimental design variables, x, which are the variables that the experimentalist can control.

There are a number of ways in which the modeller could inform the experiment design.
In this thesis, we focus on three specific questions an experimentalist may face: (i) which
experimental design would provide the maximum information about the unknown parameters,
(ii) where should the sensors be placed to provide the maximum information about the unknown
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Fig. 2.5 Model ranking metrics for eleven candidate models. The best fit likelihood, log(BFL) in orange,
is a measure of how well the model fits the data. The Occam factor, log(OF) in yellow, penalizes the
model based on its parametric complexity. The evidence or marginal likelihood, log(ML) in blue, is the
sum of the best fit likelihood and the Occam factor. The model with the largest evidence is the simplest
model that is capable of describing the data, for given measurement error and given priors.

parameters, and (iii) which experimental design would maximize the discrimination between
candidate models?

Each of these questions can be answered by using metrics from information theory to
quantify the information content of a candidate experiment. We follow the general approach
proposed by Lindley [95], which has been applied to many other optimal experiment design
studies [96–99]. For each of the experimental questions listed above, we define a suitable
utility function, u(x,z,a). We then calculate the expected utility by integrating over all possible
realizations of the parameters and data:

U(x) =
Z

Z

Z

A
u(x,z,a)p(a|x,z)p(z|x)dadz (2.9)

where U(x) is the expected utility, u(x,z,a) is the utility function, and Z and A are the support of
p(z|x) and p(a|x,z) respectively. The optimal experiment to perform is the one that maximizes
the expected utility.

Previous studies have faced difficulties with the cost of computing the expected utility
within their inference frameworks, which typically requires Monte Carlo integration over high
dimensional spaces [96–99]. We will show that in the adjoint-accelerated Bayesian inference
framework, the expected utility can be computed cheaply.
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2.2.1 Optimal design for parameter inference

We consider the situation where we have assimilated data from i experiments, where i could be
zero. We want to know which experiment to perform next in order to gain maximal information
about the unknown parameters. The information content can be quantified through the Shannon
entropy of the parameter probability distribution:

Si =�
Z

A
p(a|zi) log2 (p(a|zi))da (2.10)

where Si is the Shannon entropy of the parameter probability distribution after the ith experiment
has been assimilated1. The information we gain by assimilating the data point zi+1 is given by
the change in Shannon entropy: DSi+1 = Si�Si+1 [95], which we choose as our utility function
for this case:

u(x,z,a) = DSi+1 = Si �Si+1

=
Z

A
p(a|zi) log2 (p(a|zi))da�

Z

A
p(a|zi+1) log2 (p(a|zi+1))da

(2.11)

We see that the utility function involves integration over a, so u(a,x,z) = u(x,z). The
expected utility is therefore:

U =
Z

Z

Z

A
u(x,z)p(a|x,z)p(z|x)dadz

=
Z

Z
u(x,z)p(z|x)dz

(2.12)

To evaluate the remaining integral, we once again exploit Laplace’s method, recalling that
the parameter probability distribution is always Gaussian in this framework. The difference in
Shannon entropy between two Gaussians is given by:

DSi+1 =
1
2

log2

✓
|C�1

aa |i+1

|C�1
aa |i

◆
(2.13)

from which we see that maximising the information gained about the parameters is equivalent
to finding the maximum reduction in parameter uncertainty. Recall that, from Laplace’s ap-
proximation in Eq. (2.3), assimilating the measurement zi+1 updates the parameter uncertainty

1For the purpose of optimal experiment design, the choice of the logarithm base is arbitrary. We have chosen
to work with base 2 logarithms, which provide information in units of bits.
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according to:

�
C�1

aa
�

i+1 ⇡
�
C�1

aa
�

i +JT
i+1C�1

ee Ji+1 +(s(a)i � zi+1)
T C�1

ee Hi+1 (2.14)

where the Jacobian, Ji+1, and Hessian, Hi+1, are evaluated with the previous most probable
parameters, ai, and with the candidate experiment design parameters, xi+1.

From Eqs. (2.13) and (2.14) we can see that the choice of which experiment to perform
next depends on the outcome of that experiment, zi+1, as one might expect. However, the
data-dependence only occurs in the second order term in Eq. (2.14), which is exactly zero for
models that are linear in the parameters, and is often small compared to the first order term
for nonlinear models2. We therefore proceed with a first order approximation, in which the
posterior covariance is independent of the experimental outcome:

�
C�1

aa
�

i+1 ⇡
�
C�1

aa
�

i +JT
i+1C�1

ee Ji+1 (2.15)

If the second order sensitivities are found to be non-negligible for a model of interest,
we may still be able to neglect the data-dependent term on the grounds that the discrepancy,
(s(ai)�zi+1), will become small as the model is updated with more data. In this case we expect
that the initial experiments may not be optimal, but that the chosen experiments will become
optimal as more experiments are assimilated and the discrepancy decreases. In many cases this
may be an acceptable sacrifice for the computational cost savings of the proposed approach.

By neglecting the data-dependent term, we are able to plan the subsequent experiment using
only the model and its adjoint:

U = DSi+1 =
1
2

log2

0

BB@

����
�
C�1

aa
�

i +JT
i+1C�1

ee Ji+1

����
����
�
C�1

aa
�

i

����

1

CCA (2.16)

We follow a greedy sequential experiment design process, where we iteratively (i) use
Eq. (2.16) to identify the most informative experiment, (ii) perform that experiment to collect
the data, zi+1, and (iii) assimilate the data to obtain ai+1 and Ci+1

aa .
To assist with interpretation of Eq. (2.16), we consider the special case of a system with

univariate design and observable variables (multiple unknown parameters are still permitted).
2We have used second order adjoint methods to confirm that this assumption is valid for the thermoacoustic

models of interest in this study.
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Under these conditions, the Jacobian, J, reduces to a column vector, j, and the experimental
covariance, Cee, reduces to the variance, Ve. The quantity JT C�1

ee J in the numerator of Eq. (2.16)
reduces to V�1

e jT j, which is a rank-one perturbation of the inverse covariance matrix C�1
aa .

Using the identities for rank-one perturbations, Eq. (2.16) reduces to:

DSi+1 =
1
2

log2
�
1+V�1

e jT
i+1Ci

aa ji+1
�

(2.17)

This recovers the result that MacKay [100] arrived at for scalar interpolation problems:
to maximize information gain we must (i) maximize V�1

e , which is to say that we learn the
most when we make precise observations, or (ii) maximize jT Caa j, which is the posterior
variance of the model predictions, as shown in Eq. (2.4). This produces the intuitive result that,
for univariate systems, we learn the most about the unknown parameters when we perform
experiments where the model is most uncertain.

While this aids with interpretation, MacKay’s result isn’t directly applicable to multivariate
systems, unless an ad-hoc decision is made about which variable’s uncertainty should drive the
decision of which experiment to perform next. This is avoided in our framework by maximizing
the change in Shannon entropy, which automatically balances the information gained from
each observed variable based on how sensitive it is to the unknown parameters.

2.2.2 Optimal sensor placement for parameter inference

We now consider the case where one or more of the observed variables, z, are spatially varying
and are observed with point measurement sensors. We would like to know where to place the
sensors in order to gain as much information as possible about the unknown parameters. We
may have an existing rig with a fixed number of sensors, and we would like to know where
to place the sensors to gain maximal information. Alternatively, we may be designing a new
rig, for which we already have a qualitative model, and we would like to know (i) how many
sensors we need to buy, and (ii) where we should make provision for instrument access.

To answer these questions, we add the sensor locations to the vector of design parameters,
x, and find the design parameters that maximize the change in Shannon entropy following the
steps in § 2.2.1. We place the sensors sequentially, with each sensor location selected to provide
maximum information based on (i) the model and (ii) the information from the existing sensor
layout.
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This process naturally accounts for the local reduction in information in the vicinity of
existing sensors, with the correlation length determined by the model sensitivity. This removes
the need to define ad-hoc methods to avoid sensor clustering, as done in previous studies on
optimal sensor placement [101, 102]. We note that [102] additionally uses the variance field to
identify optimal sensor placement, requiring a second ad-hoc decision about which variable
should guide sensor placement, as discussed in the previous section.

2.2.3 Optimal design for model comparison

Finally, we consider the case where we are trying to identify the best model from a set of
candidate models H j, j = {1,2...,M}. We assume that we have already performed the optimal
experiments to learn the unknown parameters of each model. We now want to identify the
optimal experiment design, xi+1, which maximizes the discrimination between the candidate
models.

At the (as yet undetermined) experiment design xi+1, each candidate model will make
a slightly different prediction, si+1, j, with slightly different uncertainty, Ci+1, j

ss . Before we
make the next observation, zi+1, each model encodes a belief that the data will occur with a
probability distribution given by a Gaussian centred around the model prediction:

Pj = p(zi+1|H j) = N
�
µ j,C j

�
, (2.18)

µ j = si+1, j = H j(xi+1,ai, j),

C j = C j
ss +Cee

where Css is the prediction uncertainty, which is calculated using Eq. (2.4), and we have
introduced the shorthand Pj = p(zi+1|H j) to simplify the subsequent notation. In order to
maximally discriminate between the models, we choose xi+1 such that the distributions Pj are
as dissimilar as possible. We therefore define our utility function to be a measure of distance
between the distributions. In this case we have chosen the average divergence [103, 104]:

u =
1

M(M�1)

M

Â
j=1

M

Â
k=1

DKL
�
Pj||Pk

�
(2.19)

where DKL is the directed Kullback-Leibler divergence, defined as:

DKL
�
Pj||Pk

�
=

Z

Z
Pj log2

Pj

Pk
dz (2.20)
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For a multivariate Gaussian distribution with d observed variables, the directed Kullback-
Leibler divergence is:

DKL(Pj||Pk) =
1
2

✓
log2

|C j|
|Ck|

�d + tr(C�1
k C j)+(µ j �µk)

T C�1
k (µ j �µk)

◆
(2.21)

where the number of observed variables, d, does not impact the choice of experiment.
As before, we find that after approximating the parameter probability distribution with a

Gaussian, the utility function depends only on the candidate experiment design, xi+1. We are
therefore able to select the subsequent experiments using only the model and its adjoint.

We once again seek an intuitive understanding of this process by considering the case of
comparing two candidate models with univariate design and observable variables. Under these
conditions, Eq. (2.19) reduces to the symmetric Kullback-Leibler divergence between a pair of
univariate Gaussians:

u =
1
2

(✓
1

V 2
1
+

1
V 2

2

◆
(µ1 �µ2)

2 +

✓
V1 �V2

V1V2

◆2
)

(2.22)

where µ j and Vj are the expected value and variance of the distributions p(zi+1|H j). We again
recover the result that MacKay [100] arrived at for scalar interpolation problems: to maximize
the discrimination between models we must (i) gather data where the model predictions
maximally disagree, measured relative to the confidence in their predictions, and (ii) gather data
where the confidence in the models are maximally different. The first result serves to maximize
the best-fit-likelihood reward on the model which fits the new data point better. The second
result, which is perhaps less intuitive than the first, serves to maximize the Occam penalty on
the model with more parametric flexibility.

2.3 Summary

In this chapter we have introduced the Bayesian inference framework that will be demonstrated
in this thesis. In § 2.1.1 we turn the task of inferring unknown model parameters into an
optimization problem, which we solve cheaply using adjoint methods. In § 2.1.2 we introduce
an approximation to quantify the uncertainty in the unknown parameters. We then propagate
this uncertainty to the model predictions, and estimate the systematic uncertainty in the data
and the structural uncertainty in the model. In § 2.1.3 we introduce a method for quantitatively
comparing candidate models in order to select the best one. Finally, in § 2.2 we extend the
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Bayesian inference framework to include optimal experiment design. This allows us to use
the model to forecast which experiments would be the most informative, thereby reducing the
effort and cost of collecting the data required for Bayesian inference.





PART II:

APPLICATIONS IN THERMOACOUSTICS





Chapter 3

Hot wire Rijke tube

This chapter contains the results of two studies, each of which has been published as a
conference paper and subsequently extended and published as a journal paper. Section 3.2
contains excerpts from two papers on generating a quantitatively-accurate model of a hot wire
Rijke tube using Bayesian parameter inference and model comparison [105, 106]. This work
was done in the first year of the PhD in close collaboration with Matthew Juniper. Matthew
Yoko performed the experiments, processed the data, and assimilated the data into the base
flow model. Matthew Juniper developed the concept and the adjoint thermoacoustics code,
assimilated the data into the thermoacoustics code, and wrote the text of the original paper.
Section 3.3 contains excerpts from two papers on Bayesian optimal experiment design for this
rig [107, 108] ([108] is currently under review). This work was performed independently by
Matthew Yoko. The experiments presented in this chapter were carried out on an existing rig,
which was modified for the purposes of this study.
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3.1 Introduction

The electrically heated Rijke tube is a canonical problem in thermoacoustics that is a commonly
used as an initial test case for new modelling and analysis methods. The system consists of a
duct and a heating element, which is typically a wire mesh that is supplied with an electrical
current. While the system seems simple, it has proven challenging to model accurately.

There are several hundred papers that describe or model the Rijke tube. These are listed in
the handful of reviews of this subject over the last 50 years [109–112]. The physical mechanism
that causes thermoacoustic instability was correctly described by Rayleigh [4]. Later, Chu
[113] re-expressed this in an elegant and complete mathematical framework based on small
perturbations to the governing equations.

The thermoacoustic mechanism in the hot wire Rijke tube is described in [111, §3.3.1],
which highlights the crucial role played by the time delay between velocity perturbations and
heat release rate perturbations at the hot wire. If the hot wire is in the upstream (downstream)
half of the tube, then this time delay causes the heat release rate to be slightly in phase (out of
phase) with the acoustic pressure of the first acoustic mode, causing acoustic oscillations to be
thermoacostically driven (damped).

Using analytical methods, Carrier [114] estimated the gain and phase of the heat release
rate of a hot flat ribbon in a fluctuating air stream. Lighthill [115] performed a similar analysis
for a hot circular cylinder and Merk [116] for a hot wire gauze. These analytical methods
show that the phase lag is caused by heat conduction through the finite thickness boundary
layers around the hot element and explain why the Rijke tube requires a through-flow. This is
described by Bayly [117]:

“If the blowing is too weak, the wires are surrounded by very thick jackets of

stagnant air, and the fluctuations in the external flow have a comparatively small

effect on the heat transfer. On the other hand, if the blowing is strong, the phase

lag between the velocity fluctuations and the induced heat transfer fluctuations

is small ... Although the heat transfer is more efficient with strong blowing, the

absence of sufficient phase matching makes the amplification ineffective.”

The above analytical methods on simplified models, although qualitatively correct, are
not quantitatively correct. Subsequent numerical simulations of heat transfer in an oscillating
flow around a cylinder have shown that the time delay is two to three times greater than that
predicted by Lighthill [118, 119], and that the gain and phase have more intricate dependence
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on Reynolds and Strouhal numbers than can be derived analytically [120]. Instead, since the
1970’s [117], researchers have tended to use simple linear relations such as the n� t law,
empirical alterations to King’s law [121], or CFD simulations. This is shown in a detailed
survey of heat transfer models from 1985 to 2017 [122, Table 3.1]. CFD simulations are
accurate but are too expensive for simple thermoacoustic models. All simple thermoacoustic
models of the Rijke tube therefore rely on heat release rate models that are, at best, only
qualitatively accurate.

Most studies that aim to create quantitatively accurate models of the Rijke tube include
viscous dissipation in the acoustic boundary layer along the inside wall of the tube [123, 114,
111, 118]. Viscous dissipation is greatest where the acoustic velocity fluctuation is greatest,
which is at the ends of the Rijke tube. Some studies also include thermal dissipation in the
acoustic boundary layer, whose effect has a similar magnitude. Thermal dissipation is greatest
where the acoustic temperature (equiv. pressure) fluctuation is greatest, which is at the centre of
the Rijke tube. In Rayleigh [124, §348–350] and Kinsler et al. [125, §9.5] thermal dissipation
is included through an added viscosity. By modelling thermal dissipation as increased viscosity,
one loses the important detail that the location of thermal dissipation differs from the location
of viscous dissipation. In this chapter we model both separately so that the two mechanisms
can be disentangled.

All models of the Rijke tube must include heat transfer between the hot wire and the
surrounding air. The mechanism that causes heat transfer (molecular diffusion) is the same as
that which causes momentum transfer, so there cannot be one without the other. The question
is whether the momentum transfer is so small that it can be neglected. This momentum transfer
manifests itself as an acoustic pressure drop across the heater that is, in the linear regime,
proportional to the velocity at the heater. This pressure drop is considered by [123, p84],
[114, Eq.4.4], [126, Eq.34] [127, §3.3] but is always set to zero on the grounds that it is small
compared with the acoustic pressure amplitude. This simplifies the analysis but asserts that the
drag from an object blocking the duct is negligible compared with the drag from the acoustic
boundary layers of the duct, which is questionable. In this chapter we show that neither can be
neglected.

All studies of the Rijke tube agree on the strong influence of the time or phase delay
between velocity fluctuations and subsequent heat release rate fluctuations at the heater. This
time delay can influence the frequency and the growth rate by similar absolute values, although
the relative influence on the growth rate is larger because the growth rate is close to zero, while
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the frequency is close to the resonant frequency of the tube. Indeed, after his famous quote
about vibrations being encouraged, Rayleigh [4] writes:

“If the air be at its normal density at the moment when the transfer of heat takes

place, the vibration is neither encouraged nor discouraged, but the pitch is altered.”

An efficient data-driven approach will therefore use the frequency drift as well as the growth
rate drift in order to infer the time delay. This requires an accurate measurement of the speed
of sound in the tube.

In this chapter we firstly construct a quantitatively accurate model of an electrically heated
Rijke tube by (i) devising qualitatively-accurate physics-based candidate models of each
component of the rig; (ii) collecting experimental data using experiments carefully designed
to identify the unknown model parameters; (iii) assimilating the experimental data into the
candidate models to infer their unknown parameters; (iv) quantifying the evidence (marginal
likelihood) for each candidate model and selecting the best candidate model, and (vi) repeating
for the next component until the model of the rig is complete. We then revisit the dataset
collected for this work, and use it to demonstrate Bayesian optimal experiment design and
assess how much data is strictly required in the Bayesian framework.

3.1.1 Experimental configuration

The Rijke tube, shown in Fig. 3.1, is constructed from a 1 m length of stainless steel tube with
an inner diameter of 47.4 mm and a wall thickness of 1.7 mm. The tube is mounted vertically
and the ends are open to ambient conditions. A photograph of the rig is provided in Fig. B.1 in
Appendix B.

The heater is shown in detail in Fig. 3.2, and a photograph is provided in Fig. B.2 in
Appendix B. It is constructed from ceramic rings wrapped with 0.6 mm nichrome wire. It
is mounted on two support rods and inserted into the upstream (bottom) end of the tube.
The support rods are attached to an electrically driven traverse so that the heater position
can be controlled through the data acquisition system (DAQ). The heater is connected to a
programmable DC power supply (Elektro-Automatix EA-PSI 5080-20), which is controlled
using a PID controller implemented in LabVIEW. This allows a desired power to be supplied
to the heater, with compensation for the changing resistance of the wire as it heats up.
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Loudspeaker Tube

Heater on traverse

Gas thermocouples (x11)

Heater support prongs

Probe microphones (x8)

Solid thermocouples (x15)

L

Fig. 3.1 Diagram of the Rijke tube, rotated for convenience. The tube length, L = 1 m. The heater
is mounted on a traverse and inserted into the bottom of the tube to a distance of Xh. Eight probe
microphones are placed along the length of the tube. Eleven thermocouples monitor the gas temperature
(blue) and another fifteen monitor the tube temperature (orange). A loudspeaker mounted at the tube
inlet provides acoustic forcing.

t

h

(a) (b) (c)

d

Fig. 3.2 (a) Top view, (b) side view, and (c) isometric view of the heater, which consists of two identical
concentric annular ceramic plates, each wound with nichrome wire. It is held in place by two threaded
support prongs (shown). The dimensions are d = 47 mm, di = 31.6 mm, dw = 0.6 mm, t = 5 mm, h =
5 mm dp = 3 mm. The power is supplied to the nichrome wire by two fabric-insulated copper wires (not
shown), which each have diameter mm.

A loudspeaker (Visaton FRS 8) is mounted at the upstream end of the tube and connected
to an audio amplifier (Stage Line STA-500). We use the loudspeaker to force the system so that
its response can be measured. The forcing signal is a sine wave generated by LabVIEW.
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Instrumentation

We record the acoustic pressure using eight probe microphones (G.R.A.S. 40SA), with the
probes inserted through ports in the tube wall. The microphones are distributed with 100 mm
spacing, starting at 250 mm from the upstream end of the tube. Each of the microphones is
connected to an amplifier (G.R.A.S 12AA), which is then connected to the acquisition system.

The rig is instrumented with K-type thermocouples (0.7 mm diameter) to measure (i)
the temperature of the air inside the tube, and (ii) the temperature of the tube walls. Eight
thermocouples are inserted through ports in the tube wall to measure the internal air temperature.
They are mounted with a spacing of 100 mm, starting at 200 mm from the bottom of the tube.
In addition to these eight thermocouples, two thermocouples are mounted vertically with the
beads placed on the outlet plane of the tube. Fifteen thermocouples are bonded to the exterior
of the tube with a spacing of 50 mm, starting at 150 mm from the bottom of the tube. An
additional two thermocouples are mounted 5 mm from either end of the tube. Finally, one
thermocouple is mounted 100 mm below the inlet to record the ambient temperature.

