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Abstract

Thermoacoustic oscillations in annular combustors are often of azimuthal type, with
two distinct thermoacoustic modes sharing the same frequency of oscillation. The
two modes interact because each flame responds to the sum of the two modes and
acts as a source term for both modes. In the nonlinear regime the system converge
to a limit-cycle solution, which is an acoustic wave that is either spinning around the
annulus, or a standing wave with pressure and velocity nodes fixed in space. This
thesis answers some questions regarding these two types of solutions, and provides
tools to analyse azimuthal modes.

A flame in the annular combustion chamber is subject to an axial acoustic field
through the burner, and a transverse acoustic field sweeping it sideways. We show that
the effect of this transverse acoustic field on the flame response can make the system
prefer standing solutions instead of spinning solutions.

We present a tool to map a flame response from the frequency domain, where
it is often described, to the time domain, where it is needed to discuss azimuthal
instabilities.

We then carry out a weakly nonlinear analysis of the system taking into account
the number of equispaced identical burners, the level of linear acoustic damping, the
geometry and the nonlinear flame response to axial forcing. This leads to a low-order
model of azimuthal instabilities that is ready to be used for the purpose of system
identification. We provide conditions for the existence and stability of standing and
spinning waves and the orientation and amplitudes of these solutions, and then discuss
their physical interpretation.

We finally apply two mathematical methods, the method of averaging and the
method of multiple scales, to predict the solutions of the system. This allows a
validation of the methods, of which the first is used extensively in the rest of the
manuscript, and a study of the effect of the delay between acoustic forcing and flame
response, both in the linear and nonlinear regime.
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Chapter 1

Introduction

Thermoacoustics studies the interaction of an acoustic field with a fluctuating heat
release source. The acoustic field can respond to this fluctuating source, and excite it
in turn. This can lead an initial perturbation to grow or decay in time in the closed
loop formed by the fluctuating heat release and the acoustic field.

We focus on problems where the heat release is the result of the combustion of fuel
and air, and the application are gas turbines, used for example to power airplanes or
electric power plants. Thermoacoustic oscillations are undesired in this context, because
they can lead to damage and a reduction of the operating window (Lieuwen and Yang,
2005). In many cases the combustion takes place in combustion chambers of annular
shape. These chambers have typically a certain number of burners equispaced around
the annulus, so that they exhibit a discrete rotational symmetry. This study regards
combustion chambers that exhibit either this type of symmetry, or a full rotational
symmetry, which is respected if the number of burners is so large that the flames
can be a treated as a homogeneous response along the annulus. These combustion
chambers present in general thermoacoustic modes that are axial, radial, or azimuthal,
i.e. not homogeneous with respect to the azimuthal direction. Because of the quite
large radial-to-axial aspect ratio of these combustion chambers, it often occurs that the
frequencies of azimuthal modes are lower than those of axial modes, and are excited in
industrial gas turbines (Seume et al. (1998), Lepers et al. (2005)) because they occur
in a range of frequencies where the flames have a non-negligible response. Under the
assumption of full rotational symmetry these azimuthal modes occur in degenerate
pairs, i.e. share the same eigenfrequency1. For example, a cylindrical duct and an
annular duct both present couples of azimuthal acoustic modes that are degenerate

1under the assumption of discrete rotational symmetry most azimuthal modes occur in degenerate
pairs
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(Munjal, 1987). The degeneracy of these azimuthal modes complicates the analysis of
the system in the nonlinear regime: both modes of each pair take part in the oscillation,
and interact between them through the combustion process. Depending on the phase
difference between their oscillations, each pair can be observed as a travelling wave in
either the clockwise or anti-clockwise direction in the annulus, or as a standing wave,
with the nodal line of the pressure nodes fixed in time on a certain diameter of the
annulus. We use the nomenclature of Crocco (1969), and refer to the two types as
spinning and standing waves respectively.

Additionally, because azimuthal modes are not uniform in the azimuthal direction,
the burners and the flames are exposed to pressure gradients that are not only axial,
but also azimuthal, i.e. transversal to the direction of the mean flow. Chapter §2
discusses how the dynamics of the pairs of azimuthal modes change if the response of
the flames is affected by the azimuthal component of the acoustic excitation. Chapter
§2 shows how other studies on transverse forcing of flames are important in the study
of azimuthal instabilities.

Evesque et al. (2003), Pankiewitz and Sattelmayer (2003), Schuermans et al. (2006),
Stow and Dowling (2009) and Noiray et al. (2011) study low-order time domain
simulations of annular chambers, and show that the system in their cases converge to
a spinning solution. Each of these studies choose a different analytical expression for
the nonlinear flame response, in the time-domain. However the flame response is more
often available in terms of a describing function. Chapter §3 shows how to make use of
a describing function in time domain simulations, to accurately predict the amplitude
of oscillation and the type spinning/standing of the solution.

All previous theoretical studies fix a certain nonlinear flame response and show
if standing and/or spinning modes are stable. Instead, in Chapter §4 we maintain a
generic flame response, and discuss the conditions on such flame response that make
standing and/or spinning solutions stable.

Finally, we carry out in Chapter §5 the analysis of the effect of the time-delay
between acoustic excitation and flame response in the nonlinear regime. The chapter
discusses two mathematical methods to study thermoacoustic oscillations as weakly
nonlinear. It also presents the equation for the time evolution of not just the amplitudes
of oscillation, but also of the frequency of oscillation.

Each chapter is independent of the others and introduces the motivations for the
work. Chapter §2 was published as Ghirardo and Juniper (2013). Chapter §3 was
published as Ghirardo et al. (2015a). Chapter §4 was partially published as Ghirardo
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et al. (2015b), but it goes into greater detail and adds additional material when to
compared to the published article. Chapter §5 has not yet been published.





Chapter 2

Transverse forcing

This chapter was published as Ghirardo and Juniper (2013).

2.1 Abstract

This theoretical study investigates spinning and standing modes in azimuthally sym-
metric annular combustion chambers. Both modes are observed in experiments and
simulations, and an existing model predicts that spinning modes are the only stable
state of the system (Noiray, Bothien & Schuermans, 2011, Comb. Theory Modelling
15(5) 585–606). We extend this model to take into account the effect that the acous-
tic azimuthal velocity, u, has on the flames, and propose a phenomenological model
based on experiments performed on transversely forced flames. This model contains a
parameter, δ, that quantifies the influence that the transversal excitation has on the
fluctuating heat release. For small values of δ, spinning modes are the only stable state
of the system. In an intermediate range of δ, both spinning and standing modes are
stable states. For large values of δ, standing modes are the only stable state. This study
shows that a flame’s response to azimuthal velocity fluctuations plays an important role
in determining the type of thermo-acoustic oscillations found in annular combustors.

2.2 Introduction

Combustion systems such as aeroplane engines and rocket engines are often susceptible
to large amplitude self-sustained pressure oscillations, called thermo-acoustic oscilla-
tions. These lead to excessive noise and sometimes to structural damage (Lieuwen
and Yang, 2005). Self-sustained oscillations occur when the phase difference between
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pressure fluctuations and heat release fluctuations is less than one quarter cycle, as
described by Rayleigh (1878). These heat release fluctuations arise from the flames’
response to incident velocity or pressure perturbations. The flames’ response therefore
plays a crucial role in determining a system’s thermoacoustic behaviour. In this chapter,
we use a low order model of a thermo-acoustic system to determine the implications of
a flame response that has been observed experimentally in annular combustors.

Annular combustion chambers are commonly used in aircraft gas turbines because
they fit efficiently between the axial compressor and turbine. Their circumference is
much longer than their length and width, so thermoacoustic oscillations tend to develop
in the azimuthal direction. If they travel in a clockwise or anticlockwise direction,
with the pressure and velocity nodes travelling at the speed of sound, they are called
spinning modes. If the nodes are fixed in space and the wave modulates its amplitude
without travelling, they are called standing modes. Both types of mode are found in
large eddy simulations (LES), experiments, and real engines. See for example Noiray
and Schuermans (2013) for spinning modes and Wolf et al. (2012); Worth and Dawson
(2013a) for both spinning and standing modes.

Schuermans et al. (2006) study an annular combustor as a network of acoustic
elements, using a state space representation. Their linear stability analysis predicts that
standing modes are linearly unstable. In time, however, these develop into a spinning
mode, which they show is the only stable limit-cycle of the system. They show that
this behaviour is also seen for a thermoacoustic model containing a one-dimensional
wave equation and a nonlinear saturating pressure-dependent heat release. This model
is similar to that which will be used in this chapter, in equation (2.11).

Noiray et al. (2011) consider the effect of a non-uniform heat-release in the azimuthal
direction. If the acoustic mode has azimuthal dependence of the form cos(nθ), they
show that a non-uniform perturbation of heat release of the form cos(2nθ) is particularly
influential. The amplitude of this non-uniformity is labelled C2n. For C2n = 0, their
analysis predicts that only spinning modes are stable. For larger values of C2n, a sum
of standing and spinning modes can be stable. Above a critical value of C2n, only
standing modes are stable.

This does not explain, however, why standing modes are the preferred state of the
system in some rotationally symmetric configurations with C2n = 0, as found in Wolf
et al. (2012); Worth and Dawson (2013a). Combustors are very noisy environments, and
one explanation could be that noise causes the thermo-acoustic oscillations to switch
between different modes Bourgouin et al. (2013); Poinsot et al. (2011). Noiray and
Schuermans (2013) discuss the effect of noise on the system presented by Noiray et al.
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(2011), for a symmetric configuration (by setting C2n = 0). The only deterministic,
stable states of the system remain the two spinning modes, as it is when there is no
noise. However noise can make the system jump between the two modes, and, when
it does so, the system passes through the vicinity of a standing mode. Theoretical
results and experimental data agree in presenting a probability density function of the
state of the system with two clear peaks on the two spinning modes. However this is
not consistent with Wolf et al. (2012) and with certain configurations of Worth and
Dawson (2013a), where the system has a statistical preference for standing modes.

In summary, current thermoacoustic models cannot explain why standing modes
in symmetric annular chambers should be a preferred state of the system, despite
experimental evidence that they sometimes are. In this chapter we extend the work by
Noiray et al. (2011), to include the influence of transversal flame excitation and show
that a phenomenological model that includes transverse excitation can exhibit stable
standing modes as well as stable spinning modes.

The chapter is organized as follows: In §2.3 we present a concise derivation of the
one-dimensional equation (2.11) governing the problem. In §2.4 we discuss the model
for the heat-release, taking into account the transversal forcing in §2.5. In §2.6 we
discuss how to simulate equation (2.11) numerically and present some introductory
results. In §2.7 we reduce the problem to a system of coupled oscillators, and in §2.8
we discuss its stability. We then apply the method of averaging and study the resulting
phase space, providing a graphical description of the system in 3 dimensions.

2.3 Description of the problem

The geometry under investigation is a thin annular combustion chamber. We study this
problem in cylindrical coordinates and time: (z,R, θ, t) ∈ [0 z∗]×[R1 R2]×[0 2π)×[0 ∞).
z∗ is the longitudinal length of the combustor, and R1 and R2 are the radii of the
inner and outer surfaces. For simplicity, we consider R1 and R2 to be uniform in z.
We consider mean and fluctuating variables, neglecting the influence of viscosity on
the flow field. The momentum and pressure equations for the fluctuating variables,
considering only first order acoustics (Culick, 2006), are

ρ
∂u′

∂t
+ ∇p′ = 0 (2.1)

∂p′

∂t
+ γp∇ · u′ = ρ(γ − 1)q′ (2.2)
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In this expression, the prime indicates fluctuating components, ρ and p are the mean
density of the gas mixture and the mean pressure, γ = cp/cv is the ratio of specific
heat capacities, and q′ is the fluctuating heat released by the combustion. Spatial
averaging has already been applied, and the effects of a non-uniform speed of sound
have been neglected (Culick, 2006). This is common to many other studies modelling
this problem (Noiray et al., 2011; Sensiau et al., 2009). Terms of order O(u) are
neglected by assuming a low Mach number flow1. We study the problem in polar
coordinates and drop the dependence on the radial coordinate because this is weak,
even if the gap between the two cylinders is non-negligible (Lieuwen, 2012):

ρ
∂u′

∂t
+ 1
R

∂p′

∂θ
= 0 (2.3)

∂p′

∂t
+ γp

R

∂u′

∂θ
= ρ(γ − 1)q′ (2.4)

Here, u′ is the component of the velocity in the azimuthal direction and R ≈ (R1+R2)/2.
We proceed by nondimensionalizing the equations, picking a new time scale:

t′ = c

R
t → ∂

∂t
= c

R

∂

∂t′
(2.5)

where c is the spatially averaged speed of sound. We introduce the nondimensional
variables p∗, q∗ and u∗, defined as

p′ = ρc2p∗ (2.6)

q′ = c3

R(γ − 1)q
∗ (2.7)

u′ = cu∗ (2.8)

The nondimensional system of equations, dropping the asterisks and the prime on the
time variable, becomes:

∂u

∂t
+ ∂p

∂θ
=0 (2.9)

∂p

∂t
+ ∂u

∂θ
=q − αp (2.10)

1the azimuthal component of the mean field is induced only by the injectors’ swirlers, and is
negligible
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In this expression we have included a damping term, with a coefficient α > 0. Equations
(2.9) and (2.10) are equivalent to the wave equation, with ∂q/∂t as a source term:

∂2p

∂t2
+ α

∂p

∂t
− ∂2p

∂θ2 =∂q
∂t

(2.11)

This model has been the common starting point of Noiray et al. (2011); Noiray and
Schuermans (2013). It is the one dimensional counterpart of the model studied by
Sensiau et al. (2009), where the whole three dimensional field is considered. This
simplification is not appropriate for the study of radial and longitudinal instabilities,
but allows an analytical treatment of azimuthal instabilities.

2.4 Heat release constitutive equation

The heat release fluctuations, q, are often assumed to depend either on velocity, pressure,
or both, with the inclusion of one or more time delays. However, we start from the
analysis of Noiray et al. (2011), where q is a function of p only:

q =f(p) (2.12)
f(p) =βp− κp3 (2.13)

The first term depicts linear growth governed by β for small fluctuating pressures.
The second term in (2.13) is a nonlinear cubic saturation, governed by a coefficient κ.
For any given κ > 0, the study of equation (2.11) in terms of a new pressure variable
p̃ ≡ p

√
κ leads to a new problem independent of κ. It follows that the coefficient κ

induces simply a rescaling of the problem, and will be set to 1 in the following analysis.
By assuming q = f(p) to be an odd function of p, (2.13) is a 4thorder-accurate Taylor
expansion of f . The analysis carried out in this chapter could easily be extended to
higher-order terms.

The theory developed in Noiray et al. (2011) based on (2.12) does not predict stable
standing modes for symmetric configurations, which are observed as preferred state of
the system in Wolf et al. (2012); Worth and Dawson (2013a). The universal validity of
(2.12) is then called into question, particularly the assumptions of (2.12), which are (i)
the absence of a time delay in p and (ii) the independence of q on anything else except
p.

Regarding the first point, q has been found to be reasonably in phase with p in
a LES simulation of a specific, symmetric rig (Wolf et al., 2012). In that rig, both
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standing and spinning modes are observed, suggesting that standing modes are possible
in the absence of a time delay. Since the aim of this chapter is to explain how standing
modes are possible in symmetric systems, we do not consider a time delay and assume
that p and q are in phase, leaving this investigation for further research. Some results
based on linear stability, applied to an n− τ model, discussing the importance of the
time delay can be found in Sensiau et al. (2009).

Regarding the second point, one possibility is to assume that the heat release
depends on the azimuthal coordinate, since combustion happens mainly near the
injectors. This can be done by introducing a shape function ψ(θ), which is large near
the flames and small far from the flames:

q =ψ(θ)f(p) (2.14)

ψ(θ) =1 + cos(Mθ)
2 , whereM is the number of injectors (2.15)

The expression (2.15) is one of the many possibilities for such a shape function. The
adoption of the constitutive equation (2.14) instead of (2.12) in the analysis we will
develop next does not lead to any qualitative differences in the stability analysis of the
standing and spinning modes, and will therefore not be discussed further. This means
that a spatially accurate description of the heat-release does not explain standing
modes in symmetric annular chambers, and therefore suggests that it is sufficient to
consider spatially averaged models for the heat release q. We stress that this statement
does not apply to non-symmetric annular combustors, in which the shape function
ψ is no longer M−periodic in the azimuthal direction, and in the very specific case
where M = 2n in (2.15), where n is the unstable acoustic mode. This latter case is
covered by the stability analysis of Noiray et al. (2011), and shows that mixed modes
and standing modes are possible. In this case, the shape function has peaks at the
pressure antinodes, and troughs at the pressure nodes of the standing mode.

One other possibility is to assume, in addition to the dependence of p, a dependence
of q on the azimuthal velocity u, which excites transversally the flames. This possibility
is investigated in this chapter.

2.5 Model of transversal forcing

The effect of transverse excitation on swirling premixed flames is a current topic of
research. Hauser et al. (2011) report that an asymmetric perturbation of higher OH
intensity is generated by the transversal velocity. This asymmetric region of stronger
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combustion spirals around the injector at the forcing frequency. This asymmetry
persists also in addition to longitudinal forcing, suggesting that the two phenomena
are superposable.

We report in Figure 2.1 two phase-averaged chemiluminescence images of flames at
a pressure antinode (velocity node) and at a pressure node (velocity antinode), kindly
provided by James Dawson and Nicholas Worth.

(a) pressure antinode (b) velocity antinode

Fig. 2.1 Phase-averaged chemiluminescence images of a standing mode limit cycle
in an annular combustor. The images were taken, looking upstream, at two different
azimuthal locations. In (a) the flame at the centre is at a pressure antinode, where
there are no azimuthal velocity fluctuations; the chemilumnescence is approximately
axisymmetric. In (b) the flame at the centre is at a velocity antinode, where the
azimuthal velocity fluctuations are maximal; the chemiluminescence is approximately
anti-symmetric. The experimental configuration is described in Worth and Dawson
(2013a,b).

In figure 2.1, at pressure antinodes there is no transverse velocity excitation. Circles
of positive/negative heat release are shed from the injector and propagate outwards.
The fluctuating heat release is found to be approximately axisymmetric around the
injector: at every instant in time of a limit-cycle, the phase of the perturbation is
approximately axisymmetric. This is consistent with O’Connor and Lieuwen (2012),
where the vorticity disturbance is symmetric around the injector at pressure antinodes.
At velocity antinodes the symmetry of the perturbation breaks: the heat release is
found to be approximately in anti-phase on the two sides of the flame, in the direction of
the transverse velocity. In O’Connor and Lieuwen (2012) the same break of symmetry
happens for vorticity disturbances, which are asymmetric at velocity antinodes. This
means that the spatially averaged heat release fluctuation of an injector is smaller at
velocity antinodes. This happens because, in the averaging, the zones in anti-phase
cancel out in Figure 2.1.b. Since the flame diameter is small compared to the wavelength
of the unstable acoustic mode, we can assume that the flame is acoustically compact,
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and spatially average the heat release on each burner2. Based on this observation,
we assume that the fluctuating heat release of an injector is smaller if a transverse
excitation is present, introducing a dependence on the velocity u:

q(p, u) =f(p)µ(u) (2.16)

In this expression, f is the same function introduced in (2.13), and all the previous
considerations apply to it. The function µ is the degree of symmetry of q around a
burner, and must be unity for zero transverse excitation, and smaller than 1 for u ̸= 0,
in the range of velocities investigated:

0 ≤ µ(u) ≤ 1 ∧ u
∂µ

∂u
(u) ≤ 0 (2.17)

We study two possibilities for µ:

µ(u) =1 − δ|u| Case A (2.18)
µ(u) =1 − δu2 Case B (2.19)

where δ is a positive coefficient that expresses how strongly the transverse forcing
influences the heat release. Both models must respect (2.17) at every instant of time.
The structure (2.16) and the choice of µ in (2.18,2.19) are not intended to be an
accurate representation of the flame’s behaviour, because they are based on qualitative
observations. The model is phenomenological, and the aim is to discuss the effect of
transverse forcing on the stability of standing and spinning modes on a qualitative
level.

2.6 Numerical setup

Because it is not straightforward to evaluate the time derivative of q in equation (2.11),
we opt to study the system of equations (2.9) and (2.10), where such a derivative
is not required. We project the equations into Fourier space, obtaining a system of
ordinary differential equations. The generic nth complex Fourier mode is governed by

2See also the comment on the use of spatially averaged models for q in the previous section.
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the equations u
′
n = −inpn
p′
n = −inun − αpn + qn

∀n = 1, 2, ..., Nf . (2.20)

Since q is a nonlinear function of u and p, at each timestep the two functions u(θ)
and p(θ) are evaluated from the Fourier coefficients {un} and {pn}, and then q(θ) is
calculated as f(p(θ))µ(u(θ)). Finally the {qn} coefficients are evaluated as a Fourier
transform of q(θ). The system (2.20) can then be numerically integrated with a
numerical scheme.

The damping of this problem has to be adjusted to avoid excessive growth of higher
order harmonics.

Specifically, we consider only the dissipation due to the boundary layers, which
scales as the square root of the frequency (Culick, 2006; Landau and Lifshitz, 1978).
We take this into account fixing αn = α

√
n in (2.20).

Two examples of two simulations showing a spinning and a standing mode are
reported in Figure 2.2, truncating the number of Fourier modes to Nf = 161. The two
pictures do not imply that the two modes are stable, and only time marching for a
long time allows us to check this at this stage3. We present here both cases A and B
only to show what the two different µ functions defined in (2.18) and (2.19) look like.
Both cases present spinning modes for small values of δ and standing modes for large
values of δ.

The existence of a standing mode at one value of δ and a spinning mode at another
is a key result of this chapter. In the next sections we conduct a stability analysis of
these modes to confirm that they are indeed both stable limit cycles of the nonlinear
governing equations.

2.7 Reduction to a system of coupled oscillators

In this section we carry out spatial averaging in the azimuthal direction, in the same
way carried out by Noiray et al. (2011). When annular combustors are subject to
azimuthal instabilities, there is usually only one strong Fourier component, which
corresponds to the nth lowest acoustic mode of the chamber. This is apparent from
the power spectral density (PSD) of the Fourier transform of pressure signals from
experiments (see for example Worth and Dawson (2013b)), and is also observed in the

3The two modes in the two cases will be proved to be stable later with rigour.
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(a) Stable spinning mode
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Fig. 2.2 Instantaneous snapshots of two simulations, for α = 0.08, β = 0.10. Pressure
and velocity values are reported on the left scale, while µ(u(θ)) values are reported
on the right scale. a) µ from case A, δ = 0.5. The pressure and velocity waves travel
either to the left (if in antiphase, as in this case) or to the right (if in phase). δ is small,
so the influence of the transverse velocity forcing is small, and the spinning mode is
stable. The curve µ(θ) also travels left, following the two waves. b) µ from case B,
δ = 12. The velocity and pressure are standing waves, and their nodes are fixed in
space; pressure nodes corresponds to troughs of µ, and velocity nodes correspond to
peaks of µ. At the instant in time when the velocity is zero in all the domain, the
function µ is unitary in all the domain.

numerical solutions of (2.20). We truncate the modal expansion and consider only the
nth mode:

u(t, θ) = nη1(t) sin(nθ) − nη2(t) cos(nθ) (2.21)
p(t, θ) = η′

1(t) cos(nθ) + η′
2(t) sin(nθ) (2.22)
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where the second expression was obtained substituting (2.21) into (2.9). We now apply
spatial averaging (Culick, 2006) to this system: we substitute (2.21) and (2.22) into
(2.10), multiply the expression by 2 cos(nθ), and then average over 2π in the azimuthal
coordinate, obtaining (2.23):

η′′
1 + αη′

1 + n2η1 = F1 (2.23)
η′′

2 + αη′
2 + n2η2 = F2 (2.24)

Here, (2.24) has been obtained similarly by multiplying by 2 sin(nθ). Notice that these
expressions are exact, and the assumption that higher order modes are negligible is
applied assuming that the two source terms Fi on the RHS depend only on the Fourier
modes η1 and η2. They are:

F1 = 1
π

∫ 2π

0
q
(
η′

1 cos(nθ) + η′
2 sin(nθ), nη1 sin(nθ) − nη2 cos(nθ)

)
cos(nθ)dθ (2.25)

F2 = 1
π

∫ 2π

0
q
(
η′

1 cos(nθ) + η′
2 sin(nθ), nη1 sin(nθ) − nη2 cos(nθ)

)
sin(nθ)dθ (2.26)

We can study the system in the new timescale t′ = nt, and obtain:

η′′
1 + αη′

1 + η1 = f1(η1, η2, η
′
1, η

′
2) (2.27)

η′′
2 + αη′

2 + η2 = f2(η1, η2, η
′
1, η

′
2) (2.28)

where α 7 −→ α/n, and the expressions of fi ≡ Fi/n
2 and how to evaluate them are

reported in the appendix §2.11.2.11.1. This is a system of coupled oscillators, which
can be numerically integrated in time in a 4-dimensional phase space, as opposed to
the phase space with Nf dimensions introduced in (2.20).

Amplitudes and phase representation

Instead of studying the system in terms of displacements, ηi, and velocities, η′
i, it is

more useful to study it in terms of amplitudes and phases,

η1(t) =A(t) cos(ωt+ φ1(t)) (2.29)
η′

1(t) = − A(t)ω sin(ωt+ φ1(t)) (2.30)
η2(t) =B(t) cos(ωt+ φ2(t)) (2.31)
η′

2(t) = −B(t)ω sin(ωt+ φ2(t)) (2.32)
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mode Amplitudes and phase Trajectory in the plane (η1, η2)
spinning ϕ = ±π/2, A = B circle
standing ϕ = ±π, arbitrary A,B line with arbitrary slope

Table 2.1 Characterization of spinning and standing modes

In these expressions, the frequency ω can in principle be perturbed by the parameters
of the problem from the the natural frequency of the two oscillators, which is 1.
Equations (2.27) and (2.28) are symmetric in η1, η2. It is useful to introduce the phase
difference between the two oscillators, ϕ(t) ≡ φ1(t) − φ2(t). If ϕ settles to ±π/2 and
A = B, then the substitution of (2.30) and (2.32) into (2.22) shows that the pressure
distribution corresponds to a spinning mode in the counterclockwise/clockwise direction
respectively:

p(t, θ) = −Aω sin(ωt+ φ1 ∓ nθ) (2.33)

This solution spins in the azimuthal direction as in Figure (2.2.a). On the other hand,
if ϕ settles to π or 0, there is a standing mode, for any value of A,B:

p(t, θ) = ω sin(ωt+ φ1)(−A cos(nθ) ±B sin(nθ)) (2.34)

The pressure nodes can be found by studying the zeros of the θ-term in (2.34). They
are fixed in space, as shown in Figure (2.2.b). It is convenient to examine the two cases
in the (η1, η2) plane as a function of time. With reference to equations (2.29-2.32), the
two modes give rise to limit-cycles which are either circles or lines. The situation is
summarized in table 2.1. Figure 2.3 shows two simulations of trajectories in the (η1, η2)
plane for case B. This is similar to Figure 11 in Schuermans et al. (2006). It is worth
noting that the complex number C(t) = 2(η1(t) + i η2(t)) is the indicator proposed by
Poinsot et al. (2011) to study the nature of these modes. The two cases have different
values of δ, and lead to either spinning or standing limit-cycles. The simulations have
been started with nearly the same initial condition for ϕ, and from two random values
for A,B.

The main objective of this section has been to reduce the original partial differential
equation to a system of coupled oscillators, and to present a simpler way to look at
standing and spinning modes in terms of amplitudes and phase in the (η1, η2) plane.
In the next section we will perform a stability analysis of these modes, and in the last
section we will present a phase space realization of the system in terms of the two
amplitudes and of the phase here introduced.
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Fig. 2.3 Temporal evolution to stable limit cycles, for two different values of δ. In
both simulations, α = 0.08, β = 0.10, and µ is from case B. The top plots show the
trajectory of the system in the (η1, η2) plane; The black dot is the initial position and
the darkness of the line is proportional to the simulation time t. In this plane, spinning
modes are circles around the origin, and standing modes are lines centred on the origin,
at an arbitrary angle that depends only on the initial conditions. In the left frames,
the spinning mode is stable. In the right frames, the standing mode is stable. The
bottom plots show the temporal evolution of the phase ϕ between the two oscillators.
The values of ϕ can be compared with those in table 2.1.

2.8 Stability of the coupled oscillator system

We first report some results from the linear analysis of the fixed point p(t, θ) =
u(t, θ) = 0 of the system (2.27,2.28). This fixed point is stable for β < α. A double
Hopf bifurcation occurs at β = α, where two complex eigenvalues cross the imaginary
axis at the same time. Similarly, Sensiau et al. (2009) perform a linear stability analysis
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of an azimuthally symmetric chamber and find two linearly unstable spinning modes
with exactly the same growth rate. They conclude that, in perfectly symmetric systems,
the sum of the two identical spinning modes would lead to a stable standing mode.
This is not the case, however, as shown by the fact that, for δ = 0, and β > α, this
system converges to a stable spinning mode, in accordance with Schuermans et al.
(2006).

We proceed by analysing the case of the oscillating system, fixing α = 0.08 and
β = 0.10, and focusing on case A. Figure 2.3 shows that two different values of δ lead
to two different limit cycles: a spinning mode and a standing mode. We now study
the system over a range of δ. To do this, we numerically integrate the system until it
converges to a limit cycle, and then track the limit cycle as we vary δ using MatCont,
a numerical continuation package (Dhooge et al., 2003). Figure 2.4 shows the stability
of the spinning and standing modes.

