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Abstract

Carbon nanotube fiber, as a material, promises superior material properties to ordinary
carbon fiber. It has higher tensile strength, as well as high electrical and thermal con-
ductivity. The production process is implemented in several university rigs, as well as in
some industrial settings, but the process is not well understood or modelled physically.
This thesis investigates several different components of this process, presents computa-
tional models of the key physical processes, and assimilates experimental data into those
models in order to improve their accuracy.

The production process consists of a heated quartz reactor tube that is continuously
fed with hydrogen, methane, ferrocene, and thiophene. First, a hydrodynamic compu-
tational fluid dynamics solver is developed to simulate the flow in the reactor and to
model the temperature gradient in the flow. This solver is also extended to model the
hydrodynamic stability of the flow through a gas exchange valve attached to the outlet
of the production reactor. A simplistic model of the finished carbon nanotube aerogel is
presented to evaluate the influence of a convecting solid structure on the flow through
the gas valve.

Further detail of the production process is then investigated by calculating the decom-
position rate of thiophene from experimental observations. The problem of finding the
decomposition rate is set up using a Bayesian inference framework and the resulting
objective function is minimised using a gradient-based method. An adjoint method is
used to calculate the gradient of the objective function with respect to the model param-
eters. This decomposition rate of thiophene in a hydrogen atmosphere is then used to
compare the decomposition of ferrocene and thiophene in the reactor using two different
reactor inlet conditions. The implications for the production of carbon nanotubes are
presented.

Finally the nucleation, growth and evaporation of the catalyst nanoparticles in the re-
actor is investigated. A simple particle model that can quantitatively describe the mass
fraction of the particles in the flow is developed. This model is first applied to predict
how the radial particle mass fraction distribution varies with flow rate and the input
ferrocene concentration. Then the particle model is fitted using the Bayesian inference
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framework, again using gradient-based minimisation with an adjoint method to calcu-
late the gradient of the objective function with respect to the model parameters. The
implications of the best-fit parameters are discussed, and a parameter set that is closer
to the decomposition rate of thiophene than the decomposition rate of ferrocene is found
to describe the experimental results best.

The models presented in this study can be used to guide further experimental studies
into the carbon nanotube production process, and to improve the design of the reactor
used. The adjoint method presented can be applied to other fields in which analytical
and quantitative models can be paired with experimental data to improve the model’s
parameters. Further experimental data can be easily assimilated into the models pre-
sented here, because the Bayesian interference framework is a rigorous process to as-
similate both new and existing data. Finally this thesis can also explain why the final
carbon nanotube product forms a sock-like structure, and highlights that the availability
of sulphur is critical to the formation of the catalyst nanoparticles from which carbon
nanotubes can grow.
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1 Background to the Cambridge process for
carbon nanotube production

The Cambridge process of producing carbon nanotubes (CNTs) is based on the initial
discovery by Li et al. (2004). In this process, shown graphically in figure 1.1, a heated
reactor is continuously fed with a working fluid of hydrogen mixed with the CNT feed-
stock. The CNT feedstock consists of a carbon source, typically methane, an iron source,
typically ferrocene, and a sulphur source, typically thiophene. The reactor is heated to
high temperatures, typically 1250 ◦C, which causes the feedstock chemicals to break
down into their primary components: carbon, iron, and sulphur. The iron forms into
nanoparticles, onto which the released sulphur deposits and promotes the formation of
carbon nanotubes. The carbon nanotubes then grow sufficiently long to interact with
other carbon nanotubes and tangle together in a two-stage process, first to form bundles
in the order of tens of CNTs, second to connect the bundles together in an aerogel. The
aerogel is a macroscopic material like a spider web or candy floss (cotton candy). This
aerogel can be manually or automatically extracted from the reactor, and collected or
further processed.

(Alignment, Length..) 
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 φ = 30-50 nm
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Figure 1.1 The Cambridge process used to produce carbon nanotubes with a single-step
floating catalysts chemical vapour deposition process. Diagram adapted from Stallard
et al. (2018).



4 Background to the Cambridge process for carbon nanotube production

Table 1.1 Comparison of dimensions and typical operating conditions of the CUED and
MML reactors.