Automation & Acquisition

The experiment automation and data acquisition is handled by a PC running LabVIEW. The
PC has two National Instruments data acquisition cards (PCI-6035E & PCIe-6343), each of
which is linked to an eight channel terminal block (BNC-2110) for input/output. We record
the microphone data at a sampling rate of 10 kHz. This is well above the Nyquist frequency
for the fundamental mode of the rig, and is used because the higher sampling rate improves
the accuracy of the data processing. Temperature data is logged through a bank of four
thermocouple DAQ devices (2 x Omega TC-08 & 2 x Pico TC-08).

The LabVIEW code automatically runs through a pre-determined matrix of heater positions
and heater powers. For each heater position and power setting, the code repeats the experimental
procedure 40 times so that the random error can be quantified. This allows a large, densely
sampled dataset to be collected in a relatively short time.

3.1.2 Experimental procedure & data processing

At each heater position and heater power we conduct two tests. The first test measures the
system’s growth/decay rate and natural frequency following a brief period of harmonic forcing.
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The second test uses an acoustic impulse to measure the sound speed. We now describe these
tests in detail.

Forced response test

The forced response tests begin by triggering the acquisition system to start recording data
from the microphones. A short delay (±0.2 s) is then enforced to ensure that the acquisition
system is running correctly. Following this, the loudspeaker generates a tone to force the tube
near its natural frequency, which we refer to as a ‘ping’. The forcing is faded in over a period
of 1 s to minimize transients, which occur when a full amplitude signal is commanded instantly.
The forcing is sustained for 6 s and then abruptly stopped. The acquisition records for a further
4 s to capture the decay, following which the acquisition terminates.

A sample of the raw data obtained from a forced response test is shown in Fig. 3.3(a). This
shows the pressures measured by each of the eight microphones plotted against time. The raw
signal is processed as follows:

1. A Fourier transform is performed with four overlapping Hann windows to obtain the
complex pressure as a function of time.

2. The decaying portion of the signal is isolated. This is defined as the period between the
termination of the forcing command and the point where the pressure magnitude reaches
the noise floor.

3. The growth rate is determined by performing linear regression on the logarithm of the
decaying signal. This can be seen in Fig. 3.3(b.i).

4. The natural frequency is determined by calculating the mean angular frequency during
the decaying period. This can be seen in Fig. 3.3(b.ii).

Sound speed test

A previous study on the same rig inferred the local sound speed from the temperature measure-
ments [92]. We subsequently found that this method was unreliable due to excessive conduction
of heat along the stem of the thermocouple, arising from the use of relatively thick thermocou-
ples to measure the temperature of a low velocity flow. Additionally, the thermocouples near
the heater are heated through radiation, biasing the sound speed estimation. To overcome this,
we devise a new method to measure the local sound speed using the microphone array.
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Fig. 3.3 Raw and processed signals from a forced response test. (a) The raw signals from each
microphone are plotted against time. (b.i) The log of the absolute value of the Fourier decomposed
pressure is plotted against time with the decaying portion highlighted. (b.ii) The angular frequency is
plotted against time with the region during decay highlighted.

After each ping, the loudspeaker sends an impulse down the tube, which we refer to
as a ‘click’. The 8 probe microphones measure the response along the tube at 62.5 kHz,
which is the maximum sampling rate of the acquisition system. We find the phase shift that
maximizes the cross-correlation function between the microphones (i.e. brings the measured
impulses optimally in phase). This process yields the time at which the impulse arrives at each
microphone, and therefore an estimate of the local sound speed.

The acquisition system used for these tests scans the channels sequentially, introducing a
different acquisition delay to each channel. We measure these delays by performing several
clicks at ambient conditions, where the true sound speed is known. The acquisition delay is
then subtracted from the measured transit times in the hot conditions, removing a significant
source of systematic error.

3.1.3 Experiment design

The experiments were designed to allow the unknown model parameters to be inferred se-
quentially, because inferring all unknown parameters at once typically leads to an ill-posed
problem. Firstly we collect data from the empty tube, which allows the reflection coefficients
and visco-thermal dissipation to be inferred without the influence of the heater. Secondly we
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traverse the heater support prongs through the tube with the heater removed, which allows the
visco-thermal dissipation and blockage of the support prongs to be inferred. Thirdly we traverse
the cold heater through the tube, which allows the visco-thermal dissipation and blockage of
the heater to be inferred. Finally, we traverse the heater through the tube, and sweep through
several heater powers at each heater position. This allows the parameters of the fluctuating heat
release rate models to be inferred. A summary of the tests conducted is provided in table 3.1.

Table 3.1 The number of experimental measurements (40) assimilated at each operating point. Column
1 describes the type of experiment: C1 and C2 denote experiments with the prongs and heater attached
but switched off; C3 denote experiments with the prongs only; H denotes experiments with the prongs
and heater attached and switched on. Column 2 contains a check mark if the thermocouples were present.
Column 3 contains the heater power in Watts. Columns 4 to 23 contain the number of experimental
measurements taken at the heater position shown in the second row, where E denotes the empty tube, in
which the heater and prongs were removed.

Heater position (cm)
T Q E 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

C1 – 0 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
C2 – 0 – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
C3 – 0 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
H X 0 40 – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 7 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 15 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 30 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 50 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 80 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 130 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 180 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

3.1.4 Physics-based model of the hot wire Rijke tube

As was indicated in the introduction, the hot wire Rijke tube exhibits phenomena which occur
on two distinct time scales. The heating of the Rijke tube, which drives the convective flow,
exhibits a long timescale, O(1000s). The decay of the acoustic oscillations occur on a short
timescale, O(1s). At the long timescale we construct a model of the base flow, into which
we assimilate measurements of the local sound speed, the local temperature of the gas, and
the local temperature of the tube walls. At the short timescale we construct a model of the
thermoacoustic oscillations, into which we assimilate measurements of the decay rate, the
natural frequency, and the Fourier-decomposed pressure at the microphone locations.
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Base flow model

The model of the long timescale flow is an unsteady 1D model of the base flow, including
conjugate heat transfer between the gas and the tube walls. This model is an extension of a
model from a previous study [92], into which we have included conductive cooling of the tube
through contact with the support structure, conductive heating of the tube through thermal
contact with the heater, heat loss from the wires upstream of the heating element, and variation
of Nusselt number along the inner wall. Four parameters characterize (i) the inviscid drag
coefficient of the heater, (ii) the Nusselt number on the outer surface of the tube, (iii) the
thermal resistance at the tube mounts, and (iv) the proportion of supplied power that conducts
through the tube wall. Two further parameters characterize the Nusselt number distribution
inside the tube. For a given configuration, the model outputs the velocity of the convective flow,
which cannot be measured directly.

Thermoacoustic model

Acoustic waves are modelled as forward-travelling waves, f (t � x/c), and backward-travelling
waves, g(t + x/c), in N acoustic elements within the tube [109]. In element i, the pressure is
pi = fi + gi and the velocity is ui = ( fi � gi)/(rici). At the interfaces between the acoustic
elements, the complex wave amplitudes are related through jump conditions for the momentum
and energy equations. The linear influence of all components of the network model can be
expressed in terms of local linear feedback from velocity or pressure into the momentum or
energy equations [109, §VI(A)]. Labelling these feedback coefficients k??, the jump conditions
are:

pi+1 � pi = �kmu ui � kmp pi (3.1)

ui+1 �ui = �keu ui � kep pi (3.2)

For example, viscous dissipation is modelled as local feedback from the velocity into
the momentum equation (kmu), thermal dissipation is modelled as local feedback from the
temperature (equiv. pressure) into the energy equation (kep), and the heat release rate from
the wire is modelled as local feedback from the velocity into the energy equation (keu). Local
feedback from the pressure into the momentum equation, kmp, is not required for this study.
In § 3.2.2 these local feedback coefficients are derived from candidate physics-based models
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and are expressed in terms of those models’ parameters. Wave reflection at the upstream and
downstream ends of the tube are modelled by complex reflection coefficients, Ru and Rd .

The equations are converted to the frequency domain through modal decompositions such as
f (t � x/c) = Feste�sx/c, where �is is the complex angular frequency of oscillations. There are
2N unknown amplitudes (N each for F and G) and 2N constraints (2(N �1) jump conditions
and 2 reflection conditions). This creates a nonlinear eigenvalue problem for the eigenvalue s,
which is solved with Newton iteration. We calculate the corresponding eigenfunction P(x,s)

from F and G. We then use first order [128] and second order [129] adjoint methods to obtain
the first and second derivatives of s and P with respect to all the local feedback coefficients k??
and reflection coefficients R?. We then combine these derivatives to obtain the first and second
derivatives of s and P with respect to the model parameters of the components of the network
model.

The model is shown schematically in Fig. 3.4. The top illustration shows a simplified
diagram of the rig. The middle illustration shows a schematic diagram of the network model,
with the upstream and downstream reflection coefficients labelled Ru and Rd respectively, and
the model for the heater labelled F . The boundaries and heater model are connected by a
straight duct with visco-thermal dissipation with a strength of h . The bottom illustration shows
the structure of the network model for this case. The boundary conditions are highlighted in
blue, the heater jump condition is highlighted in orange, and the visco-thermal dissipation jump
conditions are highlighted in teal. The forward and backward travelling waves, Fi and Gi are
shown within one of the acoustic elements.

3.2 Generating a quantitatively accurate model of a hot
wire Rijke tube

To generate a quantitatively accurate model of the rig, we begin by calibrating the base flow
model by inferring its unknown parameters from data. We then construct a quantitatively
accurate model of the thermoacoustics of the cold rig by assembling several component
models, each of which is the candidate model with the highest marginal likelihood given the
experimental data. Finally, we consider several candidate models for the fluctuating heat release
rate, and select the best one. The network model (§ 3.1.4) of the empty tube contains N = 40
elements with equal length. When the heater is added to the model, the acoustic element at the
heater location is split into two elements, with jump conditions (Eqs. (3.1)-(3.2)) at the heater.
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Fig. 3.4 Schematic diagram of the network model for the hot wire Rijke tube. The top illustration shows
a simplified diagram of the rig. The middle illustration shows a schematic diagram of the network model.
The bottom diagram shows the structure of the network model for this case. Ru and Rd are the upstream
and downstream reflection coefficients respectively, F is the model for the heater, h is the strength of
the visco-thermal dissipation, and Fi and Gi are the forward and backward travelling waves within one
of the acoustic elements.

The same procedure is followed when the 8 thermocouples are added. The network model
therefore contains between 40 and 50 acoustic elements, N, depending on the configuration.
We have checked that the model predictions do not change significantly with N for N > 40.

3.2.1 Calibrating the base flow model

The four unknown parameters of the base flow model (§ 3.1.4) are inferred from the sound
speed and temperature measurements collected from the hot experiments (rows labelled H
in Table 3.1). Fig. 3.5 shows (a) the velocity at the heater and (b) the local sound speed, as
functions of the heater position, Xh, and heater power, Qh. As Xh increases, the length of the
column of hot air above the heater decreases, so the buoyancy force driving the flow decreases,
causing the velocity at the heater, ūh, to decrease (Fig. 3.5(a)) and, at a given heater power, the
temperature jump across the heater to increase (Fig. 3.5(b)).

There is clear evidence of measurement and model error in Fig. 3.5: (i) ūh is expected
to decrease smoothly with Xh but does not; (ii) the maximum of c(x) is expected to increase
smoothly with Xh but does not at Xh = 0.75 m. The main source of error is the fact that the



3.2 Generating a quantitatively accurate model of a hot wire Rijke tube 43

(a)

(b)

u h
 [m

/s
]

c  [
m

/s
]

1

0.5

0
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Xh [m]

Xh = 0.15 m

Xh = 0.75 m

Xh = 0.85 m

Xh

Qh

X [m]

600

500

400

300

180 W
130 W
80 W
50 W
30 W
15 W
7 W

0.15 m
0.25 m
0.35 m
0.45 m
0.55 m
0.65 m
0.75 m
0.85 m

Fig. 3.5 (a) Velocity at the heater, ūh, as a function of heater position, Xh, and heater power, Qh. (b)
Local speed of sound, c(x), as a function of heater position, Xh, at Qh = 180 W. These results are
calculated from the base flow model (§ 3.1.4) for the long timescale flow, after assimilating the local
sound speed and temperature measurements.

number of microphones downstream of the heater decreases as Xh increases, so there are fewer
measurements of the downstream sound speed during the click test. It is impractical to remove
all this error. Instead, we group the measurement and model errors and check a-posteriori that
the combined error is small compared with the trends in the model predictions.

We note that ūh is derived from several measured quantities, whose errors accumulate into
the error in ūh, and that the model assumes uniform flow at the heater location, which is a
simplification. We must therefore be aware that ūh contains more systematic uncertainty and
model error than the other variables.
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3.2.2 Characterizing the cold acoustics

Visco-thermal boundary layer drag and reflection coefficients

To model the viscous dissipation in the boundary layers inside the tube, we derive an expression
for the shear stress in the boundary layer. Tijdeman [130] provides an analytical expression for
the acoustic velocity in a cylindrical duct as a function of axial and radial position [130, Eq.
(B19)]. Using this expression, we obtain:

t 0w =�µ ∂u0

∂y

����
w
=

2µ
D

"
i3/2sJ1(i3/2s)

J0(i3/2s)�1

#
u0 (3.3)

where t 0w is the fluctuating shear stress at the wall, µ is the viscosity of the air, D is the
tube diameter, u0 is the fluctuating velocity in the bulk. The shear number, s , is defined as
s = 1/2D

p
rsi/µ , where r is the mean density of the air, and si is the angular frequency. J is

the Bessel function of the first kind.
This stress acts on the perimeter area pDdx, where dx is the length of an element in the

network model. The pressure on either side of this element acts on a cross-sectional area
pD2/4. The viscous boundary layer drag is therefore modelled through a jump condition in the
pressure (Eq. (3.1)) via a local feedback coefficient:

kmu =
8µdx
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Similarly, we use Tijdeman’s expression for the acoustic temperature in a cylindrical duct
[130, Eq. (B22)] to obtain the local feedback coefficient for thermal dissipation:

kep =
8µdx
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where c is the speed of sound, g is the ratio of specific heats, and Pr is the Prandtl number. For
the assimilation process, we multiply kmu and kep by a real constant, h , which we infer from
the data. The value of h would be unity if this model were perfect.

The ends of the tube are identical so, when the tube is empty, we assume that their reflection
coefficients are the same: Ru = Rd = R. For both empty tube experiments (column E in Table
3.1), Levine-Schwinger’s (LS) calculations [131] give |R|LS = 0.9975 and \RLS = 3.0550.
If we set h = 1.0 and assimilate R directly from the experimentally-measured growth rates
and frequencies of the two empty tube experiments, we obtain |R| = 0.9953 and 0.9952,



3.2 Generating a quantitatively accurate model of a hot wire Rijke tube 45

and \R = 3.0597 and 3.0641. Alternatively if we set R = RLS and assimilate h we obtain
h = 1.1235 and h = 1.1198. It might be tempting to accept a 0.23% discrepancy in |R| or
a 12% discrepancy between the boundary layer model and experiment, but careful use of
Bayesian inference enables us to improve on both values. For demonstration, we will now
infer R and h simultaneously, first when there is insufficient information in the data, and
second when there is sufficient information. We set one standard deviation of the measurement
uncertainties to be 0.1 rad s�1 for the decay rate and 1 rad s�1 for the frequency. For the prior
expected values we set R = RLS and h = 1.0. We set large prior variances.

Fig. 3.6(a) shows the first inference problem, in which we attempt to infer |R|, \R and h
from the decay rates and frequencies only. Each set of axes shows the posterior joint distribution
between each pair of parameters in the form of ellipses denoting 1,2, and 3 standard deviations
from the expected values. We see that rather than learning unique values for each parameter, we
have learned a set of correlations between the parameter pairs, indicated by diagonally stretched
ellipses. This is because we have attempted to infer three parameters from two independent
observations. As one would expect, the data can be explained by a wide range of |R|, \R and
h , where the main source of uncertainty in one is the value of the other.

To disentangle the parameters, we need to (i) devise additional experiments to provide
more information about one of the parameters, or (ii) provide stronger prior information about
one of the parameters, if it is available. We demonstrate (i) in Fig. 3.6(b), which shows the
posterior expected values and covariances when we attempt to infer R and h from the decay
rates, frequencies, and the relative amplitudes and phases of all 8 microphones. Comparing
Figs. 3.6(a) and (b), we see that the information provided by the relative amplitudes and phases
of the microphones has allowed us to decorrelate the values of |R| and \R. This is because
the observations of |P| provide information about the distance between the pressure node and
the end of the tube, which uniquely identifies \R. The values of |R| and h , however, remain
correlated, although the correlation is weaker than in Fig. 3.6(a). In theory, a unique value for
|R| can be obtained from the observations of \P near the ends of the tube, which indicates
the work done at the ends of the tube. However, it was not possible to phase-calibrate the
microphone array sufficiently accurately to resolve this effect. The microphones could only
be repeatably phase-calibrated to within O(10�2) radians, but the model suggests that the
phase shift at the ends of the tube is O(10�3) radians. We can therefore not decorrelate the
parameters any further without enforcing a stronger prior for one of the parameters.
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Fig. 3.6 Posterior joint probability distributions after assimilating data from the two empty tube experi-
ments labelled E in Table 3.1. The contours show 1, 2, and 3 standard deviations from the assimilated
expected values for (i) a = (|R|,\R), (ii) a = (|R|,h), and (iii) a = (\R,h). (a) The data contains decay
rate and frequency only, measured by the microphone at x/L = 0.75. (b) The data contains the decay
rate, frequency, and relative pressures of all 8 microphones. This shows that the posterior probability
distributions collapse only if the data contains sufficient information for that model. The values predicted
by Tijdeman [130] and Levine-Schwinger [131] are shown for comparison.

We see from the posterior expected values in Fig. 3.6(b) that h is remarkably close to 1.0,
indicating that Tijdeman’s model performs well for this experiment, but that the inferred R

deviates slightly from that predicted by the Levine-Schwinger model. This slight deviation is to
be expected because our tube is not infinitely-thin and the exterior volume is not infinitely large,
which are both assumptions of the Levine-Schwinger model. We calculate a correction factor
to the Levine-Schwinger model, kLS, such that R = kLS ⇥RLS and hardwire this empirical
coefficient into the model for R used in the rest of this section. This allows us to use the
corrected Levine-Schwinger model to predict the downstream reflection coefficient for the hot
experiments.

Drag and blockage by the heater prongs

The heater is held by two 3 mm diameter threaded prongs and fed by two 4 mm diameter
fabric-coated copper wires. These are inserted from the upstream end (x = 0). The black dots
in Fig. 3.7 show the measured growth rates and frequencies as the prongs are inserted without
the heater attached. On physical grounds, we may suspect that these variations are caused by
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the extra visco-thermal dissipation and blockage caused by the prongs and wires. We may not
be sure, however, which physical effects need to be included in a low order model. On the
one hand, we need to include all physical effects having a significant influence. On the other
hand, if we include too many effects, it will be impossible to distinguish between them with
the available data, as was shown in Fig. 3.6(a). In this section we propose seven reasonable
physics-based models, assimilate the data into those models, and use the marginal likelihood to
identify the most likely model given the data.
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Fig. 3.7 (a) Growth rate, sr, and (b) angular frequency, si, as the heater prongs are inserted through the
tube from x = 0 to x = Xp. The black dots show the experimental measurements. The coloured lines
show the predictions from the models in Table 3.2 after assimilating the experimental data. The coloured
error bars show the inferred total uncertainty, which includes random and systematic experimental error,
and structural model error. For each measurement (black dot) the error bars are ordered from model 1
on the left to model 7 on the right.

We denote Pp as the sum of the perimeters of the prongs and heater wires, and Pt as the
perimeter of the tube. At each axial location containing the prongs, their viscous dissipation and
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thermal dissipation are modelled by multiplying the viscous dissipation and thermal dissipation
of the tube’s boundary layer at that location by Pp/Pt , and then following the procedures outlined
in the next paragraph. The effect of their blockage is modelled as an area change at the heater
position xh. We follow the analysis in [132, §4.4.2], which allows the effect of the area change
to be expressed as local feedback from u into the energy equation: keuh = 1� (r1A1)/(r2A2).

Model 1 multiplies the local viscous dissipation, kmu, and local thermal dissipation, kep, by
the same real parameter to account for a possible change in the magnitude of drag between the
tube walls and the prong walls due to the different surface roughness and materials. Model 2
multiplies the viscous dissipation and thermal dissipation by the same complex parameter to
account for possible changes in the magnitude and phase of each type of dissipation. Model 3
multiplies the viscous dissipation by one real parameter and the thermal dissipation by another
real parameter to account for possible independent changes in the magnitudes of the viscous
and thermal dissipation. Model 4 multiplies the viscous dissipation by one complex parameter
and the thermal dissipation by another complex parameter to account for possible independent
changes in the magnitude and phases of the viscous and thermal dissipation. Model 5 multiplies
keuh by one real parameter to account for the blockage but contains no visco-thermal dissipation
from the prongs. Model 6 combines models 1 and 5. Model 7 combines models 3 and 5.

We simultaneously infer the parameters and the total uncertainty in the model and data.
This gives the fairest comparison of the marginal likelihoods because, if the measurement
uncertainties are fixed to the random experimental error, then simple models (which tend to
have larger model error) become overwhelmingly unlikely even if they miss just a few of the
datapoints.