For δ = 0, the spinning mode is stable, because all its Floquet multipliers are smaller
than 1 in Figure 2.4.a. At δc2 ≈ 1.027, the modulus of two Floquet multipliers crosses 1,
which corresponds to a subcritical4 Neimark-Sacker bifurcation at which the spinning
mode becomes unstable. The argument of these two Floquet multipliers, shown in
Figure 2.4.c, is small. Notice that, for δ > δc2, there is one multiplier with modulus
smaller than 1 and two multipliers with modulus greater than 1. This means that
the system is attracting from an invariant manifold5 with dimension 1, and repelling
to another invariant manifold with dimension 2. This is consistent with Figure 2.3.b,
where the point is first attracted to the spinning mode (circular line) before being
repelled towards a standing mode (straight line).

For the standing mode, for every value of δ, two multipliers are exactly equal to 1.
One of these is due to the fact that the system is at a limit-cycle and any movement
in the direction of the limit cycle remains on the limit cycle (the spinning mode has
one too, under the horizontal black line in Figure 2.4.a). The other is due to the fact
that the nodes of the standing mode can rotate arbitrarily around the annulus - i.e.
the black line in Figure 2.3.b can take any angle with the axes. A fold bifurcation
occurs at δc1 = 0.949, making the mode stable for δ > δc1. Notice that, for δ < δc1,
there is one multiplier with modulus smaller than 1 and one multiplier larger than 1.
This means that the system is attracting from a 1-dimensional invariant manifold and
repelling from another 1-dimensional invariant manifold. This can be seen in Figure

4based on the first Lyapunov exponent, which is positive
5for the purposes of this chapter, an invariant manifold can be thought of as a particular surface in

the phase space such that all points on it are either attracted to or repelled from the same limit-cycle
or fixed point. Refer to Guckenheimer and Holmes (1983) for a rigorous definition.
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Fig. 2.4 Stability of standing and spinning limit-cycles with respect to the transversal
forcing parameter δ. (a) Modulus of the Floquet multipliers of both modes. To each
multiplier corresponds an invariant manifold on which the system is attracted towards
the limit-cycle if the modulus is smaller than 1 (continuous lines) or repelled from the
limit-cycle if the modulus is larger than 1 (dashed lines). One limit-cycle is unstable if
there is at least one multiplier larger than 1. From (a), for small values of δ only the
spinning mode is stable, and for large values of δ only the standing mode is stable. The
standing limit cycle has two coincident multipliers equal to 1, while the spinning limit
cycle has only one multiplier equal to 1 (not visible, covered by the black line) and a
couple of complex conjugate multipliers (indicated with the arrow). From the zoom in
(b), we observe there is a range of δ where both modes are stable. (c) Argument of the
Floquet multipliers, which is needed to discuss the type of bifurcation at criticality.
The two non-zero arguments of the spinning mode belong to the complex conjugate
pair presented in (a).

2.3.a, where for a while the solution lingers as a standing mode (straight line) before
being repelled towards the spinning mode (circle line).

The angular frequency of the limit cycles is not changed by the nonlinearities of
the problem: in the range of parameters investigated, the period of oscillations was
found to be constant and equal to 2π. In summary:

• for δ < δc1 ≈ 0.949 only the spinning mode is stable;
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• for δ > δc2 ≈ 1.027 only the standing mode is stable;

• for δc1 < δ < δc2, the system is multistable, with both standing and spinning
modes stable.

Moreover, for δ < δc1 and δ > δc2 the unstable mode attracts the solution on a
1-dimensional invariant manifold, before repelling it towards the stable mode.

We checked that these stability results, obtained for the system (2.27,2.28), apply
also to the original system (2.11) by performing numerical simulations of (2.20) for
different values of δ. For each value of δ, we started the simulation with both standing
and spinning modes as initial conditions, and evaluated their stability by time-marching.
The same qualitative picture was found, with the two critical values of δ confined in
these intervals: 0.9 < δc1 < 1.0, and 1.1 < δc2 < 1.2, in good agreement with the values
just presented. This shows that the reduction to a system of coupled oscillators by
considering only the fundamental unstable harmonic, as presented in section §2.7, is a
powerful tool to study the stability of the original wave equation (2.11), at least for
the values of α, β investigated here.

We do not report here the analysis for case B, because the overall behaviour is the
same as that of case A.

2.9 Slow flow

In this section we apply the method of averaging to the system of coupled oscillators
(2.27,2.28) for case B. We will obtain a new system of differential equations in terms
of the amplitudes of oscillation A,B and of the phase difference ϕ, introduced from
equation (2.29) onwards. This will reduce the dimensions of the problem from 4 to
3, allowing us to visualize the complete dynamics of the problem. The method of
averaging (Sanders and Verhulst, 2007) gives the following formulation of the slow flow:


A′ = −α

2A− ⟨s1f1⟩

B′ = −α
2B − ⟨s2f2⟩

ϕ′ = 1
B

⟨c2f2⟩ − 1
A

⟨c1f1⟩

(2.35)
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where si ≡ sin(ωt+ φi) and ci ≡ cos(ωt+ φi), and the averaging operator of a generic
function h is introduced as

⟨h(η1, η
′
1, η2, η

′
2)⟩ ≡ ω

2π

∫ t+ 2π
ω

t
h
(
A cos(ωt+ φ1),

−Aω sin(ωt+ φ1),
B cos(ωt+ φ2),

−Bω sin(ωt+ φ2)
)
dt (2.36)

Notice that, while in the definitions (2.29-2.32) the amplitudes and the phases are
functions of time, they are constants in the RHS of (2.36). We fix ω = 1, consistent
with the period being 2π as reported earlier. Some details on how to tackle the four
integrals can be found in appendix §2.11.2, together with the full equations of the
system (2.35).

From now on we fix, as previously, κ = 1, α = 0.08, β = 0.1. The two critical values
of δ for standing and spinning modes are respectively δc1 ≈ 6.2076 and δc2 ≈ 6.2165.
We can then visualize this phase space in terms of A,B, and ϕ, as a function of δ. The
amplitudes A,B are non-negative numbers, and ϕ ∈ [0 , 2π]. Since the phase space
is symmetric with respect to the planes ϕ = kπ/2 with k = 0, 1, 2, we restrict the
visualization to ϕ ∈ [π/2 , π]. The system is also symmetric with respect to the plane
defined by A = B.

Because of the difficulty of drawing a 3 dimensional phase space, we report the flow
on a few invariant manifolds. These completely describe the stability of the problem6.
Figure 2.5 shows two convenient slices of the same phase space for δ = 3. In the picture,
every shaded surface is an invariant manifold, and all invariant manifolds are reported,
with the exception of the two planes A = 0 and B = 0, and the plane A = B, which is
reported in Figure 2.7. In Figure 2.5, only the spinning mode is stable, because δ < δc1.
We then fix δ = 12 > δc2 and present the same slices of the phase space in Figure 2.6,
in which only the standing mode is stable.

In this representation, the addition of a non-zero asymmetry parameter, C2n, as
proposed in Noiray et al. (2011), shifts the red point of Figure 2.5 towards one of
the A,B axes, maintaining it on the same plane ϕ ± π/2. Doing so, the system
exhibits a superposition of standing and spinning modes. As discussed by Noiray et al.
(2011), above a certain threshold the red point hits and gets stuck on one of the A,B
axes, becoming a pure standing mode. The current analysis shows that, with the
addition of transverse forcing introduced in (2.16), with µ(u) from case B as defined in

6The flow perpendicular to an invariant manifold is zero



22 Transverse forcing

(2.19), the standing mode becomes stable in a different way, without passing through a
superposition of standing and spinning modes. It is worth noting that this analysis
could easily be extended to include the parameter C2n in order to discuss the stability
of transverse forcing in non-symmetric annular chambers.
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Fig. 2.5 Two views of the 3D phase space, in terms of the amplitudes A and B of
the two modes and of the phase ϕ between them. δ = 3 < δc1. The line A = B = 0
corresponds to the trivial solution with zero pressure and velocity in the whole domain.
The three surfaces are invariant manifolds and the direction of the local vector field,
which is tangential to them, is described by the arrows. The spinning mode is reported
as a red dot, and the standing mode as a blue arc. For this value of δ, the spinning
mode is stable and the standing mode is unstable. The phase space is symmetric with
respect to the plane ϕ = π, with the image of the red dot under symmetry indicating
a spinning mode with the opposite azimuthal direction. There is one more invariant
manifold, which is a vertical plane defined by the condition A = B, which is also a
second plane of symmetry of the phase space. It is reported in Figure 2.7.

2.10 Conclusions

This study improves the current understanding of standing and spinning modes in
symmetric annular combustion chambers, which is the subject of current research
Noiray and Schuermans (2013); Schuermans et al. (2006); Sensiau et al. (2009); Wolf
et al. (2012); Worth and Dawson (2013b). The starting point of this study is the model
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Fig. 2.6 Two views of the same 3D phase space with δ = 12 > δc2. In comparison with
Figure 2.5, there is now a change of direction of the arrows on the nonplanar surface.
For this value of δ the standing modes (blue arc) are now stable, and the spinning
mode (red dot) is unstable.

proposed in Noiray et al. (2011): the fluctuating heat release q is assumed to grow
linearly and saturate nonlinearly as the pressure increases, as q = f(p) = β − κp3. In
our analysis, we add an extra dependence, which reflects experimental observations
Hauser et al. (2011); Worth and Dawson (2013b): the fluctuating heat release fluctuates
axisymmetrically at velocity nodes (pressure antinodes), while it fluctuates from side
to side at velocity antinodes (pressure nodes), as in Figure 2.1. When integrated over
a sector of the chamber, the q fluctuations are larger in the first case. We then assume
that q = f(p)µ(u), and we study two ways in which q can depend on u. We consider a
case A with µ(u) = 1 − δ|u|, and a case B with µ(u) = 1 − δu2.

For both cases, we find that: (i) for small δ, only spinning modes are stable; (ii)
for intermediate δ, both standing and spinning modes are stable, and the system
is multistable; (iii) for large δ, only standing modes are stable. We show that this
standing mode is fundamentally different from the one found in Noiray et al. (2011) in
non-symmetric chambers, and it affects the phase space in a different way, as described
in §2.9 for case B.

Another result is that, when the system has only one stable limit-cycle, the other
unstable limit-cycle is not a repellor: it attracts the solution on one invariant manifold,
and repels it on another. Figure 12 in Schuermans et al. (2006) suggests that the same
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Fig. 2.7 Dependence of the slice A = B of the phase space on the transversal forcing
parameter δ. This slice is an invariant manifold, since the normal component of the
field is constantly zero. On the left δ = 3 < δc1 and the spinning mode (red dot) is
stable; on the right δ = 12 > δc2 and the standing mode (blue dot) is stable. Notice
that the parameter δ changes qualitatively only the vertical component of the vector
field, as could be inferred from the previous 3D pictures. Along the ϕ axis, i.e. for
A = B = 0, the ϕ component of the vector field is zero in both cases. (Online version
in colour.)

property applies also to their system. If this property holds in industrial combustors,
noise could randomly shift the point in the phase space also to the attracting manifold
of the unstable mode, and the system could linger for longer close to the unstable mode
before decaying to the stable one. We give an example of this transient behaviour in
Figure 2.3, and we comment on it based on the stability results in §2.8.

The analysis can be extended by adding higher order terms in u and p to the model
for q in order to match the model to results from experiments on a single injector. The
analysis can be extended to complex geometries, as long as the flame is acoustically
compact.

We mention that the oscillators formulation (2.27) and (2.28), and the slow flow
equations (2.35) can both be used as a physically-based model of the combustion
process for purposes of control.

This work suggests that transversal forcing plays an important role in annular
combustion instabilities, and should be taken into account to accurately predict
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instabilities in annular configurations. The experimental characterization of a single
injector to longitudinal forcing seems to not be sufficient to predict the final state of
the combustor.

2.11 Appendices

2.11.1 Spatial Averaging

This appendix includes the terms on the RHS of (2.27,2.28), evaluated with the help
of a computer algebra system. For case B, they are

(2.37)f1(η1, η̇1, η2, η̇2) = 1
8
(
2δη1η2η̇2

(
2β − 3η̇2

1κ
)

− 2βη̇1
(
δη2

1 + 3δη2
2 − 4

)
+ η̇3

1κ
(
δη2

1 + 5δη2
2 − 6

)
+ 3η̇2

2 η̇1κ
(
δ
(
η2

1 + η2
2
)

− 2
)

− 2δη1η2η̇3
2κ
)

(2.38)f2(η1, η̇1, η2, η̇2) = 1
8
(
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2
(
−2β + 3η̇1
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)
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)
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2)κ

))
For case A, the evaluation of the integrals (2.25,2.26) is difficult. It is necessary to split
the integrals into two domains, in which the argument of the absolute value is either
positive or negative, and then put together the results afterwards. The boundaries
of these domains depend on the argument φ of the complex number η1 + iη2. The
final result is therefore in terms of φ, and it is too long to be written here. It depends
on cosine and sine functions of ϕ and its multiples. It is possible to eliminate the
dependence on φ by trigonometrically expanding the terms, and substituting these
relations for the sine and cosine of φ:

sinφ = η2√
η2

1 + η2
2

(2.39)

cosφ = η1√
η2

1 + η2
2

(2.40)

Both cases A and B contain forcing terms that are the same as the ones obtained in
Noiray et al. (2011) for δ = 0.
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2.11.2 Method of averaging

This appendix shows how to evaluate the terms of (2.35) for case B. It is possible to
prove that

⟨c1f1⟩ + i⟨s1f1⟩ = 1
2π

∫ 2π

0
ei(t+φ1)f1(t)dt ≡ F1 (2.41)

where we did not indicate the explicit dependence of f1 on A,B, θ as in the definition
(2.36) of the averaging operator for conciseness, and we set ω = 1. Then, from F1 we
can evaluate the two terms on the left as real and imaginary parts. We can set z = eit,
and operate these substitution in F1:2c1 = φ1z + 1

φ1z
2s1 = −i(φ1z − 1

φ1z
) with φ1 ≡ eiφ1

2c2 = φ2z + 1
φ2z

2s2 = −i(φ2z − 1
φ2z

) with φ2 ≡ eiφ2
(2.42)

We can then change the line integral in F1 to a contour integral on the unit circle
of the complex plane:

F1 = 1
2π

∫ 2π

0
ei(t+φ1)f1(t)dt = φ1

2π

∮
zf1(z)

dz

iz
= φ1

2πi

∮
f1(z)dz (2.43)

It can be shown that this function presents a single pole at the origin with no branch
cuts, so that

F1 = φ1
2πi2πi

∑
|z|<=1

Res[f1] = φ1Resz=0[f1] (2.44)

Notice that the expression for f1 is long, and the evaluation of the residue requires the
use of a computer algebra system. The system of equations of the slow flow are:

A′ = 1
128A

[
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(2.45)

B′ = 1
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(2.46)

ϕ′ = 1
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− 10βδ

]
(2.47)



Chapter 3

State-space realization of a
describing function

This chapter was published as Ghirardo et al. (2015a).

3.1 Abstract

The describing function is a powerful tool for characterising nonlinear dynamical
systems in the frequency domain. In some cases, it is the only available description of a
nonlinear operator characterising a certain subcomponent of the system. This chapter
presents a methodology to provide a state-space realization of one given describing
function, in order to allow the study of the system in the time domain as well. The
realization is based on Hammerstein models and Fourier–Bessel series. It can be
embedded in time domain simulations of complex configurations with many nonlinear
elements interacting, accurately describing the nonlinear saturation of the system. The
technique is applied to an example application in the field of combustion instability,
featuring self-excited thermoacoustic oscillations. We benchmark the performance of
the tool comparing the results with a frequency domain analysis of the same system,
obtaining good agreement between the two formulations.

3.2 Introduction

Combustion systems are subject to acoustic fluctuations of pressure and velocity, called
thermoacoustic oscillations Lieuwen (2012); Lieuwen and Yang (2005). These arise
from the interaction between acoustic waves and the unsteady heat release rate from
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the flame, which locally induces a gas expansion. Often these systems are not globally
stable, and can nonlinearly saturate to a dynamic attractor, which in most cases is a
time-periodic acoustic field.

An increasingly large number of experiments (Ćosić et al., 2014; Dowling, 1997;
Noiray et al., 2008; Palies et al., 2011; Schimek et al., 2011) and numerical simulations
(Armitage et al., 2006; Hemchandra, 2012; Krediet et al., 2012; Tay-Wo-Chong et al.,
2012) investigate the nonlinear response of the unsteady heat release rate to sinusoidal
acoustic forcing. The same can be done for Helmholtz resonators (Bellucci et al., 2004;
Ćosić et al., 2012; Zinn, 1970), which are acoustic damping devices. In particular, both
elements (flame and Helmholtz resonator) can be isolated to an open-loop configuration,
and forced by a harmonic input at a fixed frequency and amplitude: for the flame, the
input is an acoustic longitudinal velocity fluctuation just upstream of the flame; for the
resonator, the input is an acoustic pressure fluctuation at the interface between the neck
of the resonator and the encasing geometry. Both elements are assumed to be stable,
time-invariant operators, so that the output signal has the same period of the input.
The response is measured in terms of the gain and as the phase difference between
output and input. This is the sinusoidal-input describing function Gelb and Vander
Velde (1968) of the element, from here onwards referred to simply as the describing
function.

One can then study the element in a closed-loop configuration, which in the case of
thermoacoustics corresponds to placing it in an enclosing geometry, which feeds back
the output of the element as the input (reflection of acoustic waves). If the system
undergoes a Hopf bifurcation, one can then track the stability of the whole system as
a function of the amplitude of the limit cycle, by applying harmonic balance truncated
at the first harmonic. The technique is succinctly described in Basso et al. (1997), and
works quite well as long as the system acts as a low-pass filter on the higher-order
harmonics, commonly known as the filtering hypothesis.

Difficulties arise if, for certain parameters, more than one mode of self-sustained
oscillation is possible, because the knowledge of the describing function to multiple
inputs is then required, as discussed for thermoacoustic systems in Boudy et al. (2013);
Moeck and Paschereit (2012).

A second difficulty regards the onset of a secondary bifurcation, often of the
Neimark-Sacker type, where two distinct frequencies emerge, as found in experiments
by Kabiraj et al. (2012) and in numerical simulations Kashinath et al. (2014). This
can still be discussed within the describing function framework Basso et al. (1997);
Lanza et al. (2007), but is not considered in this chapter.
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A third difficulty arises in the low-order modelling of thermoacoustic oscillations
in annular combustors, where the geometric discrete rotational symmetry makes the
system’s linearised dynamics degenerate: a 2-dimensional eigenspace becomes linearly
unstable at a double Hopf bifurcation1, i.e. two complex conjugate pairs of eigenvalues
sharing the same frequency and growth-rate cross the imaginary axis at the same time.
To tackle this third difficulty, a state-space formulation of the problem is proposed for
annular geometries by Schuermans et al. (2006). One can then study the dynamical
system, either with time-integration, numerical-continuation, or analytically with the
method of averaging Sanders and Verhulst (2007) or of multiple scales Kevorkian and
Cole (1996). The major drawback of these state-space investigations (see also Ghirardo
and Juniper (2013); Noiray et al. (2011); Noiray and Schuermans (2013)) is that the
description of the flame response in state-space has so far been phenomenological and
not quantitative.

Section §3.3 of this chapter presents a quantitative state-space realization of one
given describing function, so that it can be used in time domain models of thermoa-
coustic systems. This modelling tool can improve the industrial design process, by
predicting the nonlinear frequency shift of a mode when compared to a linear analysis,
and correctly modelling the softening Ćosić et al. (2012) of Helmholtz resonators in
the nonlinear regime.

Note that the focus here is not on system identification, because the system is
fully described in the frequency domain2, and time domain input/output data are
often not available. Reference Taylor (1983) describes qualitatively the inversion of
a describing function, for the purpose of controlling a nonlinear system. Reference
Nassirharand (2009) describes an iterative, numerical algorithm to calculate a nonlinear
saturation function for a given real-valued describing function. We propose here
instead a Fourier–Bessel series decomposition, which allows the calculation of a good fit
without requiring iterations. This is based on the analytic evaluation of the describing
function of a Fourier–Bessel term, discussed in appendix §3.6.1. This procedure is
of general applicability and has good convergence properties in all cases studied (see
for example Fig. 3.5). The nonlinear saturation is then used as part of a modified
Hammerstein model (Eskinat et al., 1991), pictured in Fig. 3.2.b. This allows us to
model the dependence of the phase response on the input amplitude, so that also a

1many annular combustors are also slightly not-axisymmetric, perturbing this double-Hopf bifurca-
tion

2To be precise the response is defined at discrete values of frequency and amplitude, and then
interpolated in between.
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complex-valued describing function can be fitted. Section §3.3 discusses how to fit
accurately first the linear part of the model and then the nonlinear part.

To show the applicability of this nonlinear state-space realization, we study in
section §3.4 an example problem modelling a self-excited thermoacoustic experiment
Ćosić et al. (2014), which depends on a geometric parameter L of the configuration
(the length of the combustion chamber). We then study the system parametrically in
L with two methods.

The first method consists of a first-order harmonic balance method, often described
in thermoacoustics as the flame describing function framework Noiray et al. (2008).
It predicts the amplitudes and the frequencies of the limit cycles as function of L, as
presented in Fig. 3.9.

The second method is the time domain realization of the system, using the state-
space realization of the describing function described in section §3.3. We run time
domain simulations of the problem and extract the amplitude and the frequency of the
dominant harmonic of the signal. One example of simulation is presented in Fig. 3.11.

We then compare the results of the two methods in section §3.4.3, obtaining a good
match, and discuss the accuracy of the time domain model.

We finally discuss the applications of this methodology and possible improvements
in section §3.5.

3.3 The state-space realization
The describing function represents the response of a nonlinear operator Q[u(t)] to
a sinusoidal input u(t) = A cos(ωt). In our application u is the fluctuating velocity
measured upstream of the flame, just downstream of the burner, with amplitude A
and forcing frequency ω, and the quantity Q describes the fluctuating heat release
rate measured at the flame. This section is, however, general, and applies to a generic
single-input single-output (SISO) system. The describing function of the operator Q is
defined Gelb and Vander Velde (1968) as

Q(A, ω) = 1
A

1
π/ω

∫ 2π/ω

0
Q [A cos(ωt)]

(cos(ωt) + i sin(ωt)) dt (3.1)

As a matter of nomenclature, we will use capital letters to indicate the describing or
transfer function of an operator, such as Q(A, ω), and we will use capital calligraphic
letters to describe the corresponding time domain operator, such as Q[u(t)]. The
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quantity Q(A, ω) is a complex number, with its real and imaginary parts expressing
the amplitudes of the components of Q respectively in phase and in quadrature with
the sinusoidal input. One can then define the gain G and the phase φ of the flame
response as the polar coordinates of the complex number Q(A, ω):

Q(A, ω) = G(A, ω)eiφ(A,ω), G, φ : R+ × R+ 7→ R (3.2)G(A, ω) = |Q(A, ω)|
φ(A, ω) = arg[Q(A, ω)]

(3.3)

We assume that the function Q(A, ω) is provided over the range of frequencies and
amplitudes of interest, from data coming from experiments, numerical simulations or
analytical models. To provide an example of the application of this technique, we apply
it to an experiment carried out by Ćosić et al. (2013, 2014). The describing function of
the heat release rate response is shown in Fig. 3.1. It has been gently smoothed from
experimental data using B-splines Dierckx (1993). In addition, the phase is unwrapped
by 2π to present a continuous function φ(A, ω) in the domain.

We want to provide a state space model that is equivalent to the given describing
function. Notice that the describing function provides information on how the system
behaves if only one fundamental harmonic is present. In the same way, the state space
model will be accurate as long as the system presents a strong fundamental harmonic.
This restricts the applicability to the describing function framework, and will accurately
describe the state of the system if, after the Hopf bifurcation, secondary bifurcations
do not occur. The model will be tuned at a design frequency ωd, at which it will be
most accurate. For example, one can choose as design frequency the frequency of the
least stable mode of the whole system, obtained from a linear stability analysis. One
can then run the time simulation, and let the system evolve to a saturated limit cycle,
with a nonlinear saturated frequency ωd,1 = ωd + ∆ω. If ∆ω is large, one can tune the
flame model to the frequency ωd,1 and either run a second time simulation or continue
from the first limit cycle.

Fig. 3.2 shows a sketch in the complex plane of the input and of the output phasors3

of the describing function, at a fixed design frequency ωd. The sinusoidal inputs Aeiωdt

rotate in time in the anticlockwise direction, for three different amplitudes A, in the
top-left quadrant (the other features of the figure are discussed in the next section).
The input is operated on by Q and the subsequent output is shown in the top-right

3a phasor is a representation of a sinusoidal function with a certain amplitude, frequency and
phase in the complex plane
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(a) Gain response (b) Phase response

Fig. 3.1 Smoothed, interpolated experimental data from Ćosić et al. (2013, 2014).
The black dots are individual experiments, carried out at a fixed frequency (horizontal
axis, in Hz) and forcing velocity amplitude (vertical axis, normalised with respect
to the mean upstream velocity). The red dashed line is the curve below which the
interpolation is valid, because above it no experimental data is available. At velocity
amplitudes below the minimum tested velocity the corresponding value was used (at
the bottom of both plots).
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Fig. 3.2 a) Representation of the input and output phasor of the nonlinear operator in
the complex plane at the design frequency ωd at one instant in time. The three black,
grey and light grey arrows in the top-left quadrant represent three input phasors with
increasing amplitude. These phasors rotate around the origin in time, with direction
eiωdt. The output phasors are represented with the three grayscale thick arrows in
the top-right quadrant. The gain and the phase of the output depend on the input
amplitude, e.g. the three thick phasors in the top-right quadrant are not parallel. The
mean phase response φd of the outputs subtends the arc. The two nonlinear operators
Q± are designed so that their phase response is ±π/4 the mean phase response φd. The
two dashed black arrows are the directions of the two operators. The output phasor is
then calculated as the sum of its projections onto the two operators. The projections
at the 3 amplitudes are the red, orange and yellow arrows. b) block diagram of the
model. The internal structure of each of the operators Q± is a Hammerstein model,
discussed in section §3.3.1

quadrant. Since Q is a fully nonlinear operator, the phase and the gain responses
depend on the amplitude A, and the three output phasors are not parallel, nor is the
ratio of their moduli with the respective input moduli constant.

In subsection §3.3.1 and §3.3.2 we choose the structure of the state-space realization.
The following subsections §3.3.3 and §3.3.4 carry out the fitting of respectively the
linear and nonlinear elements that define the realization. Subsection §3.3.5 briefly
summarises this section.
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3.3.1 Operator splitting

We decompose the heat release rate response as the sum of two nonlinear operators, as
represented in Fig. 3.2.b

Q[u(t)] = Q−[u(t)] + Q+[u(t)] (3.4)Q−(A, ω) = G−(A, ω)eiφ−(A,ωd)

Q+(A, ω) = G+(A, ω)eiφ+(A,ωd)
(3.5)

The reasoning behind this choice is that the two operators Q− and Q+ will be designed
to have a constant phase response with amplitude. This feature will allow us to model
each of them as a Hammerstein block in section §3.3.2. The frequency ωd in (3.5) is
the frequency at which the time domain realization will be most accurate. We design
the two operators to have phase responses that differ by π/2, as can be observed in
Fig. 3.2.a where their phase responses (dashed black arrows) are orthogonal. Their
phase response is defined as:φ−(A, ω) ≡ φ(A, ω) − φ(A, ωd) + φd − π/4

φ+(A, ω) ≡ φ(A, ω) − φ(A, ωd) + φd + π/4
(3.6)

From the definition (3.6) the output signals of the 2 operators are always in quadrature,
and they are defined so that at the design frequency ωd they present the phases

φ−(A, ωd) = φd − π/4 (3.7a)
φ+(A, ωd) = φd + π/4 (3.7b)

The design phase φd is the green (negative) angle between the input (vectors in the
top-left quadrant) and the dashed line in the top-right quadrant in Fig. 3.2. The
value of φd is quite arbitrary, though in most cases it is chosen as the mean phase
response with amplitude of the operator Q at the design frequency ωd; secondary
considerations on the limitations of this choice are discussed at the end of section
§3.3.3. The two operators have then a phase response that is shifted by ±π/4 with
respect to that dashed line, as defined in (3.6). Once φd is fixed, the phase response of
the two operators is also fixed by (3.6), and the two gains G∓(A, ω) can be calculated
from (3.4). In other words, the original operator Q is rewritten as the sum of its two
projections on these two directions. The projections are shown in Fig. 3.2 with red,
orange, yellow colours.
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3.3.2 Nonlinear saturation

This subsection applies in the same way to each of the operators Q− and Q+. For ease
of notation, we drop the subscript ± here. We express each of the operators Q as the
composition of a linear operator L and a nonlinear operator N , as presented in Fig.
3.2.b. We choose as linear operator the linearisation of Q:

L(ω) ≡ Q(0, ω) (3.8)

In (3.8), L is a transfer function, since it does not depend on the amplitude by definition.
The composition of L and N can happen in two ways Gómez and Baeyens (2004):

Wiener model Q = N
[
L[u(t)]

]
(3.9a)

Hammerstein model Q = L
[
N [u(t)]

]
(3.9b)

We now briefly discuss which model is best suited for the problem at hand. The two
options lead to a different expression for the describing function N :

Wiener NNL(A, ω) = Q
( A

|Q(0, ω)| , ω
)
/Q(0, ω)

Hammerstein NLN(A, ω) = Q(A, ω)/Q(0, ω)

We present in Fig. 3.3 the gains of NNL and NLN applied to the full operator
Q introduced in (3.1) (the same considerations apply when considering Q− and Q+).
Because of (3.8), the gains are unity at zero amplitude A, as discussed in Eskinat
et al. (1991). Each curve represents the nonlinear saturation with the amplitude A
of the input at a fixed frequency, with the colour of the line indicating the frequency
value. We observe that in the case 3.3.b the nonlinear saturation curves have a weak
dependence on the frequency, and tend to overlap better, especially at large amplitudes.
This happens because the dominant factor of the nonlinear saturation is the amplitude
of forcing, and not the amplitude of the linear response. This is a feature of forced
flames, where one leading nondimensional number governing the saturation is the ratio
A/U , with U the bulk velocity at the burner inlet.