Typical values
Property CUED MML Tortech
Length 700mm 1700mm 1605mm
Inner diameter 40mm 65mm 85mm
Orientation horizontal vertical vertical
Peak temperature 1250 ◦C 1300 ◦C 1300 ◦C
Flow rate 1.0 Lmin−1 2.5 Lmin−1 O(10) Lmin−1

1.1 The reactors
In this study we examine two different reactor configurations in two different labora-
tories: the Cambridge University Engineering Department (CUED) reactor, and the
Macromolecular Materials Laboratory (MML) reactor (also at the University of Cam-
bridge). Additionally we have briefly investigated the fluid flow in an industrial reactor,
operated by Tortech Nano Fibers Ltd. The length, diameter, and operating conditions
of the reactor vary between different laboratories. The dimensions and typical operating
conditions are listed in table 1.1. Figure 1.2 shows the reactor dimensions to scale. The
wall temperature profile of each reactor is shown in figure 1.3.

1605 mm

85 mm

Tortech reactor
1700 mm

65 mm
MML reactor

700 mm
40 mm

CUED reactor

Figure 1.2 Diagrams of the three reactors investigated and their relative dimensions.
The red line above each reactor gives the approximate region where the wall temperature
exceeds 1000 ◦C.
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Figure 1.3 The measured wall temperature of the CUED and MML reactors plotted
against the distance from the reactor inlet.

The CUED reactor

We investigate the CUED reactor most thoroughly in this study. It is the shortest and
narrowest of the three with a length of 700mm and an inner diameter of 40mm. The
flowrate is typically 1.0 Lmin−1 and the peak temperature is typically 1250 ◦C. The
reactor tube is arranged horizontally and heated by a clam-shell furnace. To prevent the
hydrogen from venting directly into the laboratory the end of the reactor is attached to
a gas valve that extracts the hydrogen rich gas before it can exit into the laboratory,
diluting it sufficiently so as not to pose an explosion risk. This reactor was previously
studied by Hoecker et al. (2016, 2017a,b).

The MML reactor

The second reactor we investigate is the MML reactor. It is the longest reactor with a
length of 1700mm and an inner diameter of 65mm. The flowrate is typically 2.5 Lmin−1

and the peak temperature is typically 1300 ◦C. The reactor is arranged vertically and
heated by rods. A gas valve is attached to the end of the reactor in order to dilute the
reactor fluid. The reactor was studied by Bulmer et al. (2020); Kaniyoor et al. (2019);
Li et al. (2004), and a similar reactor was studied by Conroy et al. (2010).
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The Tortech reactor

A third reactor is investigated briefly. It is used for industrial production of CNTs by
Tortech Nano Fibers Ltd. It has a length of 1605mm and an inner diameter of 85mm.
The flowrate is an order of magnitude higher than the flowrates used by the CUED and
MML reactors. The peak temperature is similar, at 1300 ◦C. This reactor is arranged
vertically and is run without a gas valve in order to minimise the disruption to the CNT
production. Instead the production environment is kept isolated while the reactor is
running.

1.2 Motivation and objectives
This study is part of the ANAM initiative, which is a collaboration between the Uni-
versity of Cambridge, the University of Ulster, and several industrial partners. The
research goal of the ANAM initiative is to work towards a commercial realisation of
producing CNTs using the Cambridge process. CNTs promise significant improvements
of mechanical (Koziol et al., 2007; Motta et al., 2007b), electrical (Sundaram et al.,
2011), and thermal (Gspann et al., 2017) properties compared to alternative organic
materials.

To present the Cambridge process, and CNT production in general, as a viable com-
mercial endeavour the production capability of the Cambridge process needs to scale
up. Current production capability is in the order of a few grammes of CNTs per day.
For commercial viability, the yield of the process needs to scale up by several orders of
magnitude. This thesis is motivated by this aim to scale up the production of CNTs.
The focus is on understanding the underlying precursor and particle dynamics in the
reactor and developing a model which will guide further practical work. This thesis
presents:

i) an investigation of the fluid mechanics of the gas valve: how to recycle reactor gas
while operating safely (chapter 4),

ii) a simplistic model of the aerogel: to understand the motion of the aerogel during
extraction (chapter 5),

iii) a model of the decomposition of the precursors (ferrocene and thiophene): to
better understand how the release of iron and sulphur impacts the production of
the catalyst nanoparticles (chapters 6 and 7),
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iv) a model of the nucleation, growth, and evaporation of the iron nanoparticles: to
predict how the reactor parameters (flowrate, temperature, and iron input) affect
the nanoparticle properties (chapters 8, 9, and 10),

v) the application of a Bayesian framework to the models: to update the precursor
and particle models as experimental data is made available (chapters 2, 6, and 10).