Fig. 3.7 shows the model predictions vs experimental measurements, while Table 3.2
summarizes the details of each model and shows their best fit likelihood (BFL), Occam Factor
(OF), and marginal likelihood (ML). Models 1, 2, 3, and 5 have large negative values of
log(BFL) and log(ML), meaning that they fit the data badly and are not supported by the data.
Models 1, 2, and 3 (no blockage) cannot match the experimental frequency, which implies
that a successful model must include the prong blockage. Model 5 (no drag) cannot match
the experimental growth rate, which implies that a successful model must include the prong
drag. Models 4 (complex visco-thermal dissipation but no blockage) and model 6 and 7 (real
drag and blockage) have large positive values of log(BFL), meaning that they fit the data well.
Of these, model 6 has the largest value of ML because it achieves this good fit with just two
parameters, while model 7 contains three parameters and model 4 contains four parameters.
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It is reassuring that the model with the most evidence (the highest marginal likelihood) is the
simplest model that contains the expected physics. While a human may have been able to
identify this model by hand, this Bayesian framework provides a rigorous and quantifiable
measure of its suitability compared with other plausible candidate models.

Table 3.2 Description and performance of seven models for the drag and blockage caused by the heater
prongs. Column 2 contains the number of parameters, a, in each model. Columns 3 and 4 describe
how the viscous prong drag, kmup , and thermal prong drag, kepp , are modelled: as the tube perimeter
boundary layer drag multiplied by a real parameter, a complex parameter, or zero. Column 5 describes
how the blockage of the prongs, keuh , is modelled: as a real parameter or zero. Column 6 contains
the log best fit likelihood (BFL) per datapoint, where BFL = p(D|aMP,Hi); a more positive log(BFL)
implies a better fit to the data. Column 7 contains the log Occam Factor (OF) per datapoint, where OF
= p(aMP|Hi)(det(A/2p))�1/2; a more negative log(OF) means that the parameter space has collapsed
more when the data arrive. This indicates that the model requires excessive precision in the parameters
in order to fit the model, which is a sign of an overly-complex model. Column 8 contains the log
Marginal Likelihood (ML) per datapoint, where ML = BFL ⇥ OF; a more positive log(ML) implies
higher evidence for the model, given the data. The model with the largest ML is the simplest model that
fits the data well, and is taken as the most likely model

Model Params kmup kepp keuh log(BFL) log(OF) log(ML)
1 1 real zero �0.3635 �0.3561 �0.7197
2 2 complex zero �0.3575 �0.5567 �0.9141
3 2 real real zero �0.3552 �0.4151 �0.7702
4 4 complex complex zero +0.9452 �1.2319 �0.2867
5 1 zero zero real �3.7064 �0.1736 �3.8799
6 2 real real +0.6705 �0.5767 +0.0938
7 3 real real real +0.7010 �0.8191 �0.1181

Drag and blockage by the heater itself

The two heater traverses (rows C1 and C2 of Table 3.1) were performed on different days with
the heater attached but switched off and with no thermocouples present. The teal circles in
Fig. 3.8 show the growth rates and frequencies as the heater is traversed through the tube. By
comparing them with the blue circles, which are for the prong only experiments, it can be seen
that the heater significantly changes the growth rate and frequency when at the ends of the tube
and slightly changes the growth rate when at the centre of the tube. In this section, we propose
physical reasons for this and compare the evidence for three corresponding physical models.

The heater (Fig. 3.2) consists of two orifice plates, one behind the other. From [132, §4.4.3],
the pressure drop across a single orifice plate with length L and cross-sectional area Ad in a
pipe of radius A is given by Dp = �rLeff(A/Ad)(du0/dt), due to the inertia of the air in the
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orifice plate. The effective length, Leff, equals L + 2d where d is typically (8/3p)(Ad/p)1/2.
The local feedback mechanism is therefore from the velocity into the momentum equation.
When converted to the frequency domain, the local feedback coefficient is kmuh = rLeff(A/Ad)s

where s is the complex angular frequency, whose imaginary part is much greater than its real
part.

Nichrome wire is wound around each orifice plate. It is reasonable to suppose that the
viscous dissipation from the wire is non-zero because momentum transfer from the wire relies
on the same physical mechanism as heat transfer, and heat transfer will be crucial in later
sections. The question is whether the data shows that the contributions to the viscous dissipation
coefficient (kmuh) and thermal dissipation coefficient (keph) are negligible compared with the
contribution to kmuh from the orifice. (Note that the orifice and the viscous dissipation both
contribute to the same local feedback coefficient, although the orifice affects only the imaginary
component.)

We evaluate three models. Model 1 models the orifice alone, by assimilating an imaginary
value of kmuh and setting the other local feedback coefficients (kmph ,keph ,keuh) to zero. Model
2 is the same as model 1 but allows kmuh to be complex, which models the orifice and the
viscous dissipation, but not the thermal dissipation. Model 3 models the orifice and the wire’s
visco-thermal dissipation by allowing complex non-zero values of kmuh and keph . Table 3.3
shows the BFL, OF, and ML of all three models. Of these, the data supports model 3. Although
not shown here, model 1 fails because it cannot model the influence of the heater on the growth
rate at the ends of the tube, where the acoustic velocity is high, and the viscous dissipation is
important. Model 2 fails because it cannot model the influence of the heater on the growth rate
at the centre of the tube, where the acoustic temperature fluctuation is high, and the thermal
dissipation is important. Model 3 models the orifice blockage, the viscous dissipation, and
the thermal dissipation. It is worth noting that the imaginary part of kmuh is six times greater
than its real part, indicating that the orifice blockage is significantly more influential than the
viscous dissipation.

The experiments in row H-0 of Table 3.1 were performed on different days with the heater
attached but switched off and with thermocouples in place. The pink circles in Fig. 3.8 show
the growth rates and frequencies of these experiments. By comparing them with the teal circles,
which are for the same experiments with the thermocouples removed, it can be seen that the
thermocouples significantly affect the growth rate and slightly affect the frequency. We model
the thermocouples as identical local visco-thermal dissipation elements and assimilate their



3.2 Generating a quantitatively accurate model of a hot wire Rijke tube 51

Empty tube

Prong traverse

Heater traverse (HT)

HT w/ thermocouples

Symbols:

Colours:

(a)

(b)

s r 
[r

ad
/s

]
s i 

[r
ad

/s
]

Xh or Xp [m]

Exp. ± 2 (Ctt)
1/2

Mod. ± 2 (Css)
1/2

-8

-10

-12

-14
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1070

1060

1050

1040

1030

Fig. 3.8 Experimental measurements and model predictions of (a) the growth rate, sr, and (b) the angular
frequency, si, for all the cold experiments (rows C1, C2, C3, and H at Q = 0 in Table 3.1). The model
combines R and h from Fig. 3.6, model 6 from Table 3.2 for the prongs, model 3 from Table 3.3 for the
heater, and visco-thermal dissipation for the thermocouples. The experiments with the heater in place
were performed on different days at different ambient temperatures, which accounts for the jagged lines
that are particularly visible in the growth rate.

Table 3.3 As for Table 3.2 but assimilating models for the drag and blockage caused by the heater (Fig.
3.2). Column 3 describes whether kmuh is imaginary or complex: if imaginary, the heater is modelled
as an orifice plate without viscous dissipation; if complex, the model also includes viscous dissipation.
Column 4 describes whether keph is zero or complex: if complex, the model includes thermal dissipation.

Model Params kmuh keph log(BFL) log(OF) log(ML)
1 1 imag none �3.7472 �0.0949 �3.8420
2 2 complex none �1.6648 �0.1947 �1.8595
3 4 complex complex +0.4209 �0.4047 +0.0162

complex visco-thermal dissipation coefficients kmut and kept . Fig. 3.8 shows the experimental
measurements and calibrated model predictions from all the cold experiments, using calibrated
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Levine-Schwinger for the reflection coefficients, Tijdeman’s model for the tube boundary layer,
model 6 from Table 3.2 for the prongs, model 3 from Table 3.3 for the heater, and assimilated
visco-thermal dissipation coefficients for the thermocouples.

3.2.3 Inferring the fluctuating heat release rate at the heater

Having carefully developed a quantitatively-accurate model of the elements of the Rijke tube
from the cold experiments, we now assimilate keuh , which is the local feedback from the velocity
to the heat release rate at the heater. Fig. 3.9(a) shows the expected values of keuh ±2 standard
deviations, calculated independently at each heater power and heater position. The parameter
keuh is inferred from the thermoacoustic behaviour of the system. The thermoacoustic effect
is strongest when the heater is placed around Xh = 0.25 and Xh = 0.75, and is weakest when
placed around Xh = 0.5. The uncertainty in keuh should therefore be smallest when the heater is
placed around Xh = 0.25 and Xh = 0.75 and greatest when placed around Xh = 0.5. This can
be observed clearly in Fig. 3.9(a). Away from Xh = 0.5 and for heater powers above 15 Watts,
the values of |keuh |/Qh and \keuh are, with little uncertainty, re-assuringly independent of the
heater position and heater power. The biggest deviation is seen when the heater is near the
top end of the tube (Xh ⇠ 0.8), and, by inspecting the two right-most temperature profiles in
Fig. 3.5, we suspect this is due to a systematic error in the base flow calculation.

For comparison, Fig. 3.9(b) shows keuh calculated from the same data, but without including
models for the visco-thermal dissipation and blockage of the heater and prongs. It is tempting
to ignore the visco-thermal dissipation and blockage of the heater and prongs, as in [123,
114, 126, 127], because they are difficult to model and seem a priori to have little influence.
With these ignored, however, |keuh |/Qh and \keuh seem to change significantly with heater
power and heater position. Most worryingly, \keuh seems to change discontinuously around
Xh = 0.5. There is, of course, no physical justification for this apparent dependence. It arises
simply because keuh is being used to accommodate deficiencies elsewhere in the model. A
machine learning algorithm applied to a neural network would learn this dependence but,
consequently, would only be able to interpolate between previous observations. The advantage
of our physics-based Bayesian approach is that it reveals bad models, such as that used to
create Fig. 3.9(b), and forces the researcher to develop good models, which tend to have simple
physically-interpretable behaviour, such as that used to create Fig. 3.9(a).
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Fig. 3.9 Local feedback coefficient from velocity fluctuations to heat release rate fluctuations at the
heater, keuh , inferred independently at each heater power and heater position. The solid lines show the
expected values. The patches show ±2 standard deviations. (i) |keuh |/Qh; (b) \keuh . These values were
inferred by assimilating the data from the experiments in rows H of Table 3.1, into two models. (a) R
and h from Fig. 3.6, model 6 from Table 3.2 for the prongs, model 3 from Table 3.3 for the heater, and
visco-thermal dissipation for the thermocouples. (b) R and h from Fig. 3.6, but neglecting blockage
visco-thermal dissipation from the prongs and heater.

Modelling the fluctuating heat release rate at the heater

We now propose nine candidate models for the complex local feedback coefficient keuh . These
models are listed in Table 3.4, where ki with numerical subscripts are the model parameters.
Models 1, 2, 7, 8, & 9 model |keuh | as k1 ⇥Qh, taking inspiration from Fig. 3.9, in which this
quantity is seen to be nearly uniform over the operating regime. Model 3 models |keuh | as
k1 ⇥Qk3

h , to see whether the added flexibility of the power law in Qh increases the marginal
likelihood of the model. Models 4, 5, & 6 model |keuh | as k1 ⇥QKing, where QKing is calculated
from King’s law [133, Eq(33)]:

QKing =
1

(Re Pr p/2)�0.5 +2
Qh

ūh
(3.6)
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Models 1, 3, 4, & 9 model \keuh as constant k2, taking inspiration from Fig. 3.9, in which
this is nearly uniform over most of the operating regime. Models 2, 5, 7, & 8 model \keuh

as k2 ⇥ Im(s), which corresponds to a constant time delay model in which t = k2. Model 6
models \keuh as k2 ⇥ sitL where tL ⌘ 0.2Dwire/ūh is the time delay calculated by Lighthill
[115]. If this is accurate then k2 should assimilate to 1.

Models 1 to 6 assume that the visco-thermal dissipation at the heater does not change when
the heater element becomes hot. Model 7 allows the viscous dissipation to drift from its cold
value in proportion to Qh. Models 8 and 9 allow the viscous and thermal dissipation to drift
from their cold values in proportion to Qh.

Table 3.4 As for Table 3.2 but assimilating models for the hot heater. Column 2 contains the number,
N, of parameters, which are labelled k1 . . .kN . Column 3 contains the model for |keuh |, where Qh is the
heater power and QKing comes from Eq. (3.6). Column 4 contains the model for \keuh where si is the
frequency and tL = 0.2Dwire/ūh is Lighthill’s time delay. Columns 5 and 6 contain the viscous and
thermal dissipation coefficients where models 7-9 are allowed to deviate from their cold values, kc.

Mod N |keuh | \keuh kmuh keph log(BFL) log(OF) log(ML)
1 2 k1 ⇥Qh k2 kc kc �4.7055 �0.1016 �4.8071
2 2 k1 ⇥Qh k2 ⇥ si kc kc �4.5805 �0.1030 �4.6836
3 3 k1 ⇥Qk3

h k2 kc kc �4.6477 �0.1385 �4.7862
4 2 k1 ⇥QKing k2 kc kc �4.7218 �0.1058 �4.8275
5 2 k1 ⇥QKing k2 ⇥ si kc kc �4.6956 �0.1072 �4.8028
6 2 k1 ⇥QKing k2 ⇥ sitL kc kc �5.7721 �0.1019 �5.8741
7 4 k1 ⇥Qh k2 ⇥ si kc +Qh(k3 + ik4) kc �3.4889 �0.2655 �3.7544
8 6 k1 ⇥Qh k2 ⇥ si kc +Qh(k3 + ik4) kc +Qh(k5 + ik6) �3.2512 �0.3964 �3.6476
9 6 k1 ⇥Qh k2 kc +Qh(k3 + ik4) kc +Qh(k5 + ik6) �3.6496 �0.3837 �4.0333

Of the models with constant visco-thermal dissipation at the hot wire (models 1 to 6),
model 2 has the highest marginal likelihood. The extra flexibility of model 3 turns out not to
be beneficial. Modelling the heat release rate with King’s law is marginally less accurate, but
this could be due to systematic errors in ūh calculated with the long timescale code in § 3.1.4.
The marginal likelihood increases significantly when the visco-thermal dissipation at the hot
wire is allowed to increase with the heater power in models 7, 8, & 9. This has little effect
on the frequency but a significant effect on the growth rate when the heater is placed near the
ends of the tube, where the acoustic velocity is greatest. Comparing models 2, 7 & 8 we see
that the extra viscous dissipation is more influential than the extra thermal dissipation, but that
including both is best. Comparing models 1 & 2 and models 8 & 9 shows that there is more
evidence for models with constant time delay t than constant phase angle. Model 8 is the best
model, but models 7 and 9 are also good.



3.2 Generating a quantitatively accurate model of a hot wire Rijke tube 55

Fig. 3.10(a) compares the experimental measurements with the model predictions of a
model similar to those used by Refs. [123, 114, 126, 127]. This model has Tijdeman’s visco-
thermal boundary layers, Levine-Schwinger’s reflection coefficients, and model 2 for the heat
release rate, which was the best model when the visco-thermal dissipation from the heater is
not included. The most likely coefficients of model 2 are assimilated from the data but the
agreement is not good. This model is under-damped so, although it matches the frequency
reasonably well, it always over-predicts the growth rate. Indeed at high powers and Xh ⇡ 0.25,
this model predicts a positive growth rate. It is acceptable for the model to predict a positive
growth rate in general, because the model is physics-based and can therefore extrapolate beyond
the experimental regime. In this case, however, the model has not extrapolated beyond the
experimental regime, so the positive growth rates are revealing model error. The structural
error in the model is further revealed by the excessive total uncertainty that was required to
maximize the posterior likelihood.
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Fig. 3.10 Model predictions of (i) growth rate and (ii) frequency vs. experimental measurements
assimilated with (a) model 2 from Table 3.4 for the heat release rate, Tijdeman’s model for the visco-
thermal boundary layer, and Levine-Schwinger for the reflection coefficients; and (b) the same model
but with the visco-thermal dissipation multiplied by h , where h is inferred from the hot data. The error
bars on the experimental measurements show two standard deviations of the inferred total uncertainty,
Ctt . The errorbars on the model show two standard deviations of the parametric uncertainty, Css.
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Fig. 3.10(b) shows the model predictions when the researcher has noticed that the first
model is under-damped and has chosen to model the extra damping as if it were all caused by
the visco-thermal boundary layer. This model therefore assimilates the coefficient h as well as
keuh . The assimilated constant h is 1.67, which corresponds to a 67% increase in the boundary
layer drag. This seems to be a reasonable approach and the model is able to approximate the
growth rates and frequencies over the operating range. The inferred total uncertainty is smaller
than in Fig. 3.10(a), but it is still larger than can be reasonably expected for these experiments.
Additionally, there remains a significant discrepancy in the growth rate predictions when the
heater is at the extremities of the tube and the heater power is high.

Fig. 3.11 shows the predictions for a model that contains the components with the highest
marginal likelihoods: R and h from Fig. 3.6(b), model 6 from Table 3.2 for the prongs, model
3 from Table 3.3 for the heater, visco-thermal dissipation for the thermocouples, and model 8
from Table 3.4 for the fluctuating heat release rate. This model is qualitatively and quantitatively
accurate over the entire operating range, as desired. The largest discrepancy occurs in the
frequency prediction when the heater is placed in the downstream half of the tube, and set to
the highest power. This is likely to be caused by a systematic error in the sound speed, which
is difficult to measure accurately when the heater is in the downstream half of the tube, as
described in § 3.2.1. With that said, the absolute value of the largest discrepancy is only 2.3 Hz,
which is a 1.7% error.

3.2.4 Extrapolation

When constructing a model from a range of candidate models, it is beneficial to have a large
amount of data. The densely sampled dataset presented in this section has allowed us to
critically evaluate each candidate model over the full operating range of the rig, which has
revealed structural errors in many commonly used models. Once a good model has been
selected, however, it can be trained on sparse data. Fig. 3.12 compares model predictions with
experimental measurements when data from just six arbitrarily selected operating points are
assimilated into the model in Fig. 3.11. The results are almost indistinguishable from Fig. 3.11,
for which 120 hot operating points were assimilated.

This highlights two major advantages of assimilating data into physics-based models over
a physics-agnostic machine learning approach: (i) much less data is required, and (ii) the
model can successfully extrapolate outside the training dataset, which is a common shortfall of
physics-agnostic machine learning approaches.
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Fig. 3.11 As for Fig. 3.10 but using the component models with the highest marginal likelihoods: R
and h from Fig. 3.6(b), model 6 from Table 3.2 for the prongs, model 3 from Table 3.3 for the heater,
visco-thermal dissipation for the thermocouples, and model 8 from Table 3.4 for the fluctuating heat
release rate.
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Fig. 3.12 As for Fig. 3.11 but assimilating data from just six of the 120 hot operating points.
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3.2.5 Summary

We have assembled a quantitatively-accurate physics-based model of the Rijke tube, component
by component. For each component we have proposed several candidate models and have then
selected the component model with the highest marginal likelihood, given the data. The selected
component model is always the simplest model that contains all the physics necessary to explain
the data. The final assembled model is therefore as small as possible, quantitatively accurate,
and physically interpretable. The model extrapolates successfully because it is physics-based,
and little data is required to train it because it contains few parameters.
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3.3 Minimizing the data required to train a model of a hot
wire Rijke tube

At the end of the previous section we showed that it requires only a few experiments to infer
the unknown parameters of a physics-based model. This was done, however, using arbitrarily
chosen experiments. We now approach this more rigorously by applying Bayesian optimal
experiment design to assess how much data is strictly necessary. We demonstrate the three
applications of Bayesian experiment design described in § 2.2.1-2.2.3. These are (i) optimal
design for parameter inference, (ii) optimal sensor placement for parameter inference, and (iii)
optimal design for model comparison.

In each case, we demonstrate Bayesian optimal experiment design by recursively selecting
the optimal experiment from the densely sampled set. On each recursion, we (i) identify the
most informative experiment, (ii) assimilate the data from this experiment, and (iii) compare
the model predictions to the data that has not yet been assimilated. The data that has not been
assimilated acts as a validation set, which is hidden from the model and the assimilation process.
This allows us to assess the performance of Bayesian optimal experiment design using real
experimental data.

3.3.1 Optimal design for parameter inference

We first demonstrate the optimal experiment design framework on the simple sub-problem of
inferring the visco-thermal dissipation of the cold heating element using as few experimental
observations as possible. We then apply the method to the more complex problem of inferring
the model parameters for the fluctuating heat release rate when the heater is switched on.

Assimilating heater dissipation from cold experiments

When traversing the cold heater through the tube, the vector of design parameters, x, contains
only the position of the heater within the tube, and the measurement vector, z, contains
the complex eigenvalue whose real part is the growth rate and imaginary part is the natural
frequency of oscillations. We assimilate this data into a model with two complex parameters, a,
which are used to model the strength of the viscous and thermal dissipation of the heater.