We must also take into account that the nonlinear operator N produces, as output,
spurious odd harmonics of the input frequency. These harmonics do not hold any
meaning, and can be filtered out with the structure (3.9b) if L behaves like a low-pass
filter outside the range of frequencies studied. This is a feature of flames (Schuller
et al., 2003) and a necessity for the model to work, as we want to comply with the
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(a) Nonlin. sat. of the Wiener model (b) Nonlin. sat. of the Hammerstein model

Fig. 3.3 Slices of the nonlinear gain G(A, ω) at 100 frequencies, equispaced from 96 Hz
to 194 Hz. Each line corresponds to a different frequency, associated to a different
colour on the colour bar on the right. In (a) the gain of the operator N is applied
after the operator L as in (3.9a), and this results in larger amplitudes A. In (b) the
operator N is applied before the operator L as in (3.9b). Two main behaviours are
found around two distinct frequencies, corresponding to the two hills in the describing
function of Fig. 3.1 around 100 Hz and around 190 Hz. The saturation curves are closer
in (b).

hypothesis of strong attenuation of higher harmonics that characterizes the describing
function framework. We therefore opt for the Hammerstein model described by (3.9b).

We now exploit the weak dependence of the gain of N on the frequency, and choose
for N a static, i.e. memory-less, nonlinearity. By operating in this way, the linear
operator L depends only on the frequency, and the nonlinear operator N depends only
on the amplitude:

Q = L
[
N [u(t)]

]
Q(A, ω) = N(A)L(ω) (3.10)

In the frequency domain, we are then approximating

Q(A, ω) ≈ N−(A)L−(ω) +N+(A)L+(ω) (3.11)

and we will make this approximation accurate at the design frequency ωd. Section
§3.3.3 discusses how to calculate the linear operators L±, and section §3.3.4 discusses
how to calculate the nonlinear operators N±.
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(a) Gain response (b) Phase response

Fig. 3.4 Fitting at fd =120 Hz of the linear operator L−. The gain is decreased outside
the range [0.8ωd, 1.2ωd]. The fit is then weighted higher in the range [0.9ωd, 1.1ωd],
where the fit is more accurate.

3.3.3 Linear operator fitting

We want to calculate a fit for the linear operator L, whose frequency response along
the imaginary axis s = iω is defined by equation (3.8). We choose to fit this curve
with rational function approximations, as discussed by Gustavsen (2006); Gustavsen
and Semlyen (1999). In particular, the transfer function of the operator is fitted to

Lfit(s) =
N∑
n=1

cn
s− an

+ d , s = σ + iω (3.12)

where {cn, an} and d are the coefficients of the fit, which were calculated using the
package VFIT3 written by Gustavsen (2006). This is quite an established technique,
used for example in Kurokawa et al. (2009) to run time domain simulation of a linear
system, and in Bothien et al. (2007) to identify and simulate components of acoustic
and thermoacoustic systems. In this case, we enforce the stability of the linear operator,
but do not enforce a passivity constraint Gustavsen (2008).

The tool VFIT3 also calculates the matrices A, B, C, D that describe the state-
space realization of (3.12):

ẋ =Ax+Bu (3.13a)
y =Cx+Du (3.13b)

where x is a vector variable describing the internal state, and u and y are respectively
the scalar input and output of the linear operator.
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An important parameter of the fitting is the number N of poles in (3.12). A large
number N usually leads to smaller errors within the range of frequencies [ω1, ω2] at
which data is available. On the other hand, a large N usually results in a fit with many
poles an outside the range [ω1, ω2]. These in turn lead to large, unphysical gains outside
of the range of frequencies [ω1, ω2] studied, violating our requirement of a low-pass
filter behaviour at the higher frequencies. This is often referred to as overfitting
(Gustavsen and Heitz, 2008), and if overlooked can lead to strongly oscillating time
domain simulations at very high frequencies.

Because of these considerations and after some testing, we choose a number of
N = 8 poles to do the fitting. We observe that we need: 1) a low-pass filter behaviour
at the frequencies of the higher order harmonics, i.e. at (2k + 1)ωd , k ∈ N>0, as
discussed in section §3.3.2; 2) an accurate fit only in the vicinity of the design frequency
ωd;

To satisfy the first constraint, we extend the fit to a broader range of frequencies,
from 30 Hz to 776 Hz. Moreover, outside the range [0.8ωd, 1.2ωd] we make the gain
decrease towards zero. This guarantees that the fit will be well behaved outside the
range of frequencies of interest, i.e. it will not exhibit unexpected large gains due to
overfitting.

To satisfy the second constraint, we provide to the fitting tool VFIT3 a vector of
weights, which we choose larger in the range [0.9ωd, 1.1ωd] to improve the accuracy in
a neighbourhood of ωd.

We present an example of the fitting in Fig. 3.4, where the original response L, the
decreased response Ldec and the fitted operator Lfit are reported. Notice that the fit is
accurate only in the vicinity of the design frequency fd.

The two linear operators L± are fitted to the linearisation (3.8) of Q±, which are
defined in (3.5). Since this is a fitting algorithm, the fitted operators Lfit

± are affected
by error, and the equation (3.8) holds only in an approximate sense. In particular,
also the phase responses φfit

± are not exactly in quadrature, with equations (3.7) valid
only in an approximate sense. We can however take this into account and calculate
the nonlinear saturations N± as the projections of the original operator Q on these
slightly non-orthonormal operators, as discussed in section §3.3.4.

The design phase

This paragraph discusses a technicality regarding the choice of the design phase φd.
We observe that the value of L±(ωd) depends both on the linear gain G(0, ω) and on
the phase response φd of Q±. A geometric interpretation is immediate in Fig. 3.2. For
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example, if the linear response (black vector, top-right quadrant) is very close to the
direction of Q−, then its projection on Q+ will be small, and the gain of L+ will be
small as well from (3.8). This situation can lead to a very small linear gain and a very
steep nonlinear response; in the worst case, if L+(ω) = 0 the model would be flawed,
as the nonlinear response N [L[u]] would be zero not just in the linear regime but at
all amplitudes. We can avoid these situations by choosing an appropriate value for
φd. Among the many possibilities, we choose to first calculate the design phase as
φd = φ(ωd, A), averaged over the possible forcing amplitudes A at the design frequency.
Geometrically, it represents the orientation of the dashed line that best represents
the average orientation of the output vectors in the top-right quadrant of Fig. 3.2.
If such a line is then too close to the direction of one of the operators Q±, i.e. if
|φd ± π/4 − φ(ωd, 0)| < π/8, we suitably add or subtract to it an angle π/8.

3.3.4 Nonlinear operator fitting

We fitted in the previous section the linear operators Lfit
± of the two Hammerstein

models Q±. In this section we fit the nonlinear operators N±, which are defined in the
frequency domain by the approximation (3.11). We now treat it as an equality at the
design frequency ωd:

Q(A, ωd) = N−(A)Lfit
− (ωd) +N+(A)Lfit

+ (ωd) (3.14)

Both sides of (3.14) are complex valued, and Lfit
+ (ωd) and Lfit

− (ωd) are linearly indepen-
dent phasors4. We then operate a vector projection in the complex plane of Q(A, ωd)
on the base composed of the two phasors, {Lfit

+ (ωd) ,Lfit
− (ωd)}. To do so, we use the

scalar product

⟨a, b⟩ ≡
[
Re(a)Re(b) + Im(a)Im(b)

]∣∣∣
ω=ωd

(3.15)

and the norm as |a|2 ≡ ⟨a, a⟩. With this structure, for each value of A, the quantities
N±(A) are the projections of Q(A, ωd) on the two phasors:

N+(A)
N−(A)

 = 1
|Lfit

− |2|Lfit
+ |2 − ⟨Lfit

− , L
fit
+ ⟩2 ·

·

 |Lfit
− |2, −⟨Lfit

− , L
fit
+ ⟩

−⟨Lfit
− , L

fit
+ ⟩, |Lfit

+ |2

 ⟨Q(A, ωd), Lfit
+ ⟩

⟨Q(A, ωd), Lfit
− ⟩

 (3.16)

4because they are approximately in quadrature
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Equation (3.16) can be obtained by applying the scalar product (3.15) between both
sides of (3.14) and the two phasors one at a time, and inverting the resulting system of
equations. Now the two nonlinear operators N± are defined in the frequency domain by
the two real-valued describing functions N±(A) evaluated in (3.16). In this section we
show how to calculate the memory-less state-space realization N [u(t)] of a sinusoidal
input, real-valued describing function N(A). The novelty proposed here is in using a
Fourier–Bessel expansion, which leads to good convergence properties, without the
use of iterative algorithms as proposed in Nassirharand (2009). We want to choose a
convenient analytical structure for N that is able to survive the evaluation of temporal
averaging that defines the describing function in equation (3.1). We propose the
following analytical structure for N (u):

N (u) ≈ qerfµ,κ (u) +
Nb∑
n=1

cnJ1(ûnu) (3.17)

for a suitable choice of the parameters µ, κ and of the coefficients cn. The first term in
(3.17) is a modified error function, defined as:

qerfµ,κ (u) ≡κerf
[√

πµu

2κ

]
, erf(x) ≡ 2√

π

∫ x

0
e−t2dt (3.18)

The function (3.18) is constructed in a way that the linear gain is µ and the output
saturates at κ:

∂qerfµ,κ (u)
∂u

∣∣∣
u=0

= µ lim
u→±∞

qerfµ,κ (u) = ±κ (3.19)

The second term in (3.17) is a Fourier–Bessel series. The function Jk(x) is the Bessel
function of the first kind of order k, and

ûn = ũn
W
, (3.20)

where ũn is the n-th root of J1(x) = 0, with ũ1 being the smallest non-zero root, and
W is a scaling factor. The first derivative of (3.17) at the origin is

β ≡ µ+ lim
u→0

∂

∂u

 Nb∑
j=1

cnJ1(ûnu)
 = µ+ 1

2

Nb∑
n=1

cnûn (3.21)



3.3 The state-space realization 41

(a) Operator N−, saturating the input for L− (b) Operator N+, saturating the input for L+

Fig. 3.5 Fitting of the two real-valued describing functions N−(A) and N+(A) at
fl = 180 Hz, with N = 40 terms in the Fourier–Bessel series. The original functions
and their fit are reported respectively with a continuous black line and a dashed cyan
line. They are barely distinguishable by eye, and their value is reported on the left
vertical axis of each figure. The absolute value of their difference is reported in red,
and refers to the vertical axis on the right.

The expansion (3.17) admits an analytical solution of the integral (3.1):

N(A) = µe−k2A2 [
I0(k2A2) + I1(k2A2)

]
+ 2

Nb∑
n=1

cn
A
J0

(
ûnA

2

)
J1

(
ûnA

2

)
(3.22)

where k ≡
√

π
8
µ
κ

and Ik(x) is the modified Bessel function of the first kind of order
k. Compared with a polynomial, this this series expansion has the advantage that it
converges better far from the origin. The proof of the identity (3.22) is reported in the
appendix §3.6.1. One can then fit the coefficients µ, κ,W, {cn} to best approximate the
known function on the LHS. First we choose to fit the modified error function term to
minimise its distance to N(A), obtaining the value of k and µ. Then the remaining
terms are non-orthogonal functions. For a fixed value of W , the fitting of a function on
a non-orthonormal base is explained in Klink and Payne (1976). We then look for the
optimal value of the scaling factor W leading to the best fit. One fitting with 40 terms
of the Fourier–Bessel series is presented in Fig. 3.5, with the error reported in red on
the right vertical axis. Since at small amplitudes no experimental data is available (as
discussed in Fig. 3.1) the operator has a plateau close to the origin. To reduce the
fitting error at the the end of the plateau where the first derivative is discontinuous,
we locally apply a moving average filter around the kink before proceeding with the
fitting.
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The proposed analytical structure (3.17) has proved effective at fitting all the
describing functions of the example application, with an accuracy as good as the one
presented in Fig. 3.5, with usually 20 terms being sufficient to provide a good fit. The
fitting presented in this subsection can be successfully used whenever one needs to
accurately represent in state-space a real-valued smooth sinusoidal describing function.

3.3.5 The final state-space realization

This section collects the results of the previous subsections. The two linear operators
L± admit the state-space realization (3.13):ẋ±(t) = A±x±(t) +B±uL±(t)

Q±(t) = C±x±(t) +D±uL±(t)
(3.23)

where uL± are the inputs of the two linear operators. The matrices describing this
linear system were calculated in subsection §3.3.3. From equation (3.9b), these inputs
are saturated by the nonlinear memory-less functions N±:

uL± = N±[u(t)] (3.24)

where u is the input of the final operator. The two nonlinear saturations N± have
the analytical structure (3.17), and the coefficients describing them were calculated in
subsection §3.3.4. We can then put the two equations (3.23) and (3.24) together and
obtain ẋ±(t) = A±x±(t) +B±N±[u(t)]

Q±(t) = C±x±(t) +D±N±[u(t)]
(3.25a)

The final output is then given by (3.4):

Q[u(t)] = Q−[u(t)] + Q+[u(t)] (3.25b)

Equations (3.25) fully describe the nonlinear state-space realization, and the internal
state of the operator is {x+, x−}. This subsection concludes the description of the
nonlinear state-space realization, which will be used in section §3.4.2 in the example
application in the time domain.



3.4 Application 43

3.4 Application
This section presents an application example of the state-space realization. The example
consists of a self-excited system, schematically represented in Fig. 3.6, where only one
nonlinear operator Q is present.

In section §3.4.1 we study the system in the frequency domain with the harmonic
balance method. In section §3.4.2 we study it in the time domain with the state-space
realization of the describing function introduced in section §3.3. We compare the
results obtained with the two techniques in §3.4.3.

B ZL
ξ

u uds

Q Tr

upstream
acoustics

downstream
acoustics

Fig. 3.6 Sketch of the experiment. B and ZL are linear time-invariant operators, with
L being the length of the downstream duct, which can be changed. ξ ≡ (ρc)ds/(ρc)us
and Tr ≡ Tds/Tus are multiplicative factors, and Q(A, ω) is the nonlinear operator
considered in section §3.3. This image was provided by Jonas Moeck from TU Berlin
for the article Ghirardo et al. (2015a).

We describe briefly the physics of the application example in the rest of this part,
and later solve the problem in subsection §3.4.1 and §3.4.2.

We model the experiment of Ćosić et al. (2013, 2014) of a confined, turbulent,
partially premixed swirling flame. The experiment consists schematically of three parts:
1) the configuration upstream of the flame, which includes the burner and the swirler;
2) the flame, assumed to be compact when compared to the length of the experiment;
3) the exhaust gas tube of variable length L.

Since the focus of this chapter is on the nonlinear flame model, we do not describe
in detail the configuration of the experiment, which can be found in Ćosić et al. (2013,
2014). The configuration upstream of the flame is fixed, and its acoustic response is
governed in the frequency domain by the admittance B:

û =B(ω) p̂

(ρc)us
(3.26)
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where (ρc) is the characteristic impedance of the gas, i.e. the product of density and
speed of sound, the latter being a function of temperature. Here and in the following,
we indicate with a hat variables that depend on frequency, e.g. û = û(ω), and we will
drop the hat to discuss time domain variables, such as u = u(t). The variables p̂ and û
in (3.26) are measured just upstream of the flame surface and refer to acoustic pressure
and velocity. We avoid adding the subscript us to both quantities so as not to burden
the notation in the previous sections, where u can be interpreted more generally as
the input of a generic nonlinear operator Q, in contexts different from this application.
We also assume that the flame is compact in space, i.e. it is an interface between the
upstream and downstream geometry. In a similar manner, the acoustics downstream
of the flame are described by the impedance ZL:

p̂ds
(ρc)ds

=ZL(ω)ûds (3.27)

This impedance depends parametrically on the length L of the downstream duct, which
can be varied. At the flame interface, under the assumption of a low Mach number
flow, the pressure is continuous across the flame interface Lieuwen (2003), i.e. p̂ = p̂ds,
which we rewrite as:

p̂

(ρc)us
=(ρc)ds

(ρc)us
p̂ds

(ρc)ds
,

(ρc)ds
(ρc)us

≈ 0.48 (3.28a)

At the flame interface the fluctuating heat release rate induces a sudden expansion of
the gas:

ûds = [1 + (Tds/Tus − 1)Q (A, ω)] û (3.28b)

The degree of this expansion depends on the ratio Tds/Tus ≈ 4.27 of the temperatures
in Kelvin degrees downstream and upstream of the flame, and on the sensitivity of the
fluctuating heat release rate on acoustic forcing, described by the describing function
Q, which depends on the amplitude A of the upstream velocity fluctuation, with
u(t) = A cos(ωt). Equation (3.28b) can be derived from Schuermans et al. (1999)
imposing the continuity of the pressure at the surface.

All quantities describing the problem have either been directly measured or esti-
mated in Ćosić et al. (2013, 2014).
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3.4.1 Frequency domain

This section evaluates the amplitude and the frequency of the limit cycles of the example
problem using the harmonic balance method. Combining the equations (3.26,3.27,3.28)
we obtain this dispersion relation in ω:

B(ω) (ρc)ds
(ρc)us

ZL(ω) [1 + (Tds/Tus − 1)Q (A, ω)] = 1

The relation is parametric in the length L of the combustion chamber. For the acoustic
operators B and ZL we fit a rational function approximation as described in section
§3.3.3, but with a number of poles N = 12. The rational function can then be evaluated
at arbitrary values of s = σ+iω. On the other hand, we assume that the flame response
Q is independent of the growth-rate σ, and extrude the value from the imaginary axis,
calculating it according to Q(A, Im[s] = ω). This leads to the dispersion relation

HL[σ, ω,A] = 0 (3.29)

where

HL[σ, ω,A] =HL[s, A] ≡ T fit
L (σ + iω)·

· [1 + (Tds/Tus − 1)Q (A, ω)] − 1 (3.30)

T fit
L (s) ≡Bfit(s) (ρc)ds

(ρc)us
Zfit
L (s) (3.31)

Equation (3.29) is a nonlinear eigenvalue problem in the complex Laplacian variable
s = σ + iω.

3.4.1.1 Linear stability analysis

In the linear regime, the amplitude A is zero and we study the solutions of the problem
HL[σ, ω, 0] = 0. For each length L, the absolute value of HL is calculated in a regular
fine grid {σm, ωn} in the range of interest, as reported for L = 0.8 in Fig. 3.7. A
numerical search of the zeros of the equation is then started from the local minima of
the map. These zeros are the linear eigenvalues of the problem, reported for all lengths
in Fig. 3.8 in terms of growth-rates and frequencies.
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Fig. 3.7 absolute value of the LHS of the dispersion relation (3.29) describing the
problem for L =0.8 m. Local minima are reported with red crosses, and solutions
with red circles. Only the portion of the domain presenting solutions is shown. The
value is rescaled with the arctangent function to present a finite codomain [0 , 1] for
representation purposes.

3.4.1.2 Nonlinear stability analysis

In this section we discuss the existence and stability of limit cycles in the system.
Limit cycles are found with HL[0, ω, A] = 0 because they represent periodic oscillations
with zero growth rate. We numerically search for them in a similar manner to
the previous section, obtaining solutions (ωj, Aj). We then numerically perturb the
amplitude of oscillation to Aj + δA and calculate the resulting perturbed eigenvalue
δσ + i(ωj + δωj). We then apply Loeb’s criterion Gelb and Vander Velde (1968),
and infer that the solution is stable/unstable if δσj/δA ≶ 0, assuming that only one
frequency of oscillation is present in the system. We carry out the same analysis for
all lengths L of the downstream duct, and report the amplitude and the frequency of
the stable/unstable limit cycles with filled/empty circles in Fig. 3.9. There is a region
with multiple solutions, for L between 0.99 and 1.02 m, one approximately at 160 Hz
and the other approximately at 130 Hz.

A first observation regards the points at L = 0.99, 1.00 m, where two distinct limit
cycles approximately at 160 Hz and at 130 Hz coexist. In this scenario it is impossible
to discuss the stability of the two modes without a dual-input describing function,
which is not available. Loeb’s criterion can be used only to provide sufficient conditions
for instability.

We then focus on the mode around 130 Hz. We fix in particular L =1.00 m, with the
other lengths in the region presenting a similar behaviour. We study the eigenvalues of
the problem as a function of the amplitude of oscillation in Fig. 3.10. At a fixed length
L in this region, there is one stable and one unstable limit cycles, at approximately the
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(a) Nondimensional growth-rate (b) Frequency of oscillation

Fig. 3.8 Eigenvalues of the linear problem for all the lengths L of the downstream
duct. The two plots represent the same data, using two distinct vertical axes and
colormaps. In a), the height of the circles represents the growth-rate σ and the colour
the frequency f of oscillation. In b), the height represents the frequency, and the colour
the growth-rate. Eigenvalues with large negative growth-rate are not visible on the
plot.

same frequency. This differs from a subcritical Hopf bifurcation, because the stable
limit cycle has a smaller amplitude of oscillation than the unstable limit cycle. We also
observe that if the system starts at the unstable limit cycle, it is attracted towards
a higher amplitude of oscillation, until the eigenvalue disappears. It is then harder
to make a definitive discussion of the nonlinear, saturated state of the system in this
region. We however notice how the overall shape of the unstable mode in Fig. 3.10.a
resembles a subcritical-Hopf bifurcation. The time domain analysis of the system will
suggest the same behaviour.

The results from the frequency domain analysis are for the most part consistent
with the experiments (Ćosić et al., 2014). However, not all of the features from the
present analysis could be observed in the experiment, in particular for those conditions
where the analysis predicts multiple limit-cycles.

3.4.2 Time domain

This section evaluates the amplitude and the frequency of the limit cycles of the example
problem running time domain simulations. We first combine equations (3.26,3.27,3.28a)



48 State-space realization of a describing function

(a) limit cycle amplitude of oscillation (b) Frequency of oscillation

Fig. 3.9 Nonlinear stability analysis, for all the lengths L of the downstream duct.
The two plots represent the same data: in a), the height of the circles represents the
limit cycle amplitude A, and the colour the frequency f of oscillation; in b), the height
represents the frequency, and the colour the limit cycle amplitude A. Stable/unstable
limit cycles are represented with filled/empty circles.

(a) Nondimensional growth-rate (b) Frequency of oscillation

Fig. 3.10 Eigenvalues of the nonlinear problem for a fixed length L =1 m of the
downstream duct, at discrete, equispaced amplitudes of oscillation A. The two plots
represent the same data, using two distinct vertical axis and colormaps. In a), the
height of the circles represents the growth-rate σ and the colour the frequency f of
oscillation. In b), the height represents the frequency, and the colour the growth-rate.
Eigenvalues with large negative growth-rate are not visible on the plot. The vertical
black lines mark the amplitudes of the limit cycles, at which one growth-rate changes
sign in a).



3.4 Application 49

and repeat (3.28b):

û =B(ω) (ρc)ds
(ρc)us

ZL(ω)ûds ≡ T fit
L (ω)ûds (3.32a)

ûds =û+ (Tds/Tus − 1)Q (A, ω) û (3.32b)

The operator T fit
L (ω) was introduced in equation (3.31), and we use here its state-space

representation ẋT (t) = ALxT (t) +BLuds(t)
u(t) = CLxT (t)

(3.33a)

We instructed the tool VFIT3 to provide the best fit with the feedthrough matrix DL

set to 0, compare with (3.13). The state space model for (3.32b) is:

uds(t) =u(t) + (Tds/Tus − 1) Q[u(t)], (3.33b)

where the operator Q is fully described by equation (3.25). These equations can
be numerically integrated in time with respect to the three internal state vectors
{xT , x−, x+} describing respectively the acoustic state and the states of the two linear
operators, see again (3.25). At each time step, u(t) can be calculated with (3.33a), and
uds(t) can be calculated with (3.33b). Notice that if DT were not set to 0 in (3.33a),
an algebraic loop would appear, because u(t) would depend on uds(t), but also uds(t)
would depend on u(t) because of (3.33b). This would require a study of the problem in
the context of differential algebraic equations, with an additional root solver operation
at each time step.

As initial condition x = {xT , x−, x+} we keep generating a new random initial
condition until physical values of uds(t) and u(t) result from (3.33a) and (3.33b). In
particular, the random initial state should predict a value for the velocity u upstream
of the flame such that the flame response is defined for such an amplitude, and such
that the gain of the nonlinear operator is in a limited range. The system is then
time-integrated until it converges to a limit cycle. An example is reported in Fig. 3.11.

At L =1.01 m the system is linearly stable (see Fig. 3.8.a), and we check that
the system converges to the steady solution for a set of random initial conditions.
Subsequently, we force the system with an external, artificial harmonic source at the
frequency of the least stable linear mode, which we stop after ∆t =0.2 s. In this second
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(a) velocity u(t) just upstream of the flame
surface (b) Estimated power spectral density of u(t).

Fig. 3.11 Time simulation of the system of equations (3.33) for a fixed value of the
length L =0.8 m of the downstream duct. a) represents the time domain signal, and b)
the spectrum of the signal. The system converges to a limit cycle. The third harmonic
is visible in b). Analogous simulations are carried out for all lengths L.

case, the system converges to a stable limit cycle. This scenario describes a subcritical
Hopf bifurcation.

3.4.3 Comparison

To compare the time domain simulations with the frequency domain simulations, we
extract (Choi, 1997) the amplitude and the frequency of the dominant harmonic from
the saturated limit cycle of u(t) of each simulation, run for each value of the length
L. In the first round of simulations, the design frequency ωd is set to the frequency of
the least stable mode of the linear stability analysis. These results are reported with a
continuous green line in Fig. 3.12. We observe a general qualitative agreement with
the frequency domain results (coloured dots, the same as Fig. 3.9).

We also run a second round of simulations, setting ωd to the frequency of the
saturated limit cycle of the first round of simulations. We then run a third round of
simulations in the same way, reported with the continuous red line in Fig. 3.12. The
agreement with the frequency domain results is now much better.

We finally report the normalised difference between the two sets of results, as a
percentage, in Fig. 3.13. The error diminishes with the number of the iteration at
most points. It is larger in the transition zone discussed at the end of section §3.4.1.2,
reported in the figure between the two vertical dashed lines, where the analysis in the
frequency domain is harder. In particular, the error is largest at L = 0.98,0.99 m, where
it is fundamentally not correct to compare the two approaches because the analysis in
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(a) Amplitude of oscillation A (b) Frequency of oscillation f

Fig. 3.12 Comparison of the results of the time domain (continuous lines) and the
frequency domain (the same circles as Fig. 3.9) approaches, in terms of amplitude (in
a)) and frequency of oscillation (in b)) of the saturated limit cycle. The green line is
obtained with a first time simulation by setting the flame model design frequency ωd
to the frequency of the least stable linear mode (reported as black dots in b)). The red
line is obtained by iterating the process two times.

the frequency domain is not complete: the stability of the reported solutions cannot
be fully ascertained and more solutions may exist.

3.5 Conclusions

We present a state-space realization Q of a describing function Q, combining two
Hammerstein models. For the linear part of the operators we use a rational function
approximation, while for the nonlinear part of the model we propose the use of Fourier–
Bessel series. The evaluation of the realization is fully automated and not iterative,
and allows the study in the time domain of the behaviour of a system in a range of
frequencies centred around a design frequency fd.

We apply the tool to a thermoacoustic system, comparing the results of a time
domain analysis using the state-space realization Q with the results of a nonlinear
frequency-domain analysis using the original describing function Q.

In all the cases where the frequency-domain analysis is simple there is very good
agreement between the results, validating the accuracy of the state-space realization
proposed here.

In the other cases, the nonlinear frequency-domain analysis is difficult or not possible
without further information about the system. In these latter cases the state-space
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(a) Relative error for the
predicted amplitude A

(b) Relative error for the
predicted frequency f

Fig. 3.13 Error between the results obtained in the frequency domain (subscript f)
and in time domain (subscript t), in percentage. The agreement is very good, except
in the region where the frequency-domain stability analysis is not conclusive, delimited
by the two vertical dashed lines.

realization can be used as a rough tool to isolate one mode at a time, and provide
quick results.

This tool will be particularly useful in the study of thermoacoustic oscillations in
annular combustion chambers, where a time domain approach to the problem has so
far been more successful than a frequency domain approach. It allows an accurate
description of the nonlinear saturation of the problem, improving on existing time
domain solvers Pankiewitz and Sattelmayer (2003); Schuermans et al. (2003); Stow
and Dowling (2009).

We observe that it may be possible to change the design frequency fd of Q during
the time domain simulation, by extracting in real-time the instantaneous frequency of
oscillation of the system and incrementally retuning the model. The extraction could
be done with a nonlinear Kalman filter Hajimolahoseini et al. (2012).

3.6 Appendices

3.6.1 Describing function calculation

In this appendix we evaluate the describing function (defined by (3.1)) of the saturation
function N . We will prove here the more general result for an input with structure

u(t) = A1 cos(ωt+ φ1) + A2 cos(ωt+ φ2) (3.34)
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to the function N , as opposed to the case under consideration in this chapter introduced
in (3.1) where u(t) = A cos(ωt). In particular, the input described by (3.34) describes
the contribution of two modes, oscillating at the same frequency, instead of a single
sinusoidal input A cos(ωt+ φ). The motivation to cover this more general case is to
make this framework usable in rotationally symmetric annular combustors featuring
azimuthal modes. In that case, each burner is subject to the combined input of two
thermoacoustic modes, depending on the amplitudes A1 and A2 of the two modes
at that location, and on their phases φ1, φ2. Once the result for the input (3.34) is
obtained, it will be sufficient to set A1 = A, φ1 = φ2 = A2 = 0 to obtain the special
case of the single input response used in this chapter, as presented at the end of the
appendix.