2 Designing CFD for optimisation

To understand how the carbon nanotube aerogel is produced in the Cambridge process,
we develop a computational model of the fluid and particle dynamics inside the reactor.
We use computational fluid dynamics (CFD) to solve the fluid problem and find the
velocity, pressure, density, and temperature fields in the reactor (chapter 3). In chapter 6
we model the decomposition of the process precursors and compare the model results
with experimental data. Then in chapter 8 we simulate the creation and growth of
particles in the reactor. In chapter 9 we compare the models to experimental data of the
particle mass measured in the reactors. In chapter 10 we optimise the model parameters
to minimise the discrepancy between the experiments and the model predictions.

We use a gradient-base optimisation method to speed up the optimisation process. We
design our CFD to calculate the gradients more cheaply than a finite-difference method.
For this we use the adjoint method, which allows us to solve a linear set of equations in
order to calculate the gradient of an objective function with respect to model parameters.
We use finite elements to solve the governing equations, because the weak form is well
suited to applications of the adjoint equations.

2.1 The numerical computer code
The ability to construct adjoint equations from a direct code and an objective function
is not common in existing commercial CFD codes, so we develop a new code in Python
based on the finite-element partial-differential equation solving framework FEniCS (Al-
næs et al., 2015; Logg et al., 2012). The developed code is supplemented with a mesh-
ing program, Gmsh (Geuzaine and Remacle, 2009), and its Python wrapper PyGmsh
(Schlömer et al., 2018). The numerical solutions are found using PETSc (Abhyankar
et al., 2018). The eigenvalue solver SLEPc (Hernandez et al., 2005) is used for stability
analysis.
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2.2 Introduction to adjoints
The adjoint variables are Lagrangian multipliers, and the governing equations that define
the adjoint variables are the adjoint equations. The main benefit of using the adjoint
equations and variables to find the gradient of an objective function is that the gradient
expression is a simple product or integral involving the adjoint variable, and the adjoint
governing equations are linear and only need to be solved once per iteration. This means
the gradient information only requires a single extra linear solution. In contrast, a finite-
difference approach for finding the gradient information requires a nonlinear solution of
the original problem for each parameter. As the number of parameters in the problem
increases, the computational savings of using adjoints becomes very significant.

To explain how adjoints are used, we present an abstracted optimisation problem, in-
spired by Lemke et al. (2014). We start with an objective function, J , that is a function
of a set of model variables, s:

J = J(s), (2.1)

where the objective function is a real scalar value.

The model variables are in turn a function of the model parameters, θ, because they
fulfil a set of governing equations which are parameterised by θ:

G(s,θ) = 0, (2.2)
J = J(s(θ)). (2.3)

Next we linearise the governing equations G and the objective function J around a fixed
solution (s,θ) = (s0,θ0) + (δs, δθ):

δG =
∂G

∂s
δs+

∂G

∂θ
δθ = 0, (2.4)

δJ =
∂J

∂s
δs+

∂J

∂θ
δθ = 0. (2.5)
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We add the constraint on δs, (2.4), to (2.5), multiplied by a Lagrangian multiplier, λ,
to construct the Lagrangian:

δL = δJ + ⟨λ, δG⟩ (2.6)

=
∂J

∂s
δs+

∂J

∂θ
δθ +

〈
λ,

∂G

∂s
δs+

∂G

∂θ
δθ

〉
= 0, (2.7)

=

〈
δs,

∂J

∂s

⊤
+

∂G

∂s

⊤
λ

〉
+

∂J

∂θ
δθ +

〈
λ,

∂G

∂θ

〉
, (2.8)

where ⟨·, ·⟩ is an inner product appropriate to the space s resides in. In the cases looked
at in this thesis a volume integral is used.

The value of the Lagrangian multiplier λ is arbitrary. We chose λ to fulfil an adjoint
governing equation in order to remove the dependency of δL on δs:

∂J

∂s

⊤
+

∂G

∂s

⊤
λ = 0. (2.9)

This governing equation allows us to solve for the Lagrangian multiplier λ, which we
now call the adjoint variable. The adjoint variable can then be used to find the gra-
dient of the objective function J with respect to the model parameters θ, through the
Lagrangian:

δL

δθ
=

∂J

∂θ
+

〈
λ,

∂G

∂θ

〉
. (2.10)

Higher order gradients can be found in the same manner as the first order gradient was
constructed. Here we present an approach inspired by Papadimitriou and Giannakoglou
(2008).