In Fig. 3.13(a.i)-(a.ii), we compare the predictions of the prior model to the experimental
data, which has not yet been assimilated. As expected, the prior model performs poorly, because
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the prior parameter values are inaccurate. However, we have specified correspondingly large
uncertainties in the prior parameters, so the model predictions have appropriately large error
bars, which extend beyond the limits of the y-axes.
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Fig. 3.13 Three steps of Bayesian optimal experiment design comparing experimental data to model
predictions after assimilating: (a) no data, (b) the first datapoint with maximum information content
(c) the second datapoint with maximum information content. For each step we show (i) growth rate,
zr, (ii) angular frequency, zi, and (iii) information content, DS, plotted against heater position, Xh.
For comparison, we also show (d) the result from assimilating the two experiments with minimum
information content.
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Fig. 3.13(a.iii) shows the potential information gain from an experiment performed at each
heater position, as estimated using Eq. (2.16). As a reminder, this is calculated based solely on
properties of the model, and knowledge of the data is not required in order to select the optimal
experiment. We see that the expected change in Shannon entropy is maximal at the boundaries
of the tube, indicating that the most information can be gained by performing an experiment
there. This is an intuitive result because it places the heater near the point of maximum acoustic
velocity fluctuations, and therefore maximum viscous damping. Furthermore, the acoustic
pressure (equiv. temperature) fluctuations approach zero at the boundaries, so we expect the
thermal dissipation to approach zero there. With this experiment, we can therefore easily infer
the parameters controlling viscous dissipation without being influenced by effects of thermal
dissipation.

Due to symmetry, the information gain at Xh = 0.05 and Xh = 0.95 is equal, so either ex-
periment is a viable candidate experiment. We arbitrarily choose to assimilate the measurement
taken at Xh = 0.05, which updates the parameter probability distribution. The new model
predictions are plotted in Fig. 3.13(b.i)-(b.ii). We see that near the assimilated data point, the
model is now accurate and the uncertainty has collapsed to the uncertainty in the data. Away
from the assimilated data point, the model predictions deviate from the data and the uncertainty
increases. We see, however, that because the symmetry of the problem is encoded in our
physics-based model, we have also learned about the system response when the heater is placed
at the opposite end of the tube.

Looking at the expected information gain in Fig. 3.13(b.iii), we see that we do not expect to
learn much more by conducting another experiment near the ends of the tube. However, there
is still information to be gained from an experiment conducted at the centre of the tube. Once
again, this is an intuitive result because it now places the heater in the acoustic pressure (equiv.
temperature) anti-node and velocity node, making thermal dissipation maximum and viscous
dissipation zero. With this experiment, we easily infer the parameters controlling thermal
dissipation, in the absence of viscous dissipation.

We assimilate the measurement taken at Xh = 0.5 and plot the new model predictions in
Fig. 3.13(c.i)-(c.ii). This shows that, after assimilating just these two data points, the model
matches the experimental data for all heater positions, and the model uncertainty is now similar
in magnitude to the measurement uncertainty at all heater positions.

The expected information gain, shown as the bold red line in Fig. 3.13(c.iii), is now
relatively flat and close to zero at all heater position. This shows that no experiment will
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be substantially more informative than any other, and there is little information to be gained
by assimilating more data. We have therefore gained all meaningful information about the
unknown parameters using just two carefully chosen experimental observations. Although a
skilled experimentalist may be able to identify the most informative experiments from physical
insight alone, this becomes increasingly difficult when assimilating data into more complex
models containing more physical mechanisms and more model parameters.

An expected value of two parameters can, of course, be obtained from any two independent
observations. Their posterior variances, however, depend strongly on which two observations
are selected. To demonstrate this, we assimilate the two data points with the lowest information
content, as shown in Fig. 3.13(d.i)–(d.iii). The results clearly show that assimilating these two
points only achieves local accuracy and local certainty in the model predictions.

As a final demonstration of the effectiveness of this approach, we sequentially assimilate
all the available data and record the information gained as each experiment is assimilated.
Fig. 3.14(a) shows the Shannon entropy plotted against the number of experiments assimilated,
while Fig. 3.14(b) shows the change in Shannon entropy against the number of experiments
assimilated. For comparison, we also plot the information gained by applying an experiment
design strategy in which the worst available experiment is assimilated at each step.
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Fig. 3.14 Comparison of learning rate when selecting the best vs worst experiments. Plot (a) shows how
the Shannon entropy of the parameter probability distribution decreases as additional experiments are
assimilated. Assimilating the best experiment at each step (blue) leads to a rapid decrease in Shannon
entropy, until the model uncertainty falls below the experimental uncertainty. Assimilating the worst
experiment at each step (orange) leads to a gradual decrease in Shannon entropy throughout the data set.
Plot (b) shows the information gained from each experiment, which is given by the change in Shannon
entropy. We show the information gain estimated before the data is assimilated using Eq. (2.16) (+), as
well as the actual achieved information gain, calculated after the experiment is assimilated (�).

We see from Fig. 3.14(a) that assimilating the best available experiment at each step causes
the Shannon entropy to reduce rapidly with the first two observations, i.e. we quickly become
confident in the most probable value of the unknown parameters. We then reach a point where
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the model uncertainty reduces below the experimental uncertainty, and further experiments are
relatively uninformative. By contrast, assimilating the worst experiments results in a gradual
reduction in uncertainty.

This is reinforced by Fig. 3.14(b), which shows that when assimilating the best experiments,
we gain significant information from the first two observations, and negligible information
thereafter. By comparison, when we assimilate the worst experiments, we gain significant
information from the first observation, and then a small but meaningful amount of information
throughout the data set. We see that the information gained by assimilating the worst experi-
ments tends to oscillate between a small information gain, followed by a negligible information
gain. This is because once an experiment is assimilated, its symmetric pair becomes the next
least informative experiment, which carries almost no new information.

In Fig. 3.14(b) we also compare the information gain estimated using Eq. (2.16) against the
actual information gain, which is calculated from the reduction in Shannon entropy when the
experiment is assimilated. We see that the values are almost indistinguishable, so in this case
there was no harm in neglecting the data-dependant term in Eq. (2.3), because the second order
parameter sensitivities are indeed small.

Assimilating a heat release rate model from hot experiments

We apply the same approach to experiments with the heater turned on, using the best model
identified in § 3.2.2. In this case, the design parameter vector, x, includes the heater position
and heater power, while the measurement vector, z, contains the complex eigenvalue. The
model includes three complex parameters, a, one of which models the heater transfer function
and the remaining two of which model how the heater’s visco-thermal dissipation changes with
heater power.

In Fig. 3.15(a.i)-(a.ii), we compare the predictions of the prior model to the experimental
data, which have not been assimilated yet. Once again we see that the prior model performs
poorly, because the prior parameter values are inaccurate, but that the model predictions have
appropriately large error bars.

Fig. 3.15(a.iii) shows the potential information gain for each experiment, which is estimated
using Eq. (2.16). We see that, as expected, we gain more information by performing experiments
at higher heater powers, where both the thermoacoustic effect and the variation in visco-thermal
dissipation will be strongest. Furthermore, the information gain peaks at heater positions
that produce the strongest thermoacoustic effect (where the magnitude of the product of
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Fig. 3.15 Four steps of Bayesian optimal experiment design for assimilating data from experiments with
the heater active. We compare experimental data to model predictions after assimilating: (a) no data,
and (b)-(d) the first, second and third observation with maximum information content. For each step
we show (i) growth rate, zr, (ii) angular frequency, zi, and (iii) information content, DS, plotted against
heater position, Xh, and heater power, Qh.
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acoustic pressure and velocity is maximum). By contrast, placing the heater at the acoustic
velocity node (near the centre of the tube) yields very little information. This is because both the
thermoacoustic effect and the viscous dissipation are zero at the velocity node, so an experiment
performed there only provides information about the variation of thermal dissipation with heater
power.

We assimilate the best experiment and plot the results in Fig. 3.15(b.i)-(b.ii). We see, once
again, that the model becomes locally accurate and certain, but that the accuracy and certainty
reduce with distance from the assimilated experiment. Unlike in § 3.3.1, the symmetry of the
underlying physics is broken by the steady and fluctuating heat release from the heater. As a
result, making an observation with the heater placed at one end of the tube no longer provides
information about the behaviour of the system when the heater is placed at the other end of
the tube. However, we see that making an observation at the highest heater power has also
provided information about the system’s behaviour at lower heater powers. The model has
become confident in its predictions about the system behaviour when the heater is in the same
position, but operating at lower power outputs.

We see from Fig. 3.15(b.iii) that the first observation reduces the information we expect to
gain from subsequent experiments performed at nearby heater positions, at all heater powers.
An experiment performed near the downstream end of the tube now carries slightly less
information than it did before the first observation was made. This implies that, while the
physics is not fully symmetrical, some of the phenomena may be. We have therefore gained a
small amount of information about the behaviour of the system on one end of the tube through
an observation at the other end.

The model predictions after assimilating the second most informative experiment are shown
in Fig. 3.15(c.i)-(c.ii). The second observation causes a more widespread collapse in uncertainty,
although the model is still significantly more certain where data has been assimilated. The
model uncertainty is not yet smaller than the experimental uncertainty for all candidate design
parameters, so we expect we could still learn more through additional observations.

This is confirmed through Fig. 3.15(c.iii), which shows that the expected information gain
has reduced for all heater positions and heater powers. However, there is still meaningful
information to be gained from a further experiment performed at the downstream end of the
tube (near Xh = 1), at the highest heater power.

Assimilating the third most informative experiment yields the model predictions shown in
Fig. 3.15(d.i)-(d.ii). The model is now accurate at all pairs of design parameters, regardless of
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whether the data was assimilated. Furthermore, the model uncertainty is below the experimental
uncertainty everywhere.

We see from Fig. 3.15(d.iii) that the distribution of expected information gain is relatively
flat, so there is no clear candidate for further experiments. Furthermore, the magnitude of
expected information gain is near-zero everywhere, so there is little value in performing further
experiments for the purpose of parameter inference. In the initial dataset we collected data
at 120 hot operating points, but we now see that three carefully selected operating points are
sufficient, which is just 2.5% of the full dataset.

While the chosen experiments are still somewhat intuitive, even a skilled experimentalist
might struggle to select the three optimal experiments in this case. Even though the model
remains relatively simple, the task of selecting optimal experiments for learning the values of
multiple parameters with coupled effects becomes increasingly challenging as the number of
parameters increases.

We now contrast the learning rate achieved by selecting the best and worst experiments
at each step, shown in Fig. 3.16. The plot of Shannon entropy vs. number of experimental
observations in Fig. 3.16(a) shows that selecting the best experiments leads to a rapid reduction
of Shannon entropy, corresponding to a rapid learning of the parameter values. By comparison,
selecting the worst experiments leads to a very gradual reduction in Shannon entropy, corre-
sponding to gradual learning of the parameter values. Most strikingly, we see that selecting
the worst experiments begins by using a set of experiments which carry no information at all.
These correspond to the experiments in row H-0 of Tab. 3.1, which were performed with zero
heater power. These experiments naturally provide no information about (i) the thermoacoustic
effect, or (ii) how the heater visco-thermal dissipation changes with heater power.

This is reinforced in Fig. 3.16(b) which shows that the three best experiments provide
significant information gain, following which we gain little information from the subsequent
experiments. Selecting the worst experiments yields a small information gain throughout the
data set, apart from the first few cold experiments, which provide zero information. Comparing
the estimated and achieved information gains, we see that the first best observation provided
more information than was predicted by Eq. (2.16). The under-prediction is due to the neglected
data-dependent term in Eq. (2.3), because the second order sensitivities are small but not
negligible in this case. After assimilating just one observation, however, the data-discrepancy
reduces such that the data-dependent term becomes negligible for subsequent observations, and
the estimated and actual information gains are almost identical.
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Fig. 3.16 Comparison of learning rate when sequentially assimilating the best vs worst experiments. Plot
(a) shows how the Shannon entropy of the parameter probability distribution decreases as additional
data are assimilated. Assimilating the best experiment at each step (blue) leads to a rapid decrease in
Shannon entropy, until the model uncertainty falls below the experimental uncertainty. Assimilating
the worst experiment at each step (orange) leads to a gradual decrease in Shannon entropy throughout
the data set. Plot (b) shows the information gained from each experiment, which is quantified from the
change in Shannon entropy before and after the data was assimilated. We show the information gain
estimated before the data is assimilated, using Eq. (2.16) (+), as well as the actual achieved information
gain, calculated after the data is assimilated (�).

3.3.2 Optimal sensor placement for parameter inference

As a demonstration of Bayesian optimal sensor placement, we will identify the optimal micro-
phone configuration to determine the characteristics of the empty tube. The original dataset was
collected with a redundant array containing eight microphones. This allows us to demonstrate
optimal sensor placement by assimilating only data from the most informative microphones,
using the remaining microphones for validation. In this case, the design parameter vector,
x, contains the sensor locations, and the measurement vector, z, contains the eigenvalue and
the complex pressure at the sensor locations. The model has two complex parameters corre-
sponding to the upstream and downstream reflection coefficients, and a third real parameter
corresponding to a correction factor to the boundary layer dissipation model.

As was seen in Fig. 3.6, it is not possible to infer unique values of the model parame-
ters for the empty tube (|R| and h) on this rig because the microphone array could not be
phase-calibrated sufficiently accurately. In this section we will artificially phase-calibrate the
microphones using the model output as ground truth. This effectively makes the phase data
synthetic, but allows us to demonstrate optimal sensor placement without being hampered by
the shortcomings of this specific rig. At the same time, we remove the assumption that the
upstream and downstream reflection coefficients are identical, which was made in § 3.2. This
presents a more challenging test of optimal sensor placement, and will become relevant in
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Chapters 4 and 5, where we study a rig with different upstream and downstream end termina-
tions. This means that the model for the empty tube has five unknown parameters: |Ru|, \Ru,
|Rd|, \Rd , and h .

Fig. 3.17(a.i)-(a.ii) shows the model predictions of the pressure eigenmode, after the growth
rate and natural frequency data has been assimilated. The model already makes reasonable
predictions about the pressure eigenmode, even though no pressure measurements have been
assimilated. However, the uncertainty in the pressure predictions is large because we have not
yet gained enough information about the parameter values. The posterior joint distributions
between each pair of parameters are shown in Fig. 3.18(a), from which we see that there is a
strong correlation between the values of |Ru| and |Rd|, and between \Ru and \Rd . With five
unknown parameters, observations of growth rate and natural frequency only provide enough
information to learn the correlation between these two pairs of parameters, and the remaining
parameter uncertainties remain unchanged from their prior values.
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Fig. 3.17 Three stages of optimal sensor placement: (a) reference mic only, (b) one additional mic,
and (c) two additional mics. We plot (i) the real component of the pressure, Re(P), vs axial position
in the tube, X , (ii) the imaginary component of pressure, Im(P), and (iii) the expected information
gain, DS, from a microphone placed at any axial position. Predictions are plotted as solid lines, with
uncertainties indicated with shaded regions. Available microphone data is plotted in teal in (i)-(ii), and
as open circles in (iii). Assimilated microphone data is coloured in shades of red from dark (fewest
additional measurements) to light (most additional measurements).

Fig. 3.17(a.iii) shows the information that is expected to be gained from a microphone
placed at any position along the length of the tube. The locations where microphone data are
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Fig. 3.18 Posterior joint probability distributions after three stages of optimal sensor placement: (a)
reference mic only, (b) one additional mic, and (c) two additional mics. The joint distribution between
pairs of parameters is indicated in each frame using contours of one, two and three standard deviations
from the mean. The parameters are the absolute value and angle of the upstream and downstream
reflection coefficients, Ru and Rd , and the boundary layer dissipation correction factor, h .

available are marked with circles. This reveals that there is no microphone installed in the
optimal location. Fortunately, however, the best available microphone carries only slightly less
information than a microphone placed at the optimal location.

We assimilate the data from the best available microphone and plot the new model pre-
dictions in Fig. 3.17(b.i)-(b.ii). We see from 3.17(b.i) that Re(P) is now well-defined, with
error bars that aren’t distinguishable on the scale of the plot. The uncertainty in Im(P), shown
in Fig. 3.17(b.ii), has also reduced significantly. Adding a second microphone allows us to
estimate the position of the pressure nodes, which identifies a unique pair of values for \Ru and
\Rd and collapses the uncertainty in the prediction of Re(P). This is reflected in Fig. 3.18(b),
where we see that the correlation between \Ru and \Rd has been removed. However, there is
still a three-way correlation between |Ru|, |Rd| and h , seen in Fig. 3.18(b), which requires more
information to further reduce the uncertainty. (Note that this is equivalent to the correlation that
could not be removed in Fig. 3.6). We see from Fig. 3.17(b.iii) that we expect to gain further
information from a sensor placed near the downstream end of the tube.

Fig. 3.17(c.i)-(c.ii) shows the updated predictions after assimilating the data from the third
microphone. The uncertainty in both the real and imaginary parts of the pressure eigenmode
predictions is now below the experimental uncertainty at all available microphone locations.
We see from Fig. 3.18(c) that using the information from the three best microphones results in
a posterior parameter distribution with predominantly uncorrelated parameter values. In other
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words, we have inferred unique parameter values with small error bars using the minimum
number of sensors. We therefore see that, out of the array of eight microphones installed in the
rig, five were redundant. Furthermore, the installed microphone locations were not optimal,
and more information could have been gained if the upstream microphone had been installed
closer to the upstream boundary.

We once again demonstrate the effectiveness of this method by comparing the information
gained by sequentially assimilating the best and worst microphone data. Fig. 3.19(a) shows
the pressure predictions in (a.i)-(a.ii), and expected information gain in (a.iii) as the data from
each microphone is assimilated in best-to-worst order. Fig. 3.19(b) shows the same process
when the microphone data is assimilated in worst-to-best order. We see that assimilating the
best microphone data first causes a rapid collapse in uncertainty as the first two additional
microphones are added, following which the remaining microphones add negligible informa-
tion. In comparison, adding the microphones in reverse order leads to a gradual reduction in
uncertainty.
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Fig. 3.19 Comparison between sequentially assimilating all available mic data. At each step, we select
the (a) best and (b) worst microphones. Figures show (i) the real component of the pressure, Re(P), vs
axial position in the tube, X , (ii) the imaginary component of pressure, Im(P), and (iii) the expected
information gain, DS, from a microphone placed at any axial position. Predictions are plotted as solid
lines, with uncertainties indicated with shaded regions. Uncertainties after assimilating only the reference
mic are shaded in blue. Uncertainties after assimilating additional mics are coloured with shades of red
from dark (fewest additional measurements) to light (most additional measurements).
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This is reinforced by Fig. 3.20 which shows (a) the Shannon entropy and (b) the change in
Shannon entropy as data from each subsequent microphone is assimilated. Fig. 3.20(a) shows
that assimilating the microphone data in best-to-worst order reduces the Shannon entropy more
rapidly than worst-to-best order. Fig. 3.20(b) confirms that the two best additional microphones
provide significant amount of information, following which the subsequent microphones
provide negligible information. In comparison, when assimilating the worst microphones first,
the first additional microphone provides a significant amount of information, following which
each subsequent microphone contributes a small but meaningful amount of information.
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Fig. 3.20 Comparison of learning rate when sequentially selecting data from the best vs worst microphone
positions. (a) Shows how the Shannon entropy of the parameter probability distribution decreases as
additional mic data are assimilated. Assimilating the mic data from best to worst is shown in blue, and
worst to best in orange. (b) Shows the information gained from each microphone, which is quantified
from the change in Shannon entropy before and after the mic data was assimilated. We show the
information gain estimated before the data is assimilated, using Eq. (2.16) (+), as well as the actual
achieved information gain, calculated after the data is assimilated (�).

3.3.3 Optimal design for model comparison

We now consider the third task of identifying the experiment designs that allow us to most
easily discriminate between multiple candidate models. For this demonstration we return to the
problem of modelling the fluctuating heat release rate. We introduce two additional models
for the purpose of comparison with the baseline model, which was trained in § 3.3.1. The first
additional model, which we label model A, is a physics-based model with additional parameters
that allow the heater feedback to vary with heater position. There is no physical basis for this,
so we expect the model comparison to favour the baseline model. The second additional model,
which we label model B, is a multivariate polynomial with the minimum degree capable of
describing the data. This model disregards the physics entirely, so we once again expect the
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baseline model to be favoured. The baseline model has 6 unknown parameters, model A has 14
unknown parameters and model B has 16 unknown parameters.

We begin by identifying and assimilating the optimal experiments to train each of the
models using the process described in § 3.3.1. For fair comparison, we combine all the optimal
experiments and train all models on the same set of experiments. We see in Fig. 3.21 that the
predictions of both model A and model B are comparable to the baseline model’s predictions.
This makes it difficult to identify the best model by inspection. We would like to use Bayesian
model comparison to identify the best model, so we sequentially identify and assimilate the
experiments which maximize the discrimination between the candidate models. For clarity, we
demonstrate this by separately comparing models A and B to the baseline model, but it can
also be done for arbitrarily many models at once.
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Fig. 3.21 Predictions of three candidate models for the fluctuating heat release rate. We compare (i)
growth rate, zr, and (ii) angular frequency, zi, predictions produced by the baseline model (blue) against
those produced by (a) model A (red) and (b) model B (red). The experiments selected to train the models
are shown with orange markers.