We proceed by rewriting u as

u = a cos(ωt) + b sin(ωt) (3.35)

by introducing the costants a ≡ A1 cosφ1 + A2 cosφ2

b ≡ −A1 sinφ1 − A2 sinφ2
(3.36)

Notice that a, b do not depend on the time variable t. We study the averaging integral
in the definition (3.1) of describing function for the operator N , and we will later
divide by the amplitude A to recover the full expression. In other words, for the time
being we study the product N(A, ω)A. We substitute in the product the equation
(3.35) and change the time variable:

1
π

∫ 2π

0
N (a cos t+ b sin t) (cos t+ i sin t) dt = fc + ifs (3.37)
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We substitute the expression for N from (3.17):

fc = 1
π

∫ 2π

0
qerfµ,κ (a cos t+ b sin t) cos tdt+
N∑
n=1

cn
π

∫ 2π

0
J1(ûn(a cos t+ b sin t)) cos tdt

≡f erfc +
N∑
n=1

cnf
b,n
c (3.38a)

fs = 1
π

∫ 2π

0
qerfµ,κ (a cos t+ b sin t) sin tdt+
N∑
n=1

cn
π

∫ 2π

0
J1(ûn(a cos t+ b sin t)) sin tdt

≡f erfs +
N∑
n=1

cnf
b,n
s (3.38b)

We study first the integrals f erfc and f erfs due to the error function in section §3.6.1.1,
and then each of the N integrals f b,nc and f b,ns of the Fourier–Bessel series in section
§3.6.1.2. We put together the expressions and discuss them in section §3.6.1.3.

3.6.1.1 Averaging the error function

We substitute the definition of qerfµ,κ from (3.18) into the expression of f erfc and f erfs in
(3.38). We obtain

f erfc = κ

π

∫ 2π

0
erf
(√

πµ

2κ (a cos t+ b sin t)
)

cos tdt (3.39a)

f erfs = κ

π

∫ 2π

0
erf
(√

πµ

2κ (a cos t+ b sin t)
)

sin tdt (3.39b)

For conciseness, we introduce the constant

k =
√
π

8
µ

κ
, (3.40)

so that the argument of the erf function is
√

2k(a cos t+ b sin t). This leads to neater
expressions in the following. We proceed by expressing the argument of the exponential
function as

a cos t+ b sin t = R sin(t+ ψ), (3.41)
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where R and ψ are defined as

R ≡
√
a2 + b2 (3.42a)

ψ ≡ arg(b+ ia) (3.42b)

The two integrals (3.39) become

f erfc = κ

π

∫ 2π

0
erf
(√

2kR sin(t+ ψ)
)

cos tdt (3.43a)

f erfs = κ

π

∫ 2π

0
erf
(√

2kR sin(t+ ψ)
)

sin tdt (3.43b)

We exploit the fact that the erf function is defined as an integral itself, and apply
integration by parts to (3.43a):

fc
erf = κ

π

[
erf
(√

2kR sin(t+ ψ)
)

sin t
]2π

0
− (3.44)

κ

π

2√
π

√
2k
∫ 2π

0
e−2k2R2 sin2(t+ψ)R cos(t+ ψ) sin tdt

The first term trivially vanishes. In the second, 2/
√
π is the factor present in the

definition (3.18) of the erf function, and
√

2k comes from the chain rule of the derivative
of erf with respect to t, together with the term R cos(t + ψ) inside the integral.
Substituting the definition of k from (3.40) only at its first occurrence into the second
term, we can simplify:

κ

π

2√
π

√
2k = µ

π
(3.45)

We now apply a change of integration variable t → χ− ψ to the integral (3.44), and
because the integrand is periodic in t and then in χ, we keep the same limits of
integration in the new variable.

f erfc = −µ

π
R
∫ 2π

0
e−2k2R2 sin2 χ cosχ sin(χ− ψ)dχ (3.46)

We then expand the trigonometric term sin(χ−ψ), and take the sum out of the integral.
We obtain

f erfc = − µR [+Esc cosψ − Ecc sinψ] (3.47a)
f erfs = − µR [−Esc sinψ − Ecc cosψ] (3.47b)
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where we introduced the integrals

Esc ≡ 1
π

∫ 2π

0
e−2k2R2 sin2 χ cosχ sinχdχ = 0 (3.48a)

Ecc ≡ 1
π

∫ 2π

0
e−2k2R2 sin2 χ cos2 χdχ =

2
π

∫ π

0
e−2k2R2 sin2 χ cos2 χdχ (3.48b)

The first integral (3.48a) is zero since its integrand is odd. In (3.48b), we exploited
the fact that the integrand has period π. We then use power reduction formulas on
the terms sin2 χ and cos2 χ:

Ecc = 2
π

∫ π

0
e−k2R2(1−cos 2χ) 1 + cos 2χ

2 dχ =
1

2π

∫ 2π

0
e−k2R2(1−cos t)(1 + cos t)dt (3.49)

The integrand in (3.49) has period 2π and is an even function of t, so:

Ecc = 1
π

∫ π

0
e−k2R2+k2R2 cos t(1 + cos t)dt =

=e−k2R2
( 1
π

∫ π

0
ek

2R2 cos tdt+ 1
π

∫ π

0
ek

2R2 cos t cos tdt
)

=e−k2R2 (
I0(k2R2) + I1(k2R2)

)
(3.50)

In (3.50), I0(x) and I1(x) are the modified Bessel functions of the first kind of the zero
and first order respectively. We first substitute (3.50,3.48a) in (3.47), and then we
substitute R sinψ = a and R cosψ = b. We obtain:

f erfc =af erfnl (kR) (3.51a)
f erf2 =bf erfnl (kR) (3.51b)

with

f erfnl (kR) ≡ µe−k2R2 (
I0(k2R2) + I1(k2R2)

)
(3.52)

acting as a gain, as it multiplies the linear term in (3.51) and depends on the amplitude
of oscillation. The two analytical expressions (3.51) have been compared with the
numerical integration of (3.38) and its counterpart for a few values of µ, κ, a, b, and
lead to relative errors of the order of machine precision, thus confirming their validity.
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3.6.1.2 Averaging Bessel functions

The n-th term of f b,nc and of f b,ns in (3.38) are respectively

f b,nc ≡ 1
π

∫ 2π

0
J1(2una cos t+ 2unb sin t) cos tdt (3.53a)

f b,ns ≡ 1
π

∫ 2π

0
J1(2una cos t+ 2unb sin t) sin tdt (3.53b)

where we introduced un ≡ ûn/2. We define f̂ b,nj = f b,nc +if b,ns and apply the substitution

z = eit, sin t = 1
2i

(
1 − 1

z

)
, cos t = 1

2

(
1 + 1

z

)
(3.54)

We obtain

f̂ b,nj = 1
π

∫ 2π

0
J1

(
un(a− ib)z + un(a+ ib)1

z

)
zdt (3.55)

We now change the line integral into a contour integral in the complex plane on the
circle |z| = 1. From (3.54) we have that dt = dz/iz, and

f̂ b,nj = 1
πi

∮
|z|=1

J1

(
un(a− ib)z + un(a+ ib)1

z

)
dz (3.56)

The Bessel function J1(z) is an entire function, so the only singularity of f̂ b,nj (z) is at
the origin, and is of the essential type. We can then apply the residue theorem,

f̂ b,nj = 1
πi

2πiRes
[
J1

(
un(a− ib)z + un(a+ ib)1

z

)]
z=0

=

= 2Res [G(z)]z=0 (3.57)

We expand the Bessel function in G(z) with its Laurent series:

G(z) =
∑
m=0

(−1)mu1+2m
n

m! (m+ 1)!

(
(a− ib)z + (a+ ib)/z

2

)1+2m

(3.58)

We substitute the binomial expansion of the power of the sum
(

(a− ib)z + (a+ ib)/z
2

)1+2m

= (3.59)

1
21+2m

1+2m∑
k=0

zk−(2m+1−k)
(

1 + 2m
k

)
(a− ib)k(a+ ib)1+2m−k
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The residue in (3.58) is the sum of the coefficients of the term 1/z. Therefore, in the
sum (3.59) we retain only the term with k − (2m+ 1 − k) = −1, from which follows
k = m. This term of (3.59) is:

1
21+2m z

−1
(

1 + 2m
m

)
(a− ib)m(a+ ib)m+1 =

a+ ib

2
1

22m z
−1 (2m+ 1)!
m! (m+ 1)!(a

2 + b2)m (3.60)

Equation (3.57) evaluates to

f̂ b,nj =(a+ ib)
∞∑
m=0

(−1)m(2m+ 1)!u1+2m
n

(m! (m+ 1)! )2

(
R

2

)2m

with R =
√
a2 + b2. This series converges to

f̂ b,nj =(a+ ib)
2J0

(
un

√
a2 + b2

)
J1
(
un

√
a2 + b2

)
√
a2 + b2

(3.61)

The two forcing terms (3.53) can be evaluated as the real and imaginary part of (3.61):

f b,nc =af b,nnl (R) (3.62a)
f b,ns =bf b,nnl (R) (3.62b)

where we introduced

f b,nnl (R) ≡ 2J0 (unR) J1 (unR)
R

(3.63)

3.6.1.3 Final expression

The final expression of fc and of fs is obtained by substituting (3.51) and (3.62) into
(3.38):

fc(a, b) =a
(
f erfnl (kR) +

N∑
n=1

cnf
b,n
nl (R)

)
= afnl(R) (3.64a)

fs(a, b) =b
(
f erfnl (kR) +

N∑
n=1

cnf
b,n
nl (R)

)
= bfnl(R) (3.64b)
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with un = ûn/2, the constant k = µ/κ
√
π/8 as defined in (3.40), the value of R is

defined in (3.42a) and

fnl(R) ≡ f erfnl (kR) +
N∑
n=1

cnf
b,n
nl (R) (3.65)

where f erfnl and f b,nnl have been defined respectively in (3.52) and (3.63). The two terms
fc and fs in (3.64) are symmetric with respect to a, b, since we have fc(a, b) = fs(b, a).

By exploiting the fact that limR→0 J1(R)/R = 1/2, and then substituting (3.21),
we observe that

lim
R→0

fnl(R) = µ+
N∑
j=0

cnun = µ+ 1
2

N∑
j=0

cnûn ≡ β (3.66)

where we substituted the property (3.21) in the last passage. It can be proved that
the first derivative at zero is

lim
R→0

∂fnl
∂R

(R) = 0, (3.67)

meaning that fnl is constant at first order in R.
In the case of the input described by a single sinusoid A cos(ωt), it is sufficient to

set A1 = A, φ1 = φ2 = A2 = 0. In the definitions (3.36) this leads to a = A, b = 0, and
the substitution of these in (3.64) leads to

fc(a, b) =A
(
f erfnl (kA) +

N∑
n=1

cnf
b,n
nl (A)

)
=Afnl(A) (3.68a)

fs(a, b) =0 (3.68b)

The component in quadrature with the input signal u is zero, and N(A) is real valued.
Substituting (3.68) in (3.37), and because (3.37) is equal to N(A, ω)A, we obtain

N(A, ω) =fnl(A) (3.69)

with fnl matching the RHS of (3.22).





Chapter 4

Weakly nonlinear analysis of
annular combustors

Part of the material presented in this chapter was published as Ghirardo et al. (2015b).

4.1 Introduction

A successful method for modelling thermoacoustic instabilities is the truncated harmonic
balance method (Boudy et al., 2011; Dowling, 1997; Noiray et al., 2008; Palies et al.,
2011). This approach has so far been restricted to situations with only one mode of the
system, close to the Hopf bifurcation, and to longitudinal configurations. Under these
restrictions, the method involves the study of the solutions of a nonlinear dispersion
relation f(ω,A) = 0 that depends on the amplitude A > 0 of the oscillation. A
limit-cycle is formed if there exists a non-trivial solution with a zero growth-rate, i.e.
A > 0, ω ∈ R. In the analysis, there is no need to study the phase φ of the oscillation,
because the system is self-excited and is then invariant under a shift of the time variable.
For a detailed description, we refer the reader to Dowling (1997); Noiray et al. (2008).

The application of this framework to annular combustors is more challenging because
of the presence of azimuthal modes. These appear as mode pairs, with amplitudes A1

and A2 (say), because of the discrete rotational symmetry of the problem. Although
the system remains time-invariant to a temporal shift, the phase difference of the
oscillations of the two modes, defined as φ ≡ φ1 −φ2, plays a role in the dynamics. This
leads to finding the solutions of a nonlinear dispersion relation f(ω,A1, A2, φ) = 0 and
evaluating their stability. This is harder for two modes than for one. Some introductory
work has been carried out by Campa and Camporeale (2014); Campa et al. (2013)
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using a Helmholtz solver, where the stability with respect to only the amplitude of the
mode was considered.

Low-order, state-space models overcome this difficulty (Ghirardo and Juniper, 2013;
Noiray et al., 2011; Noiray and Schuermans, 2013; Schuermans et al., 2006). They
allow the discussion of not just the amplitude of the solutions, but also the temporal
evolution of the system and the stability of the solutions, features missing in the
truncated harmonic balance method. Usually the method of averaging is applied to
the state-space model, allowing a discussion of the temporal evolution of the two
amplitudes A1, A2 and of the phase difference φ. The proposed fluctuating heat release
rate model is limited in those studies to simple phenomenological expressions, in terms
of the acoustic pressure and/or the acoustic azimuthal velocity. Also, only systems
with fluctuating heat release rate uniformly distributed along the circumference were
studied.

This chapter bridges the gap between low-order state space models and the truncated
harmonic balance approach. We first show in §4.2 that the equations of the low-order
model can be obtained by studying the governing equations of the problem as weakly
nonlinear. We then show how to exploit the describing function in applying the method
of temporal averaging in §4.3. This allows the flame response to remain generic, in
contrast with all previous studies that considered a specific fluctuating heat release
rate model. This allows us to prove with generality many properties of thermoacoustic
oscillations in rotationally symmetric annular chambers. In particular we discuss the
conditions under which spinning and standing waves are stable attractors of the system,
and provide measurable quantities in experiments, which allow the validity of the
hypotheses of this model to be tested.

We then present in §4.4 an example that illustrates this framework. The example is
the first analytical study of an annular combustor capable of exhibiting thermoacoustic
triggering, and shows that flames responding with a weak gain at small amplitudes
and with a strong gain at large amplitudes can lead to stable, self-excited standing and
spinning solutions in annular configurations. Notice that here the adjective stable refers
to a limit-cycle solution, so that in the following for example a stable standing solution
is a stable periodic attractor of the dynamical system, not a standing eigenmode of
the problem with a negative growth-rate.
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4.2 Governing equations

We discuss the geometry of the problem in §4.2.1 and the modelling of the fluctuating
heat release rate in §4.2.2. We introduce the governing equations in §4.2.3, both in
the time domain and the frequency domain. We discuss the degeneracy of the linear
solutions in the frequency domain in §4.2.4. In §4.2.5 we carry out the weakly nonlinear
analysis of the problem, which consists of two steps. Firstly, we increase/reduce the
flame response until the linear solution is neutrally stable, and calculate its spatial
structure. Then, we project the original nonlinear governing equations on this structure,
which is assumed to change very little in the nonlinear regime because the system is
weakly nonlinear.

The resulting truncated equations describe the temporal evolution of the amplitudes
of two standing modes describing the whole acoustic field. These two amplitudes are
two damped oscillator, coupled nonlinearly through the fluctuating heat release rate.
The two oscillators’ equations were already derived in chapter §2 for a fluctuating heat
release rate uniformly distributed in the azimuthal direction using a Galerkin base
instead.

4.2.1 Problem geometry

We adopt cylindrical coordinates z, r, θ, with the z-axis corresponding to the axis of
the combustion chamber, and θ in [0 , 2π). We assume that a number Nb of equal
burners are equispaced along the annulus, and that each of the Nb sectors has the same
geometry. The problem then has a discrete rotational group of symmetry of order Nb,
with the fundamental domain being a sector spanning the angle ∆θ ≡ 2π/Nb.

In most industrial configurations, each flame is situated in a swirling flow, and all
flames will swirl in the same direction. Depending on the geometry of the chamber,
and on the viscous drag of inner and outer walls, a mean azimuthal velocity Uθ can
be established in the annulus by the swirlers. In many cases the mean flow Uθ is very
small compared to the speed of sound, and is fixed to zero in the following (for example
Uθ is of the order of 10 m/s in Wolf et al. (2010)).

A non-zero azimuthal mean flow Uθ has two effects. Firstly, a non-zero Uθ makes
one of the two spinning modes rotate faster and the other slower, and gives rise to
slowly rotating modes, with pressure and velocity nodes moving at the speed of the
mean azimuthal flow. See for example Wolf et al. (2010) for numerical evidence and a
discussion. From a mathematical perspective, a non-zero Uθ makes the system lose the
reflection symmetry mapping θ to −θ, and restricts the group of discrete symmetries
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of the system from the discrete rotation group with reflection symmetry DNb
to the

discrete rotation group ZNb
without reflection symmetry of the same order. Refer to

Bauerheim et al. (2015, 2014) for a detailed analysis of this first effect of Uθ in a linear
framework.

Secondly, a non-zero Uθ bends the flames in the azimuthal direction, orthogonally
to the burner’s axis. This leads to a loss of axisymmetry of the mean flame shape,
and this loss of axisymmetry is in turn a necessary condition for the flame to have a
non-zero linear response to azimuthal velocity perturbations, as proven by Acharya
and Lieuwen (2014).

We assume that the flames are acoustically compact, so that the fluctuating heat
release rate is concentrated at the locations of the burners:

q(x, t) =
Nb∑
j=1

qj(t)δ(x − xj) x ≡ (z, r, θ) , xj ≡ (0, r, θj) (4.1)

where δ is the Dirac delta in 3 dimensions, r is the radial position of the burners, and
the plane z = 0 is at the interface between the combustion chamber and the burners,
which are located at the azimuthal positions θj, equispaced by ∆θ. We number the
burners in anti-clockwise direction, and we choose a frame of reference so that the first
burner is positioned at

θ1 =π4 + ∆θ
4 ζ

ζ ∈ {0, 2} if Nb is even
ζ ∈ {0, 1, 2, 3} if Nb is odd

(4.2)

The addition of the coefficient ζ is arbitrary, and corresponds to a simple rotation of
the frame of reference, which will be useful later. For the time being, it suffices to
observe from (4.2) that the position at the angle θ = π/4:

• for ζ = 0 is occupied by a burner;

• for ζ = 2 is equispaced between two adjacent burners;

• for ζ = 1 is 3∆θ/4 far from the preceding burner and ∆θ/4 far from the next.

4.2.2 Flame response

In this work, we assume that the flame response to the acoustic field is known, both in
the linear and nonlinear regime. A common modelling approach consists of expressing
the fluctuating heat release rate qj of the j-th flame in terms of only the acoustic
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axial velocity vj just upstream of the burner. Doing so, we assume that the azimuthal,
acoustic velocity u does not affect the response. This last point is proved theoretically
in the linear limit for axisymmetric premixed flames in Acharya et al. (2012). This
influence is experimentally verified to be small at low amplitudes of transverse forcing,
for the cases of a burner positioned at pressure/velocity nodes, and for the case where
it is swept by a spinning wave, where both u and v are excited at the same time
(Saurabh et al., 2014). This effect is usually not taken into account because little is
known in the nonlinear regime, i.e. at amplitudes of oscillation typical of self-excited
thermoacoustic oscillations. In this chapter we make the same assumption, but point
out that the nonlinear effect of the transverse azimuthal velocity u on each flame was
investigated in chapter §2. It does not affect the linear stability properties of the
system, but it does affect the nonlinear dynamics, and can explain stable standing
solutions in axisymmetric annular chambers.

The longitudinal fluctuating velocity vj oscillating in the j-th burner can be
expressed as a linear time-invariant operator of the acoustic pressure difference ∆pj
between the two sides of the burner, which are the chamber and the plenum, under the
assumption of burner’s acoustic compactness (Blimbaum et al., 2012), which allows
the burners to be modelled as a lumped element. However, if we consider one mode
oscillating harmonically in time, and we assume that the burner transfer function of
the lumped element does not depend on the amplitude of oscillation (as validated for
example in Ćosić et al. (2014)), then ∆pj is proportional to pj, and one can express
vj as a linear operator of the local value of the pressure in the chamber pj. The
same reasoning applies also to two degenerate azimuthal modes oscillating at the same
frequency, as will be the case in the following.

In particular, we model the fluctuating heat release rate as a time-invariant operator
Q:

qj(t) = Q[pj(t)] (4.3)

The operator Q contains all the complexity of the relation between pj and qj, and is
nonlinear. We restrict our study to operators Q that, excited with a harmonic input
p = A cos(ωt), respond strongly at the same input frequency ω and weakly at higher
harmonics 2ω, 3ω, . . .. This assumption is usually called the filtering hypothesis (Gelb
and Vander Velde, 1968). We observe however that this is a feature of flames, acting
like a low-pass filter on the acoustic input (Schuller et al., 2003). This, together with
the acoustics being a narrow band filter, is one of the reasons why frequency domain
calculations truncated at the first harmonic have proven successful in thermoacoustics
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even for limit-cycles calculations. We also assume that Q is a stable operator, i.e. heat
release fluctuations are present only if an external acoustic wave perturbs the flame.
This means for example that we do not consider the flame response to its own acoustic
field (Assier and Wu, 2014) if it leads to a linearly unstable flame.

We will study the problem both in the time and frequency domains. We refer with
the calligraphic symbol Q to the time domain operator mapping pressure perturbations
to fluctuations in heat release rate. In the frequency domain, we can calculate the
corresponding describing function, which we label with the uppercase Q, defined as
(Gelb and Vander Velde, 1968):

Q(A, ω) ≡ 1
A

1
π/ω

∫ 2π/ω

0
Q [A cos(ωt)] eiωtdt (4.4)

The real and imaginary parts of Q(A, ω) express the amplitudes of the components of
the fluctuating heat release rate, i.e. the output of the operator, respectively in phase
and in quadrature with the sinusoidal pressure input. In particular it is Re[Q(A, ω)]
that leads to a contribution to the energy production term q(t)p(t) in the Rayleigh
criterion: if positive, the fluctuating heat release rate is partially in-phase with respect
to the pressure input and the energy production term Q[p(t)]p(t) in the Rayleigh
criterion is positive over a limit-cycle. One can then define the gain G and the phase
lag ϕ of the flame response as:

Q(A, ω) = G(A, ω)eiϕ(A,ω) (4.5)G(A, ω) = |Q(A, ω)|
ϕ(A, ω) = arg[Q(A, ω)]

(4.6)

Notice that for a model with a constant time-delay τ between the pressure and the
fluctuating heat release rate we have ϕ(A, ω) = +ωτ . The sign convention of +iωt in
the exponential in equation (4.4) is historical, and we already point out that it is the
opposite of the Fourier transform that we will use later.

The response of the flame is always bounded, i.e. the gain is always between 0
and Gmax. We also assume that the describing function is a continuous function of
the amplitude A and of the frequency ω. This is usually an observed property of the
experimental data (see for example Palies et al. (2011)), though it can also happen
that the flame abruptly extinguishes above a certain amplitude of forcing, typically
because of blow-off or flash-back events.
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We also observe that the gain of acoustic damping sources are typically constant
or decrease with the amplitude of oscillation (Ćosić et al., 2012). This means that
limit-cycle oscillations occur because the flame response decreases with amplitude to
the point of attaining an energy balance. Since we do not want to set a lower bound
for the level of acoustic damping, we characterize the existence of an amplitude at
which the energy balance is obtained by assuming that limA→∞|Q(A, ω)| = 0.

These three simple assumptions will play a key role in discussing the existence and
the number of solutions later on (but not their stability).

4.2.3 Governing equations

Making a zero-Mach number assumption, the inhomogeneous wave equation governing
the problem is, as derived for example by Nicoud et al. (2007) :

∇ ·
(

1
ρ0

∇p1

)
− 1
γp0

∂2p1

∂t2
= −γ − 1

γp0

∂q1

∂t
(4.7)

In the equation, subscript 0 refers to mean quantities, which depend on x only, while
subscript 1 refers to fluctuating quantities, which depend on x and t. In this chapter we
assume that the density ρ0 and the isentropic coefficient γ are uniform. This hypothesis
can possibly be lifted, but the equations become complicated without adding more
insight. We also nondimensionalize the equations, with respect to a spatial lengthscale
D (say the radius of the annular chamber) and the acoustic timescale D/c, with c being
the mean speed of sound in the chamber. We assume an ideal gas, so that ρ0c

2 = γp0.
We introduce the nondimensional fluctuating pressure p and fluctuating heat release
rate q as

p ≡ p1

ρ0c2 q ≡ q1
γ − 1
γp0

D

c
(4.8)

In the new non-dimensional coordinates, equation (4.7) simplifies to

∂2p

∂t2
− ∇2p =

Nb∑
j=1

δ(x − xj)
∂Q[pj]
∂t

(4.9)

where we substituted the expression (4.1) and (4.3) for the fluctuating heat release
rate q. We adopt the following convention for the definition of the Fourier transform:

f̂(ω) ≡ 1
π

∫ ∞

−∞
f(t)e−iωtdt f(t) = 1

2

∫ ∞

−∞
f̂(ω)e+iωtdω (4.10)
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By multiplying all terms of (4.9) by e−iωt/π and integrating over the time t we obtain
the inhomogeneous Helmholtz equation:

ω2p̂(x, ω) + ∇2p̂(x, ω) = −
Nb∑
j=1

δ(x − xj)
1
π

∫ ∞

−∞

∂Q[p(xj, t)]
∂t

e−iωtdt (4.11)

Each of the integrals in the sum on the RHS can be rewritten as

1
π

∫ ∞

−∞

∂Q[p(xj, t)]
∂t

e−iωtdt = + iω
1
π

∫ ∞

−∞
Q[p(xj, t)]e−iωtdt

= + iωQ(|p̂(xj)|, ω)∗p̂(xj, ω) (4.12)

Notice that we assume that the response at the frequency ω of Q[p(x, t)] only depends
on the amplitude |p̂(x)| of the solution at the same frequency ω. This is correct as
long as all other harmonics are negligible, i.e. the filtering hypothesis holds (Gelb and
Vander Velde, 1968). We also point out that in the last passage of (4.12) the complex
conjugation denoted by the asterisk appears because of the different sign convention
in the exponential in the definitions (4.4) and (4.10). Substituting (4.12) in (4.11) we
obtain:

ω2p̂(x, ω) + ∇2p̂(x, ω) = −iω
Nb∑
j=1

δ(x − xj)Q(|p̂(xj)|, ω)∗p̂(xj, ω) (4.13)

Equation (4.13) must be accompanied by suitable boundary conditions. At the com-
bustor walls these will be zero normal gradient conditions for the pressure. At the
axial extremes of the domain, the combustor inlet and outlet, the boundary conditions
will in general be of impedance type, p̂ = Z(ω)û, with Z(ω) a complex-valued function.

4.2.4 Eigenmodes’ degeneracy

We linearize equation (4.13) with respect to the amplitude |p̂(x)| of the solution and
obtain:

ω2p̂(x, ω) + ∇2p̂(x, ω) = −iω
Nb∑
j=1

δ(x − xj)L(ω)p̂(xj, ω) (4.14)

where L(ω) is the transfer function of Q[p(t)] at infinitesimal amplitudes. The set of
solutions of the eigenvalue problem (4.14) is {(ψ̂n(x), σn + iω̂n) with σn, ω̂n ∈ R , n =
1, 2, . . .} where ψ̂n(x) is the complex-valued eigenvector describing the shape of the
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mode, and σn + iω̂n is the corresponding eigenvalue. The modes and their eigenvalues
can be calculated using a Helmholtz solver (Nicoud et al., 2007), or a thermoacoustic
network model of the problem (Schuermans et al., 2003; Stow and Dowling, 2001).

We are particularly interested in azimuthal modes, i.e. solutions that are n-periodic
in θ in [0 , 2π], with n called the azimuthal wavenumber of the mode. As discussed
by Bauerheim et al. (2014); Moeck et al. (2010), an azimuthal mode of wavenumber
n belongs to an eigenspace of dimension two because of the rotational symmetry of
the problem. There are however exceptions, when n is a multiple of Nb/2 in the case
of an even number of burners Nb, and when n is a multiple of Nb in the case of Nb

odd. We refer the reader also to section 5.4 of Salas (2013) for a concise summary of
these two cases. These exceptions are non-degenerate cases, i.e. their modes belong
to an eigenspace of dimension one, and occur because the rotational symmetry is
discrete. We focus the analysis on the degenerate case where the dimensionality is two
because: 1) Nb is usually large and the excited modes typically have a low azimuthal
wavenumber n (up to n = 4 in Seume et al. (1998)); 2) the non-degenerate case does
not give rise to the rich dynamics that can be observed in the degenerate case. We
study thermoacoustic oscillations of azimuthal modes with n = 1 in the following, but
the same analysis can be generalized to higher n, as long as the case stays degenerate.

We assume that these modes are close to their Hopf bifurcation. In other words,
we assume that all other modes are stable, and only azimuthal modes of wavenumber
n = 1 take part in the oscillation. One solution of the eigenspace with n = 1 is of
the type χ̃(z, r)eiθ. The Floquet-Bloch theorem states (Brillouin, 1953) that these
solutions are perturbed by a pattern periodic in 2π/Nb, because of the discreteness of
the rotational symmetry of the burners and of any other feature of the problem, which
is not considered here. We mention that this near field in θ can be taken into account
(Mensah and Moeck, 2015).