To find the second-order gradient, we first linearise (2.9) and (2.10) around a point
(s,θ,λ) = (s0,θ0,λ0) + (δs, δθ, δλ):

δ

(
∂J

∂s

⊤
+

∂G

∂s

⊤
λ

)
=(

∂2J

∂s∂θ

⊤

+
∂2G

∂s∂θ

⊤

λ

)
δθ +

(
∂2J

∂s2

⊤

+
∂2G

∂s2

⊤

λ

)
δs+

∂G

∂s

⊤
δλ = 0, (2.11)
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and

δ

(
δL

δθ

)
=

∂2J

∂θ2
δθ +

∂2J

∂θ∂s
δs+

〈
δλ,

∂G

∂θ

〉
+

〈
λ,

∂2G

∂θ2
δθ

〉
+

〈
λ,

∂2G

∂θ∂s
δs

〉
, (2.12)

=

(
∂2J

∂θ2
+

〈
λ,

∂2G

∂θ2

〉)
δθ +

(
∂2J

∂θ∂s
+

〈
λ,

∂2G

∂θ∂s

〉)
δs+

〈
δλ,

∂G

∂θ

〉
.(2.13)

We now add the equation governing δλ (2.11), multiplied by a Lagrangian multiple ϕ,
and the equation governing δs (2.4), multiplied by a Lagrangian multiple ψ, to (2.13),
to construct the second order Lagrangian:

δ

(
δL

δθ

)
=

(
∂2J

∂θ2
+

〈
λ,

∂2G

∂θ2

〉)
δθ +

(
∂2J

∂θ∂s
+

〈
λ,

∂2G

∂θ∂s

〉)
δs+

〈
δλ,

∂G

∂θ

〉
+

〈
ϕ,

(
∂2J

∂s∂θ

⊤

+
∂2G

∂s∂θ

⊤

λ

)
δθ +

(
∂2J

∂s2

⊤

+
∂2G

∂s2

⊤

λ

)
δs+

∂G

∂s

⊤
δλ

〉
+

〈
ψ,

∂G

∂s
δs+

∂G

∂θ
δθ

〉
, (2.14)

=

(
∂2J

∂θ2
+

〈
λ,

∂2G

∂θ2

〉)
δθ +

〈
ϕ,

∂2J

∂s∂θ

⊤

+
∂2G

∂s∂θ

⊤

λ

〉
δθ +

〈
ψ,

∂G

∂θ

〉
δθ

+

〈
ψ,

∂G

∂s
δs

〉
+

∂2J

∂θ∂s
δs+

〈
λ,

∂2G

∂θ∂s
δs

〉
+

〈
ϕ,

∂2J

∂s2

⊤

δs+

(
∂2G

∂s2

⊤

λ

)
δs

〉

+

〈
δλ,

∂G

∂θ

〉
+

〈
ϕ,

∂G

∂s

⊤
δλ

〉
(2.15)

=

(
∂2J

∂θ2
+

〈
λ,

∂2G

∂θ2

〉
+

〈
ϕ,

∂2J

∂s∂θ

⊤
〉

+

〈
ϕ,

∂2G

∂s∂θ

⊤

λ

〉
+

〈
ψ,

∂G

∂θ

〉)
δθ

+

〈
δs,

∂G

∂s

⊤
ψ +

∂2J

∂θ∂s

⊤

+
∂2G

∂θ∂s

⊤

λ+
∂2J

∂s2
ϕ+ λ⊤∂

2G

∂s2
ϕ

〉
+

〈
δλ,

∂G

∂θ
+

∂G

∂s
ϕ

〉
. (2.16)

As before, we choose the Lagrangian multipliers to satisfy an equation in order to elim-
inate the terms involving δs and δλ:

∂G

∂s

⊤
ψ +

∂2J

∂θ∂s

⊤

+
∂2G

∂θ∂s

⊤

λ+
∂2J

∂s2
ϕ+ λ⊤∂

2G

∂s2
ϕ = 0, (2.17)

∂G

∂θ
+

∂G

∂s
ϕ = 0. (2.18)
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This leaves the second-order Lagrangian as:

δ

(
δL

δθ

)
=

(
∂2J

∂θ2
+

〈
λ,

∂2G

∂θ2

〉
+

〈
ϕ,

∂2J

∂s∂θ

⊤

+
∂2G

∂s∂θ

⊤

λ

〉
+

〈
ψ,

∂G

∂θ

〉)
δθ, (2.19)

δ2L

δθ2
=

∂2J

∂θ2
+

〈
λ,

∂2G

∂θ2

〉
+

〈
ϕ,

∂2J

∂s∂θ

⊤

+
∂2G

∂s∂θ

⊤

λ

〉
+

〈
ψ,

∂G

∂θ

〉
. (2.20)

2.3 Optimisation in a Bayesian framework
Using an optimisation technique, which may use gradients, one can find the parameters
that achieve a local minimum of the objective function. This can be used to minimise
the discrepancy between a set of observation points x and the model predictions q =

q(s):

J ≡ 1
2
(x− q)⊤(x− q). (2.21)

We use the optimisation for statistical inference by working in a Bayesian framework
(MacKay, 2003). We first create a model H a priori, with a corresponding set of param-
eters θ. We set a prior value of these parameters, based on prior knowledge. We assume
that the probability distribution of the parameter values is Gaussian, which enables us
to express the prior probability of the parameters, given the model H:

P (θ | H) = 1
Zθ

exp
(
−1

2
(θ − µθ)

⊤Σ−1
θ (θ − µθ)

)
, (2.22)

where µθ is the mean of the probability distribution, Σθ is the uncertainty of the prob-
ability distribution, and Zθ = |2πΣθ|−1/2 is the normalisation constant of the Gaussian
distribution.

We assume that the experimental observation are noisy samples around some ground
truth value, and that the noise follows a Gaussian distribution. We further assume that
the chosen model H is able to match the ground truth values, with an optimal set of
parameters θ. Using these assumptions, we phrase the optimisation problem as finding
the maximum a posteriori probability of the parameters given the data: maxθ P (θ |
x, H). This posterior probability is derived from the likelihood of the parameters, P (x |
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θ, H), and the prior probability of the parameters, P (θ | H), using Bayes’ rule:

P (θ | x, H) =
P (θ | H)P (x | θ, H)

P (x | H)
, (2.23)

where P (x | H) is the probability of the data over all parameters of model H, called the
evidence:

P (x | H) =

∫
P (θ | H)P (x | θ, H) dθ = ZH . (2.24)

At this stage we do not need to compute ZH , and instead treat it as a normalising
constant.

We assume the likelihood can be modelled as a Gaussian distribution:

P (x | θ, H) = 1
Zx

exp
(
−1

2
(x− q)⊤ Σ−1

x (x− q)
)
, (2.25)

where q is the model predictions using model H and parameters θ, Σx is the variance of
the experimental observations, and Zx = |2πΣx|−1/2 is the normalising constant.

We take the negative log of the posterior distribution, which allows us to construct an
objective function similar to (2.21):

− logP (θ | x, H) = logP (x | H)− logP (θ | H)− logP (x | θ, H) (2.26)
= logZH + logZθ + logZx︸ ︷︷ ︸

independent of θ

+ 1
2
(θ − µθ)

⊤Σ−1
θ (θ − µθ) +

1
2
(x− q)⊤ Σ−1

x (x− q)︸ ︷︷ ︸
equivalent to (2.21) with weights Σ−1

x

(2.27)

= J(θ,x). (2.28)

This expression becomes the new objective function, which now has a contribution from
how well the model describes the experimental observations, and how close the param-
eters agree with the prior expectation. Using the first-order adjoints we converge to the
parameters with the highest posterior probability.

Using the second-order adjoints, or an approximation of the second-order gradient in-
formation, we can use Laplace’s method (MacKay, 2003, Chapter 27) to obtain the
uncertainty of the fitted parameters. Additionally, the marginal likelihood of the model
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H can be calculated (MacKay, 2003, Chapter 28), and compared with other models.
This way the model with the highest likelihood can be found.

2.4 Brief overview of optimisation techniques
A brief overview of the optimisation techniques used in this study is presented here.
A more complete overview can be found in Nocedal and Wright (1999). The goal of
optimisation is to find a set of parameters θ that produces the optimal value of an
objective function J . Canonically the objective function is constructed so that the
optimal value is the minimum value:

min
θ

J(θ). (2.29)

A typical procedure for optimisation is to:

1. find a search direction d,

2. move a distance α in the search direction θ′ = θ + αd,

3. evaluate the objective function at the new parameters, J ′ = J(θ′),

4. check if the algorithm should end, otherwise repeat from 1.