We sequentially assimilate each experiment in the data set, selecting both the best and worst
experiments for model comparison. The results are shown in Fig. 3.22(a) for comparing model
A against the baseline model, and in Fig. 3.22(b) for comparing model B against the baseline
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model. We see from Fig. 3.22(a.i) that model A is only slightly less probable than the baseline,
while Fig. 3.22(b.i) shows that model B is substantially less probable than the baseline.
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Fig. 3.22 Sequential assimilation of best and worst experiments for model comparison. Four model
comparison metrics are plotted against the number of experiments assimilated. The metrics are (i) the
log marginal likelihood, log(ML), as well as its two components: (ii) log best fit likelihood, log(BFL),
and (iii) log Occam factor, log(OF), and (iv) the log of the ratio of marginal likelihoods between two
models, log(MLR). In (a) we compare the baseline model (dark red) to model A (light red), and in (b)
we compare the baseline model (dark red) to model B (light red). In (i)-(iii) we only show the results
produced by selecting the best experiment at each step. In (iv) we show the results produced by selecting
the best experiments (blue), as well as the worst experiments (orange). A positive log(MLR) means that
the baseline model is preferred.

Comparing the best fit likelihoods between model A and the baseline model, shown in
Fig. 3.22(a.ii), we see that they are essentially identical. This tells us that both models fit the
data equally well, which is evident in Fig. 3.21(a). This should be expected because model A is
identical to the baseline model but has additional unnecessary parameters. The penalty of these
additional parameters is seen by comparing the Occam factors in Fig. 3.22(a.iii), which shows
that model A has a very small Occam factor (very negative log(OF)). The smaller Occam factor
penalizes model A, resulting in a smaller marginal likelihood.

As mentioned in § 2.2.3, when choosing optimal experiments to discriminate between
two models, we choose experiments where (i) the model predictions maximally disagree, and
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(ii) the model uncertainties maximally disagree. Choice (i) results in a penalty in the best fit
likelihood of one of the models, and (ii) results in a penalty in the Occam factor in one of the
models. With the predictions of model A being almost identical to those of the baseline model,
we cannot rely on the first criteria. Instead, each experiment is selected based on how much it
would increase the Occam penalty on the more complex model. We see this in Fig. 3.22(a.iii),
which shows that the log(OF) of model A decreases rapidly at first, and gradually plateaus as
the experiments with high discriminatory information are used up. As a result, we see from
Fig. 3.22(a.iv) that, when selecting the best experiments, the marginal likelihood ratio increases
rapidly at first and then plateaus. By comparison, selecting the worst experiments leads to a
more gradual increase in model discrimination.

Comparing the best fit likelihoods between model B and the baseline model, shown in
Fig. 3.22(b.ii), we see that model B is increasingly penalized as more data is added. This is
because the polynomial model cannot describe the data as well as the baseline model, which
is physics-based. Similarly, Fig. 3.22(b.iii) shows that the Occam factor penalty of model B
becomes increasingly negative as more data is added, because model B is the more complex
model. In this case the utility function must balance the choice of penalizing the model based
on its fit to the data, or penalizing the model based on its complexity. Figures 3.22(b.ii-iii)
show that both of these penalties increase rapidly at first and then plateau, indicating that the
utility function is able to identify the experiments that maximize the discrimination from both
penalties. As a result, we see from Fig. 3.22(b.iv) that, when selecting the best experiments, the
marginal likelihood ratio increases rapidly at first and then plateaus. By comparison, selecting
the worst experiments leads to a more gradual increase in model discrimination, with most of
the discriminatory information added by the later experiments.

3.3.4 Note on application

In this chapter we demonstrate experiment designs that have strictly adhered to the optimal
design approach. We note, however, that this approach tends to select experiment designs
that are concentrated at the extremes of the parameter space. Experience has shown that
training models on a narrow portion of the parameter space can lead to systematic errors going
undiscovered. Therefore, a strict implementation of this approach may not be appropriate
for models that have not been tested on densely sampled datasets to eliminate systematic or
structural error in the data or model.
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A sensible approach to make the process more robust is to use the ‘exploration vs. ex-
ploitation’ concept from Bayesian optimization [134, 135]. In this approach, an extra term is
added to the utility function, which encourages the selection of experiments in regions of the
parameter space that have not yet been explored. With this modification, the algorithm initially
selects experiments with high information content, and then gradually switches to exploring
the parameter space.

We also demonstrate optimal experiment design by selecting the single best experiment at
each iteration. In practical situations, it may be more convenient to identify and conduct a batch
of promising experiments, assimilate the data, and then identify the next batch. The current
framework allows us to select arbitrarily many of the ‘best’ experiments at each iteration, so we
are able to conduct experiments in batches. In the early stages of parameter inference, however,
not all experiments in the batches will be optimal. This is because the second order terms
that we neglected when defining the utility functions in Chapter 2 may be significant if the
model discrepancy is large, which is likely during the early stages of training. However, as the
model becomes more accurate, the information content within the batches will tend towards
the optimum. For models that are linear in the parameters, the utility functions are exact, and
the entire experimental campaign can be planned in one shot.

Finally, this chapter has not addressed the task of selecting a stopping criterion. That is a
case-dependent problem and so a suitable criterion must be selected based on the problem at
hand. In some cases it may be sensible to continue collecting data or placing sensors until a
budget is exhausted, while in others it may be sensible to stop when the model uncertainty or
expected information gain falls below a threshold.

3.4 Conclusion

In this chapter, we use the hot wire Rijke tube to demonstrate the full set of tools that the
Bayesian framework provides. We first perform automated experiments to collect a dataset for
training. With this dataset, we use Bayesian parameter inference, uncertainty quantification
and model comparison to construct a quantitatively accurate model of the rig. We then use
Bayesian optimal experiment design to assess how much data is strictly required for several
inference tasks.

In § 3.2 we assemble a physics-based model of the hot wire Rijke tube, component by
component. For each component we propose several candidate models and infer the unknown
parameters of each candidate model. We rank the candidate models based on their marginal
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likelihood and select the model with the highest marginal likelihood, given the data. The
selected component model is always the simplest model that contains all the physics necessary
to explain the data. The final assembled model is therefore as small as possible, quantitatively
accurate, and physically interpretable. Further, the model extrapolates successfully because it is
physics-based. This is a significant improvement on other attempts in the literature e.g. [123].

During this process, we critically evaluate several assumptions that are commonly applied
when modelling the electrically heated Rijke tube, such as neglecting the visco-thermal damping
of the boundary layer and neglecting the drag and blockage of the heater. We find that, when
these assumptions are made, it becomes impossible to achieve quantitative agreement between
the model and the data over the full operating range. The resulting models, therefore, are found
to be significantly less likely than models that include these phenomena. This reveals one of
the most powerful features of the Bayesian framework: the researcher is forced to carefully
consider the underlying physics. At each step, the quality of the assumptions we make are
rigorously evaluated with quantitative measures.

In § 3.3 we revisit the densely sampled dataset used to train the model in § 3.2, and use
it to demonstrate Bayesian optimal experiment design. We consider three specific questions
an experimentalist may face: (i) which experiments would provide the maximum information
about the unknown parameters of a model, (ii) where should the sensors be placed to provide
maximum information about the unknown parameters, and (iii) which experiments would
maximize the discrimination between candidate models? We show that by using Bayesian
optimal experiment design we can significantly reduce the experimental cost by (i) performing
only a few, highly informative experiments, and (ii) using fewer, carefully placed sensors. This
is an important result because, while our rig is cheap to operate, industrial rigs are expensive to
operate. There is therefore a large financial incentive to minimize the number of experiments
conducted on these rigs.

While other studies in the literature have attempted to apply Bayesian optimal experiment
design to engineering problems, they have all found it to be computationally expensive within
the frameworks they have chosen [97, 99, 96, 98, 136]. We have shown that, within the adjoint-
accelerated Bayesian inference framework, we can obtain a good approximation of the optimal
experiments for negligible computational cost, provided the posteriors are approximately
Gaussian. We have demonstrated this on real experimental data, where other studies on the
literature have solely relied on synthetic data, which is free of systematic error. While our
framework is computationally cheap at runtime, it comes with the additional upfront cost of
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creating the adjoint code. Adjoint codes are, however, widely available in the field of fluid
dynamics.





Chapter 4

Ducted laminar conical flames

This chapter contains excerpts from a conference paper and a journal paper on generating a
quantitatively-accurate model of the thermoacoustics of a ducted laminar conical flame using
Bayesian parameter inference and model comparison [137, 138] ([138] is currently under
review). This work was performed independently by Matthew Yoko. The experiments in this
chapter were carried out on a rig that was designed and commissioned for the purpose of this
study.
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4.1 Introduction

A natural progression from the electrically heated Rijke tube is the ducted laminar conical
flame. This retains the simple structure of the chamber, a vertical duct, but replaces the
electric heater with a laminar conical flame. The thermoacoustic behaviour of these flames
has been extensively studied both experimentally [139, 140, 37, 49, 141] and analytically
[142, 41, 143–147].

The mechanism through which thermoacoustic oscillations occur in a ducted laminar
conical flame is well understood. The acoustic perturbations give rise to convective velocity
perturbations, which traverse the length of the flame at a velocity near the mean flow velocity.
These convective perturbations distort the flame front, which in turn modulates the heat release
rate. The heat release rate fluctuations then couple back to the acoustic field, giving rise
to thermoacoustic oscillations. It is commonly assumed that the convective perturbations
occur because the acoustic perturbations give rise to hydrodynamic instabilities [142, 41, 143,
147]. This is contested by one recent study [146], which shows that the convective velocity
perturbation is the result of flame-flow interaction. Resolving this interaction requires the
system to be modelled to extreme detail, which quickly becomes computationally expensive,
and can result in the introduction of an unmanageable number of modelling parameters.

It is common to bypass the complexity of the flame dynamics by modelling the fluctuating
heat release rate as a response to a velocity perturbation at some reference location near the
base of the flame, either using a simple n� t model or a flame transfer function:

F =
Q0/Q̄
u0/ū

(4.1)

where F is the (frequency dependent) flame transfer function, Q is the heat release rate, and u

is the velocity at a reference location near the base of the flame. The fluctuating quantities are
denoted as •0 and mean quantities are denoted as •̄.

The flame transfer function has been shown to change sensitively with changes in operating
condition [47, 48], changes to the confinement of the flame [49, 50] and when the flame is
combined with other flames [37, 43]. It is therefore beneficial to determine the flame transfer
function with the flame in-situ.

Flame transfer functions are typically obtained from direct experimental measurements.
These measurements require (i) a means of measuring acoustic velocity at the reference location
near the base of the flame, and (ii) a means of measuring the heat release rate fluctuations.
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The velocity is typically measured using a hot wire anemometer [47, 140, 148] or via optical
methods [41, 149, 150]. The heat release rate fluctuations are typically measured by optical
methods [41, 47, 140, 148–150]. None of these measurement techniques are suitable for in-situ

measurements in a practical combustor, because they either rely on delicate instruments being
mounted in a harsh operating environment, or on optical access which is typically limited or
unavailable in a practical combustor. In some cases, the acoustic velocity is inferred from
multiple microphone measurements distributed along the length of the rig [42, 43]. While this
is technically possible to implement on practical combustors, it may not always be possible
to infer the acoustic velocity upstream of the flame using pressure signals from microphones
mounted on the casing wall.

By contrast, the growth rate and natural frequency of thermocaoustic oscillations can be
obtained from even a single microphone mounted far from the flame, either through harmonic
forcing [148], or by using data-driven methods to extract the linear growth rate and natural
frequency from combustion noise or limit cycle data [151, 152]. It is therefore desirable to be
able to infer the fluctuating heat release rate from these observations alone.

One method for indirectly obtaining flame transfer functions from pressure measurements
has been demonstrated on a laboratory burner [153], and more recently on the Rolls-Royce
SCARLET thermoacoustic test rig [154, 155]. This approach uses the two-source method
[156], which requires specially designed experimental rigs with two sets of loudspeakers or
sirens to force the rig from either end, and multiple microphones distributed along the length of
the rig. Acoustic pressure measurements are collected from four experiments. In the first two
experiments, the cold rig is forced harmonically at various frequencies from the upstream end,
followed by the downstream end. In the next two experiments the flame is ignited, and the rig
is again forced at the same frequencies from the upstream end, followed by the downstream
end. The resulting data is then post-processed to extract (i) the characteristics of the cold rig,
and (ii) the flame transfer function. This method provides an estimate for the flame transfer
function, but does not quantify the uncertainty in this estimate.

A few recent studies have applied data-driven methods to infer the parameters of a fluc-
tuating heat release rate model from pressure time series data [157–159]. In [157, 158], a
non-probabilistic approach is used to infer the parameters. The authors use an optimization
algorithm to minimize the discrepancy between the model and data, although they do not
consider the uncertainties, or the resulting uncertainties in the inferred parameters. In [159],
a frequentist approach is used to infer the fluctuating heat release rate from pressure time



82 Ducted laminar conical flames

series data. In the frequentist framework, the authors are able to quantify the uncertainty in the
inferred parameters. They cannot, however, exploit prior knowledge or evaluate the marginal
likelihood in order to compare candidate models. Gant et al. [159] demonstrate their method
on synthetic data generated by their model. While this is a powerful tool for evaluating and
demonstrating an inference framework, it does not allow the researcher to evaluate how the
method handles a systematic mismatch between the model and the data, which is always present
when assimilating experimental data into a model.

In this chapter, we apply our Bayesian inference framework to infer the flame transfer
functions of a series of conical flames from pressure observations. We use Bayesian model
comparison to choose the best model for the fluctuating heat release rate from a set of candidate
models. We then infer the most probable flame transfer function for each flame, and rigorously
quantify the uncertainties in each of the flame transfer functions.

4.1.1 Experimental configuration

The experimental rig comprises a premixed laminar conical flame inserted into a vertical duct,
illustrated in Fig. 4.1. The lower end of the duct is fixed to a plenum chamber, through which
co-flow air is supplied, and the upper end is open to the atmosphere. A photograph of the rig is
provided in Fig. B.3 in Appendix B.
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Fig. 4.1 Diagram of the ducted flame rig.
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The duct is a 0.8 m long section of quartz tube with an internal diameter of 75 mm. The duct
joins the plenum via a machined flange. The flange provides an airtight seal and an acoustic
termination without any internal steps. There are 24 ports along the length of the duct, which
allow for instrument access to the internal flow. The ports are fitted with airtight plugs when
not in use.

The plenum is a fibreboard box with dimensions 1 m ⇥ 0.6 m ⇥ 0.6 m. The interior is lined
with acoustic treatment to damp acoustic oscillations. Air is fed into the plenum via a mass
flow controller to provide a constant flow of cool air through the duct. This keeps the duct and
instrumentation at an acceptable temperature, and flushes the combustion products out of the
rig.

The burner is a 0.85 m long section of brass tubing with an internal diameter of 14 mm.
The outlet of the burner is fitted with a nozzle that is chosen such that the system can become
thermoacoustically unstable. At the injection plane, the nozzle diameter is 9.35 mm.

The burner is fuelled by a mixture of methane and ethylene. This mixture allows a wide
range of thermoacoustic behaviour to be explored by altering the shape of the flame through
changes the unstretched flame speed. The premixed air and fuel are metered using a bank of
mass flow controllers (Bronkhorst EL-FLOW). From the mass flow controllers, the gases are
fed into a mixing plenum to minimize the potential for equivalence ratio fluctuations. The
mixture is then fed to the base of the burner, which is fitted with a choke-plate to decouple the
supply lines from the acoustic fluctuations in the rig. Like the duct, the burner tube has eight
ports for instrument access to the internal flow.

The burner is mounted to an electrically-driven traverse so that the vertical position of the
burner inside the duct can be controlled. We are therefore able to explore changes in (i) flame
position, (ii) flame shape (through changes in fuel composition) and (iii) mean heat release rate
(through total fuel flow rate and fuel composition).

A loudspeaker (Visaton FRS 8) mounted within the plenum is used to force or stabilize the
system, depending on whether the system is linearly stable or unstable. The loudspeaker is
driven by a power amplifier (IMG STA-500). A phase-shift amplifier (custom design) is used
to actively stabilize the system when it is unstable.

Instrumentation

The acoustic pressure is recorded using eight probe microphones (G.R.A.S. 40SA), with
the probes inserted through the ports in the duct and burner walls. Seven microphones are
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distributed along the duct with 100 mm spacing, starting at 100 mm from the upstream end.
The eighth microphone is inserted through a port 100 mm downstream of the base of the burner
tube. The microphones are each connected to an amplifier (G.R.A.S. 12AA), which is then
connected to the acquisition system.

The rig is instrumented with 24 K-type thermocouples with a diameter of 0.4 mm. The
diameter of the thermocouples was reduced from the hot wire Rijke tube to improve the
accuracy of the measurements. Eight thermocouples are installed within the plenum to monitor
the ambient conditions, another eight thermocouples are inserted through ports in the duct to
monitor the internal gas temperature, and the final eight thermocouples are bonded to the duct’s
outer wall to monitor the duct temperature. The thermocouples are connected to the acquisition
system through three 8-channel thermocouple amplifiers (Omega TC-08).

Automation & Acquisition

The experiment automation and acquisition is handled by a National Instruments controller
(PXIe-8840) and acquisition card (PXIe-6358). The controller runs a LabVIEW code to
automatically control the experiments. The code runs through a pre-determined test matrix of
burner positions and air/fuel flow rates. For each test, the code (i) sets the burner position and
air/fuel flow rates, (ii) waits for the system to reach thermal equilibrium, (iii) determines if the
flame is linearly stable or self excited, and (iv) conducts 75 tests to determine the growth rate
and natural frequency, the procedure of which differs depending on the system stability.

The microphone data is sampled at 50 kHz for the forcing tests, and 300 kHz for the sound
speed tests. This is a significant improvement over the system used in the hot wire Rijke tube
experiments, which was limited to a maximum sampling rate of 62.5 kHz. By sampling at
300 kHz for the sound speed tests, we can resolve a narrower acoustic impulse, which allows
us to more accurately determine the speed of sound in the system. Furthermore, the new system
scans all channels simultaneously, eliminating the acquisition delay that was found in the hot
wire rig.

4.1.2 Experimental procedure & data processing

As with the hot wire Rijke tube, for each flame and burner position we alternate between
two tests: a forcing test and a sound speed test. When the flame is thermoacoustically stable,
we perform a forcing test using the same procedure that was used in the hot wire Rijke tube
(§ 3.1.2). When the flame is thermoacoustically unstable, we use the active stabilization
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with a phase-shift amplifier to stabilize the system. We then begin recording data from the
microphones while the system is stable. After 3 seconds we terminate the stabilization, and
record the pressure data as the thermoacoustic oscillations grow to a limit cycle. We record
data for 15 seconds, following which we re-activate the stabilization and perform the sound
speed test. The procedure for the sound speed test is identical to that described in § 3.1.2.

The data processing for the linearly stable flames and the sound speed test is the same as
that described in § 3.1.2. For unstable flames, we must extract the linear growth rate from the
nonlinear growth to a limit cycle. This growth has previously been modelled using a damped
harmonic oscillator [148, 160]:

ÿ � ẏ(2sr �ky2)+ s2
i y = 0 (4.2)

where y is the state variable, sr is the linear growth rate, k is the strength of the nonlinearity,
and si is the natural frequency. This system has oscillating solutions with an amplitude that
grows like [160]:

dA
dt

= srA+
k
8

A3 (4.3)

where A is the amplitude of the oscillations. We obtain the linear growth rate, sr, (and the
nonlinearity, k) by assimilating the amplitude of the time series pressure data into Eq. 4.3. This
procedure proved more consistently accurate than the more common approach of performing
linear regression on the initial portion of the growth, which requires ad-hoc decisions about
when the growth transitions from linear to non-linear. The fit of the non-linear model to the
data is shown in Fig. 4.2, with the corresponding linear model overlaid.

4.1.3 Experiment design

We investigate 24 different flames, which are selected to explore a wide range of thermoacoustic
behaviour. Previous analytical studies of conical flames have shown that the thermoacoustic
behaviour is determined by (i) the convective time delay, tc = L f /ū, which is the time taken
for a perturbation travelling at the bulk velocity, ū, to travel along the length of the flame, L f ,
and (ii) the mean heat release rate of the inner cone, Q̄. We therefore parameterize the flames
based on these two quantities.

We split the 24 flames into six groups of four flames, and select the composition of each
flame such that the convective time delay is constant within each group and the mean heat
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Fig. 4.2 The non-linear model (Eq. 4.3) is fitted to the pressure time series data from the unstable flames,
allowing us to obtain the linear growth rate from observations of the non-linear growth. We show the fit
of the non-linear model to the measured envelope of the pressure data, and the resulting linear model.
This is shown for (a) the normalized pressure envelope, and (b) the log-normalized pressure envelope.

release rate varies. The convective time delays range from 9.5 ms to 17 ms in 1.5 ms increments,
and the mean heat release rates range from 375 W to 600 W in 50 W increments. These flames
produce thermoacoustic behaviour ranging from strongly damped, to neutral, to strongly driven.

The flow rates required to achieve the desired convective time delays and heat release rates
are calculated using Cantera [161] and a simple linear model for a steady conical flame [162].
The linear model over-predicts the flame lengths, and therefore the convective time delays. We
therefore verify the actual convective time delays experimentally by measuring the length of
the steady flames from flame images. The flame properties are summarized in Table A.1 in
Appendix A, and images of the steady flames are shown in Fig. 4.3.

We repeat the experiments for each flame 75 times to quantify the random error, which
is much larger than it is in the hot wire rig. This is because small fluctuations in the co-flow
slightly perturb the flame, causing slight stochastic variation in the measured growth rates. We
perform more experiments than in the hot wire rig to better quantify, and average out, this
effect.