Because of the reflection symmetry of the problem, there exists a second solution
of the eigenspace that is symmetric with respect to the first, with structure χ̃(z, r)e−iθ.
We refer to these two modes in the following as spinning modes, because their phase
linearly increases or decreases in the azimuthal direction.

By linearly combining these two spinning modes we can obtain two solutions ψ1

and ψ2 that have a constant phase as a function of θ:

ψ̃1(x) = 1
2
[
χ̃(z, r)eiθ + χ̃(z, r)e−iθ

]
= χ̃(z, r) cos(θ) (4.15a)

ψ̃2(x) = 1
2i
[
χ̃(z, r)eiθ − χ̃(z, r)e−iθ

]
= χ̃(z, r) sin(θ) (4.15b)
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We refer to these modes in the following as standing modes, because if observed only
at the burners’ location they have pressure nodes and pressure anti-nodes fixed in time
and in space. By direct substitution one can prove that they are orthogonal:∫

Ω
ψ̃1(x)ψ̃2(x)∗dΩ = 0, (4.16a)

where Ω is the domain of the problem. One proves by direct substitution also that∫
Ω
ψ̃∗

1∇2ψ̃2dΩ =
∫

Ω
ψ̃∗

2∇2ψ̃1dΩ = 0 (4.16b)

We normalise the standing modes by fixing the value of χ̃(0, r) to 1 at the burners’
positions (z, r, θ) = (0, r, θj), so that

 ψ̃1(xj) = ψ̃1(0, r, θj) = cj

ψ̃2(xj) = ψ̃2(0, r, θj) = sj
, with the notation:

cj ≡ cos(θj)
sj ≡ sin(θj)

(4.17)

4.2.5 Weakly nonlinear analysis

We want to study the solution of the nonlinear problem as a perturbation of its linear,
neutrally stable counterpart. We obtain the latter by changing the problem (4.14), by
substituting ξ̃L(ω) in place of L(ω), with ξ̃ a real, non-negative coefficient, so that for
ξ̃ = 1 we recover the original equations. We then look for the value ξ of the coefficient
ξ̃ such that the growth-rate of the first two modes σ1,2(ξ̃) is zero. In other words, we
linearly increase/decrease the gain of the flame response to the level that makes the
system neutrally stable. Notice that by looking at equation (4.14), one may guess that
this may happen only for ξ̃ = 0. This is not generally the case, due to the presence of
partially transmitting boundary conditions or sources of damping, such as Helmholtz
resonators and/or acoustic liners that dissipate energy in the system. In this work, we
consider only linear damping. Nonlinear acoustic damping effects at the boundaries
can be characterised with a describing function Schuller et al. (2009) in frequency
domain, and its time-domain realization in time domain as discussed in chapter §3. We
refer to quantities evaluated for ξ̃ = ξ by dropping the tilde, so that the eigenmodes
are indicated with ψ1(x) and ψ2(x), and their real-valued eigenfrequency is ω1 = ω2.
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For later use, we write equation (4.14) for the first two modes to obtain

∇2 [ψk(x)] = −
[
ω2
kψk(x) −

Nb∑
j=1

δ(x − xj)ωkξIm [L(ωk)]ψk(xj)
]

− . . .

. . . i
Nb∑
j=1

δ(x − xj)ωkξRe [L(ωk)]ψk(xj) k = 1, 2 ω1 = ω2 (4.18)

We can multiply all terms of (4.18) by ψ∗
k and integrate over the domain Ω:∫

Ω
∇2ψkψ

∗
kdΩ = −

[
ω2

0 + iωkα
] ∫

Ω
ψkψ

∗
kdΩ k = 1, 2, (4.19)

where, by exploiting the fact that ∑Nb
j=1 c

2
j = ∑Nb

j=1 s
2
j = Nb/2, we introduced the

quantities

ω2
0 ≡ω2

k − ωkξIm [L(ωk)]µ
Nb∑
j=1

|ψk(xj)|2 = ω2
k − ωkξIm [L(ωk)]µ

Nb

2 (4.20a)

α ≡ξRe [L(ωk)]µ
Nb∑
j=1

|ψk(xj)|2 = ξRe [L(ωn)]µNb

2 (4.20b)

and µ = µ1 = µ2 is a real-valued normalisation factor that is the same for the two
modes, defined as:

µ = 1∫
Ω ψ1ψ∗

1dΩ
(4.21)

which physically measures the ratio between the maximum amplitude of oscillation
of the mode at the burners and the amplitude of the whole 3D mode. In the two
RHS of (4.20) the frequency ωk = ω1 = ω2 is much larger than the other terms,
so that ω0 ≈ ωk and α ≪ |ωk|. This follows from the weakly nonlinear nature of
thermoacoustic problems. The coefficient α is the equivalent damping of the system
when the flame response is uniformly reduced in the annulus to the point of making
the system neutrally stable, i.e. at ξ̃ = ξ. The frequency ω0 is the natural frequency of
oscillation of the two acoustic modes when the flames and the acoustic damping are
shut off. This paragraph led to equation (4.19), which will be used in the following.

At the value ξ̃ = ξ no dissipation/gain of energy in a limit-cycle occurs in the
linearised system for the dominant mode, and the exact solution of the problem is

p(x, t) =
[
X1ψ1(x)ei(ω1t+φ1) +X2ψ2(x)ei(ω1t+φ2) + c.c.

]
+ decaying terms, (4.22)
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where X1 and X2 are two complex-valued constants, and the decaying terms depend on
the initial condition, and they will be neglected in the following because they converge
to zero in time after the initial transient. We now study the original nonlinear problem
(4.9) as a perturbation of this, as ξ̃ changes from ξ to 1. We choose as ansatz in the
frequency domain

p̂(x, ω) = iω [η̂1(ω)ψ1(x) + η̂2(ω)ψ2(x)] + εp̂ε(x, ω) (4.23)

In (4.23), ε expresses the deviation of the nonlinear solution from the linear solution,
because of the onset of higher harmonics in time and in space, and because of the
structural change in the equations that can affect slightly the shape of the modes.
Using equation (4.17), the expression for the pressure field at the burners’ location
reads

p̂(xj, ω) = [iωη̂1(ω)cj + iωη̂2(ω)sj] + εp̂ε(xj, ω) (4.24)

We then substitute this ansatz into (4.13), multiply all terms by −ψ1(x)∗/(iω),
and integrate over the domain Ω. We first exploit the orthogonality properties (4.16)
between the two degenerate modes, and then substitute the equation (4.19) and obtain:

[
− ω2η̂1+iω1αη̂1 + ω2

0 η̂1
] ∫

Ω
ψ1ψ

∗
1dΩ = . . .

. . .
Nb∑
j=1

Q∗
(
|iωη̂1cj + iωη̂2sj|, ω

)[
iωη̂1cj + iωη̂2sj

]
cj + O(ε) (4.25)

Notice how on the LHS, the frequency ω1 is the frequency of the mode ψ1, so that in
principle iω1η̂1 is not the Fourier transform of ∂η1/∂t. However, the frequency of the
nonlinear system ω is close to ω1, and we can make this approximation. We take the
inverse Fourier transform of all terms and obtain

∂2η1

∂t2
+ α

∂η1

∂t
+ ω2

0η1 =
Nb∑
j=1

Q
[
∂η1

∂t
cj + ∂η2

∂t
sj

]
µcj + O(ε) (4.26a)

∂2η2

∂t2
+ α

∂η2

∂t
+ ω2

0η2 =
Nb∑
j=1

Q
[
∂η1

∂t
cj + ∂η2

∂t
sj

]
µsj + O(ε) (4.26b)

where the second symmetric equation was obtained similarly but multiplying by ψ∗
2.

In (4.26), the coefficients cj and sj were introduced in (4.17), and µ was defined in
(4.21). The equations (4.26) are investigated in the rest of the chapter, and describe
the temporal evolution of the amplitudes η1(t) and η2(t) of the two standing modes
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ψ1 and ψ2. The LHS of equation (4.26a) describes a damped oscillator with natural
frequency ω0, defined in (4.20a), and the damping α, defined in (4.20b). The RHS
of equation (4.26a) is the ensemble response of the flames. The argument η1cj + η2sj

of the operator Q is the local value of the pressure at the j-th burner truncated at
zero order, as can be observed in equation (4.24). Notice how the local contribution
of the j-th term in the sum on the RHS is weighted by the term cj. In particular
the fluctuating heat release rate close to where cj = cos(θj) is large makes a larger
contribution to η1.

Linear analysis

In the linear limit, by exploiting the fact that ∑Nb
j=1 cjsj = 0 and that ∑Nb

j=1 c
2
j = Nb/2,

equation (4.26a) simplifies to:

∂2η1

∂t2
+ α

∂η1

∂t
+ ω2

0η1 =
Nb∑
j=1

L
[
∂η1

∂t

]
c2
j = µ

Nb

2 L
[
∂η1

∂t

]
(4.27)

where L is the linearization of the nonlinear time domain operator Q, and the equation
for the second oscillator (4.26b) follows similarly with s2

j in place of c2
j . The two modes

are linearly decoupled, and two Hopf bifurcations take place at the same time. In the
linear limit,

L
[
∂p(t)
∂t

]
= G(0, ω0)

∂p

∂t

(
t− ϕ(0, ω0)

ω0

)
≡ β

∂p

∂t
(t− τ) (4.28)

where τ mimics the phase lag of the fluctuating heat release rate with respect to the
pressure, and β is a linear driving coefficient. We substitute this into (4.27) and obtain:

∂2η1

∂t2
+ α

∂η1

∂t
+ ω2

0η1 = µ
Nb

2 β
∂η1

∂t

∣∣∣
t=t−τ

(4.29)

One can look for the solutions of the characteristic equation P (λ) = 0 of (4.29), with
λ = σ + iωlin. We opt for an iterative solution:

2σ(n+1) = − α + µNbβ

2 e−σ(n)τ
(
cos(ω(n)

lin τ) − σ(n)/ω
(n)
lin sin(ω(n)

lin τ)
)

(4.30a)

ω
(n+1)
lin

2
=ω2

0 + ασ(n) + σ(n)2 − µNbβ

2 e−σ(n)τ
(
σ(n) cos(ω(n)

lin τ) + ωlin sin(ω(n)
lin τ)

)
(4.30b)
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Truncating the iteration at the first step, and starting with λ(n=0) = iω0, we obtainσ ≈ σ(1) = −α
2 + µNbβ

2 cos(τω0)
ω2
lin ≈ ω

(1)
lin

2
= ω2

0 − ω0
µNbβ

2 sin(τω0)
(4.31)

We find that the system is linearly stable if the growth-rate σ is negative, i.e. if
µβ cos(τω0) Nb/2 < α. In principle one can perform more iterations and evaluate the
exact linear frequency of oscillation. This can be carried out also in the nonlinear
regime and in transients, by solving a dispersion relation that is dependent on the
amplitudes as well. The exact determination of the frequency of oscillation is however
not part of this chapter, and we simply observe that the frequency of oscillation is
typically close to the frequency ω0 of the purely acoustic mode obtained neglecting
acoustic energy sources and sinks.

To discuss a typical instability, we observe that the growth-rate σ, nondimen-
sionalized with respect to the frequency ωlin, is typically smaller than 0.08 in a
thermoacoustically unstable annular combustor (see for example Bothien et al. (2015)
for an industrial application). Equation (4.31) then provides a relation between the
nondimensional linear driving coefficient β/ωlin and the non-dimensional damping
coefficient α/ωlin:

2 σ

ωlin
= β cos(τω0)

ωlin

µNb

2 − α

ωlin
(4.32)

In this section we studied when the system (4.26) is linearly stable/unstable; this will
be useful later to discuss if the system can exhibit thermoacoustic triggering. We then
discussed the typical range for the parameters that occur in real applications; This will
be used in §4.4 to discuss a plausible example.

4.2.6 The final oscillator model

We now fix µ = 1 in (4.26) without loss of generality, because the same effect could be
obtained by rescaling Q. In the following we denote ω0 simply as ω because we remain
in the time domain. By neglecting the correction in O(ε) and by denoting the time
derivative with a prime, the system (4.26) is:

η′′
1 + ω2η1 = f1(η′

1, η
′
2) − αη′

1 (4.33a)
η′′

2 + ω2η2 = f2(η′
1, η

′
2) − αη′

2 (4.33b)
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where the functions fk on the RHS are:

f1(η′
1, η

′
2) =

Nb∑
j=1

Q [η′
1cj + η′

2sj] cj (4.34a)

f2(η′
1, η

′
2) =

Nb∑
j=1

Q [η′
1cj + η′

2sj] sj (4.34b)

This refactoring of the equations allows a more concise discussion in §4.3.
This section rigorously derived a set of governing equations for the instantaneous

amplitude of oscillations of two standing modes. These equations are consistent with
existing low-order models, which are based instead on the projection of the equations on
a Galerkin basis {cos θ, sin θ} which was chosen because it matches with experiments.
A great advantage of this approach is that we can calculate the coefficients with a
Helmholtz solver or a network model so that the model can be used as a predictive
tool.

4.3 Slow flow

In §4.3.1 we obtain the slow flow equations (4.39), which describe the dynamics of
the system at a slower timescale. In §4.3.2 we introduce what standing and spinning
waves are and discuss some of their properties. In §4.3.3 we show that the solutions of
the system are spinning and standing solutions, and that their amplitude is governed
by the Rayleigh criterion. In §4.3.4.1 and §4.3.4.2 we discuss the stability of these
solutions, and present general results on the existence and nature of these solutions,
and provide physical interpretations of the stability conditions.

4.3.1 Temporal averaging

In this section we apply the method of time-averaging to the equations (4.33), by
assuming that the terms fk(η′

1, η
′
2) − αη′

k are small. From a physical standpoint, this
means that we are assuming that the dynamics of the acoustic waves (the LHS in (4.33))
are only slightly influenced by the net contribution of flame response and acoustic
damping (the RHS in (4.33)). This can be observed experimentally in the time traces
of pressure signals: usually thermoacoustic systems take many periods of oscillation to
stabilize to a periodic solution, meaning that the amount of net energy contributed to
the acoustics in one limit-cycle is small.
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We express each oscillator as a harmonic oscillation (Sanders and Verhulst, 2007):ηk(t) = Ak sin(ωt+ φk)/ω
η′
k(t) = Ak cos(ωt+ φk)

, k = 1, 2 (4.35)

with Ak, φk the amplitude and the phase of the k-th oscillator, slowly varying with
respect to the fast time variable t, usually referred to as slow variables of the problem.

The expression of the pressure field at the burners’ position can be rewritten in
terms of Ak, φk by substituting (4.35) and (4.17) into (4.24) and neglecting terms of
order O(ε):

p(θj, t) = A1 cos(ωt+ φ1) cos(θj) + A2 cos(ωt+ φ2) sin(θj) (4.36)

Applying the method of temporal averaging for a delayed system (Wahi and Chatterjee,
2004) we obtain the equations governing the temporal evolution of the slow variables:

A′
k = − α

2Ak + ⟨fk cos(ωt+ φk)⟩ k = 1, 2 (4.37a)

φ′ ≡φ′
1 − φ′

2 = − 1
A1

⟨f1 sin(ωt+ φ1)⟩ + 1
A2

⟨f2 sin(ωt+ φ2)⟩ (4.37b)

where φ ≡ φ1 − φ2 is the phase difference between the two oscillators, and the angled
brackets denote averaging over a limit-cycle:

⟨fk cos(ωt+ φk)⟩ + i⟨fk sin(ωt+ φk)⟩ ≡ 1
2π/ω

∫ 2π/ω

0
fk
[
A1 cos(ωt+ φ1), . . . (4.38)

. . . A2 cos(ωt+ φ2)
]
ei(ωt+φk)dt

The period of averaging 2π/ω is a constant, where ω is the frequency of oscillation
appearing in (4.26). This has a slight effect on the accuracy of the method and will be
discussed later.

We discuss in §4.7.1 of the appendix how to find an analytical solution of the terms
(4.38). We present here only the key physical features of the solution. In the integral
(4.38) the function fk consists of the sum of the contributions of each burner. Each
burner responds to the local value of the pressure field as described by (4.36), which
depends on the two modes A1, A2. However both modes A1 and A2 oscillate at the
same frequency ω, so that each burner responds to a single harmonic input. The
averaged response of one burner to a harmonic signal is by definition (with some minor
multiplicative coefficient’s adjustments) the describing function of the flame. Then the
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integrals (4.38) can be rewritten in terms of the gain G and of the phase lag ϕ of a
single flame.

By substituting the solution of (4.38) into (4.37), we obtain the slow flow equations:

A′
1 = − α

2A1 + 1
2

Nb∑
j=1

G(Rj, ω)
[
A1c

2
j cosϕ(Rj, ω) + A2cjsj cos(ϕ(Rj, ω) + φ)

]
(4.39a)

A′
2 = − α

2A2 + 1
2

Nb∑
j=1

G(Rj, ω)
[
A2s

2
j cosϕ(Rj, ω) + A1cjsj cos(ϕ(Rj, ω) − φ)

]
(4.39b)

φ′ = − 1
2

Nb∑
j=1

G(Rj, ω)
[
(s2
j − c2

j) sinϕ(Rj, ω) + cjsj

(
A2

A1
sin(ϕ(Rj, ω) + φ) + A1

A2
sin(ϕ(Rj, ω) − φ)

)]
(4.39c)

where Rj in (4.39) is defined as:

Rj(A1, A2, φ) =
√

(A1cj)2 + (A2sj)2 + 2A1A2cjsj cos(φ) (4.40)

and the terms A1cj and A2sj are the amplitudes of the pressure of the two modes
η1, η2 at the j-th burner. The amplitude Rj is then the slowly-varying amplitude of
oscillation of the pressure at the j−th burner. Notice that both the gain G and the
phase lag ϕ of each burner depend on the local amplitude of oscillation Rj, and that
Rj plays a role in the equations only as their forcing amplitude. The spatial structure
of Rj for standing and spinning waves is examined in section §4.3.2.

The effect of the acoustic damping coefficient α (first term on the RHS of (4.39a,4.39b))
is to push individually the two standing modes to smaller amplitudes, and it opposes
the effect of the flame response (second term on the RHS of (4.39a,4.39b)). In order to
reach a limit-cycle a balance between the two terms must be reached in both equations.

The synchronization of the two modes is described by equation (4.39.c), and
determines the standing/spinning nature of the solutions. The synchronisation does
not depend on the linear features of the system, but only on its nonlinear saturation
features. In fact, equation (4.39.c) depends only indirectly on the amplitudes through
the dependence on Rj if we fix a certain ratio A1/A2.

We do not discuss the linear stability of the fixed point at the origin (A1, A2, φ) =
(0, 0, φ), because it leads to the same results discussed earlier at the end of §4.2.5.

In summary, we applied the method of averaging to the dynamic equations of
the two oscillators (4.33), which were in terms of the four variables {η1, η

′
1, η2, η

′
2}.

The original equations may exhibit limit-cycle solutions, oscillating at a fast, acoustic
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timescale with frequency ω. The resulting equations (4.39) can be rewritten as

A′

1 = fA1(A1, A2, φ)
A′

2 = fA2(A1, A2, φ)
φ′ = fφ(A1, A2, φ)

f(A1, A2, φ) ≡


fA1(A1, A2, φ)
fA2(A1, A2, φ)
fφ(A1, A2, φ)

 (4.41)

They describe the dynamic evolution of three variables, which are oblivious of the
fast acoustic timescale: the two amplitudes of the standing modes A1 and A2 and
their phase difference φ. The limit-cycle solutions of the oscillators are fixed points
(A1, A2, φ) of the new set of equations. The timescale of this process depends in the
linear regime on the relative strengths of the linear flame response and the acoustic
damping, and in the nonlinear regime on the nonlinear saturation of the gain G and of
the phase ϕ of the flames.

4.3.2 Standing and spinning waves

In this section we discuss the structure of standing and spinning waves. Waves are
considered as possible initial conditions of the problem at a certain instant of time,
and the system can drift away from this initial state as time evolves. This differs from
standing and spinning solutions, which are waves that are also periodic solutions of
the problem.

Some results presented here are well known in the literature, and are presented only
for reference. In particular we prove in this section that a point in the state space of
the averaged system with coordinates (A1, A2, φ) = (A,A, kπ/2) is always a standing
or a spinning wave:

(A1, A2, φ) = (A,A, kπ/2) , k even ⇔ p(θ, t) is a standing wave (4.42a)
(A1, A2, φ) = (A,A, kπ/2) , k odd ⇔ p(θ, t) is a spinning wave (4.42b)

This follows from the structure of the pressure field (4.36), and is not a property
of the dynamical equations (4.39). Some other results, regarding the structure of the
slowly varying, local amplitude of pressure oscillation Rj , are new and have implications
in the dynamic equations (4.39).
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4.3.2.1 Spinning wave

A spinning wave of amplitude A travels with a phase speed dθ/dt equal to ∓ω, either
in the clockwise or anticlockwise direction at the burners’ position:

p(θ, t) =A cos (ωt+ φ1 ± θ)
=A cos(ωt+ φ1) cos(θ) + A cos(ωt+ φ1 ± π/2) sin(θ) (4.43)

By comparing this with (4.36), we observe that for a spinning wave we have A =
A1 = A2 and φ = ±π/2, with the +/− sign respectively for a mode rotating in the
counter-clockwise/clockwise direction. We present in Figure 4.1.a the pressure field
p(θ) obtained from (4.43), nondimensionalized with respect to the amplitude A, at two
instants of time. As the wave moves to the right (anticlockwise direction), it maintains
the same amplitude of oscillation.

We now simplify the expression Rj(A1, A2, φ) in (4.40) by substituting A1 = A2

and φ = π/2 in (4.40), obtaining

Rsp
j = A (4.44)

This means that the amplitude of oscillation of a spinning wave is constant along the
annulus, see Figure 4.1.b.

4.3.2.2 Standing wave

A standing wave has velocity and pressure nodes fixed in time at the burners’ positions,
i.e.

p(θ, t) =
√

2A cos(ωt+ φ1) cos(θ − π/4) (4.45)

where the
√

2 factor will be explained later, and we have chosen a frame of reference
with a pressure anti-node at θ = π/4. This can be rewritten as

p(θ, t) = A cos(ωt+ φ1) cos(θ) + A cos(ωt+ φ1) sin(θ) (4.46)

By comparing (4.46) with (4.36), we observe that (A1, A2, φ) = (A,A, 0). This is why
we put a

√
2 factor in equation (4.45).

We present in Figure 4.1.a the pressure field p(θ) obtained from (4.45), non-
dimensionalized with respect to the amplitude A, at two instants of time t = −φ1/ω

(continuous red line) and t+ ∆t = −(φ1 + π/3)/ω (dashed red line).
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Fig. 4.1 a) Pressure field of a spinning wave (blue) from equation (4.43) and of a
standing wave (red) from equation (4.45), both at two instants of time. b) Amplitude
of pressure oscillation of a standing wave (red line) from equation (4.47) and of a
spinning wave from equation (4.44), both nondimensionalized with respect to the
amplitude A of both modes A1 = A2 = A. This amplitude of oscillation is responsible
for nonlinear saturation effects at the discrete angles θj where the burners are positioned.
We also report with a dashed line the amplitude of the acoustic velocity of the standing
mode for completeness. For a spinning wave, in a) one observes that in one period
of oscillation every point in the annulus experiences the same pressure variation, as
the wave rotates and makes a full revolution in one period. This is consistent with
Rsp in b), where the amplitude of oscillation of a spinning wave is constant. For a
standing wave, in a) one observes that different azimuthal positions experience different
amplitudes of fluctuating pressure. This can be checked with Rst in b), where the
amplitude of Rst is zero at the position of the pressure nodes in a).
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We decide, instead of studying all the possible standing waves with various orienta-
tions in a fixed frame of reference, to study each standing wave in an ad-hoc rotated
frame of reference where A1 = A2. This means that at θ = π/4 the mode has a pressure
anti-node. By varying the value of ζ in (4.2), we can choose to study a wave with a
pressure anti-node at different positions, as discussed below equation (4.2).

We then evaluate the structure of Rj(A1, A2, φ) by substituting the expressions
(4.42a) into (4.40). We obtain

Rst
j = A

√
1 + sin(2θj) =

√
2A|cos(θj − π/4)| (4.47)

The amplitude R is maximum at θj = π/4, where pressure anti-nodes are located, and
zero at pressure nodes. This can be observed in Figure 4.1.b, which shows the pressure
amplitude of oscillation R with a red line as a function of θ. This means that the
burners experience a harmonic pressure fluctuation with amplitude Rj that depends
on their position in the annulus. The maximum amplitudes of standing and spinning
waves are obtained from equations (4.44) and (4.47). They are triviallyR

sp
max = Asp

Rst
max = Ast

√
2

(4.48)

4.3.3 Amplitudes of standing and spinning solutions

In this section we discuss the existence and the amplitude A of standing and spinning
waves as limit-cycles of (4.33), i.e. fixed points of (4.39). We then discuss separately
the two cases of spinning (4.42b) and standing waves (4.42a).

The following implication holds for all values of ζ considered in (4.2):

fA1(A,A, kπ/2) + fA2(A,A, kπ/2) = 0 ⇒ (A,A, kπ/2) is a fixed point of (4.39)
(4.49)

The proof, discussed in the appendix in §4.7.2, exploits the symmetries of the equations
and does not add physical insight in the problem.

We were not able to prove that the solutions with coordinates (A,A, kπ/2), which
can be calculated with (4.49), plus the solutions due to the rotational symmetry of the
system are all the possible fixed points of (4.39). It is in general hard to determine
all the fixed points of a nonlinear dynamical system, in this case in three dimensions.
In all the following we will assume that there are no other solutions. In all the cases
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studied we could not numerically find any other fixed points, and the system did not
converge to other solutions in the time domain.

4.3.3.1 Spinning solution

We look for spinning solutions, which are fixed points of the slow flow (4.39). We
substitute the definition (4.42b) of a spinning wave and the corresponding slowly
varying amplitude Rj from (4.44) into the criterion (4.49), obtaining

F sp (A) = α (4.50)

where we introduce

F sp (A) ≡ Nb

2 Re [Q (A, ω)] (4.51)

In the following we denote with Asp a solution of (4.50), which is the amplitude of a
spinning solution.

Notice how Re [Q(A, ω)] = G(A, ω) cosϕ(A, ω) is the component of the fluctuating
heat release rate that is in phase with the pressure p. It is possible to prove that the
condition (4.50) can be obtained from the Rayleigh criterion for a spinning wave:

∫
Ω

∫ 2π/ω

0
[q(x, t)p(x, t) − αp(x, t)] p(x, t)dt dΩ = 0 , p(0, r, θ, t) = A cos(ωt− θ) (4.52)

where the equation enforces a zero energy balance in one cycle of oscillation. We
however stress that the Rayleigh criterion is not sufficient to characterize the problem,
because in (4.52) we are imposing a specific solution for the pressure field, which is a
result of the current analysis.

Since the gain G of the describing function is bounded, the function F sp(A) is a
bounded function of the amplitude too. This means that depending on the value of
the acoustic damping coefficient α there can be zero, one or more solutions. This will
be discussed further in §4.3.4.1.

4.3.3.2 Standing solution

We look for standing solutions, which are fixed points of the slow flow (4.39). We
substitute the definition (4.42a) of a standing wave and the corresponding slowly
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varying amplitude Rj from (4.47) in the criterion (4.49), obtaining

αA = + 1
2

Nb∑
j=1

[
(c2
j + s2

j)A+ 2cjsjA
]

cosϕ
(
A
√

1 + sin(2θj), ω
)
G
(
A
√

1 + sin(2θj), ω
)

We collect A, and substitute (4.47) to obtain

α = 1
2

Nb∑
j=1

(1 + sin(2θj)) cosϕ
(
A
√

1 + sin(2θj), ω
)
G
(
A
√

1 + sin(2θj), ω
)

(4.53)

we can define the RHS of (4.53) as

F st(A) ≡1
2

Nb∑
j=1

(1 + sin(2θj)) Re
[
Q
(
A
√

1 + sin(2θj), ω
)]

(4.54)

so that equation (4.53) becomes

F st(A) = α (4.55)

In the following we denote with Ast a solution of (4.55), which is the amplitude of
a standing solution. Similar to the spinning solutions, F st(A) is a bounded function.
Depending on the value of the acoustic damping coefficient, α, there can be zero, one
or more amplitudes, A, that are solutions of (4.55). This will be discussed further in
§4.3.4.2. One can also prove that

max
{
F st(A)

}
≤ max

{
F sp(A)

}
(4.56)

4.3.3.3 Orientation of standing solutions

It is here useful to define equivalent solutions as solutions that can be obtained from
each other by applying symmetry operations. These equivalent solutions share the same
amplitude of oscillation, stability properties, nonlinear oscillation frequency and heat
release rate pattern. We also introduce the concept of distinct solutions, as solutions
that cannot be obtained from each other by applying symmetry operations. One can
determine all the non-identical solutions of the system by first determining all the
distinct solutions, and then obtain Nb more from each of them, by rotating each by
k∆θ , k = 1, . . . Nb − 1, obtain Nb − 1 more solutions. One must be cautious however,
because the rotation may map a distinct solution to itself. It follows that the total
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number of non-identical solutions will be the number of distinct solutions p and all
their equivalent non-identical solutions.

We follow this strategy and look for the distinct solutions constraining ζ to the
set of values {0, 2} if the number of burners Nb is even, and constraining ζ to the set
of values {0, 1, 2, 3} if Nb is odd. By doing so, we are looking for standing solutions
that present a pressure anti-node at θ = π/4 within a fixed segment of the annulus,
as discussed in (4.2). The coefficient ζ is then a physical parameter, which describes
the position of the pressure anti-node of the solution we are looking for. We choose
only these positions, i.e. values of ζ, because we can prove the theorem (4.49) only
for these cases. It is however much easier to understand this by sketching the velocity
nodal line, i.e. the diameter on which the velocity nodes of the standing mode lie, of
these solutions. We present the possible orientations of the standing solutions for the
two cases of Nb even and odd in Figure 4.2.