When gradient information is available the optimisation can be improved by searching
in a direction suggested by the gradient. A straightforward method is to search in
the direction of steepest descent, by setting the search direction to the negative of the
gradient:

d = −∇J. (2.30)

The step length α can be found by minimising J along the search direction:

min
α

J(θ + αd). (2.31)

To avoid having to run a secondary minimisation at each iteration, we instead use the
Wolfe conditions to find a suitable approximation of the optimal step length α. First
a large value of α is tested, and successively decreased until the sufficient decrease and



16 Designing CFD for optimisation

curvature conditions are met:

J(θ + αd)− J(θ) ≤ c1α∇J⊤d, (2.32)
∇J(θ + αd)⊤d ≥ c2∇J(θ)⊤d, (2.33)

where c1 and c2 are constants which satisfy 0 < c1 < c2 < 1. We have found that
c1 = 10× 10−6 and c2 = 0.95 produce good results.

If second order derivatives are available, the Newton method can be used, wherein the
search direction and length is the negative of the gradient, multiplied by the inverse of
the Hessian (the second derivative matrix, ∇2J):

αd = −(∇2J)−1∇J. (2.34)

The Newton method jumps directly to the minimum of the local parabolic approximation
of the objective function J . If this parabolic approximation is accurate the Newton
method significantly speeds up the optimisation. If not, the Newton method often
diverges.

The Hessian can be approximated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
formula (Nocedal and Wright, 1999, Chapter 2):

Bk+1 = Bk −
Bksks

⊤
kBk

s⊤kBksk
+
yky

⊤
k

y⊤
k sk

, (2.35)

sk = θk+1 − θk, (2.36)
yk = ∇Jk+1 −∇Jk, (2.37)

where Bk is the Hessian approximation at optimisation iteration k. If a good approxi-
mation of the Hessian is used then a step length α of 1 of often sufficient for satisfying
the Wolfe conditions.



Part II

Hydrodynamics





3 Introduction to modelling the flow in the
reactor

To model the flow in the reactor, we solve the partial-differential equations that describe
the motion of a fluid. We use a version of the Navier–Stokes equations suitable for flows
with low Mach numbers. We also describe three other fluid models. For each model,
three conservation equations are solved, one for each of the fluid mass, momentum and
energy. The features of the flows are:

• the Mach number is low, which means the compressibility of the fluid can be
neglected,

• the Reynolds number is low, which means the flow can be assumed to be laminar
with no turbulence,

• there are high temperature differences, which requires a model that can accurately
model changes in fluid density due to temperature,

• there is a possibility of density variations due to composition, because the reactor
may mix of hydrogen and nitrogen.

Using these features, we evaluate four different approaches to fluid modelling.

3.1 The uniform density Navier–Stokes model
The uniform density Navier–Stokes model is the most simple of the four models, and
describes the behaviour of an incompressible fluid with uniform density.

For this model, the energy equation cannot influence the mass and momentum equations,
which means the energy equation can be solved separately, after the mass and momentum
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equations have been solved:

∇ · u = 0, (3.1)

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ µ∇ ·

(
∇u+ (∇u)⊤

)
+ ρg, (3.2)

ρcp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (k∇T ) , (3.3)

where u is the fluid velocity, ρ is the fluid density, p is the fluid pressure, µ is the
fluid viscosity, g is the acceleration due to gravity, cp is the specific heat capacity, T is
the fluid temperature (in an absolute scale, such as Kelvin), and k is the fluid thermal
conductivity. This model is useful when the fluid density is constant and the flow is
laminar. It has the lowest computational cost of the models presented, and is preferred
whenever the density can be assumed to be both constant and uniform.