4.1.4 Thermoacoustic model of the ducted laminar conical flame

We adapt the model described in § 3.1.4 to model the new rig. In this case we no longer need
the base flow model for two reasons. Firstly, the rig was designed such that we can impose a
steady co-flow using a mass flow controller, so we do not need to model the buoyant flow as we
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Fig. 4.3 Processed steady flame images from the 24 flames. Images are grouped and artificially coloured
according to their approximate convective time delay, tc. Each convective time delay is studied at four
mean heat release rates, Q̄. Flames with low mean heat release rate are shown in darker shades and
flames with high mean heat release rate are shown in lighter shades.

do in the hot wire rig. Secondly, the higher sampling rate of the new acquisition system allows
us to obtain accurate sound speed measurements directly from the pressure time series data.

The thermoacoustic network model was adapted to handle multiple coupled acoustic
networks. This allows us to model the acoustic fields in both the duct and the burner tube,
and their interaction. The code was also updated to automatically handle area changes so that
blockage effects could be accounted for without having to manually apply linear feedback. The
revised model is shown schematically in Fig. 4.4.

4.2 Assimilating data into the thermoacoustic model

In this section we use Bayesian parameter inference and model comparison to construct a
quantitatively accurate thermoacoustic network model of the ducted laminar conical flame. We
once again infer the unknown model parameters sequentially to ensure that each inference
problem is well-posed. We begin by characterizing the sources of acoustic damping in the cold
rig. We then introduce the flame and infer the parameters of the fluctuating heat release rate
models.
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Fig. 4.4 Diagram of the acoustic network model used in this study. The unknown model parameters are:
R?, the reflection coefficients at the boundaries, h?, the strengths of the visco-thermal damping, and F ,
the transfer function from velocity perturbations to heat release rate fluctuations.

4.2.1 Characterization of the cold rig

The model of the cold rig has nine unknown parameters, which comprise three complex
reflection coefficients and three visco-thermal damping strengths. The reflection coefficients
are from the upstream and downstream ends of the duct, Ru and Rd , and the base of the burner,
Rb. We note that in this rig, Ru and Rd will be different because the upstream end terminates in
a flanged connection to the plenum, while the downstream end is open to atmosphere. The three
visco-thermal damping strengths correspond to the boundary layers on (i) the internal wall of
the duct, hd , (ii) the external wall of the burner, hbe, and (iii) the internal wall of the burner, hbi.
As in Chapter 3, the parameters h? are multiplicative factors applied to an analytical model for
visco-thermal damping [130], which in turn calculates the local linear feedback coefficients
k??. If the analytical model is correct, then we should find that h? = 1 after the data has been
assimilated.

We perform four sets of cold experiments, which we refer to as C1-C4. In C1 we use the
decay rate and natural frequency of the empty duct to infer Ru, Rd and hd . As with the hot
wire Rijke tube, we could not repeatably calibrate the relative phase measurements sufficiently
accurately to infer all the cold parameters simultaneously with weak priors. In this case,
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however, we have five unknown parameters compared to the three in the hot wire rig. This
makes it necessary to provide strong prior information for some parameters to avoid highly
correlated posteriors. In Chapter 3 we found that the posterior expected value for h was always
very close to unity. For this reason, we set the prior hd = 1 and assign a small uncertainty
to this value. We supply prior information about Ru and Rd from analytical models for the
reflection of acoustic energy at flanged [163] and unflanged [131] terminations. We assign a
large uncertainty to these priors because the models assume infinitely long ducts, infinitely thin
walls, and infinite flanges, which are not representative of our rig.

In C2 we traverse a dummy burner through the rig. The dummy burner is a solid rod with
the same exterior dimensions as the burner. From this set of experiments we assimilate Ru,
Rd , hd and hbe. We use the posterior values and uncertainties from C1 as the priors for Ru, Rd

and hd . We inflate the uncertainty in Ru, because we expect the upstream reflection coefficient
to change due to the obstruction of the dummy burner. Similarly to C1, we assign a prior of
hbe = 1 with small uncertainty.

In C3 we traverse the actual burner through the rig, but with a rigid plug in the base. We
now assimilate all six parameters, but with prior information for Ru, Rd , hd and hbe provided
by the posterior from C2. The prior for hbi is set to 1, and Rb is set to the theoretical value for a
hard boundary. We place a low uncertainty on the value of Rb because the plug is effectively a
rigid wall.

Finally, in C4 we traverse the burner through the tube with the choke plate in place, while
supplying the burner with a sufficient mass flow rate of air for the choke plate to be choked. We
again assimilate all six parameters, with prior information for Ru, Rd , hd , hbe and hbi provided
by the posterior from C3. The prior for Rb is set to the theoretical value for a choked boundary,
with large uncertainty.

The results of the characterization of the cold rig are shown in Fig. 4.5. The experimental
observations are compared to both the prior and posterior model predictions. We see that the
prior predictions are qualitatively accurate, but not quantitatively accurate because of small
errors in the unknown parameters. The posterior predictions are quantitatively accurate and
have defined confidence bounds. If the errors in the model of the cold rig were not removed,
they would be incorporated into the fluctuating heat release rate parameters later on.

The prior and posterior joint distributions are shown graphically in Fig. 4.6. Each disc
shows the joint distribution between a pair of parameters. The grey discs indicate the prior
covariance, the orange discs indicate the covariance after assimilating the C1 data, the dark blue
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Fig. 4.5 Comparison of experimental measurements and model predictions of (a) growth rate, sr and
(b) angular frequency, si, plotted against normalized burner exit location, X/L for the three sets of cold
characterization experiments. Experimental measurements are plotted (circles) with a confidence bound
of 3 standard deviations. Prior model predictions are plotted (dashed lines) without confidence bounds.
Model predictions after data assimilation are plotted (solid lines) with a confidence bound of 3 standard
deviations.

discs indicate the covariance after assimilating the C2 data, the teal discs indicate the covariance
after assimilating the C3 data, and the pink discs indicate the covariance after assimilating the
C4 data.

In general, we see that the discs shrink as data is assimilated, because the parameter
uncertainty reduces. We also see that the discs move away from the prior expected value. Both
of these show that information is gained when data is assimilated [100]. The uncertainties in the
h? parameters do not, however, change considerably. This is because we had high confidence
in the model and therefore set tight priors on h?.

We also see from Fig. 4.6 that the posterior expected values for some parameters change as
data from each subsequent experiment is assimilated. Most of these changes are small and can
be attributed to random error in the experiments, which were all performed on different days.
Two changes, however are clearly systematic. The first of these can be seen in the prediction of
Im(Ru) after C2-C4 are assimilated vs the C1 prediction. Recall that the C1 experiment was
conducted on the empty duct, while C2-C4 had the burner in place. We therefore attribute this
change to the disturbance of the burner on the upstream boundary, which causes a change in
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Fig. 4.6 Joint probability distributions, zoomed to the prior (left) and posterior (right), after assimilating
data from the C1-C4 experiments. Each disc shows the joint distribution between a pair of parameters.
The three rings represent one, two and three standard deviations from the mean.

Im(Ru). The second can be seen in the prediction of Im(Rb) after C4 is assimilated vs when
C3 is assimilated. The C3 experiment used a burner with a brass plug in the base, while the
C4 experiment had the choke plate installed. We therefore expect to see a slight change in Rb

between these two experiments.
Finally, we see that some parameters could not be decorrelated, as was the case in the hot

wire rig. These are Re(Ru) and Re(Rd), and Im(Ru) and Im(Rd). It is not possible to further
decorrelate the parameters without more accurate measurements of the pressure phase.

4.2.2 Assimilating heat release rate models

With the acoustic damping of the cold rig carefully characterized, we can now assimilate
models for the fluctuating heat release rate of the flame, which drives or damps the acoustic
oscillations depending on its phase relative to the pressure [124]. We fix the parameters of the
cold rig to the values inferred in the previous subsection, except for the downstream reflection
coefficient, which we expect to vary significantly with the increase in temperature when the
flame is introduced. To account for this, we calculate a correction factor to the model for the
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reflection coefficient that was proposed by Levine and Schwinger [131]. This allows us to use
the corrected Levine-Schwinger model to calculate Rd when the flame is introduced.

We begin by comparing several models for the fluctuating heat release rate in our rig using
experimental observations from three flames. We then infer the most probable parameters of
the selected model using experimental observations from all 24 flames shown in Fig. 4.3.

Selecting a model for the fluctuating heat release rate

The fluctuating heat release rate is modelled as a feedback mechanism from the acoustic
velocity into the energy equation, which we label keu f [109]. We propose a model for keu f in
the form of a typical flame transfer function:

keu f =
g �1

g
Q̄

p̄ūA
F (4.4)

where g is the ratio of specific heats, Q̄ is the mean heat release rate of the flame, p̄ is the
mean pressure at the injection plane, ū is the mean velocity at the injection plane, and A is the
cross-sectional area of the duct at the injection plane. F is the complex-valued flame transfer
function (Eq. (4.1)), which relates fluctuations in velocity, u0, to fluctuations in heat release rate,
Q0. The magnitude, |F |, is the thermoacoustic gain, and the angle, \F is the thermoacoustic
phase delay.

We infer the most probable flame transfer function from experimental observations of the
growth rate, frequency and Fourier-decomposed pressure. We begin by traversing three of the
24 flames through the duct. For this initial study, we choose the three flames with the shortest
convective time delay and lowest mean heat release rate. These flames remain linearly stable at
all burner positions but present different thermoacoustic decay rates. We assume that the flame
transfer function should not depend on the position of the burner in the duct so, for each flame,
we seek a single flame transfer function that is valid for all burner positions.

At any burner position, the flames are exposed to two distinct acoustic velocity perturbations:
that from the acoustic field within the burner tube, and that from the acoustic field in the duct.
We test two models from the literature and propose two new models. Model 1 considers the
blockage of the burner tube but neglects the acoustic field inside the burner tube and assumes
that the flame reacts only to the velocity perturbation in the duct [141, 144, 164, 165]. Model 2
includes both acoustic fields, but assumes that the flame reacts only to the velocity perturbation
in the burner tube. This is based on studies that have measured flame transfer functions of
laminar conical flames ex-situ [37, 140, 166], and assumes that these results apply when the
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flame is in-situ. We propose models 3 and 4, which include both acoustic fields and assume
that the flame reacts to both sources of velocity perturbation. In model 3 the flame reacts to
both sources of velocity perturbation, with a different gain and a different phase delay for each
source. In model 4 the flame reacts to both sources of velocity perturbation, with a different
gain but the same phase delay for each source.

The four models are shown graphically in Fig. 4.7. Models 1 and 2 have two real parameters:
the gain and phase delay of the flame transfer function, F . Model 3 has four real parameters:
the gain and phase delay of two flame transfer functions, Fd and Fb. Model 4 has three real
parameters: two gains, |Fb| and |Fd| and a single phase delay, \Fb = \Fd . In models 3 and
4, the subscripts b and d refer to the burner and duct respectively.

(a) (b)

(d)(c)

Fig. 4.7 Four models for the fluctuating heat release rate of a ducted conical flame. (a) Model 1: the
flame reacts to the velocity perturbation in the duct alone. The acoustics in the burner are not modelled.
(b) Model 2: the flame reacts to the velocity perturbation in the burner alone. (c) Model 3: the flame
reacts to the velocity perturbations in both the duct and the burner with different gains and phase delays.
(d) Model 4: the flame reacts to the velocity perturbations in both the duct and the burner with different
gains, but the same phase delay. Q̂ and û refer to the normalized perturbations, ?0/?̄, F is the flame
transfer function, and the subscripts b and d refer to the burner and duct respectively.

We assimilate the data into each model to find the most probable flame transfer functions.
The posterior model predictions for all four models are compared against experimental obser-
vations in Fig. 4.8. We see from the results of model 1, shown in Fig. 4.8(a), that neglecting the
acoustic field in the burner tube leads to a model that cannot fit the data. Most prominently, it
is clear from Fig. 4.8(a.i) that a flame transfer function based on the duct velocity perturbations
must predict zero thermoacoustic effect when the flame is placed at the duct’s velocity node,
which is just downstream of X/L = 0.4. This effect is clearly not observed in the data, which
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shows a strong thermoacoustic effect when the burner is placed at the duct’s velocity node.
Further, we see from Fig. 4.8(a.ii) that model 1 cannot predict the frequency correctly because
the effect of the acoustic field in the burner tube has been neglected. The inferred total uncer-
tainty, (Ctt)1/2, has been plotted as the data error bars, while the parametric uncertainty has
been plotted as the model error bars. We see that the uncertainty is large for model 1 because
of the structural error in the model.
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Fig. 4.8 Posterior model predictions and experimental measurements of (i) growth rate, sr, and (ii)
angular frequency, si, plotted against normalized burner position, X/L for three different flames. Model
predictions are plotted as solid lines with the shaded region indicating the parametric uncertainty.
Experimental measurements are plotted as circular markers with error bars indicating the random and
inferred systematic uncertainty. The results for each of the three flames are shown in different colours,
which correspond to the colours in Fig. 4.3. The posterior model predictions of (a) model 1, (b) model 2,
(c) model 3, and (d) model 4 are shown.
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We see from Fig. 4.8(b) that, while model 2 fits the data better than model 1, it suffers
from a similar limitation. Model 2 must predict steadily decreasing thermoacoustic effect as
the burner approaches the duct pressure nodes, which are near X/L = 0 and 1. The pressure
fluctuations in the duct give rise to the acoustic field in the burner tube, so when the burner is
placed at the duct pressure node, the acoustic field in the burner tube vanishes, along with the
heat release rate fluctuations. This can be seen in Fig. 4.8(b.i) where the model predictions
converge towards a common growth rate as the burner approaches either end of the duct. It
is clear from the data, however, that the thermoacoustic effect does not vanish as the burner
approaches the pressure node, as can be seen from the wide spread in growth rate measurements
at X/L = 0.2. We notice from Fig. 4.8(b.ii) that including the burner tube acoustic field in
the model allows the model to make more accurate frequency predictions. Finally, while the
inferred uncertainty is smaller than for model 1, it is still large because of the structural error in
the model.

Motivated by the shortcomings of models 1 and 2, we propose model 3 to allow the flame
to react to both sources of velocity perturbation. We see from Fig. 4.8(c) that model 3 fits the
data well for all three flames, at all burner positions, and that the inferred uncertainty is small.
However, from the phenomenology of the problem we expect that each flame should react with
a single characteristic time delay, regardless of the source of the perturbation. We therefore
propose model 4 which enforces this constraint. We see from Fig. 4.8(d) that model 4 also fits
the data well for all three flames, at all burner positions, and the inferred uncertainty remains
small.

While models 1 and 2 are easy to discard, it is more difficult to discriminate between
models 3 and 4, so we use Bayesian model comparison to rank the models and identify the
best one. The model ranking metrics are summarized in Fig. 4.9. Comparing the log-marginal
likelihoods of each of the models, we see that models 3 and 4 are substantially more probable
than models 1 and 2, with model 4 being marginally more probable than model 3. This is
consistent with our expectations based on the phenomenology of the problem. Models 1 and
2 are simple and therefore have smaller Occam penalties, but they fit the data poorly and are
therefore penalized by small best fit likelihoods. By comparison, models 3 and 4 fit the data
well and therefore have large best fit likelihoods, which outweigh the Occam penalty from
increased complexity. While model 3 fits the data slightly better than model 4, the additional
complexity of model 3 is not justified by the improvement in fit, and so model 4 is the most
probable model given our experimental data.
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Fig. 4.9 Model ranking metrics for four candidate models. The best fit likelihood (BFL) measures
how well the model fits the data. The Occam factor (OF) penalizes the model based on its parametric
complexity. The marginal likelihood (ML) is the overall evidence for a given model, and is the product
of the BFL and the OF (i.e. log(ML) = log(BFL) + log(OF)). The model with the largest marginal
likelihood is the most likely model, given the experimental data.

Finally, in Fig. 4.10 we compare the inferred uncertainty to the known uncertainty, which
was estimated based on the mean random error for all tests. Random error is the dominant
source of quantifiable experimental uncertainty in this rig. We see that the inferred uncertainty
in both growth rate and frequency for models 1 and 2 is significantly larger than the known
uncertainty, indicating either systematic error in the experiments or structural error in the
model. By comparison, the inferred uncertainty for models 3 and 4 is comparable to the known
uncertainty. This suggests that the systematic error in models 1 and 2 is due to structural error
in the models, rather than systematic measurement error, because it has been eliminated in
models 3 and 4.

Inferring the parameters of the fluctuating heat release rate model

We now apply the most probable model to all 24 flames. As a reminder, the flames are
categorized in six groups of four flames, where the flames in each of the six groups have
the same convective time delay but varying mean heat release rate. Each flame is traversed
from 0.2 m to 0.35 m from the duct inlet, in 0.05 m increments. The experimental results are
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Fig. 4.10 Inferred uncertainties for each flame, modelled by each of the four candidate models. The
uncertainty in the (a) growth rate, ssr , and (b) frequency, ssi , is shown in units of standard deviations.
The dashed line represents the known uncertainty, which was estimated based on the random error and
precision of the measurement chain.

shown in Fig. 4.11, from which we see that the chosen flame parameterization has produced
a convenient basis for exploring thermoacoustics in conical flames. Changing the convective
time delay changes the thermoacoustic behaviour, while changing the power mainly changes
the strength of the thermoacoustic effect. The data includes neutral flames (blue and orange),
driving flames (teal, red and yellow) and damping flames (pink). This allows us to test our
inference framework on a wide range of flame dynamics.

We use the experimental data to infer the parameters of model 4, chosen in the previous
section. The posterior model predictions are compared with the experimental data for all 24
flames at 4 flame positions in Fig. 4.12. We see that the model predictions are within the experi-
mental uncertainty bounds for all the flames at all positions, except for the frequency prediction
of the highest power flame in group 6 (see Fig. 4.12 (f.ii)). For this experiment the model
over-predicts the frequency by 2.4 Hz, which is less than 1% of the measured value. We should
expect increased error in the frequency predictions for longer flames, because the frequency
predictions are sensitive to the sound speed field, which becomes poorly approximated in the
1D network model for longer flames.

The results from Fig. 4.12 are repeated in Fig. 4.13, but are grouped according to flame
power rather than convective time delay, and the axis scales have been matched between the
plots. This makes the model fit less clear, but highlights some important physical trends. Firstly,
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Fig. 4.11 Experimental measurements of (a) growth rate, sr, and (b) angular frequency, si, plotted
against the flame convective time delay, tc and mean heat release rate, Q̄. The experimental data points
are shown with circular markers, with vertical lines representing a confidence interval of 3 standard
deviations. A thin connecting line has been added between experimental data points as a visual aid. The
results for each of the four burner positions are shown, with darker shades representing lower burner
positions and lighter shades representing higher burner positions. The results are coloured according to
the flame groups, which correspond to the colours in Fig. 4.3.

the growth rate plots emphasize the fact that increasing the flame power while keeping the
convective time delay constant strengthens the thermoacoustic effect. Secondly, it is clear that
several flames display the same thermoacoustic behaviour, as seen by the overlapping growth
rate measurements/predictions. We should therefore expect that these flames have similar flame
transfer functions.

We see from Figs. 4.12 and 4.13 that, although the model was selected based on the lowest
power flames from groups 1-3, it remains accurate at higher powers and longer convective
time delays once the correct model parameters are found. This demonstrates the power of a
physics-based, data-driven modelling approach. Once the best model is selected, it can be
applied to cases well outside the range of the data used to select the model. This is particularly
useful for thermoacoustic systems because the model selection process can be carried out using
data from low power experiments, which are cheaper and safer to conduct, and then applied
to higher power cases using only a few experimental observations to find the most probable
model parameters.
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Fig. 4.12 Posterior model predictions and experimental measurements of (i) growth rate, sr, and (ii)
angular frequency, si, plotted against normalized flame position, X/L. Model predictions (solid lines)
are plotted with confidence bounds of 3 standard deviations. Frames (a)-(f) show each of the six groups
of flames with constant convective time delay, coloured according to the colours in Fig. 4.3. Darker
shades correspond to lower flame powers, and lighter shades correspond to higher flame powers.
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Fig. 4.13 Posterior model predictions and experimental measurements of (i) growth rate, sr, and (ii)
angular frequency, si, plotted against normalized flame position, X/L. The model predictions are shown
as solid lines with a shaded patch representing the confidence bounds. The experimental results are
shown with circular markers, with vertical lines representing confidence bounds. Frames (a)-(d) show
the results for each of the four flame powers. The results for each of the six convective time delays are
shown with different colours, corresponding to those in Fig. 4.3.

We have shown that the inference process results in a quantitatively accurate model, but
it is equally important that the inferred flame transfer functions are physically meaningful.
We focus on the flame transfer function between heat release rate fluctuations and velocity
perturbations in the burner tube, because this is most commonly discussed in the literature.
In Fig. 4.14, we plot the 24 inferred flame transfer functions for internal perturbations on
polar axes with confidence bounds of 2 standard deviations. First, we see that the flames are
appropriately placed on the polar plot, with driving flames (teal, red and yellow) clustered
together with roughly 90� phase lag between the velocity perturbation and the heat release rate
fluctuation. This corresponds to heat release rate fluctuations peaking at moments of maximum
acoustic pressure, as we expect for thermoacoustically driving flames. Similarly, the damping
flame (pink) has a phase lag of 270�, corresponding to heat release rate fluctuations peaking at
moments of minimum acoustic pressure. The neutral flames (blue and orange) have different
phase delays, with the orange flames having a phase lag of 180� and the blue flames having a
phase lag of 270�, but both fall in the neutral region of the polar plot.