For the following argument we assume that one standing wave with a pressure
antinode at one burner position is a solution, and we refer to Figure 4.2. We look for
this solution using equation (4.55) by setting ζ = 0.

If the number of burners Nb is even, each burner is diametrically opposite another
burner (the black line in Figure 4.2.a). Because of the rotational symmetry, two
standing modes that are just one burner apart are equivalent solutions and will be
both stable/unstable. We find that for this system there is only one unstable manifold
between them, which is respectively unstable/stable. On such a manifold there can be
another solution (the gray line) and because of the symmetry of the system this other
solution is exactly half-way between the two equivalent solutions, and can be studied
by setting ζ = 2. For Nb even, the rotations of k∆θ, k = 1, . . . , Nb/2 − 1 do not map
a solution to itself, so the total number of non-identical solutions is the number of
distinct solutions found with ζ = 0 and then with ζ = 2 (if any), multiplied by Nb/2.

If the number of burners Nb is odd, each burner is diametrically opposite a space
between two burners. As a consequence, and because of the rotational symmetry, two
equivalent standing modes in this case are just a half-burner apart, and they will be
both stable/unstable. The reasoning of the previous paragraph applies here as well, so
that there can be an additional solution between these two modes, corresponding to
the solution of (4.55) for ζ = 1. For Nb odd, certain rotations map some solutions to
themselves; in particular the solutions found with ζ = 0 are equivalent to the solutions
found with ζ = 2, and the solutions found with ζ = 1 are equivalent to the solutions
found with ζ = 3. The total number of non-identical solutions is the number of distinct
solutions found with ζ = 0 and then with ζ = 1 (if any), multiplied by Nb.
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ζ = 0ζ = 1

ζ = 2

ζ = 3

(b) Nb = 15

Fig. 4.2 Position of the velocity nodal lines of all possible standing waves in a section
of annular combustor with equispaced burners. The physical coefficient ζ defines
the orientation of the velocity nodal line. The velocity nodal lines link two pressure
antinodes, and only the lines fully contained in this view are reported. The burners are
represented with large black discs, and the semicircles are the internal and external
walls of the chamber. In a) the number of burners Nb is even and each burner faces
another burner on the other side of the annulus. in the angle ∆θ = 2π/Nb we have
one black and one gray line for a total of 2 standing waves for each burner. In b) the
number of burners is odd, and each burner faces the space between two other burners
on the other side of the annulus. There are a total of 4 standing waves for each burner.
Nonetheless, we can count them only in [0 , π), as the modes repeat themselves after a
rotation of π.

The same argument applies if one assumes that one standing wave with a pressure
antinode just between two consecutive burners is a solution. Notice that we are not
stating that all the standing modes with these orientations necessarily exist, but that
if they exist they have these orientations. Their existence depends strongly on the
considered problem, as §4.4 will exemplify.

These results are consistent with the standing modes observed in the MICCA
annular combustor at the laboratoire EM2C (Ecole Centrale Paris), equipped with
sixteen burners. When the burners are of the swirl type, the pressure field is quite noisy,
but the nodal line exhibits a preferential position between two burners (Bourgouin
et al., 2013). When equipped with matrix burners, the system is less noisy and the
velocity nodal line stays again between two burners (Bourgouin, 2014; Durox et al.,
2013).

The tendency of standing modes of preferring these fixed orientations disappears
for a large number of burners, as will be proved in §4.3.4.2. The nodal lines of the
modes then take an arbitrary orientation and move at the speed of the mean azimuthal
velocity if non-zero, as observed in the simulations of Wolf et al. (2010).
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4.3.4 Stability of standing and spinning solutions

The previous section investigated the amplitudes of standing and spinning solutions.
This and the next section discusses the stability of these solutions, and presents
implications for experiments/simulations and industrial applications. We are here
discussing the stability of periodic solutions of the equations (4.33), which are fixed
points of (4.39). By evaluating the eigenvalues of the Jacobian of these fixed points
we can establish necessary and sufficient conditions for the stability of the periodic
solutions. This can be done analytically, as discussed in §4.7.5 of the appendix,
and results in necessary and sufficient conditions for the stability of the solutions.
Consistently with the system having three variables, we find three eigenvalues and
require all three growth rates to be negative in order for the solution to be an attractor.

4.3.4.1 Stable spinning solutions

We prove in §4.7.6 of the appendix that for the case of a spinning solution two of the
three conditions are trivially satisfied when the third condition is satisfied, which is:

Re [Q′(Asp, ω)] <0 (4.57)

where the prime indicates the derivative of the describing function Q with respect to
the amplitude A of oscillation, and the quantity is calculated at the amplitude Asp of
a spinning solution, i.e. at one solution of (4.50).

A spinning solution with amplitude Asp is stable if and only if (4.57) is respected.
Notice that this condition could be obtained by differentiating the Rayleigh criterion
with respect to the amplitude A (see (4.51) and (4.52)). It follows that the condition
(4.57) requires the flame response to be weaker than the damping at amplitudes larger
then Asp, and stronger than the damping at amplitudes smaller then Asp. This is the
same criterion for a stable thermoacoustic limit-cycle in longitudinal configurations.

Moreover, notice that, since the inequality (4.56) holds, if one assumes that: 1)
the flame does not extinguish, (i.e. the describing function is defined and continuous
at all amplitudes); 2) the gain of the describing function eventually decreases with
amplitude; 3) the damping is not large enough to make the system globally stable
(granted in all cases of interest); then there necessarily exists a stable spinning solution,
whatever flame response is assumed.
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4.3.4.2 Stable standing solutions

We start with discussing the existence of standing solutions, regardless of their stability.
We find that the three conditions described at the end of §4.3.4.1 are not sufficient
for the existence of standing solutions: there can be values of the damping α where
one can find solutions Asp of equation (4.50), but cannot find solutions Ast of equation
(4.55), because the maximum value of F st(A) is smaller or equal to the maximum value
of F sp(A), as reported in equation (4.56). This is exemplified later in Figure 4.6.

There are three necessary and sufficient conditions for the stability of a standing
solution with amplitude Ast. The mathematical proof of the expressions discussed in
the following can be found in §4.7.7 of the appendix

Before discussing each of the conditions, we discuss two general points. Firstly,
if two conditions are respected, and the other condition results in 0 > 0, the system
is neutrally stable, with two negative and one zero growth rates. Secondly, if not
all the conditions are respected, but at the same time one or two of them are, the
standing solution will attract the state of the dynamical system on a certain manifold
of the 3D phase space, and it will repel it on another. In other words, the standing
solution will be a saddle of the problem, as first observed by Schuermans et al. (2006)
for a fixed heat release rate model. This serves as a warning to any interpretation of
noisy experimental and simulation data, which must take into account that standing
solutions can be attractors and repellors, but also saddles of the system, so that the
observed state of the system can linger for long times in the vicinity of a standing
mode without necessarily implying that the standing mode is a stable solution.

We study the three conditions separately in §4.3.4.2.1, §4.3.4.2.2 and §4.3.4.2.3. We
will discuss the physical meaning of the second and third condition by considering the
asymptotic limit Nb → ∞ while keeping the product βNb constant, so that the overall
flame response of the combustion chamber stays constant as well. In such case, the
summations can be replaced by integrals in θ over the domain [0 , 2π), and we recover
a distributed heat release rate model employed in some articles on the theoretical
modelling of annular combustors (Ghirardo and Juniper, 2013; Noiray et al., 2011;
Schuermans et al., 2006). From a physical perspective, this asymptotic limit is reached
in combustors that have a large number of burners around the annulus.

4.3.4.2.1 Rayleigh condition The first condition for stable standing modes is

F st′(Ast) < 0 (4.58a)
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where the prime indicates the first derivative of F st with respect to the amplitude of
oscillation A, defined in (4.54). The condition follows exactly the same interpretation
as the only condition (4.57) for the spinning solution: if a standing mode is stable, at
amplitudes larger then Ast the damping losses are larger than the energy gains. As
for the spinning solution, this can be explained by considering the derivative of the
Rayleigh criterion with respect to the amplitude Ast of oscillation.

4.3.4.2.2 Orientation condition The second condition for stable standing modes
is: Nb∑
j=1

cjsjRe
[
Q(Ast

√
1 + 2cjsj, ω)

]
− Ast

1
4

Nb∑
j=1

(c2
j − s2

j)2
√1 + 2cjsj

Re
[
Q′(Ast

√
1 + 2cjsj, ω)

]×
 Nb∑
j=1

cjsjRe
[
Q(Ast

√
1 + 2cjsj, ω)

]+
 Nb∑
j=1

cjsjIm
[
Q(Ast

√
1 + 2cjsj, ω)

]× (4.58b)
 Nb∑
j=1

cjsjIm
[
Q(Ast

√
1 + 2cjsj, ω)

]
− Ast

1
4

Nb∑
j=1

(c2
j − s2

j)2
√1 + 2cjsj

Im
[
Q′(Ast

√
1 + 2cjsj, ω)

] > 0

For a large number of burners this condition simplifies to 0 ≥ 0 as proved in §4.7.7.2,
where it is reinterpreted as a condition for neutral stability. This means that the
standing mode will be indifferent to a shift of the fixed point in a certain direction,
which is a rotation of the nodal line of an arbitrary angle in the azimuthal direction,
like a marble subject to gravity on a horizontal flat surface. This is a known feature of
standing solutions in models with distributed heat release rate, discussed in chapter §2.
On the other hand, for a finite number of burners we have a fixed number of possible
positions of the nodal lines as discussed in §4.3.3.3, and the condition (4.58b) discusses
if a certain family of equivalent standing solutions is stable/unstable in the azimuthal
direction (see Figure 4.2).

4.3.4.2.3 Standing pattern condition The third condition for stable standing
modes is

Nb∑
j=1

cjsjRe
[
Q(Ast

√
1 + 2cjsj, ω)

]
− . . .

. . . Ast
1
8

Nb∑
j=1

(c2
j − s2

j)2
√1 + 2cjsj

Re
[
Q′(Ast

√
1 + 2cjsj, ω)

]
> 0 (4.58c)
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For a large number of burners this condition simplifies to (proved in §4.7.7.1):

N2 ≡
∫ 2π

0
Re

[
Q(Ast

√
1 + sin(2θ), ω)

]
sin(2θ)dθ > 0 (4.59)

We recall that Q(A, ω) is the describing function of the flame response to a harmonic
input of pressure amplitude A, and ω is the frequency of the standing solution. The
argument Ast

√
1 + sin(2θ) is the spatial distribution of the pressure amplitude of

oscillation of the standing solution appearing in red in Figure 4.1.b.
Before discussing further the condition (4.59), we recall from Noiray et al. (2011)

the quantity:

C2n =
∫ 2π

0
Re
[
Qθ(0, ω)

]
sin(2nθ)dθ (4.60)

We use here a slightly different notation and definition of C2n for simpler comparison
with the conventions adopted in this chapter, though the same exact role and meaning
holds. This coefficient C2n is the harmonic at 2θ of the linear heat release rate response
along the annulus, and n is the azimuthal wavenumber of the oscillation. In the integral
(4.60) the linear response Qθ depends directly on the azimuthal angle θ, because it
models a variation of the linear gain of the flames along the annulus. In particular
Noiray et al. (2011) consider a simple heat release rate model qθ(p) = β(θ)p− p3, and
prove that:

1. for a rotationally symmetric chamber C2n = 0 the system stabilizes towards a
spinning solution;

2. for small asymmetry in the 2nθ component, i.e. for intermediate values of C2n,
the system stabilizes to a mixed spinning/standing mode;

3. for large asymmetry, in the 2nθ component, i.e. large values of C2n, the system
stabilizes to a standing mode.

The coefficient C2n is a linear property of the system (because it describes the azimuthal
variation of the transfer functions of the flames, which are linear operators): only the
specific loss of rotational symmetry in the 2θ component affects the nature of the
solutions.

This chapter focuses on rotationally symmetric configurations, where C2n is fixed
to zero, and keeps the flame response arbitrary. Nonetheless, N2 introduced in (4.59),
and its generalization N2n, have strong analogies to C2n.
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N2n is measured on the limit-cycle with amplitude Ast, and it is the 2nθ component
of the nonlinear, amplitude dependent gain Re[Q] that affects the stability of standing
modes. For a large number of burners, a standing solution always respects the first
and the second condition, the latter in a marginally stable sense. It follows that if the
third condition N2n > 0 is respected, the solution is stable, and vice-versa if N2n < 0
the solution is unstable.

It is easy to prove that for the specific heat release model q(p) = βp−p3 proposed by
Noiray et al. (2011), N2n is negative and one recovers their results, that in rotationally
symmetric chambers standing solutions are not stable attractors for a cubic flame
response without delay. On the other hand, one should make use of C2n to predict the
stability of standing modes only if the flame response is quite similar to q(p) = βp− p3.
In the example presented in §4.4 we have for example that C2n = 0 and N2n > 0, i.e.
standing solutions are stable attractors.

In experiments, one can measure N2n for an observed, stable standing mode simply
as

N2n =
∫ 2π

0
Re[Qst

θ ] sin(2nθ)dθ (4.61)

where the frame of reference is chosen such that p(t) has a pressure anti-node at
θ = π/4, and Re[Qst

θ ] is the real part of the transfer function between the local heat
release rate and the local pressure fluctuation, calculated from the data of a self-excited
annular combustor experiencing a stable standing mode with azimuthal wavenumber n.

In many cases the describing function phase does not vary strongly with amplitude.
Moreover, a favourable (q being quite in phase with p) phase lag in the linear regime is
also often required to observe a thermoacoustic instability. Under these circumstances,
it is reasonable to assume that the real part does not change sign with amplitude.
Under this restrictive assumption, and noticing that sin(2nθ) spans from −1 at pressure
nodes to +1 at pressure anti-nodes, a flame responding with a strong gain at small
amplitudes (close to pressure nodes) and with a weak gain at large amplitudes (close
to pressure anti-nodes) will lead to a negative overall integral, and standing modes will
not be attractors of the problem. The example presented in §4.4 lends itself to this
interpretation.

This subsection showed that there are three conditions for stable standing modes:
the first one corresponds to an energy balance stability, which can be interpreted with
the Rayleigh criterion. The second condition discusses the stability of the orientation of
the standing mode, and disappears for a large number of burners. The third condition
discusses the stability of the standing wave pattern.
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Fig. 4.3 a) instantaneous amplitudes of the dominant Fourier component of OH-
chemiluminescence and of the longitudinal velocity at the burner’s position, taken from
Moeck et al. (2008). b) Gain modelled. For A ∈ [0 1], the gain was extracted using
equation (4.62). The result has then been scaled in both horizontal and vertical axes.

4.4 Triggering in annular combustors

In this section we apply the framework developed in the previous chapters to an
annular combustor with an elaborate flame response. In particular this combustor can
exhibit thermoacoustic triggering, and to the knowledge of the authors this is the first
theoretical study of the phenomenon in annular combustors. The reader can refer to
Lepers et al. (2005) for a discussion of triggering in an experimental industrial annular
test-rig.

In this example we focus on the effect of the gain. To isolate this effect, we fix the
dependence of the phase lag ϕ to be constant, ϕ = π/5. To make the example more
compelling, we use as flame response the data from Moeck et al. (2008), which is an
experimental and modelling study of a system exhibiting thermoacoustic triggering in
a longitudinal test-rig. The instantaneous spatially-integrated OH-chemiluminescence
response of the experiment is shown with black dots for a run of the experiment in
Figure 4.3.a, as a function of the longitudinal velocity at the burner. Notice how the
response is linear at low amplitudes, then drops between 0.5 and 0.8, and regains
strength at amplitudes at around 1. We assume that the heat release rate response is
proportional to the OH-chemiluminescence, and extract the gain of the response as

G(û/u) = |ÎOH|/IOH

|û|/u
(4.62)
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Under the hypothesis of acoustically compact burners, G(A) ∝ G(û/u), where A is the
amplitude of oscillation of the pressure at the burner’s location in the chamber. We
arbitrarily scale the argument A so that it is in the range [0 , 1], because the linear
operator between pressure in the chamber and longitudinal velocity in the burner
discussed in §4.2.2 is unknown.

We also scale the value of G(A) to account for typical growth-rates values of annular
combustors in nondimensional frequency units, obtained from experimental data, using
the relation (4.32), where we fix the number of burners Nb to six for a first example.
The details of this scaling are discussed in §4.7.8 of the appendix.

We then study two combustors with Nb = 6 burners that differ only in the amount
of acoustic damping α1 = 0.085 and α2 = 0.105. The amplitudes of the spinning
and standing solutions are the solutions of the equations (4.50,4.55). We study these
equations as a function of the maximum amplitude Rmax, in time and space, as
introduced in equation (4.48). We present in Figure 4.4.a: 1) the function F sp(Rmax) in
blue to discuss spinning modes; 2) the function F st,0(Rmax) in red, to discuss standing
modes with a pressure anti-node at the location of one burner (ζ = 0); 3) the function
F st,2(Rmax) in magenta, to discuss standing modes with a pressure anti-node located
exactly between two consecutive burners (ζ = 2).

The solutions are the intersections of these curves with the horizontal dashed and
dashed-dotted black lines at the two ordinates α1, α2. We use the conditions (4.57,4.58)
to discuss the stability of the solutions, and mark with a filled/empty circle solutions
that are respectively stable/unstable.

Before discussing these solutions, we introduce two critical values of damping,
reported in Figure 4.4.a with two horizontal black lines:

αl ≡ F sp(0) = F st,ζ(0) (4.63)
αh ≡ max{F sp} (4.64)

Notice that we do not have data about the flame response at amplitudes larger than
1.4 from Figure 4.3.b. We assume that the response decreases monotonically with
amplitude there when we calculate αh in (4.64). We can define three ranges of study
for the acoustic damping coefficient α:

1. if α < αl the fixed point is linearly unstable. In fact, one can show that αl, which
is the value of the definitions (4.51) and (4.54) at A = 0, is equal to the term
Nbβ cos τ/2 that was introduced in the linear analysis at the end of §4.2.5. Then



4.4 Triggering in annular combustors 93

0.0 0.2 0.4 0.6 0.8 1.0

Rmax

0.07

0.08

α1 =0.085

0.09

αl =0.10

α2 =0.105

αh

Fsp

Fst,0

Fst,2

(a) analysis of the solutions

A
1

0.0
0.25

0.5
0.75

A 2

0.0

0.25

0.5

0.75

ϕ

    0

    π/4

    π/2

    3π/4

    π
25th  slice

(b) slices of the phase space

Fig. 4.4 a) Amplitude of oscillation Rmax of spinning (blue) and standing (red/magenta)
solutions for a combustor equipped with six burners. We consider two combustors that
differ only in the acoustic damping coefficient α, presented with the two dashed and
dashed dotted lines. The solutions are circles, which are filled/empty if the solution
is stable/unstable. (b) sketch of the equi-spaced slices of the phase space at constant
values of ϕ = kπ/25, for k = 0, . . . , 24 presented in Figure 4.5.

the condition α < αl simply imposes that the growth-rate σ introduced in (4.32)
is positive, i.e. that the thermoacoustic system is linearly unstable

2. if αl < α < αh the fixed point is linearly stable, but there exist standing and
spinning solutions at large amplitudes of oscillation. The system is bistable and,
with a suitable disturbance, is capable of triggering;

3. if α > αh the fixed point is linearly stable, and we cannot find standing or
spinning solutions. The system is globally stable, in the sense that the damping
is large enough to kill off thermoacoustic instabilities completely.

The first value of damping, α1 in Figure 4.4.a, belongs to the first case, while the
second value of damping, α2, belongs to the second case. Notice how at α = α1 there
are six apparent solutions and only one of them is stable, and it is of spinning type.
We say apparent because there must be at least three more solutions at amplitudes
Rmax > 1, but it is impossible to determine their amplitudes because we do not know
what the flame response is at those values. On the other hand at α = α2 there are two
stable solutions, one of spinning and one of standing type.

It is important to point out that this analysis of the fixed points does not discuss
the dynamics of the system, which take place in the 3D phase space (A1, A2, φ), which
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depends on the value of the damping α. We unveil the dynamics of the problem for
α = α2 by cutting horizontally the phase space with 25 slices as clarified in Figure
4.4.b, and presenting the slices in Figure 4.5. The phase space is much richer and more
complicated than in previous studies (Ghirardo and Juniper, 2013; Noiray et al., 2011).
Depending on the initial condition, one can qualitatively track the state of the system
following the in-plane streamlines of the flow and the colour for the vertical component.
One can find the spinning and standing solutions (blue and magenta circles in figure
4.4.a) in the middle-center and top-left or bottom-right slice respectively, with the
same colours. Notice how a non-zero phase lag leads to an oscillatory behaviour as
the system converges to a solution. This can be observed looking at the colour of the
vertical component as the system gets closer to a solution: it is positive on one side
(pulling upwards) and negative (pushing downwards) on the other, meaning that the
system will spiral towards the solution instead of converging to it monotonically, as
found in previous models with a zero phase lag.

We can carry out the same analysis of Figure 4.4.a for any value of the damping
α, as presented in Figure 4.6.a. We omit the horizontal lines corresponding to the
different values of the damping, and we draw the functions F with a thick/thin line
wherever the solutions are respectively stable/unstable. These are typical bifurcation
diagrams, but with the damping as bifurcation parameter reported on the vertical axis.
As expected, the acoustic damping coefficient α strongly affects the amplitude of the
solutions, but it also affects the type of stable solutions. We can then generalize the
analysis to any number of burners Nb, and do so by rescaling the gain of the flame
response so that the product βNb is constant. We present in Figure 4.6 the result for
6, 7, 8, 9 burners, for an arbitrary value of the damping. We observe that the stability
and the amplitudes of the standing modes are affected by the number of burners. This
exemplifies the fact that the condition (4.61) is a good criterion to look at the stability
of standing solutions only for large values of Nb, because the number of burners Nb

affects the exact position of the burners along the annulus in the stability conditions
(4.58b,4.58c).

The example of this section showed how a flame that responds with a small gain
at low amplitudes (in the linear regime) and with a higher gain at larger amplitudes
(closer to the saturated amplitude of a standing solution), can present stable standing
solutions (filled magenta circle in Figure 4.4) because it respects the condition (4.58c).

Notice how this is just one example of a system exhibiting stable standing solutions,
and we are not here implying that thermoacoustic triggering is a necessary condition
for stable standing solutions to occur. We point out, without discussing the details,
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Fig. 4.5 25 slices of the phase space as presented in Figure 4.4.b, with the first slice in
the top-left corner, ordered to the right and then to the bottom. This case is for six
burners and for α = α2 = 0.105 as presented in Figure 4.4.a. In each slice the figure axes
are A1 and A2 from 0 to

√
2, with the point (A1, A2) = (0, 0) in the bottom-left corner

of each slice. The black streamlines represent the two in-plane components dA1, dA2 of
the vector field, and the color represents the vertical component dϕ (rescaled). The
green lines are contours of dϕ = 0. Filled/empty circles are stable/unstable solutions.
The top-left and the bottom-right square are at ϕ = 0 and ϕ = π, and present standing
solutions. The slice in the middle is at ϕ = π/2 and presents spinning solutions on the
diagonal A1 = A2. The vector field was calculated directly from equations (4.39).
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Fig. 4.6 Stability map as a function of the acoustic damping coefficient α. The number
of burners Nb is different in each of the sub-figures. This analysis is a generalization
of Figure 4.4.a for all values α. The lines are thick/thin if the respective solution is
stable/unstable. There exist values of the damping α for which only spinning solutions
exist, e.g. α = 0.105 in d).
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that we were able to obtain standing solutions as attractors with a flame response
characterised by a monotonically decreasing gain, and a certain amplitude dependence
of the phase lag. This is quite important when considering the annular test-rig MICCA
developed at the laboratoire EM2C (Ecole Centrale Paris) when equipped with matrix
burners, because the flames lift from the flame holder at large amplitude of excitation.
This leads to a strong dependence of the phase lag with amplitude Bourgouin et al.
(2014), while the gain decreases monotonically with amplitude.

4.5 Time domain validation

The results of the previous section can be compared with time domain simulations of the
equations (4.33) of the two oscillators. This requires a time domain realization Q[p(t)]
of the fluctuating heat release rate response as function of the pressure signal p(t).
The process of calculating the time domain realization Q[p(t)] of a given describing
function Q(A, ω) is discussed in chapter §3. We only mention here that once the
time-realization has been computed, it can be used as a black-box in any low-order,
time domain thermoacoustic network (Pankiewitz and Sattelmayer, 2003; Schuermans
et al., 2003; Stow and Dowling, 2009). The time domain results were in very good
agreement (errors in amplitude of 1% for both standing and spinning solutions) for all
cases in which the phase lag was set to zero. This validates the hypothesis of smallness
of the forcing terms on the RHS of (4.33) in §4.3.1. However, the error increases for
other cases with a non-zero phase lag, with the predicted amplitudes of the method
of averaging being up to 10% smaller than the amplitudes obtained in time domain
simulations. Saha et al. (2010) found a similar under-estimate of the amplitude when
using the method of averaging on a delayed system. This is due to the fact that the
frequency of oscillation changes slightly as a function of time and of the amplitude
of oscillation, while the method of temporal averaging considers it fixed. We address
this mismatch in Chapter §5, where we provide a dynamic equation for the temporal
evolution of the frequency of oscillation.

4.6 Conclusions

We discuss azimuthal thermoacoustic oscillations in rotationally symmetric annular
combustors. The key assumptions of this work are: 1) the flames are acoustically
compact; 2) there is no effect of transverse forcing and the flame responds only to
longitudinal acoustic perturbation at the burner; 3) only one degenerate pair of modes
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of azimuthal nature oscillates; 4) the system is weakly nonlinear, and the eigenmodes
do not change much in the nonlinear regime.

If the describing function of a single flame is known, we show how to build a
nonlinear dynamical system of a rotationally symmetric annular chamber containing
Nb such flames, with the help of a Helmholtz solver or a thermoacoustic network model.
It predicts how this annular system will behave: whether it can support azimuthal
oscillations, at what amplitude and of which type (spinning or standing), and whether
or not they are stable.

The amplitude of spinning solutions is fixed by the Rayleigh criterion at the limit-
cycle, and the same criterion provides also the necessary and sufficient condition for
stable spinning solutions: the energy balance must be negative at larger amplitudes
of oscillation. This is exactly the same as in the case of thermoacoustic oscillations
in longitudinal configurations. We also prove that if the system is not globally stable,
i.e. can exhibit a thermoacoustic oscillation, there exists at least one stable spinning
solution.

The amplitude of standing solutions is also fixed by the Rayleigh criterion at the
limit-cycle. In the same way valid for the spinning solution, the Rayleigh criterion
provides one necessary stability condition for stable standing solutions. There are
however two more conditions required to stabilize standing solutions:

1. The condition (4.58c) discusses the stability of a standing mode with respect to
a rotation of its velocity nodal line in the azimuthal direction. This condition
disappears for a large number of burners Nb because then every azimuthal
orientation is allowed for standing solutions;

2. Another condition fixes a constraint on the spatial distribution of the heat release
rate, as detailed by equation (4.59) in terms of its describing function Q calculated
in terms of the pressure, and of the pressure amplitude Ast of the standing mode
at the burners’ position. We show that the azimuthal Fourier component 2θ of
the part of the flame response in phase with the pressure in a limit-cycle of a
standing solution is the most stringent condition for a large number of burners
Nb. If this component is positive there exist stable standing solutions. This
conjecture can be tested from experimental data of stable standing solutions to
validate the hypotheses of this theory. This condition has a simple interpretation
if Re[Q] is positive and stays positive at all amplitudes: we find that a flame
with a small nonlinear gain close to pressure nodes and a large nonlinear gain
close to pressure antinodes leads to stable standing solutions.
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We show that care must be taken when processing experimental or simulation data:
we prove that if the number of burners is large and a standing solution is not stable,
then the solution is necessarily a saddle of the system, so that it can attract the state
of the system for a certain period of time and from a certain direction, before pushing
it towards the stable spinning solution. This means that it will be discern discuss the
stability of standing solutions in the data, especially if it regards a noisy experiment or
a numerical simulation with a limited duration.

We then present an example of the analysis that shows that an annular combustor
capable of thermoacoustic triggering can present stable standing solutions. We predict
amplitudes and stability of the spinning and standing solutions, parametrically in the
acoustic damping coefficient α and in the number of burners Nb of the combustor. The
dynamics of the system are very rich, and the phase space of the problem is strongly
influenced by the nonlinear flame response, and particularly by a non-zero phase lag
between the pressure and the heat release rate.

We obtained some general implications regarding standing modes. Their occurrence
as a stable state of the system: 1) when the combustor is rotationally non-symmetric;
2) when the flame response respects the standing pattern condition (4.59); 3) when
there are other physical mechanisms, such as for example transverse forcing, dynamical
temperature effects, or the effect of a mean azimuthal flow on the flame response; or 4)
with the onset of other acoustic modes, leading to scenarios of nonlinear mode-to-mode
interaction and/or mode synchronisation, that are not considered in this chapter.

Future work should focus on studying to what extent the shape of the standing
modes is affected in the nonlinearly saturated limit-cycle, to validate the truncation
of the equations. One could also include the effect of transverse velocity in the flame
model, and discuss how it affects the system in broader generality. Another important
direction of investigation regards the discussion of the effect of noise on this framework,
and how it affects the double Hopf bifurcation and the multi-stable character of the
system. Finally, one can study what happens to a combustor that shows a certain
degree of asymmetry, so that in the nonlinear regime the linear effects due to the
asymmetry and the nonlinear response of the flames will compete.