4.2 Assimilating data into the thermoacoustic model 101

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

0 0.2 0.4 0.6

Damping

N
eu
tra
l

gnivirD

N
eutral

Fig. 4.14 Polar plot of the inferred flame transfer functions for internal perturbations for all 24 flames.
The gain is shown on the radial axis, and phase delay on the angular axis. The shaded areas represent
a confidence region of 2 standard deviations. The colours correspond to those in Fig. 4.3, with darker
shades representing lower flame powers and lighter shades representing higher flame powers. The
red-white-blue contour in the background represents the effect of flame transfer function gain and phase
on the instability growth rate, where red represents positive growth rates, white represents no growth
and blue represents negative growth rates.

The polar plot also shows that the uncertainty in the inferred flame transfer functions
depends on two factors: (i) the flame behaviour and (ii) the measurement uncertainty. We see in
Fig. 4.14 that the neutral flames (blue and orange) have large uncertainties. This is because the
thermoacoustic effect is weak, and therefore difficult to observe from pressure measurements
alone. By contrast, the driving flames (teal, red and yellow) have smaller uncertainties, because
the thermoacoustic effect is strong and therefore easy to observe. The damping flame (pink)
has a large uncertainty even though the thermoacoustic effect is strong. This is because the
oscillations decay quickly, meaning that the decay rate and natural frequency must be measured
from few oscillations, which increases the measurement uncertainty. It is convenient that we
have high certainty in the behaviour of driving flames, because these are typically of most
interest to designers.

Finally, we check the validity of the inferred flame transfer functions by comparing them
to directly measured values. We did not directly measure the flame transfer function in our
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experiments, so instead we compare the inferred flame transfer functions to direct measurements
from similar systems in the literature. No experimental studies in the literature have measured
the response of a flame to forcing from outside the burner tube. We can therefore only compare
the inferred flame transfer functions between heat release rate and velocity perturbations from
within the burner tube to those from the literature. Cuquel et al. [49] have shown that for conical
flames, flame confinement only affects the flame transfer function for confinement ratios (burner
radius / duct radius) above 0.44. Our rig has a confinement ratio of 0.125, so we expect that we
can compare the inferred flame transfer function for internal velocity perturbations to those
directly measured on unconfined flames.

The results of the comparison are plotted in Fig. 4.15. We show results from three exper-
imental studies [49, 139, 167] and one analytical model [143]. The experimental studies all
considered unconfined, premixed, laminar, conical flames forced through the burner tube. The
burner of Kornilov [139] was similar to that in the current study, while the burners of Schuller
et al. [167] and Cuquel et al. [49] had a diameter of roughly double that in the current study.
The analytical model of Schuller et al. [143] considered an unconfined, premixed, laminar
conical flame of arbitrary diameter.

We plot the gain and phase of the flame transfer function for internal perturbations against
reduced frequency in Fig. 4.15. We use the same definition for reduced frequency as Schuller
et al. [167]: w⇤ = siR/(SL[1� (SL/ū)2]1/2), where si is the frequency of oscillations, R is the
burner radius at the injection plane, SL is the unstretched laminar flame speed and ū is the bulk
velocity in the burner tube.

The flame transfer function gains are compared in Fig. 4.15(a). Considering only the
experimental data taken from literature, we note that despite the similarity of the experimen-
tal configurations, the measured flame transfer functions vary significantly. While the gain
measurements agree fairly well at low reduced frequencies, there is significant spread in the
measurements between reduced frequencies of about 7 and 20. Considering the spread in
the direct measurements, we see that the inferred gains agree reasonably well with the direct
measurements for the blue, teal and red flames. The inferred gains for the orange, pink and
yellow flames are slightly higher than the direct measurements. The orange flames have a
phase delay of 180�, which makes the gain difficult to infer because the growth rate becomes
insensitive to gain. This is reflected in the large uncertainty in gain for the orange flames.
The pink flames were strongly damping which led to larger experimental error. The increased
experimental error was estimated from the variance in 75 experimental observations, which
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Fig. 4.15 Comparison of the inferred flame transfer functions for internal perturbations (colours) with
direct measurements (lines with symbols) and an analytical model (line) from the literature. The flame
transfer function (a) gain, |F |, and (b) phase delay, \F , is plotted against the reduced frequency,
w⇤. The inferred flame transfer functions are shown as ellipses indicating a confidence interval of 3
standard deviations, with colours corresponding to those in Fig. 4.3. There is good agreement for the
inferred gain when (i) the thermoacoustic effect was strong and therefore easily observable, and (ii)
the experiments had low systematic error. A larger discrepancy is therefore expected for (i) the orange
flames because they were thermoacoustically neutral, and (ii) the pink and yellow flames because they
contained unquantified systematic error. The direct phase measurements (grey lines) do not agree with
each other, even though those experiments were similar to each other, indicating that the phase is highly
sensitive to the experimental configuration. The inferred phase measurements (colours) are similarly
scattered.

appears to underestimate the error because the uncertainty bounds do not cover the direct
measurements. The yellow flames also have a component of unquantified systematic error,
which is likely to come from the error in approximating the sound speed field in the 1D network
model for these long flames. In the case of both the pink and yellow flames, the systematic
error could be estimated if a suitable model for the flame transfer function were available.

The flame transfer function phases are compared in Fig. 4.15(b). Considering the exper-
imental data first, we note that the phase measurements show almost no agreement at any
of the reduced frequencies. We therefore cannot expect that the phases inferred from our
experiments should show any meaningful agreement with the direct measurements from the
literature. The variability of the direct phase measurements is particularly problematic due to
the severe sensitivity of the thermoacoustic behaviour to the phase delay [19]. Had we directly
applied the flame transfer functions from any of the studies from the literature in our model,
we would not have been able to produce a quantitatively accurate predictions of the system
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behaviour. This motivates the approach of inferring flame transfer functions in-situ, rather than
relying only on results in the literature or even direct measurements taken from the unconfined
burner.

4.2.3 Conclusion

In this chapter, we introduce additional complexity to the system by replacing the electric
heater with a laminar conical flame. For the cold rig, this introduces the challenge of generating
a quantitatively accurate model of a system with coupled acoustic ducts. For the hot rig it
introduces the complexity of richer heat release rate dynamics, and more random variation
in the experimental data. We once again perform automated experiments to collect the data,
which we assimilate into physics-based models of the thermoacoustic system.

Using Bayesian inference, we infer the flame transfer functions of 24 flames in-situ from
pressure measurements alone. The state-of-the-art for measuring flame transfer functions typi-
cally requires optical access to the flame, which is often not available in industrial combustion
chambers. The flame must therefore be characterized outside the chamber, where it is not
exposed to the confinement, heat loss and flame-flame interactions that are present within the
chamber, to which the flame transfer function has been shown to be sensitive [37, 43, 49, 50].
The ability to obtain flame transfer functions with the flame in-situ from practically achievable
measurements is therefore a valuable result.

We verify the inferred flame transfer functions by comparing them to direct measurements
from similar rigs in the literature. The direct measurements themselves were somewhat
inconsistent for the gain, and totally inconsistent for the phase delay. Nonetheless, we show that
the inferred quantities are generally within the expected range, and any significant discrepancies
are easily explained.

While a handful of previous studies have calculated flame transfer functions without optical
access, none has assessed their uncertainties, and therefore they tend to be over-confident in
their results [153–159]. We rigorously quantify the uncertainties in the inferred flame transfer
functions and find, as expected, that the flame transfer functions are most precise if (i) the
thermoacoustic effect is strong, and (ii) the measurement uncertainty is small. This can help to
guide future experiments on industrial rigs.

More generally, we once again demonstrate that the Bayesian framework forces the re-
searcher to adhere rigorously to both the physics and the experimental data. This often reveals
shortcomings in existing models. In this chapter we find that the experimental data cannot be
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explained if the heat release rate depends only on velocity perturbations in one of the ducts,
which is a common assumption in the literature. We find that the data contains strong evidence
that the heat release rate depends instead on the velocity perturbations in both the duct and the
burner tube.





Chapter 5

Ducted turbulent conical flames

This chapter contains excerpts from a conference paper on inferring flame transfer functions of
turbulent conical flames in a duct [168]. This work was performed independently by Matthew
Yoko.
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5.1 Introduction

In Chapter 4, we applied our Bayesian framework to laminar conical flames in a duct. This
allowed us to infer the most probable values of the flame transfer function for 24 flames, with
the flames in-situ, using only pressure measurements. Unlike other methods of obtaining flame
transfer functions from pressure time series data [157–159], our method rigorously quantifies
the uncertainties in the inferred flame transfer functions.

The method we have used makes no assumptions about the structure of the flame, and so
it could theoretically be applied to arbitrarily complex flames with turbulence and swirl. We
showed, however, that the method is sensitive to the experimental uncertainty. This raises
questions about whether the method can still work for turbulent flames, which (i) produce
additional broadband noise, and (ii) exhibit stochastic thermoacoustic behaviour, both of which
would increase the experimental uncertainty. To test this, we extend the work in Chapter 4
to turbulent conical flames. This allows us to assess the influence of turbulent noise without
having to significantly redesign the existing burner.

In Chapter 4 we validated our inferred flame transfer functions by comparing them with
direct measurements from the literature. The results were somewhat inconclusive, especially
due to the wide inconsistency between phase delay measurements in the literature. In the
current chapter, we improve on this by directly measuring the fluctuating heat release rates to
provide a more rigorous validation of the method.

5.1.1 Experimental configuration

The experimental rig is slightly modified from Chapter 4, as illustrated in Fig. 5.1. We only
report the changes compared with § 4.1.1. These are as follows:

Firstly, the burner is fitted with a turbulence generation grid, which is a stainless steel disk
with a thickness of 0.3 mm, perforated with 19 holes of diameter 1.5 mm. The grid is positioned
35 mm upstream of the injection plane. Secondly, we install a hot wire probe at the upstream
end of the duct to obtain an absolute reference for the phase of the velocity fluctuations. Finally,
we use a high speed camera (Phantom Miro M310) fitted with a zoom lens (Nikkor 80-300 mm)
to capture footage of the steady and perturbed flames in order to directly quantify the heat
release rate fluctuations.
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Fig. 5.1 Diagram of turbulent ducted flame rig.

5.1.2 Direct measurements of the fluctuating heat release rate

We synchronize the camera trigger to the acoustic forcing, and capture images of 100 thermoa-
coustic cycles at 20 phase angles (2000 frames in total). By phase-averaging the frames, we
isolate the coherent perturbations caused by the acoustic forcing and remove the stochastic
turbulent perturbations, as illustrated in Fig. 5.2. The camera exposure is fixed to 150 µs for all
tests. The video files are large, so we only record three experiments per flame.

The high speed camera captures the unfiltered emission of the flame in the visible range,
which we use as a proxy for the heat release rate. It is not generally guaranteed that the
unfiltered light emission can be related to the heat release rate. Several studies have, however,
shown the unfiltered light emission to be a reasonable approximation for heat release rate for
various premixed flames [169–172], many of which were similar to (or more complex than)
the flames we study in this chapter. We therefore assume that I µ Q, where I is the spatially
integrated intensity of the image, and Q is the instantaneous heat release rate. The relative
fluctuating intensity, Î = I0/Ī, and the relative fluctuating heat release rate, Q̂ = Q0/Q̄, are
therefore equivalent.

We perform a windowed Fourier-decomposition on Q0 to obtain |Q0| and \Q0, where \Q0

is referenced to the phase of the pressure signal at the reference microphone. The probe
microphones induce a small phase delay, which we correct with the absolute phase reference
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Fig. 5.2 Instantaneous (top) and phase-averaged (bottom) images of the perturbed flame at ten phase
angles (artificial colour).

from the hot wire probe. We use the mean of the Fourier-decomposed signal to compute the
expected value of Q̂. We use the standard deviation to estimate the random error in the direct
measurements, which is primarily due to the stochastic turbulent fluctuations.

5.1.3 Flame properties

In this chapter we study 15 turbulent conical flames. We control the flame properties by varying
the fuel and air flow rates using the mass flow controllers. We showed in Chapter 4 that the
flame power predominantly modulates the strength of the thermoacoustic effect, while the
convective time delay alters the thermoacoustic behaviour. We therefore choose to study flames
with smaller increments in convective time delay, but equivalent power. The 15 flames all have
a heat release rate of 1 kW in the inner cone. We choose to control the heat release rate of the
inner cone because we observed that, in our rig, the outer cone does not respond to acoustic
forcing, and therefore does not significantly contribute to the thermoacoustic oscillations.
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The main flow and combustion characteristics of the 15 flames are illustrated in Fig. 5.3.
The flames are equispaced on the 1 kW iso-contour, extending from the maximum flow rate
that the mass flow controllers can deliver down to lean blow-off. The benefit of only studying
rich flames is that we can study a wide range of equivalence ratios with minimal changes in
injection velocity. We can therefore study a wide range of flame lengths and flame shapes
with almost constant turbulence intensities. The main flow and turbulence properties of the 15
flames are summarized in Table 5.1. Further details are given in Table A.2 in Appendix A.
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Fig. 5.3 Properties of the 15 flames studied in this chapter. The flames studied are presented as blue dots
on axes of the air and fuel flow rate commands sent to the mass flow controllers. The injection velocity
and equivalence ratio are overlaid as labelled iso-contours. The inner cone heat release rate is shown as
coloured contours in the background, with the 1 kW iso-contour highlighted as a solid blue line.

Table 5.1 Summary of the properties of the 15 flames studied in this chapter.

Property Units Value / Range
Equivalence ratio - 1.09-1.42
Injection velocity m/s 4.58-5.00
Volumetric air flow rate Ln/min 15.7-16.7
Volumetric fuel flow rate Ln/min 0.72-1.00
Inner cone heat release rate W 1000
Total heat release rate W 1100-1600
Reynolds number - 2800-3000
Turbulence intensity - 5.94-6.02%



112 Ducted turbulent conical flames

5.1.4 Thermoacoustic model of the ducted flame rig

The thermoacoustic network model is the same as that described in § 4.1.4. For convenience,
we repeat the model diagram in Fig. 5.4. The only modification to the rig that may impact the
modelling is the introduction of the turbulence grid, which could be a source of visco-thermal
dissipation. This is modelled in the same manner as the cold electric heater in Chapter 3.

Area
Change

Junction Flame

Burner tube

Duct

Ru

Rb

Rd

ηbi

ηbe + ηd ηd

Fig. 5.4 Diagram of the acoustic network model used in this study. The unknown model parameters are:
R?, the reflection coefficients at the boundaries, h?, the strengths of the visco-thermal damping, and F ,
the transfer function from velocity perturbations to heat release rate fluctuations.

5.2 Inferring flame transfer functions of turbulent conical
flames from pressure measurements

In this section we apply the Bayesian inference framework to infer the fluctuating heat release
rate of the 15 flames from pressure measurements. As before, we begin by characterizing the
sources of acoustic damping in the cold rig, following which we introduce the flames.
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5.2.1 Characterizing the cold rig

In Chapter 4, we assimilated nine parameters describing the characteristics of the cold rig.
We used six parameters for the three complex reflection coefficients. We used a further three
parameters for the strength of the visco-thermal damping on (i) the inner wall of the duct, (ii)
the outer wall of the burner and (iii) the inner wall of the burner. The posterior values of the
three visco-thermal damping strengths were, however, quite similar, so in the current chapter
we apply a single value for the strength of this damping to all three surfaces. This reduces the
number of parameters used to describe the cold rig from nine to seven, which raises the overall
marginal likelihood of the cold rig model.

We perform three sets of cold experiments to infer the seven unknown parameters, which
we label C1-C3. In C1, we once again harmonically force the empty duct to infer Ru, Rd and h .
We supply weak prior information for the reflection coefficients using analytical models for the
reflection at flanged [163] and unflanged [131] duct terminations. We set a tight prior of h = 1,
because the model makes assumptions which are reasonable for our rig, and so we expect it to
be accurate.

In C2 we introduce the burner and traverse it through the rig while supplying a mass flow
rate of air sufficient to choke the choke plate. We use the data to infer Rb and to update (i) the
upstream reflection coefficient, including the disturbance of the burner, and (ii) the strength
of the visco-thermal damping accounting for both the duct and burner walls. We supply the
posteriors inferred from the C1 experiments as priors for the C2 experiments, but inflate the
uncertainty in Ru and h to allow the parameters to update based on the new evidence. We
supply a weak prior for Rb, using the theoretical value for a choked boundary.

In C3 we install the turbulence grid and repeat the C2 experiments. This was intended to
inform a model for the damping of the turbulence grid, but we found that the turbulence grid
had a negligible impact on the decay rate and natural frequency, suggesting that the damping is
negligible. We had expected the damping to be small because the turbulence grid (i) is very
thin (0.3 mm), (ii) has a large open area ratio (43%), and (iii) is placed near a velocity node in
the burner.

The results of the cold rig characterization are shown in Fig. 5.5. As in Chapter 4, we
see that the prior model is qualitatively accurate in each case, but not quantitatively accurate
because of small errors in the parameter values. After we infer the parameters from the data,
the model predictions match the data to within experimental uncertainty, and the uncertainty
bounds on the posterior model predictions are small, meaning that we have high confidence in
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the posterior parameter values. While the errors in the prior model predictions may be small, it
is important that we can accurately model the cold rig. Any errors in the cold rig model will be
incorporated into the flame transfer function in the next step, making the inferred flame transfer
functions inaccurate.
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Fig. 5.5 Experimental measurements of (a) growth rate and (b) angular frequency plotted against burner
exit location for the three sets of cold characterization experiments. Prior model predictions are plotted
(dashed lines) without confidence bounds. Model predictions after data assimilation are plotted (solid
lines) with a confidence bound of 2 standard deviations.

The prior and posterior joint parameter probability distributions are shown graphically in
Fig. 5.6. Each set of axes plot the joint distribution between a pair of parameters. The discs
represent regions of one, two and three standard deviations, centred around the expected value.
As in Chapters 3 and 4, it was not possible to fully disentangle the values of Re(Ru) and Re(Rd),
and the values of Im(Ru) and Im(Rd). The posterior uncertainties are, however, acceptably
small, even with the uncertainty due to the correlation.

5.2.2 Assimilating heat release rate models from pressure data

With an accurate model of the cold acoustics, any changes in the system behaviour when the
flame is introduced can be attributed to the flame transfer function. We assume that the cold
rig parameters do not change when the flame is introduced, apart from Rd , which we expect to
change with temperature. As before, we account for this by calculating a correction factor to
the Levine-Schwinger model for the reflection coefficient [131]. When the flame is introduced,
we use the corrected model to calculate the downstream reflection coefficient of the hot duct.
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Fig. 5.6 Prior and posterior joint parameter probability distributions after assimilating data from the
cold experiments. Each disc shows the joint distribution between a pair of parameters. The three rings
represent one, two and three standard deviations, centred around the expected value. The upper and
lower triangles show the same information zoomed to the prior 3 s.d. bound (lower triangle) and the
posterior 3 s.d. bound (upper triangle).

We model the fluctuating heat release rate as a velocity-dependent source in the energy
equation of the acoustic network model using the local linear feedback, keu f . This is a complex
number, which we infer from data. As a reminder, the feedback strength is related to the typical
flame transfer function by:

F =
Q0/Q̄
u0/ū

=
g

g �1
p̄ū
Q̄

keu f (5.1)

where F is the complex-valued flame transfer function, which relates fluctuations in velocity,
u0, to fluctuations in heat release rate, Q0. The fluctuations in velocity and heat release rate are
normalized by the mean bulk values, ū and Q̄. g is the ratio of specific heats, and p̄ is the mean
pressure at the injection plane.



116 Ducted turbulent conical flames

We infer the parameters of the fluctuating heat release rate model for each of the 15 flames
individually, using only observations of the growth (or decay) rate and the natural frequency of
oscillations. We repeat this with the flames in two axial positions within the duct: x/L = 0.25
and x/L = 0.5, where x is the axial position along the duct measured from the upstream end,
and L is the length of the duct. For each of the flames, at each flame position, we infer two
parameters, which are the real and imaginary parts of keu f . We use real-imaginary form, because
it leads to a well-posed optimization problem with a single global optimum.

We compare the posterior model predictions to the experimental observations in Fig. 5.7,
which plots the growth rate and natural frequency of oscillations against Strouhal number.
We have defined the Strouhal number for the turbulent flames as St = siL f /ū, where si is
the angular frequency, L f is the length of the unperturbed flame, and ū is the mean injection
velocity. Although each flame was forced at the natural frequency of the rig, they each have
different lengths and injection velocities, so we obtain results over a wide range of Strouhal
numbers.
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Fig. 5.7 Comparison of experimental (circles and error bars) and predicted (line and patch) values of (a)
growth rate and (b) natural frequency of thermoacoustic oscillations plotted against Strouhal number,
where the length scale is the length of the unperturbed flame and the velocity scale is the mean injection
velocity. The results for two burner positions are shown: x/L = 0.25 in blue and x/L = 0.5 in orange.

After inferring the most probable fluctuating heat release rate for each flame, the model
predicts the experimental observations exactly. However, we note that in this chapter we
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assimilate the fluctuating heat release rate for each flame, at each burner position individually.
This gives the model freedom to fit any data. Any errors in the data or the cold model would
therefore be incorporated into the fluctuating heat release rate parameters in order to make the
model fit the data.