4.7 Appendices
4.7.1 Averaging with describing functions

This appendix shows how to evaluate the expressions (4.38) for k = 1, with the case
k = 2 following similarly. We substitute the definition of f1 from (4.34a), and consider
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only the j-th term of the summation in (4.38):

cj
2

1
π/ω

∫ 2π/ω

0
Q [A1cj cos(ωt+ φ1) + A2sj cos(ωt+ φ2)] ei(ωt+φ1)dt (4.65)

We introduce the first change of variablesaj = A1cj cosφ1 + A2sj cosφ2

bj = A1cj sinφ1 + A2sj sinφ2
(4.66)

and the second change of variablesaj = Rj cosψj
bj = Rj sinψj

Rj =
√
a2
j + b2

j

ψj = arg (aj + ibj)
(4.67)

Notice that we can rewrite the definition of Rj by substituing the expression for aj, bj
from (4.66), obtaining equation (4.40). We trigonometrically expand the argument
of Q′ in equation (4.65), and substitute first (4.66) and then (4.67). The expression
(4.65) simplifies to

cj
2

1
π/ω

∫ 2π/ω

0
Q [Rj cos(ωt+ ψj)] ei(ωt+φ1)dt (4.68)

We first change the time variable to t → t−ψj/ω and then slide the interval of definition
of the integrand because it is periodic. We obtain

cj
2

1
π/ω

∫ 2π/ω

0
Q [Rj cos(ωt)] ei(ωt+φ1−ψj)dt (4.69)

We then expand the complex exponential in the integrand, take the constants out of
the integral, and divide and multiply by Rj:

Rje
−iψj

cj
2 e

iφ1

[
1
Rj

1
π/ω

∫ 2π/ω

0
Q [Rj cos(ωt)] eiωtdt

]
(4.70)

We now observe that the term in the outer square brackets is the describing function
of Q defined in (4.4). From (4.67) we have that Rje

−iψj = aj − ibj. The expression
simplifies to

(aj − ibj)
cj
2 e

iφ1G(Rj, ω)eiϕ(Rj ,ω) (4.71)
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where we have rewritten the describing function Q(Rj, ω) in terms of gain G and phase
response ϕ as presented in equation (4.5). This is the contribution of the j-th burner.
The final expression of (4.38) is

⟨fk cos(ωt+ φk)⟩ + i⟨fk sin(ωt+ φk)⟩ =
Nb∑
j=1

(aj − ibj)
cj
2 G(Rj, ω)ei(ϕ(Rj ,ω)+φk) (4.72)

The two averaged terms are the real and imaginary parts of (4.72). By substituting
aj, bj from (4.66) we obtain:

⟨f1 cos(ωt+ φ1)⟩ = + 1
2

Nb∑
j=1

G(Rj, ω)
[
A1c

2
j cosϕ(Rj, ω) + A2cjsj cos(ϕ(Rj, ω) + φ)

]
(4.73a)

⟨f1 sin(ωt+ φ1)⟩ = + 1
2

Nb∑
j=1

G(Rj, ω)
[
A1c

2
j sinϕ(Rj, ω) + A2cjsj sin(ϕ(Rj, ω) + φ)

]
(4.73b)

Similary for j = 2 we obtain

⟨f2 cos(ωt+ φ1)⟩ = + 1
2

Nb∑
j=1

G(Rj, ω)
[
A2s

2
j cosϕ(Rj, ω) + A1cjsj cos(ϕ(Rj, ω) − φ)

]
(4.73c)

⟨f2 sin(ωt+ φ1)⟩ = + 1
2

Nb∑
j=1

G(Rj, ω)
[
A2s

2
j sinϕ(Rj, ω) + A1cjsj sin(ϕ(Rj, ω) − φ)

]
(4.73d)

Finally, by substituting (4.73) in (4.37), we obtain the slow flow equations (4.39).

4.7.2 Sufficient condition for the existence of fixed points

This appendix proves the implication (4.49). We first introduce some simple mathe-
matical identities, and then provide the proof in §4.7.4.
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4.7.3 Mathematical identities

The following properties hold for any function f : R → R:

Nb∑
j=1

c2
jf (Rj(A2, A1,−φ)) =

Nb∑
j=1

s2
jf (Rj(A1, A2, φ)) (4.74a)

Nb∑
j=1

cos(2θj)f(Rj) =0 ∀φ , A1 = A2 (4.74b)

Nb∑
j=1

sin(2θj)f(Rj) =0 φ = ±π

2 , A1 = A2 (4.74c)

Nb∑
j=1

c2
j =

Nb∑
j=1

s2
j =Nb

2 ,
Nb∑
j=1

cjsj = 0 (4.74d)

where cj and sj are defined in (4.17)

4.7.4 Proof of (4.49)

The proof proceeds following these steps. In §4.7.4.1 we first prove that fφ(A,A, kπ/2)
is zero for all integer values of k. We then prove in §4.7.4.2 that fA1(A,A, kπ/2) −
fA2(A,A, kπ/2) is zero. It follows that if also fA1(A,A, kπ/2) + fA2(A,A, kπ/2) is zero,
as is the hypothesis of the implication, then the individual terms, fA1(A,A, kπ/2) and
fA2(A,A, kπ/2) also have to be zero. Then, all the three functions fφ, fA1 , fA2 are zero,
and the point (A,A, kπ/2) is therefore a fixed point.

4.7.4.1 First part: fφ = 0

The function fφ(A,A, φ) is odd with respect to φ. It follows that φ = 0 is a zero of
the function:

fφ(A,A, 2kπ) = 0 ∀k ∈ Z (4.75)

By direct substitution, we can show that (4.75) holds also at φ = ±π/2 and φ = π:

fφ(A,A, kπ/2) = 0 ∀k ∈ Z (4.76)

We prove (4.76):
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• for φ = π/2 by observing that Rj is independent of j. The expression becomes

fφ(A,A,±π/2) =1
2

Nb∑
j=1

[(
s2
j − c2

j

)
sinϕ (A, ω) − 2cjsj cosϕ

]
G (A, ω) (4.77)

This equation (4.77) can be split into two summations of cos 2θj and sin 2θj,
which are zero when summed over [0 , 2π] as can be deduced from (4.74d):

• for φ = π in (4.76) we obtain

fφ(A,A, π) =1
2

Nb∑
j=1

(
s2
j − c2

j

)
sinϕ(Rj, ω)G (Rj, ω)

= − 1
2

Nb∑
j=1

cos(2θj) sinϕ (Rj, ω)G (Rj, ω) (4.78)

This summation vanishes by applying the property (4.74b).

4.7.4.2 Second part: fA1 − fA2 = 0

We now prove that

fA1(A,A, kπ/2) − fA2(A,A, kπ/2) = 0 ∀k ∈ Z (4.79)

1) for φ = 0 by direct substitution and by exploiting (4.74a); 2) for φ = π, by direct
substitution and exploiting (4.74a) for A1 = A2 in the resulting equation; for φ = π/2
by also applying (4.74c) twice. We also observe thatfA1(A,A, kπ/2) = 0

fA2(A,A, kπ/2) = 0
⇔

fA1(A,A, kπ/2) − fA2(A,A, kπ/2) = 0
fA1(A,A, kπ/2) + fA2(A,A, kπ/2) = 0

(4.80)

This, together with (4.79) and (4.76) implies that

fA1(A,A, kπ/2) + fA2(A,A, kπ/2) = 0 ⇒ f(A,A, kπ/2) = 0 (4.81)

4.7.5 Sufficient condition for the existence of fixed points

One can numerically calculate the amplitudes Ast of standing solutions from equation
(4.55) and the amplitudes Asp of spinning solutions from equation (4.50). We can then
discuss the stability of these solutions by evaluating the eigenvalues of the Jacobian of
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the system (4.39). If all eigenvalues are negative the point is an attractor, i.e. a stable
solution. Since the eigenvalues are invariant with respect to a change of variables, we
consider the new set of variables

2C = A1 + A2

2D = A1 − A2
(4.82a)

A1 = C +D

A2 = C −D
(4.82b)

This transformation maps the point (A1, A2, φ) = (A,A, φ) to the point (C,D, φ) =
(A, 0, φ), and the reason we apply the transformation will be apparent later. By
evaluating the time derivative of (4.82a) and substituting first (4.39) and then (4.82b),
we obtain the slow flow in terms of the new variables:

C ′ = −α

2C + 1
4

Nb∑
j=1

[
(
(c2
j − s2

j)D + C
)

cosϕ (Rj, ω) +

cjsj(C −D) cos (ϕ (Rj, ω) + φ) + cjsj(C +D) cos(ϕ (Rj, ω) − φ)]G (Rj, ω)
(4.83a)

D′ = −α

2D + 1
4

Nb∑
j=1

[
(
(c2
j − s2

j)C +D
)

cosϕ (Rj, ω) +

cjsj(C −D) cos(ϕ (Rj, ω) + φ) − cjsj(C +D) cos(ϕ (Rj, ω) − φ)]G (Rj, ω)
(4.83b)

φ′ = 1
2

Nb∑
j=1

[ (
s2
j − c2

j

)
sinϕ (Rj, ω) −

cjsj

(
C −D

C +D
sin(ϕ (Rj, ω) + φ) − C +D

C −D
sin(ϕ (Rj, ω) − φ)

) ]
G (Rj, ω) (4.83c)

We can rewrite the system (4.83) in compact form, and study the gradients of
fC , fD, fφ at the position of the fixed points found in §4.3.3, to obtain the Jacobian ma-

trix J :


C ′ = fC(C,D, φ)
D′ = fD(C,D, φ)
φ′ = fφ(C,D, φ)

J =


∂fC

∂C
∂fC

∂D
∂fC

∂φ

∂fD

∂C
∂fD

∂D
∂fD

∂φ

∂fφ

∂C
∂fφ

∂D
∂fφ

∂φ

 (4.84)

The eigenvalues of J will allow the stability of the fixed points to be assessed. In
order to evaluate this, we need to study the dependence of Rj as a function of C,D, φ.
Applying the change of variables (4.82b) to the definition (4.40) of Rj , and then setting
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D = 0, we obtain

Rj = C
√

1 + 2cjsj cosφ (4.85)

The derivatives of Rj with respect to C,D, φ at a point (C,D = 0, φ) are


∂Rj

∂C
= √1 + 2cjsj cosφ

∂Rj

∂D
= c2

j −s2
j√

1+2cjsj cosφ
∂Rj

∂φ
= − cjsj sinφ√

1+2cjsj cosφ
C

(4.86a)

For a spinning wave, i.e. setting (C,D, φ) = (Asp, 0, π/2) and a standing wave, i.e.
setting (C,D, φ) = (Ast, 0, 0), equations (4.85) and (4.86) become

spinn. wave:



Rj = Asp

∂Rj

∂C
= 1

∂Rj

∂D
= c2

j − s2
j

∂Rj

∂φ
= −cjsjAsp

stand. wave:



Rj = Ast
√1 + 2cjsj

∂Rj

∂C
= √1 + 2cjsj

∂Rj

∂D
= c2

j −s2
j√

1+2cjsj

∂Rj

∂φ
= 0

(4.87)

From now onwards, we will use a subscript sp to denote that a quantity is evaluated
at the fixed point of a spinning wave, and a subscript st to denote that a quantity is
evaluated at the fixed point of a standing wave.

In evaluating the terms of (4.84), one first analytically evaluates the gradients,
and then substitute (C,D, φ) = (Asp, 0, π/2) for spinning solutions and (C,D, φ) =
(Ast, 0, 0) for standing solutions, and then equation (4.87). For both standing and
spinning waves the Jacobian is a block diagonal matrix:

J =


∂fC

∂C
0 0

0 ∂fD

∂D
∂fD

∂φ

0 ∂fφ

∂D
∂fφ

∂φ

 (4.88)

This was expected from the symmetries of the equations and is the reason why we
applied the change of variables (4.82b). One eigenvalue is trivially λ1 = ∂fC

∂C
, and

can be interpreted in terms of the Rayleigh criterion at limit-cycles, as discussed in
the main manuscript. The other 2 eigenvalues are the solutions of the characteristic
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polynomial

λ2 −
(
∂fD
∂D

+ ∂fφ
∂φ

)
λ+

(
∂fD
∂D

∂fφ
∂φ

− ∂fD
∂φ

∂fφ
∂D

)
= 0 (4.89)

Applying the Routh-Hurwitz criterion, all the real parts of the three eigenvalues are
not negative, i.e. the fixed point is stable or neutrally stable, if and only if all the
coefficients of the second order polynomial (4.89) are not negative (Hurwitz, 1964).
This leads to the following necessary and sufficient conditions for stability:


∂fC

∂C
≤ 0

∂fD

∂D
+ ∂fφ

∂φ
≤ 0

∂fD

∂D
∂fφ

∂φ
− ∂fD

∂φ
∂fφ

∂D
≥ 0

(4.90)

4.7.6 Stability of spinning solutions

For a spinning solution (C,D, φ) = (Asp, 0, π/2), the 5 components of the Jacobian
(4.88) are:

∂fC
∂C sp

= Asp

2 F sp′ (Asp) (4.91a)

∂fD
∂D sp

= Asp

4 F sp′ (Asp) (4.91b)

∂fD
∂φ sp

= Asp
2

16 NbIm [Q′ (Asp, ω)] (4.91c)

∂fφ
∂D sp

= −Nb

4 Im[Q′ (Asp, ω)] (4.91d)

∂fφ
∂φ sp

= Asp

4 F sp′ (Asp) (4.91e)

where the prime expresses a derivative with respect to the amplitude A. The stability
conditions (4.90) for a spinning mode are:

F sp′ (Asp) <0 (4.92a)
Asp

4 F sp′ (Asp) + Asp

4 F sp′ (Asp) <0 (4.92b)(
Asp

4 F sp′ (Asp)
)2

− Asp
2

16 NbIm [Q′ (Asp, ω)]
(

−Nb

4 Im[Q′ (Asp, ω)]
)
>0 (4.92c)
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Trivially the second inequality is equivalent to the first one. We substitute in the first
and third inequality the definition of F sp from (4.51), and we obtain:

Re [Q′ (Asp, ω)] <0 (4.93)
Re [Q′ (Asp, ω)]2 + Im [Q′ (Asp, ω)]2 >0 (4.94)

with equation (4.94) always satisfied if Re [Q′ (Asp, ω)] < 0. It follows that a spinning
wave with amplitude Asp is stable if and only if (4.93) holds, which is the condition
(4.57) reported in the manuscript.

4.7.7 Stability of standing solutions

For a standing solution (C,D, φ) = (A, 0, φ), the 5 components of the Jacobian (4.88)
are:

∂fC
∂C st

= Ast

2 F st′
(
Ast

)
(4.95a)

∂fD
∂D st

= −
Nb∑
j=1

cjsjRe
[
Q
(
Ast

√
1 + 2cjsj, ω

)]
+ . . .

. . . Ast
1
4

Nb∑
j=1

(c2
j − s2

j)2
√1 + 2cjsj

Re
[
Q′
(
Ast

√
1 + 2cjsj, ω

)]
(4.95b)

∂fD
∂φ st

= −Ast
2

Nb∑
j=0

cjsjIm
[
Q
(
Ast

√
1 + 2cjsj, ω

)]
(4.95c)

∂fφ
∂D st

= 2
Ast

Nb∑
j=1

cjsjIm
[
Q
(
Ast

√
1 + 2cjsj, ω

)]
− . . .

. . .
1
2

Nb∑
j=1

(c2
j − s2

j)2
√1 + 2cjsj

Im
[
Q′
(
Ast

√
1 + 2cjsj, ω

)]
(4.95d)

∂fφ
∂φ st

= −
Nb∑
j=1

cjsjRe
[
Q
(
Ast

√
1 + 2cjsj, ω

)]
(4.95e)

The stability conditions (4.90) for a spinning mode are reported in the inequalities
(4.58). We prove here some asymptotic properties of the inequalities (4.58) discussed
in the main body of the chapter. For a large number of burners Nb, we have that the
sums in (4.58) can be approximated as an integral.
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4.7.7.1 Standing pattern condition

We first discuss the third condition (4.58c), which becomes

∫ 2π

0

sin(2θ)
2 Re

[
Q(Ast

√
1 + sin(2θ), ω)

]
dθ − . . .

. . .
∫ 2π

0
Ast

1
8

cos(2θ)2√
1 + sin(2θ)

Re
[
Q′(Ast

√
1 + sin(2θ), ω)

]
dθ > 0 (4.96)

We rewrite the second integral as

−1
8

∫ 2π

0
cos(2θ)

 Ast cos(2θ)√
1 + sin(2θ)

Re
[
Q′(Ast

√
1 + sin(2θ), ω)

] dθ (4.97)

where the term between square brackets is the derivative with respect to θ of the
function Re

[
Q(Ast

√
1 + sin(2θ), ω)

]
. We integrate by parts, and obtain

−1
8

[ {
cos(2θ)Re

[
Q(Ast

√
1 + sin(2θ), ω)

]}2π

0
+ . . .

. . . 2
∫ 2π

0
sin(2θ)Re

[
Q(Ast

√
1 + sin(2θ), ω)

]
dθ
]

(4.98)

where the first term in square brackets evaluates to zero. We substitute this expression
in (4.96) and obtain the condition (4.59).

4.7.7.2 Orientation condition

We then discuss the second condition (4.58c). We observe that

0 =
∫ 2π

0

∂

∂θ

[
−cos(2θ)

4 Re
[
Q(A

√
1 + sin(2θ), ω)

]]
dθ

=
∫ 2π

0

sin(2θ)
2 Re

[
Q(Ast

√
1 + sin(2θ), ω)

]
dθ − . . .

. . .
∫ 2π

0
Ast

1
4

cos(2θ)2√
1 + sin(2θ)

Re
[
Q′(Ast

√
1 + sin(2θ), ω)

]
dθ (4.99)

Notice how the last expression of the identity (4.99) is the first term in square brackets
in the first addend of (4.58c). For the same reason, also the second term in square
brackets in the second addend of (4.58c) is zero. It follows that the condition results
in 0 ≥ 0.
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4.7.8 Scaling of the flame response

We here discuss the choice of values of σr/ωlin and αr/ωlin used in §4.4. We choose quite
a small1 growth-rate σr ≡ σ/ωlin = 0.01 because we are studying a thermoacoustic
system exhibiting triggering, so that the flame gain is weak at small amplitudes. We
then exploit the fact that ω0 ≈ ωlin and fix αr ≡ α/ω1 = 0.08 similarly to Noiray et al.
(2011), where α/ω0 = 0.08. Then we can use the relation (4.32) for a given number of
burners Nb and calculate a reasonable value for β ≡ β/ωlin:

Nbβ cos(ϕ)
2 = (2σr + αr) = 0.10 (4.100)

In the chapter we decide to fix the phase response to ϕ = π/5. β is the gain of the flame
response that leads to the vertical scaling of Figure 4.3.b for Nb = 6, and equation
(4.100) fixes the product βNb to a constant.

Notice how αr is just a reasonable value of the damping used to fix the product
βNb, while in the manuscript the study is parametric in α. We can finally calculate ω0

from equation (4.31):

ω0 = ωlin
√
ω2
lin +B2 +B with: B = βNb

4 sin(π/5) (4.101)

We then change the time variable t → ωlint, so that in equations (4.33) instead of
α we have α , and instead of ω0 (in that equation ω is actually ω0, refer to the text
just before the equation) we have ω0/ωlin. In the time domain simulations we simply
fix ωlin = 1.

1In Bothien et al. (2015) the value σ/ωlin is typically of 0.05, see their figure 6.





Chapter 5

Nonlinear analytic modelling of the
delay

5.1 Introduction

Low-order models of azimuthal instabilities usually describe the system as a damped
wave equation, with the fluctuating heat release q as a source term. The equations
from chapter §2 are:  u,t + p,θ = 0

p,t + u,θ = q − αp
(5.1)

In the equation, α is a positive damping coefficient, p(t, θ) is the fluctuating pressure,
u(t, θ) is the fluctuating velocity in the azimuthal direction, with θ being the azimuthal
angle in the periodic domain [0 , 2π). We focus on a rotationally symmetric system in
the azimuthal direction θ, i.e. we assume that u, p, q do not have any direct dependence
on θ. A discussion of the direct dependence on θ of the equation can be found in Noiray
et al. (2011). A discussion of the effect of a discrete1 rotation group of symmetry,
instead of full rotational symmetry, can be found in chapter §4.

The focus of this chapter is on the effect of the time delay between acoustic
excitation and flame response, and on the accuracy of the nonlinear mathematical
methods used to treat the problem. The chapter is organised as follows. In §5.1.1 we
further characterize the problem, and massage the equations. In §5.2 we discuss the
effect of the delay τ on the linear stability of the system and on the nonlinear solutions

1in reality there is always an integer number N of burners in annular combustors, so that the
problem repeats itself when a rotation of the angle 2π/N is applied
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of the problem. We then carry out a nonlinear analysis of the system by applying
the method of temporal averaging in §5.3 and the method of multiple scales in §5.4.
We show that in the space of parameters leading to a limit-cycle the delay does not
affect the type and the stability of oscillatory solutions: the only stable solution is
spinning clockwise/anticlockwise, with the standing mode being always an unstable
solution. We finally discuss the accuracy of the two methods in predicting the nonlinear
solutions in §5.5, by comparing their results with numerical time domain simulations
of the problem. This is particularly important for the application of nonlinear system
identification techniques.

5.1.1 Model

We model the fluctuating heat release q at one time t as a function of the acoustic
longitudinal fluctuating velocity uL at the flame inlet, at a previous time t− τ1:

q(t) = q(uL(t− τ1)). (5.2)

The reasoning behind this is that an acoustic fluctuation of the longitudinal velocity at
the injector induces a perturbation of the fuel/air mixture fraction and/or of the local
flow field. This second perturbation is amplified by means of flow instabilities and/or
modulates the swirl in swirling flames, and both mechanisms lead to perturbations of
the flame response. For an in-depth review of these and other mechanisms, refer to
Candel et al. (2013); Ducruix et al. (2003); Lieuwen (2003, 2012).

The fluctuating longitudinal velocity uL can be expressed as a linear transfer
function of the pressure p in the annular chamber, as long as only one thermoacoustic
mode oscillates, as discussed in chapter §4. This transfer function will depend on
the geometrical properties of the whole combustor and on the acoustic response of
the burner. This longitudinal wave is accompanied by a mass flow oscillation, which
in Wolf et al. (2012) is proposed to be the major cause of heat release fluctuations,
consistently with (5.2). We can then write that

q(t) = q(p(t− τ)) (5.3)

where τ is different from the delay τ1 presented in (5.2). We study the nonlinear
saturated model for q:

q(t) = βp(t− τ) − κp(t− τ)3 (5.4)
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A cubic saturation model for the fluctuating heat release response q was first proposed
by Noiray et al. (2011), to which we refer the reader for a discussion. We can recover
the model of Noiray et al. (2011) by setting τ to zero in (5.4). The coefficient κ > 0
of p3 in (5.4) can be taken out of the analysis, after applying the change of variables
(p, u) → (p/

√
κ, u/

√
κ) as discussed in chapter §2. This coefficient is however required

in order to apply system identification to the system, as discussed by Noiray and
Schuermans (2013). If there are limit-cycle solutions, a non-zero delay τ in (5.4) leads
to a shift of their frequency of oscillation. Because it puts out of sync q and p, it
causes a less favourable Rayleigh criterion and makes a system less unstable or more
stable Rayleigh (1894), as reviewed in Dowling and Stow (2003) for a duct with a flame
modelled as a point source.

We project the equations (5.1) on the Galerkin base {cos(nθ), sin(nθ)} as discussed
in chapter §2: u(t, θ) ≈ nη1(t) sin(nθ) − nη2(t) cos(nθ)

p(t, θ) ≈ η′
1(t) cos(nθ) + η′

2(t) sin(nθ)
(5.5)

where the prime denotes a time derivative, and n is the azimuthal wavenumber of the
thermoacoustic mode we are studying. We obtain the equations:

η′′
1(t) + ω2

0η1(t) = f(η′
1(t), η′

1(t− τ), η′
2(t− τ)) (5.6a)

η′′
2(t) + ω2

0η2(t) = f(η′
2(t), η′

2(t− τ), η′
1(t− τ)) (5.6b)

where ω0 = n and the function f is defined as:

f(a, aτ , bτ ) ≡ aτ

[
β − 3

4κ
(
a2
τ + b2

τ

)]
− αa (5.7)

An example of time domain simulation of the oscillators (5.6) is presented in Figure
5.1, where η1 and η2 are oscillating as a function of time, reported with continuous
thin lines, and the other lines will be discussed later.
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Fig. 5.1 Example of a time domain simulation of the coupled oscillators ηi and their
amplitudes of oscillation Ai (continuous lines), of the slow flow calculated with the
method of multiple scales (dashed lines), and of the slow flow calculated with the
method of averaging (dotted lines). The horizontal dashed black line is the amplitude
of oscillation at the limit-cycle as predicted by the two methods.

5.2 Linear Analysis

In this section we study the boundary of linear stability of (5.6). We proceed by
retaining only the linear terms in (5.6a) and (5.6b), and obtain:

η′′
j (t) + αη′

j(t) − βη′
j(t− τ) + ω2

0ηj(t) = 0 j = 1, 2 (5.8)

We substitute η1(t) = e(σ+iω)t into (5.8) and obtain the characteristic equation. We
then split the equation in real and imaginary parts and after some manipulations
obtain:

β cos(τω)e−στ − α =σ

ω

[
2ω + β sin(τω)e−στ

]
(5.9a)

ω2 − ω2
0 + βω sin(τω)e−στ =σ2 + ασ − βσ cos(τω)e−στ (5.9b)
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We then study for which parameters {α, β, τ} ∈ R+3 the system is neutrally stable, i.e.
there exist real-valued solutions ωL of the system of equations (5.9) when setting the
growth-rate σ to zero:

β cos (τωL) − α = 0 (5.10a)
ω2
L − ω2

0 + βωL sin (τωL) = 0 (5.10b)

By studying as a function of σ the LHS and RHS of (5.9a), we find that there exists
only one solution for the growth-rate σ, and that it is positive if β cos (τω) − α > 0.
It follows that equation (5.10a) defines the boundary of instability, with the system
being unstable if the LHS is positive. We also observe from (5.10b) that when on the
boundary, if the delay τ is zero, ωL matches the natural frequency of oscillation ω0.

The domain of investigation of the problem is (α, β, τ) ∈ R+3. We observe that if
(α, β, τ) provide a real-valued solution ωL of (5.10), then (α, β, τk) is a solution too,
with

τk =τ + 2kπ/ωL , k ∈ N+. (5.11)

We can then initially limit the search of solutions restricting the domain of τ to

τ ∈
[
− π

ωL
,
π

ωL

)
(5.12)

and then exploit (5.11) to generate the other solutions. Since ωL is close to the natural
frequency of the system ω0 the domain (5.12) is bounded. Moreover, since α and β are
positive, equation (5.10a) allows us to further restrict the domain so that the cosine
term is positive:

τ ∈
[
− π

2ωL
,
π

2ωL

)
(5.13)

This is in line with the Rayleigh criterion Rayleigh (1878): the phase difference between
q and p must be in the range (−π/2, π/2) to cause instability.

The domain (5.13) allows negative values of τ , though a negative value in the
system does not make physical sense. We investigate negative solutions nonetheless,
because negative solutions τ lead to positive solutions τk by the application of (5.11).
We study the boundary parametrically in α, and in the following figures we will fix
α/ω0 = 0.08. The neutrality of the solutions is defined by (5.10a), from which we can
calculate the reduced linear driving βL at the onset of instability as a function of α
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and τ :

βL = α sec(τωL), (5.14)

The frequencies of the neutrally stable solutions are the solutions ωL of (5.10b).
We substitute β from (5.14) into (5.10b) and obtain:

h(τ, ωL) ≡ ω2
L − ω2

0 + αωL tan(ωLτ) = 0 (5.15)

Since we cannot solve analytically ωL as a function of τ from (5.15), we show in Figure
5.2 a contour plot of h/ω2

0, in the restricted domain (5.13). The solution of (5.15)
is the implicit curve satisfying h/ω2

0 = 0, reported in the figure with the black line.
There are two solutions ωL for each value of τ if τ̂ < τ < 0, with τ̂ω0 ≈ −1.13. This
line shows the effect of the delay τ , non-dimensionalized with respect to ω0, on the
frequency shift ωL/ω0 on the border of neutral stability.
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Fig. 5.2 Contour plots of h from equation (5.15), with α/ω0 = 0.08. On the black line
h = 0, i.e. equation (5.10) is satisfied and the system is neutrally stable.

Figure 5.3 shows the critical value of β/α along the neutral stability contour h = 0
of Figure 5.2. The value of β/α that makes also ωB a neutrally stable solution is much
higher. For the applications we are interested in, Figure 5.4 shows a restricted view of
the space of parameters, fixing a maximum value of β/α = 4. On the left of the same
figure we can appreciate the drift of the frequency as a function of the delay, always
within 15% of the natural acoustic frequency of the system.
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Fig. 5.3 On the left, the implicit function showing the frequency of the neutrally stable
modes as a function of the delay τ . On the right, the stability map of the system. The
curve represents the values of β/α as a function of τ on which the system is neutrally
stable. We study the system for positive values of the delay τ , where the linearly
unstable region is reported in gray.
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Fig. 5.4 Zoom of Figure 5.3, restricted to values of β/α ≤ 6. The frequency in-
crease/decrease due to the coupling with the fluctuating heat release is clearly visible
on the left. Positive/negative values of τ lead to negative/positive frequency shifts.

For a fixed value of the damping parameter α, the full boundary of neutral stability
can be obtained by applying the transformation (5.11) to values of (β/α, τω0) from
Figure 5.3. A part of it is reported as thick black line in Figure 5.6. We observe that the
boundary of stability gets closer to the line β/α = 1 as the delay τ increases. This means
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that the phase response of the flame is less influential for high-frequency instabilities
than for low-frequency instabilities, because the ratio between the time-delay τ and
the acoustic period T is larger for them.