We convert the feedback strength, keu f , into the more familiar form of a flame transfer
function, using Eq. (5.1). We emphasize, however, that for each flame we only obtain the flame
transfer function at a single frequency (the observed frequency). The inferred flame transfer
functions for the 15 flames at two burner positions are plotted against Strouhal number in
Fig. 5.8. The Bode plot in Fig. 5.8 qualitatively resembles the typical flame transfer function
for laminar conical flames (see Fig. 4.15, or Refs. [140, 166, 167]). We also note that the
flame transfer functions inferred from the two burner positions are similar, which we should
expect because the flame transfer function should not depend on burner position. We do not
expect them to be identical, however, because it was not possible to keep the forcing amplitude,
u0/ū consistent between the two tests. This was not a problem in chapter 4, because we
always maintained the forcing amplitude within the linear regime. In this chapter, however, we
increased the forcing amplitude to maximize the signal-to-noise ratio of the data.
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Fig. 5.8 Flame transfer functions inferred from pressure data. (a) Gain and (b) phase delay are plotted
against Strouhal number for 15 flames at two burner positions: x/L = 0.25 (blue) and x/L = 0.5 (orange).
The errorbars denote a region of 2 standard deviations from the expected value.
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An alternate representation of the variation of flame transfer function with the flame
properties is given in Fig. 5.9, which plots the flame transfer functions on polar axes. For clarity,
only the flame transfer functions for the flames at x/L = 0.25 are shown, because the results
for x/L = 0.5 are similar.
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Fig. 5.9 Flame transfer functions for the 15 flames at x/L = 0.25 plotted on polar axes, with the gain
plotted on the radial axis and the phase delay on the angular axis. The patches denote a region of 1
standard deviation. The contour in the background represents the effect of the gain and phase of the
flame transfer function on the growth rate of oscillations, where red represents increased growth rates,
blue represents reduced growth rates and white represents no change in growth rates.

In Chapter 4 we noted that, for laminar conical flames, the uncertainty of the inferred
flame transfer functions was largest for (i) neutral flames, and (ii) strongly damping flames.
We attributed (i) to the fact that neutral flames produce a weak thermoacoustic effect, so
it is difficult to infer the flame transfer function from observations of the thermoacoustic
effect alone, and we attributed (ii) to the fact that strongly damping flames produce quickly
decaying oscillations, which increases the experimental uncertainty in the growth rate and
natural frequency. For turbulent flames, however, we see that the uncertainty in the flame
transfer function is dominated by experimental uncertainty. As was noted at the beginning of
this chapter, the experimental uncertainty for turbulent flames is larger because (i) the turbulence
produces additional broadband noise, which reduces the signal-to-noise ratio of the data, and
(ii) the turbulence perturbs the flame shape, causing variation in the thermoacoustic effect,
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which introduces additional random error into the experimental data. We still see, however,
that we obtain precise estimates of F for the driving flames, which are of the most interest in
industrial systems.

Finally, we see from both Figs. 5.8 and 5.9 that the uncertainty in \F is much lower
than the uncertainty in |F |. This is because the predictions of the thermoacoustic model are
most sensitive to the phase delay [109]. In the forward modelling problem this is typically
a challenge, because small errors in \F can cause large errors in the model predictions. In
the inference problem, however, this is beneficial because it provides a more precise posterior
parameter estimation.

5.2.3 Validation of inferred fluctuating heat release rate

We validate the inferred quantities by comparing the posterior fluctuating heat release rate
against that measured directly using the high speed camera. The validation results are shown
in Fig. 5.10. We plot the magnitude and phase of the relative fluctuating heat release rate,
Q̂ = Q0/Q̄, against Strouhal number, St, for the 15 flames at both burner positions.
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Fig. 5.10 (a) Magnitude of the relative heat release rate fluctuations, |Q̂|, (b) the phase of the relative heat
release rate fluctuations, \Q̂ as functions of Strouhal number, St. Comparison of the direct measurements
(circles with error bars) with the inferred quantities (lines and patches) for the flame positions x/L = 0.25
(blue) and x/L = 0.5 (orange).
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We see from Fig. 5.10(a) that the magnitude of the inferred fluctuating heat release rate
compares well with the direct measurements for all 15 flames at both burner positions. For the
burner position x/L = 0.25, the data includes both linearly stable and self excited flames. The
system was unstable for Strouhal numbers near 14, where the inferred and measured values for
|Q̂| is substantially lower than when the burner was at x/L = 0.5. This is because the acoustic
amplitude reached during the limit cycle was lower than the forcing amplitude, producing
smaller heat release rate fluctuations.

For both burner positions, the data covers a wide range of forcing amplitudes between 6%
and 25%. This covers amplitudes that typically result in both linear and nonlinear thermoacous-
tic responses, indicating that this framework could be used to infer flame describing functions,
if data at multiple forcing frequencies and amplitudes were available.

The uncertainty in the inferred heat release rate magnitude is generally only slightly larger
than the uncertainty of the direct measurements, except for flame 12, where the uncertainty in the
inferred heat release rate is much larger than the direct measurement. The large uncertainty in
flame 12 is, however, due to larger experimental uncertainty. When the burner is at x/L = 0.25,
flame 12 produces a growth rate near zero (see Fig. 5.7). The system alternates between linearly
stable and self excited, which causes a large variation in the experimental results. This was not
captured by the direct measurements, because we only recorded three of the 100 experiments,
all of which happened to capture similar behaviour. The similar uncertainties in the inferred and
measured heat release rates suggests that the increased random error introduced by turbulence
affects the direct measurements and inferred quantities to a similar extent.

Fig. 5.10(b) shows the phase of the fluctuating heat release rate, measured relative to the
pressure at the reference microphone. We see that the inferred quantities compare well with
the direct measurements, except for when the magnitude of the heat release rate fluctuations
are small. In this case we can expect larger errors in both the inferred quantities and direct
measurements, because it is generally challenging to identify the phase of a low amplitude,
noisy signal.

Unlike the magnitude, the uncertainty in the inferred phase is smaller than that in the direct
measurements. This is because (i) the direct measurement of the relative phase between two
noisy signals is prone to error, and (ii) the sensitivity of the model to the phase delay results in
a more precise inferred quantity. The uncertainty in the inferred heat release rate phase does,
however, increase when the heat release rate magnitude is small, as we would expect.
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5.3 Conclusion

In this chapter, we further increase the complexity of the system by studying turbulent conical
flames. The results of Chapter 4 revealed that the uncertainty in the inferred flame transfer
function grows with experimental uncertainty. Turbulence introduces large random uncertainty
through (i) additional broadband noise, and (ii) stochastic variation in the thermoacoustic
behaviour. It is therefore important to test how the framework handles turbulent flames, as they
are most prevalent in industry.

We show that, in spite of the larger random error introduced by turbulent fluctuations, the
Bayesian framework still performs well. We are still able to converge to the most probable
parameters and generate quantitative agreement between the model and the data. As expected,
we find that the uncertainty in the inferred flame transfer functions increases as a result of the
larger experimental uncertainty. However, we still obtain acceptably precise estimates of the
flame transfer functions for driving flames. These are the most dangerous, so it is useful that
we are able to characterize them with the highest precision.

The set of flames studied in this chapter include both linearly stable and self excited
flames. Each linearly stable flame was forced at the peak amplitude that could be driven by
the loudspeaker, which produced a range of amplitudes that typically result in both linear and
nonlinear thermoacoustic responses. We are able to infer the flame transfer function in each of
these cases, demonstrating that the method is not limited to simple cases like stable flames with
small amplitude perturbations.

We directly measure the fluctuating heat release rate, and use the direct measurements to
validate the inferred quantities. We show that the expected values of the inferred fluctuating heat
release rates compare well to the direct measurements for all 15 flames. Further, we see that the
direct measurements themselves suffer large random uncertainty due to the stochastic variation
introduced by turbulence. As a result we find, unexpectedly, that the inferred fluctuating heat
release rate magnitudes have similar precision to the direct measurement, while the phase
delays are inferred with more precision than the direct measurement.





PART III:

CONCLUSION





Chapter 6

Adjoint-accelerated Bayesian inference in
thermoacoustics

6.1 Summary of main results

In Chapter 3 we use the hot wire Rijke tube to demonstrate the full set of tools that the Bayesian
framework provides. We first perform automated experiments to collect a dataset for training.
With this dataset, we use Bayesian parameter inference, uncertainty quantification and model
comparison to construct a quantitatively accurate model of the rig. We then use Bayesian
optimal experiment design to assess how much data is strictly required for several inference
tasks.

In § 3.2 we apply our adjoint-accelerated Bayesian inference framework to generate a
quantitatively accurate model of the hot wire Rijke tube. The final assembled model contains
the fewest possible parameters, is quantitatively accurate over the full operating range, and
is physically interpretable. Further, the model extrapolates successfully because it is physics-
based. This is a significant improvement on other attempts in the literature e.g. [123].

Following the Bayesian framework forced us to critically evaluate several assumptions
typically made in the literature. We find that many of these assumptions are not supported
by the data. This reveals one of the most powerful features of the Bayesian framework: the
researcher is forced to carefully consider the underlying physics. At each step, the quality of
the assumptions we make are rigorously evaluated with quantitative measures.

In § 3.3 we revisit the densely sampled dataset used to train the model in § 3.2, and use it to
demonstrate Bayesian optimal experiment design. We show that by using Bayesian optimal
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experiment design we can significantly reduce the experimental cost by (i) performing only a
few, highly informative experiments, and (ii) using fewer, carefully placed sensors. This is an
important result because, while our rig is cheap to operate, it can be prohibitively expensive to
collect data on industrial rigs. There is therefore a large financial incentive to minimize the
number of experiments conducted on these rigs.

In Chapter 4 we introduce additional complexity to the system by replacing the electric heater
with a laminar conical flame. For the cold rig, this introduces the challenge of generating
a quantitatively accurate model of a system with coupled acoustic ducts. For the hot rig it
introduces the complexity of richer heat release rate dynamics, and more random variation
in the experimental data. We once again perform automated experiments to collect the data,
which we assimilate into physics-based models of the thermoacoustic system.

Using Bayesian inference, we infer the flame transfer functions of 24 flames in-situ from
pressure measurements alone. If the flame’s response is sensitive to its environment, which
it often is, this is preferable to measuring the flame transfer functions ex-situ using optical
methods.

We verify the inferred flame transfer functions by comparing them to direct measurements
from similar rigs in the literature. The direct measurements themselves were somewhat
inconsistent for the gain, and totally inconsistent for the phase delay. Nonetheless, we show that
the inferred quantities are generally within the expected range, and any significant discrepancies
are easily explained.

We rigorously quantify the uncertainties in the inferred flame transfer functions and find, as
expected, that the flame transfer functions are most precise if (i) the thermoacoustic effect is
strong, and (ii) the measurement uncertainty is small. This can help to guide future experiments
on industrial rigs.

As in Chapter 3, we evaluate modelling assumptions that have been made in other studies
in the literature. We again find that the data does not support assumptions that have been
commonly used in other studies.

In Chapter 5 we test our inference framework on turbulent conical flames to see how the
framework handles the large random uncertainty introduced by turbulence through (i) additional
broadband noise, and (ii) stochastic variation in the thermoacoustic behaviour. We show that
the Bayesian framework still succeeds in the presence of the additional random experimental
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error introduced by turbulent fluctuations. While the larger error increases the uncertainty in
the inferred flame transfer functions, we still obtain acceptably precise estimates for driving
flames. These are the most dangerous, so it is useful that we are able to characterize them most
precisely.

We improve on the validation attempt made in Chapter 4 by directly measuring the fluctuat-
ing heat release rate of each flame. We show that the inferred quantities compare well to the
direct measurements for all 15 flames. Further, we see that the direct measurements themselves
suffer large random uncertainty due to the stochastic variation introduced by turbulence. As
a result we find that, unexpectedly, the fluctuating heat release rate magnitudes are inferred
with similar precision to the direct measurement, while the phase delays are inferred with more
precision than the direct measurement.

6.2 Outlook

Overall, this thesis demonstrates that the Bayesian framework provides a powerful set of
tools for combining experimental data with numerical models. Within this framework, the
often separate silos of experimentation and modelling become strongly mutually beneficial.
The modeller benefits from the work of the experimentalist by using experimental data to
improve the accuracy of physics-based models. The experimentalist benefits from the work
of the modeller by using the model to design optimal experiments, significantly reducing the
experimental effort and cost.

Unlike many other machine learning frameworks, our framework produces data-driven
models that are robust, interpretable, and capable of extrapolating beyond the observed dataset.
It is therefore a natural choice for data-driven solutions in engineering and physics. While
this framework is most readily applied to reduced order models, it extends naturally to more
complex problems such as CFD simulations. Within our group it has been used to learn the
boundary conditions of a Navier–Stokes problem from noisy MRV data of cardio-vascular
flows [173], and to infer the parameters of a RANS turbulence model from LES data for a
turbulent jet flame [174]. The framework is general and can be applied to a wide range of
problems, provided you have (i) a source of data, (ii) a physics-based model, and (iii) the
derivative of the model with respect to the parameters, e.g. with an adjoint code. Adjoint or
automatically-differentiated codes are readily available in the field of fluid mechanics because
they have been widely used for shape optimization. This work is a further example of the utility
of adjoint codes. Automatically differentiated codes can be similarly useful, but care must be
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taken when coding the forward problem to ensure the code is differentiable. Careful application
of the adjoint approach always produces a well-posed differentiable code.

In the work on the hot wire Rijke tube, we were able to construct a general model of
the system because it was possible to propose a simple model for the heater dynamics. The
dynamics of even the simplest flames, however, require detailed modelling that is beyond the
scope of this thesis. This has been the subject of work carried out in parallel, where we have
assimilated data from video footage of perturbed laminar flames into a G-equation model of
the flame [175]. If this work is carried further, it will be possible to construct a quantitatively
accurate model of a burner that is capable of predicting the flame transfer function at an arbitrary
operating condition and excitation frequency. This, combined with the acoustic network models
presented in this thesis, would form a powerful design tool that could be used to inform more
elegant and robust interventions to thermoacoustic instability with fewer prototyping iterations.

For more complex flames, such as the turbulent swirl flames found in gas turbine com-
bustors, a simple G-equation model will not be suitable. For these cases it would be most
productive to assimilate data from experiments or LES into RANS simulations to learn the most
probable parameters of the turbulence and combustion models [174]. It is, as yet, unknown
if a RANS model captures enough of the physics to be capable of becoming quantitatively
accurate. The predictions could, nevertheless, be improved through the application of Bayesian
inference, while simultaneously introducing a computationally efficient method for uncertainty
quantification to a field that could greatly benefit from it.

It may also be productive to investigate the use of the distributed time delay [40] as a simple
model for the flame response. With this model, a few parameters (the discrete time delays)
can be used to reconstruct the full frequency response of the flame. We could propose prior
probabilities for several time delays based on our understanding of the physical phenomena
in the rig, e.g. vortex shedding from an obstruction upstream of the flame, or equivalence
ratio fluctuations in the injector. We could then assimilate data to get more precise estimates
of the time delays, and use systematic uncertainty quantification and model comparison to
check whether we have captured all the important time delays. The resulting model should
be capable of predicting the system behaviour at unobserved frequencies, and perhaps even
nearby operating conditions, provided the flow-physics doesn’t change significantly. The
model could then be used to find optimal interventions to thermoacoustic instability, provided
these interventions don’t change the time delays, thereby invalidating the flame model. As
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an example, it could possibly be used to identify points of maximum receptivity to a passive
control system [176, § 3.2.2].

Even without detailed flame modelling, we believe that the results of Chapters 4 and 5
can be immediately beneficial to studies on industrial test rigs. This would improve on the
experimental methods currently in use in one of two ways. Where flame transfer functions
were previously obtained ex-situ through optical means, they can now be obtained in-situ.
Where they were obtained in-situ using the multi-source method, our method can quantify the
uncertainty in the inferred quantities, which is a valuable input for decision-making. Work is
already underway on applying this framework to the Rolls–Royce SCARLET industrial test rig
[177].

When applying the framework to industrial systems, optimal experiment design will become
invaluable due to the extreme cost of data collection. Because of the low computational cost
of this framework, it would be possible to develop an automated experiment system that
recursively (i) uses the model to identify an optimal experiment, (ii) conducts the optimal
experiment, and (iii) assimilates the data into the model to update the parameter predictions.
This would significantly reduce the effort and cost of experimentation, making it feasible to
apply Bayesian inference in an industrial setting.
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Appendix A

Properties of the flames studied in Chap-
ters 4 and 5
Table A.1 Summary of the properties of the 24 laminar flames studied. We show the average measured
flow rates of air, methane (CH4) and ethylene (CH4), the equivalence ratio (f ), the bulk velocity in the
burner tube (Ū), the predicted and measured flame lengths (L f ,m and L f ,p), the predicted and measured
convective time delays (tc,m and tc,p), and the inner cone mean heat release rate (Q̄).

Group Air CH4 C2H4 f Ū L f ,p L f ,m tc,p tc,m Q̄
[-] [ln/min] [ln/min] [ln/min] [-] [m/s] [mm] [mm] [ms] [ms] [W]
1 6.049 0.325 0.325 1.28 1.75 17.4 16.6 9.9 9.5 374.9
2 6.147 0.348 0.348 1.35 1.79 20.5 20.0 11.5 11.2 374.9
3 6.219 0.364 0.364 1.40 1.82 23.6 23.1 13.0 12.7 374.9
4 6.283 0.379 0.379 1.44 1.84 26.9 26.4 14.6 14.3 374.9
5 6.338 0.391 0.391 1.47 1.86 30.1 28.9 16.2 15.5 374.9
6 6.384 0.401 0.401 1.50 1.88 33.0 32.1 17.5 17.1 374.9
1 7.246 0.387 0.387 1.27 2.10 20.8 19.8 9.9 9.4 450.0
2 7.369 0.416 0.416 1.34 2.15 24.6 23.8 11.5 11.1 449.9
3 7.459 0.436 0.436 1.39 2.18 28.4 27.4 13.0 12.6 449.9
4 7.537 0.454 0.454 1.43 2.21 32.2 30.9 14.6 14.0 449.9
5 7.603 0.468 0.468 1.47 2.24 36.1 34.2 16.2 15.3 449.9
6 7.659 0.481 0.481 1.50 2.26 39.6 37.2 17.6 16.5 449.9
1 8.444 0.449 0.449 1.27 2.45 24.2 23.1 9.9 9.4 525.0
2 8.594 0.484 0.484 1.34 2.51 28.7 27.6 11.5 11.0 524.9
3 8.699 0.508 0.508 1.39 2.55 33.1 31.7 13.0 12.4 524.9
4 8.790 0.529 0.529 1.43 2.58 37.6 36.4 14.6 14.1 524.9
5 8.868 0.546 0.546 1.47 2.61 42.2 39.2 16.2 15.0 524.8
6 8.934 0.561 0.561 1.49 2.64 46.3 43.0 17.6 16.3 524.9
1 9.644 0.512 0.512 1.26 2.80 27.7 25.9 9.9 9.3 600.0
2 9.818 0.553 0.553 1.34 2.86 32.8 30.1 11.5 10.5 599.9
3 9.939 0.580 0.580 1.39 2.91 37.9 34.8 13.0 12.0 599.9
4 10.045 0.604 0.604 1.43 2.95 43.0 39.9 14.6 13.5 599.9
5 10.134 0.624 0.624 1.47 2.99 48.2 43.6 16.2 14.6 599.8
6 10.209 0.641 0.641 1.49 3.01 52.9 47.2 17.6 15.6 599.8
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Table A.2 Summary of the properties of the 15 turbulent flames studied. We show the average measured
flow rates of air, methane (CH4) and ethylene (CH4), the equivalence ratio (f ), the bulk velocity in the
burner tube (Ū), the measured flame length (L f ), the measured convective time delay (tc), and the inner
cone mean heat release rate (Q̄).

Flame Air CH4 C2H4 f Ū L f tc Q̄
[-] [ln/min] [ln/min] [ln/min] [-] [m/s] [mm] [ms] [W]
1 15.742 0.720 0.720 1.09 4.50 30.6 6.8 1000.7
2 15.732 0.740 0.740 1.12 4.51 31.0 6.9 1000.5
3 15.760 0.760 0.760 1.15 4.53 31.5 7.0 1000.4
4 15.810 0.780 0.780 1.17 4.56 32.4 7.1 1000.3
5 15.873 0.800 0.800 1.20 4.58 33.5 7.3 1000.2
6 15.945 0.820 0.820 1.22 4.62 34.8 7.5 1000.2
7 16.023 0.840 0.840 1.25 4.65 36.3 7.8 1000.2
8 16.104 0.860 0.860 1.27 4.68 38.1 8.1 1000.1
9 16.188 0.880 0.880 1.29 4.72 40.3 8.5 1000.1
10 16.273 0.900 0.900 1.32 4.75 42.7 9.0 1000.1
11 16.360 0.920 0.920 1.34 4.78 45.3 9.5 1000.1
12 16.448 0.940 0.940 1.36 4.82 48.3 10.0 1000.0
13 16.536 0.960 0.960 1.38 4.85 51.4 10.6 1000.0
14 16.625 0.980 0.980 1.40 4.89 55.2 11.3 1000.0
15 16.714 1.000 1.000 1.42 4.92 59.0 12.0 1000.0
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Photographs of the experimental rigs

Fig. B.1 Photograph of the hot wire Rijke tube.
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Fig. B.2 Photograph of the electric heater.
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Fig. B.3 Photograph of the ducted flame rig.
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