We present in Figure 5.5 all the neutrally stable solutions, obtained applying the
transformation (5.11) to the neutral boundary presented in figure 5.3.
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Fig. 5.5 On the left, the frequencies of oscillation on the boundary of neutral stability
of the problem, for α/ω0 = 0.08. On the right, the stability map of the system, with
the linearly unstable region reported in gray.

5.3 Method of averaging

In this section we apply first order averaging to the model, as defined and discussed in
Sanders and Verhulst (2007). We rewrite (5.6) as a first order system (xj, yj) ≡ (ηj, η′

j):

x′
j(t) = yj(t) (5.16a)
y′
j(t) = −ω2

0xj(t) + fj (5.16b)

where f1 = f(y1(t), y1(t − τ), y2(t − τ)) and f2 = f(y2(t), y2(t − τ), y1(t − τ)). We
introduce the change of variables (xj, yj) → (Aj, φj):2xj(t) = Aj(t)ei(ωt+φj(t)) + c.c.

2yj(t) = iωAj(t)ei(ωt+φj(t)) + c.c.
(5.17)
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where c.c. denotes the complex conjugate of the expression to its left. We then substitute
(5.17) into (5.16), and add (5.16a) multiplied by iei(ωt+φj)ω and (5.16b) multiplied by
−ei(ωt+φj). We obtain

ω2 − ω2
0

2 Aje
2i(ωt+φj(t)) + ω

(
φ′
i(t) + ω

2 − ω2
0

2ω

)
Aj(t) + iωA′

j(t) = −ei(ωt+φj(t))fj(t, A1(t), A1(t), . . .)

(5.18)

where f depends on the fast time variable t and on the slow variables, which are
the amplitudes A1(t), A2(t), A1(t − τ), A2(t − τ) and the phases φ1(t), φ2(t), φ1(t −
τ), φ2(t− τ). Notice that f is periodic in its direct dependence on t, with period 2π/ω.
We apply first order averaging Sanders and Verhulst (2007): we approximate the slow
variables as constant in the period of oscillation 2π/ω and time-average both sides of
(5.18). The first term on the LHS has period π/ω and vanishes out. We are left with:
(
φ′
i(t) + ω

2 − ω2
0

2ω

)
Aj(t)ω + iωA′

j(t) ≈ − 1
2π/ω

∫ t+π/ω

t−π/ω
ei(ωs+φj(t))fj(s, A1(t), . . .)ds

(5.19)

The delayed slow variables such as A1(t− τ) are approximated as A1(t) since the delay
τ is assumed to be of the same order of the period of oscillation, i.e. small compared
to the timescale of the slow variables, as discussed in Saha et al. (2010); Wahi and
Chatterjee (2004).

We then evaluate the integral at the RHS of (5.19). We take the constant term
eiφj(t) out of the integral, introduce the point z = eiω0s on the complex unit circle and
change the integration variable from s to z, obtaining a closed path integral on the
unit circle around the origin:

−eiφj(t) 1
2πi

∮
fj(z, A1(t), . . .)dz = −eiφj(t)Resz=0[fj] (5.20)

The term fj(z, A1(t), . . .) is a Laurent polynomial in z, and is then holomorphic
everywhere except at z = 0, so that in the last passage above we applied the residue
theorem. The residue is the coefficient of 1/z in the expression of fj:

g1(A1, A2, φ) ≡ − eiφ1(t)

ω
Resz=0[f1]

=1
2iA1

(
βeiτω − α

)
− 3

32iA1κω
2eiτω

(
A2

2e
2iφ + 3A2

1 + 2A2
2

)
(5.21)
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where φ is the difference between the phases of the first and second oscillator, φ =
φ1 − φ2, and the expression for g2 is obtained similarly. From (5.19) we obtain the
equations for the time evolution of the slow variables of the two oscillators:

(φ′
1(t) + ω − ω2

0/ω)A1(t) + iA′
1(t) = g1(A1, A2,+φ)

(φ′
2(t) + ω − ω2

0/ω)A2(t) + iA′
2(t) = g2(A2, A1,−φ)

φ ≡ φ1 − φ2 (5.22)

This dynamical system is in terms of the variables {A1, A2, φ1, φ2} and can present
solutions where both phases φ1 and φ2, in the limit t → ∞, present a common
oblique asymptote, i.e. the two oscillators undergo the same shift of their oscillation
frequency. However, these solutions are not fixed points of (5.22) since φj(t) ̸= 0.
These solutions are however fixed points of an equivalent system, in terms of the
variables x = {A1, A2, φ, φavg ≡ (φ1 + φ2)/2}:

A′
1 =A1

2 (β cos(τω) − α) − 3
32A1κω

2(A2
2 cos(τω + 2φ) + . . .

. . . 3A2
1 cos(τω) + 2A2

2 cos(τω)) (5.23a)

A′
2 =A2

2 (β cos(τω) − α) − 3
32A2κω

2(A2
1 cos(2φ− τω) + . . .

. . . 2A2
1 cos(τω) + 3A2

2 cos(τω)) (5.23b)

φ′ = 3
16κω

2 sin(φ)
(
A2

1 cos(φ− τω) + A2
2 cos(φ+ τω)

)
(5.23c)

φ′
avg + ω =ω

2
0
ω

− 1
2β sin(τω) + 3

64κω
2(A2

2 sin(τω + 2φ) − A2
1 sin(2φ− τω) + . . .

. . . 5(A2
1 + A2

2) sin(τω)) (5.23d)

In (5.23), the first three equations describe the amplitudes and the synchronization of
the two oscillators: the fixed points of these three equations, which depend parametri-
cally in ω, are the synchronized solutions of the system.

5.3.1 The choice of ω

When applying the method of averaging, one often assumes that the frequency of
oscillation ω is close to the natural frequency of oscillation ω0 of the unperturbed
oscillator, and can approximate ω ≈ ω0. This assumption is often carried out earlier in
the analysis, by fixing ω = ω0 in (5.17). We have however observed in §5.2 that the
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frequency of oscillation ωL of the neutrally stable, linearized system departs from ω0,
and is most noticeably dependent on τ , as in figure 5.4.

We can improve the choice of ω from ω0 by using equation (5.23d), and choosing ω
such that the mean average phase φavg is a fixed point of the system too, by setting it
to zero. This leads to an equation for ω:

ω2 = ω2
0 − 1

2βω sin(τω) + 3
64κω

3(A2
2 sin(τω + 2φ) − A2

1 sin(2φ− τω) + . . .

. . . + 5(A2
1 + A2

2) sin(τω)) (5.24)

In the linear regime Ai → 0, and from (5.24) we recover the linear dispersion relation
(5.10b) (but not calculated on the boundary of instability). In the nonlinear regime,
the frequency of oscillation shifts from this value and it is amplitude dependent. We
numerically integrate in time the first three equations (5.23), and at each timestep
calculate the instantaneous frequency ω which satisfies (5.24). An example of a
simulation is reported in Figure 5.1, where A1, A2 and φ are reported as dashed lines.

5.3.1.1 The dynamic equation for ω in the general case

For reference, we discuss the dynamic equation for the frequency also for the generic
choice of the heat release response discussed in Chapter §4. One obtains:

ω − ω2
0
ω

= − 1
A1

⟨f1 sin(ωt+ φ1)⟩ − 1
A2

⟨f2 sin(ωt+ φ2)⟩ (5.25)

We proceed by substituting the expressions (4.73b) and (4.73d) in (5.25) and obtain

ω − ω2
0
ω

= −1
2

Nb∑
j=1

G(Rj, ω)
[

sinϕ(Rj, ω) + cjsj
(A2

A1
sin(ϕ(Rj, ω) + φ) + . . .

. . .
A1

A2
sin(ϕ(Rj, ω) − φ)

)]
(5.26)

This equation describes the time evolution of the frequency of oscillation ω that appears
in (4.39). This shift of the frequency was not taken into account in §4 as discussed
after equation (4.38). This is a likely explanation of the mismatch discussed in section
§4.5.
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5.3.2 Limit-cycle solutions

There are only two stable solutions among the fixed points of the system of equations
(5.23a),(5.23b) and (5.23c), for a fixed value of ω. These stable solutions are:A1 = A2 = 2√

3ω

√
β−α sec(τω)

κ

φ = ±π/2
(5.27)

We calculate the frequency of oscillation of this limit cycle by substituting (5.27) in
(5.24), and obtain the same equation (5.15), which describes the system at its neutrally
stable state. We can numerically solve equation (5.27) for ω and obtain ωL, and then
calculate the amplitude of oscillation Ai of the stable solution with (5.27). This solution
is a spinning wave, rotating either clockwise or anticlockwise in the θ direction in the
annular chamber. The frequency of oscillation at the limit-cycle coincides with the
frequency of oscillation ωL of the system at the border of stability.

5.4 The method of multiple scales

We apply the method of multiple scales as presented in Kevorkian and Cole (1996).
We study the system for values of β and τ where the system is linearly unstable, with
α/ω0 = 0.08 fixed. We first consider the system at the onset of the instability, by
decreasing β to the reduced linear driving βL, as defined by equation (5.14). At the
onset of instability, the neutrally stable solution oscillates at the frequency ωL, solution
of (5.15). We then apply the method by perturbing such neutrally stable solution. We
introduce

ε2 ≡ β − βL ≥ 0. (5.28)

where we assume that ε ≪ 1. We then rewrite the system of equations (5.6) in terms
of ε and by susbstituting

ηj(t) ≡ εξj(t), j = 1, 2 (5.29)
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we obtain:

ξ′′
1 (t) + αξ′

1(t) − βLξ
′
1(t− τ) + ξ1(t) + . . .

. . . ϵ2
(3

4ξ
′
1(t− τ)3 + 3

4ξ
′
2(t− τ)2ξ′

1(t− τ) − ξ′
1(t− τ)

)
= 0 (5.30a)

ξ′′
2 (t) + ξ2(t) + αξ′

2(t) − βLξ
′
2(t− τ) + . . .

. . . + ϵ2
(3

4ξ
′
2(t− τ)3 + 3

4ξ
′
1(t− τ)2ξ′

2(t− τ) − ξ′
2(t− τ)

)
= 0 (5.30b)

The system is linearly unstable for ε > 0, while for ε = 0 we recover the linear
differential equation studied in §5.2, but at the onset of instability.

Once the solution ξj(t) of (5.30) is found in terms of ε, the solution ηj(t) of the
original problem (5.6) can be recovered, by substituting ε from (5.28) in (5.29). Since
the two equations (5.30) conserve the symmetry with respect to the swap of subscripts
1 and 2, we focus only on (5.30a) in the following.

5.4.1 Timescales, series expansion and time delay approxima-
tion

We look for a solution ξj(t) with the following dependence on time:

ξj(t) = ξj(T0(t), T1(t), T2(t)) (5.31a)
Tk ≡ εkt k = 0, 1, 2 (5.31b)

where Tj are called slower timescales and are indirectly dependent on the original time
variable t through powers of ε. Here we decided to truncate the expansion of the time
variable to the second order, so that we consider slower timescales up to T2. The time
derivatives of ξj(t) are obtained by applying the chain rule to (5.31a) on the three
timescales:

ξ′
j(t) =D0ξj (T0, T1, T2) + εD1ξj (T0, T1, T2) + ε2D2ξj (T0, T1, T2) + O(ε3) (5.32a)
ξ′′
j (t) =D2

0ξj (T0, T1, T2) + 2εD0D1ξj (T0, T1, T2) + . . .

. . . ε2
(
D2

1ξj (T0, T1, T2) + 2D0D2ξj (T0, T1, T2)
)

+ O(ε3) (5.32b)

where we employed the notation

Dn ≡ ∂

∂Tn
, Dm

n ≡ ∂m

∂Tmn
. (5.33)
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The time delay appears in all the timescales Tj, and is expanded as a McLaurin series
in ε (Das and Chatterjee, 2002) in the expressions (5.31a) and (5.32a):

ξi(t− τ) =ξi(T0 − τ, T1 − ετ, T2 − ε2τ)
=ξi (T0 − τ, T1, T2) + ε

(
− τD1ξi (T0 − τ, T1, T2)

)
+ . . .

. . . ε2
(

− τD2ξi (T0 − τ, T1, T2) + τ 2

2 D
2
1ξi (T0 − τ, T1, T2)

)
(5.34a)

ξ′
i(t− τ) =D0ξi (T0 − τ, T1, T2) + . . .

. . . ε
(

− τD0D1ξi (T0 − τ, T1, T2) +D1ξi (T0 − τ, T1, T2)
)

+ . . .

. . . ε2
(

− τD0D2ξi (T0 − τ, T1, T2) + τ 2

2 D0D
2
1ξi (T0 − τ, T1, T2) − . . .

. . . τD2
1ξi (T0 − τ, T1, T2) +D2ξi (T0 − τ, T1, T2)

)
(5.34b)

We also look for a solution in terms of a power series in ε, truncated at the second
order:

ξj(t) =ξj,0 (T0, T1, T2) + εξj,1 (T0, T1, T2) + ε2ξj,2 (T0, T1, T2) + O(ε3) (5.35)

We then substitute (5.35) in (5.32,5.34b), and then substitute (5.35,5.32,5.34b) in
equations (5.30), and neglect terms at order higher than two in ε. I report here the
results for the first oscillator ξ1 only, because the second oscillator ξ2 is symmetric to
the first. The LHS of (5.30a) is a polynomial expression in ε, and we look for a solution
by setting to zero all its coefficients. This gives rise to a set of delayed differential
equations, one at each power of ε.

At order 0 in ε we recover the linearised equations of the problem already studied
in §5.2, but at the onset of instability:

−βLD0ξ1,0(t− τ) + αD0ξ1,0(t) +D2
0ξ1,0(t) + ω2

0ξ1,0(t) = 0 (5.36)

To ease the notation we define L0[ . ] as the operator that defines the LHS of equation
(5.36), so that (5.36) can be rewritten as

L0[ξ1,0] = 0 (5.37)
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This notation is convenient, because at order one in ε the operator L0 is retained, but
applied to ξ1,1:

L0[ξ1,1] = βLD1ξ1,0(t− τ) − τβLD0D1ξ1,0(t− τ) − αD1ξ1,0(t) − 2D0D1ξ1,0(t) (5.38)

Notice how the RHS of (5.38) depends on ξ1,0 and not on the higher order solutions
ξ1,1 and ξ1,2. Similarly, at order two in ε the linear operator L0 is applied to ξ1,2 and
the RHS depends on the lower order terms of the expansion ξ1,0 and ξ1,1 only:

L0[ξ1,2] = 1
2τ

2βLD0D
2
1ξ1,0(t− τ) + βLD1ξ1,1(t− τ) − τβLD0D1ξ1,1(t− τ)

− τβLD
2
1ξ1,0(t− τ) + βLD2ξ1,0(t− τ) − τβLD0D2ξ1,0(t− τ) − αD1ξ1,1(t)

− αD2ξ1,0(t) − 3
4κ (D0ξ1,0(t− τ)) 3 − 3

4κ (D0ξ2,0(t− τ)) 2D0ξ1,0(t− τ)

+D0ξ1,0(t− τ) − 2D0D1ξ1,1(t) −D2
1ξ1,0(t) − 2D0D2ξ1,0(t)

(5.39)

5.4.2 Zero order

Following the MMS, we defined βL in (5.13) and ε2 in (5.28) so that the solution of
the zero order equation (5.36) is neutrally stable. From the linear analysis carried out
in §5.2, the only non-decaying solution of equation (5.36) is:

ξj,0(T0, T1, T2) = Cj(T1, T2)eiωLT0 + Cj(T1, T2)e−iωLT0

= Cj(T1, T2)eiωLT0 + c.c. j = 1, 2. (5.40)

where Cj is the complex conjugate of Cj, and the angular frequency of oscillation
ωL = ωL(α, τ) was discussed in §5.2: in particular it is reported in figures 5.3,5.4 as a
function of τ only for a fixed value of the damping α/ω0 = 0.08. Applying the MMS,
and writing (5.40), we assume that all the other fast modes of (5.36) decay fast enough
to not change the dynamics of the system (Das and Chatterjee, 2002).

5.4.3 First order

We substitute the solution (5.40) in equation (5.38):

L0[ξ1,1] = −αeiT0ωLD1C1 + βLe
iωL(T0−τ)D1C1 − . . .

. . . iτβLωLe
iωL(T0−τ)D1C1 − 2iωLeiT0ωLD1C1 + c.c. (5.41)
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The RHS acts as a forcing f in the equation L0[ξ1,1] = f , at the frequency ωL. The
unforced solution ξ1,1 has as natural frequency the same frequency ωL. We then apply
a solvability condition: to avoid secular growth we set to zero the forcing components
at ωL, by imposing that the coefficient of eiωLT0 at the RHS is zero. This constraint
supplies a temporal evolution equation for D1C1, which in this case is trivially

D1Cj = 0 j = 1, 2 (5.42)

Notice that constraining the coefficient of e−iωLT0 would have led to the conjugate of
(5.42). In (5.41) all terms oscillate at frequency ωL. Then, once we enforce the condition
(5.42), the RHS is zero and conversely the particular solution of the differential equation
is zero. We also choose to fix the homogeneous solution of the equation to zero2. The
solution of (5.41) is then

ξj,1(t) = 0 j = 1, 2 (5.43)

5.4.4 Second order

We proceed in a similar manner, by substituting (5.40),(5.43) and (5.42) in (5.39),
obtaining

L0[ξ1,2] = −9
4iC

2
1κC̄1ω

3
Le

iT0ωL−iτωL − 3
4iC

2
2κC̄1ω

3
Le

iT0ωL−iτωL

− 3
2iC1C2κC̄2ω

3
Le

iT0ωL−iτωL − αeiT0ωLD2C1 − iτβLωLe
iT0ωL−iτωLD2C1

+ βLe
iT0ωL−iτωLD2C1 − 2iωLeiT0ωLD2C1 + 3

4iC
3
1κω

3
Le

3iT0ωL−3iτωL

+ 3
4iC1C

2
2κω

3
Le

3iT0ωL−3iτωL + iC1ωLe
iT0ωL−iτωL

(5.44)

The enforcement of the solvability conditions in (5.44) sets to zero the terms
oscillating at ωL (resonant terms), but other terms oscillating at other frequencies
remain (non-resonant terms, oscillating only at 3ωL in this case). The latter are not
responsible of secular growth, and lead to a particular solution ξi,2 oscillating at 3ωL,
which is however not discussed here. By imposing the solvability condition on (5.44)
and on the equation at the same order for ξ2,2(t), we obtain two equations in terms of
D2C1 and D2C2, the solution of which is:

2this is a valid option, though not the only one, as discussed in §2.1 of Nayfeh (2005)
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D2C1 =
ωL
(
9C2

1κC̄1ω
2
L + 3C2

2κC̄1ω
2
L + 6C1C2κC̄2ω

2
L − 4C1

)
4 (iαeiτωL − τβLωL − iβL − 2ωLeiτωL) (5.45)

and the solution for D2C2 is the same of (5.45) if we swap the subscripts.

5.4.5 Amplitudes and phases

We truncate the series solution (5.35) at its first order term, and because ξj,1(t) is
identically zero we obtain

ξi(t) = ξ0(T0, T1, T2) + O(ε2)
= Ci(T1, T2)eiωLT0 + c.c. + O(ε2) (5.46)

We can evaluate dCj(t)/dt with the chain rule on the timescales, and since Cj does
not depend on T0 we obtain

dCj(t)
dt

= ε
dCj
dT1

+ ε2dCj
dT2

j = 1, 2 (5.47)

where the RHS is described by equations (5.42) and (5.45), and the complex-valued
amplitudes Cj describe the slow evolution of the oscillators ξj(t). To compare the
solution obtained with the method of multiple scales with the solution obtained with
the method of averaging, we rewrite (5.46) in terms of real-valued amplitudes Aj(t)
and phases φj(t):

ηj(t) = εξj(t) = Aj(t) cos(ωLT0 + φj) j = 1, 2 (5.48)

From (5.46) and (5.48), we recast the evolution equation (5.47) of the complex am-
plitudes Cj in terms of real-valued amplitudes and phases, as discussed in detail in
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appendix §5.7.1:

dA1

dt
=A1

L− κNA(A2
1, A

2
2,+φ)

D
(5.49a)

dA2

dt
=A2

L− κNA(A2
2, A

2
1,−φ)

D
(5.49b)

dφ

dt
=κNφ(A2

1, A
2
2,−φ)

D
(5.49c)

dφavg
dt

=Nφavg(A2
1, A

2
2,−φ)

2D (5.49d)

where the expressions of L,NA, Nφ, Nφavg and D are reported in appendix §5.7.2. In
the first two equations, L/D is a linear growth coefficient and the term NA/D is
responsible for the nonlinear saturation of the amplitudes. The third equation governs
the synchronization of the two oscillators, and depends only on nonlinear terms, since
it is proportional to κ. The RHS of (5.49d) is the frequency shift of the two oscillators,
which depends on the amplitude of oscillation. There are only two stable solutions
among the fixed points of the system of equations (5.49a),(5.49b) and (5.49c). These
stable solutions are: A1 = A2 = 2√

3ω

√
β−α sec(τωL)

κ

φ = ±π/2
(5.50)

The frequency of oscillation of the limit cycle is ωL, because, once we substitute (5.50),
equation (5.49d) evaluates to zero. This means that the method of multiple scales
predicts that the frequency of oscillation is ωL at the onset of the oscillation and at
the converged limit-cycle solution.

5.5 Comparison with numerical simulations

We tested the quality of these analytical solutions for a series of numerical simulations
using pydelay (Flunkert and Schöll, 2009), a code using the Bogacki-Shampine scheme
(Bogacki and Shampine, 1989). In particular we fixed α = 0.08 and ran simulations of
(5.6) on a fine grid with 153 values of β, τ equispaced between 0 and 3 and 337 values
of τω0 equispaced between 0 and 8, for a total of 51561 simulations. We started the
numerical integration at t = 0, with a history function defined for t ∈ [0 , −τ ] that is
oscillatory. We then extract the amplitude and the frequency of the solutions once the
numerical code has converged to a limit-cycle. We report the amplitude in Figure 5.7,
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and the frequency in Figure 5.6. The agreement is overall very good for the range of
parameters investigated. There is a small discrepancy for small values of β/α, where
the contour line of the numerical solution at A = 0.051 is slightly jagged and slightly
underpredicts the analytical solution in a few regions. This is interpreted with the fact
that the we extracted the amplitudes from the numerical solutions too early, before
the system had fully converged to the limit-cycle. This is corroborated by the fact
that for a constant α, smaller values of β/α make the system more weakly nonlinear,
leading to longer time-scales for the evolution of the slow flow quantities, i.e. of the
phase, frequency and amplitudes of oscillation.
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Fig. 5.6 Comparison of the saturated frequency extracted from the numerical integration
of the original system of delayed coupled oscillators (contour plot in color) described
by equations (5.6) and of the analytical solution (black lines). The border of neutral
stability is reported with the thick line, and at its left the system is linearly stable.
The black lines were chosen to be at the same levels as the colour contour boundaries.
The two coincide almost exactly showing that the analytical solution gives the same
results as numerical integration of the original system.
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Fig. 5.7 Comparison of the saturated amplitude extracted from the numerical inte-
gration of the original system of delayed coupled oscillators (contour plot in color)
described by equations (5.6) and of the analytical solution (black lines). The border of
neutral stability is reported with the thick line, and at its left the system is linearly
stable. The black lines were chosen to be at the same levels as the colour contour
boundaries. The two coincide almost exactly showing that the analytical solution gives
the same results as numerical integration of the original system.
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5.6 Conclusions

In §5.2 we carry out the linear stability analysis of the system and show that a delay that
is large when compared to one period of thermoacoustic oscillation linearly destabilizes
the thermoacoustic system, making the system more prone to exhibit a thermoacoustic
oscillation. This can be seen in Figure 5.5 where the shaded region gets closer to the
horizontal asymptote β/α = 1 as τω0 increases.

In §5.3 we apply the method of temporal averaging to the system. We recover a
dynamic equation for the frequency of oscillation ω of the system, which depends on
the instantaneous values of the slowly varying amplitudes and phases of the two modes.
We obtain the same equation for the more general case discussed in §4. This equation
provides new opportunities for the system identification of thermoacoustic oscillations.

In §5.4 we then apply the method of multiple scales to the system. The dependence
on the time delay τ is approximated with a suitable series expansion. This adds to
the existing complexity of the method: the number of terms in the many equations is
large, and the analytical steps required to obtain the final equations are cumbersome.

The two methods provide different dynamic equations, but the same limit-cycle
solutions. We then compare these analytic solutions with the time-integrated equations
in §5.5. They have excellent agreement with the nonlinear solution of the problem,
suggesting that these two analytical tools are very precise for the low-order modelling
of thermoacoustic problems, at least in the range of parameters investigated.

In many occasions the nonlinear flame response is available in terms of a describing
function Q(A, ω). In these cases, as presented in chapter §4 one can apply the method
of averaging because in the final equations (4.39) and (5.26) only the describing function
Q appears. One cannot on the other hand apply directly the method of multiple-scales,
because a state-space realization of the flame-response is needed. One can in principle
first calculate a state-space realization of the describing function as discussed in chapter
§3, and then apply the method. In the cases where the flame response is available in
state space, one is free to choose between the two methods. However, the complexity
of the method of multiple scales must be kept into account when making this choice.
For the case of the heat release response considered in this chapter the application of
the method of averaging took far less time and resources than the method of multiple
scales.

This chapter provides a characterization of the effect of the time delay in the linear
and nonlinear regime, and a validation of the method of averaging that was used in
the other chapters.
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5.7 Appendices

5.7.1 Complex to polar transformation

By comparing (5.46) with (5.48), and dropping the subscripts, we find that

εC =A2 e
iφ (5.51a)

εC =A2 e
−iφ (5.51b)

We derive with respect to time both sides of equations (5.51), and then sum and
subtract the two equations, to obtain

dA

dt
= ε

dC

dt
e−iφ + ε

dC

dt
eiφ (5.52)

iA
dφ

dt
= ε

dC

dt
e−iφ − ε

dC

dt
eiφ (5.53)

From which we obtain

dA

dt
= 2εℜ

[
dC

dt
e−iφ

]
(5.54a)

dφ

dt
= 2ε
A

ℑ
[
dC

dt
e−iφ

]
(5.54b)

By applying the chain rule on t(T0, T1, T2) on both sides of (5.54), and equating terms
at the same order in ε, one finds that (5.54) is valid not only for the time t, but also
for Tj , j = 0, 1, 2.

5.7.2 Slow flow equations

We report here the expressions for the slow flow introduced in equations (5.49):



134 Nonlinear analytic modelling of the delay

D = 16
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)
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L

+ 2α(ατ + 2)ωL sin (2τωL)
)

(5.55a)

L = −16ωL (α− β cos (τωL)) (α sin (2τωL) + 2ωL (ατ + cos (2τωL) + 1))
(5.55b)
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Chapter 6

Conclusions and further work

In chapter §2 we investigate how the transverse forcing of flames can affect the limit-
cycle solutions in annular combustors. We find that if in the nonlinear regime the heat
release response of the axisymmetric flame sufficiently reduces due to the transverse
acoustic velocity, the system converges to a standing wave solution pattern instead
of a spinning pattern. The chapter provides a good motivation for further studies on
transverse instabilities. In particular, very little information is known on transverse
forcing in the nonlinear regime, at large amplitudes of acoustic velocity that can occur
at the saturated oscillating state. One other open direction of investigation regards
the effect of a non-zero mean swirling flow in the azimuthal direction. If present,
this grazing flow bends the flames in the transverse direction, and the modified flame
response will respond linearly with respect to the transverse acoustic velocity. This
will consequently affect the nonlinear saturation of azimuthal modes.

In chapter §3 we present a tool to map a nonlinear operator from the frequency
domain, where it is described in terms of a describing function, to the time domain,
where it is a time-invariant nonlinear state space realization. This is useful because
often the available flame responses are characterised in the frequency domain, and one
may instead need to work in the time domain. This tool paves the way for studies
on different prototypal flame responses in low-order models, both in the frequency
and the time domain, not restricted to a specific analytic expression for the nonlinear
saturation in the time domain as done so far in the literature. This tool can be used in
fields beyond thermoacoustics, and is useful whenever one needs to work in the time
domain with an operator characterised by a given describing function.

In chapter §4 we present a weakly nonlinear analysis of thermoacoustic oscillations
in annular combustion chambers. The novelty of the work consists of considering a
discrete number of burners instead of a homogeneous flame response along the annulus,
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and of keeping the flame response very generic, as a nonlinear time-invariant operator.
This allows us to discuss the conditions on the nonlinear flame response for the existence
and stability of standing and spinning waves, and the orientation and amplitudes of
these solutions. The chapter provides a new nonlinear theoretical framework that
extends previous models that fixed a certain heat release response. Many results of this
theory can be measured in experiments. These regard both the qualitative stability
results of the two types of solutions, but also the validation of the dynamic equations
of the low-order model as an accurate description of the pressure oscillations in the
experiments. This work can be extended to account for nonlinear sinks of acoustic
damping such as Helmholtz resonators, leading to conditions regarding the nonlinear
behaviour of both flames and resonators.

In chapter §5 we carry out the validation of the method of averaging in thermoa-
coustics, extensively used in chapters §2 and §4. We show that the predictions of
the nonlinear solution of two mathematical methods, the method of averaging and
the method of multiple scales, are in excellent agreement with the results of the di-
rect numerical integration of the equations. We obtain a dynamic equation for the
instantaneous frequency of oscillation, which can be used for the nonlinear system
identification of the system. We also present the effect that the time delay between
fluctuating heat release rate has on the system, in terms of boundary of stability and
of nonlinear amplitudes and frequencies of oscillation.
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