3.2 The Boussinesq approximation model
The Boussinesq approximation extends the uniform density Navier–Stokes equations by
modelling the buoyancy of the fluid as a force proportional to the temperature difference
from a baseline temperature T0. This extension allows the model to describe fluid motion
due to temperature-dependent buoyancy, while still assuming uniform density for the
inertial terms:

∇ · u = 0, (3.4)

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ µ∇ ·

(
∇u+ (∇u)⊤

)
+ αρ(T − T0)g, (3.5)

ρcp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (k∇T ) , (3.6)

where α is the coefficient of thermal expansion, and T0 is the baseline temperature, and
the other symbols are the same as above. This model is useful when buoyancy cannot be
neglected but the temperature differences are small, and the resulting density variations
are small.
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3.3 The fully compressible Navier–Stokes model
In the fully compressible Navier–Stokes model, the fluid density is a function of pressure
and temperature. This means the fluid model can simulate sound waves. However, this
also means the equations become badly conditioned at low Mach numbers (Hinch, 2020).
The full equations are:

∂ρ

∂t
+∇ · (ρu) = 0, (3.7)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ µ∇ · τ + ρg, (3.8)

∂ρe

∂t
+∇ · (ρue) = −∇ · (up) +∇ · (uτ) +∇ · (k∇T )− ρẇ, (3.9)

p = ρRT, (3.10)
τ ≡ ∇u+ (∇u)⊤ − 2

3
(∇ · u)I, (3.11)

e ≡ cpT + 1
2
u · u, (3.12)

where τ is the fluid stress tensor, e is the fluid energy, ẇ is the rate of heat release
per unit mass, R is the universal gas constant, I is the identity tensor, and the other
symbols are the same as above.

3.4 The Low Mach-number model
In the low Mach number limit (Ma ≪ 1) of the fully compressible Navier–Stokes equa-
tions, the hydrodynamic pressure, p, and the thermodynamic pressure, pth = ρRT can
be decoupled, eliminating acoustic waves from the equations while keeping density vari-
ations due to temperature (McMurtry et al., 1986). This model converges to a solution
faster than the fully compressible Navier–Stokes model, because acoustic waves do not
exist in this model, so a Poisson solver for the pressure p can be used. The low Mach-



22 Introduction to modelling the flow in the reactor

number (LMN) model obeys:

∂ρ

∂t
+∇ · (ρu) = 0, (3.13)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ µ∇ · τ + ρg, (3.14)

∂ρcpT

∂t
+∇ · (ρcpuT ) = ∇ · (k∇T ) + ρẇ, (3.15)

pth = ρRT, (3.16)
τ ≡ ∇u+ (∇u)⊤ − 2

3
(∇ · u)I, (3.17)

∇pth = 0, (3.18)

where pth is the thermodynamic pressure and the other symbols are the same as above.

We use this model to solve the flow in the reactor, because it handles the large tempera-
ture variations without the added complexity, and accompanying increased convergence
time, of acoustic waves. The Reynolds number of the flow is of order 100, therefore the
flow remains laminar and we do not need to derive Reynolds-averaged versions of these
equations to handle turbulence.



4 Investigating the reactor gas valve

First the reactor outlet and the gas valve is investigated. The gas valve removes the
reactor gases (consisting mainly of hydrogen), and replaces them with nitrogen. The
aim is to bring the concentration of hydrogen at the exit to below 4%.

Figure 4.1 shows the diagram and a photo of the gas valve. The valve consists of four
30mm sections, each with three 5mm diameter nozzles. The wide metal ring, pictured
at the top of both figures, is attached to the outlet of the reactor, while the exit, at
the bottom of both figures, is open to the laboratory environment. The nozzles in the
first (top) and third sections remove gas. The other nozzles, in the second and fourth
(bottom) sections, inject nitrogen. Between each section there is a metal baffle which
restricts the flow.

(a) Blueprint of the gas valve. (b) Photo of the gas valve.

Figure 4.1 A diagram (a) and photo (b) of the gas valve attached to the reactor outlet.
During operation it is fed with a total of 14 Lmin−1 of nitrogen. Half of the nozzle
sections are injecting nitrogen into the gas valve, the other half are extracting gas. The
carbon nanotube product is extracted through the centre of the gas valve and rolled on
a collection spool. Photo credit is for (a) James Elliot and for (b) Fiona Smail.
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Figure 4.2 shows radial slices of the gas valve model. The dash-dotted line on the bottom
of each diagram represents the centreline. The solid lines show the location of the walls.
The inlet diameter is narrower than the gas valve diameter in order to model a narrow
exhaust pipe attached to the end of the reactor. The reactor fluid enters on the left of
the model, and exits through the exhaust on the right. The geometry of the laboratory
gas valve is three-dimensional. We use an axisymmetric model, in order to reduce the
numerical complexity and to speed up the computations required to model the fluid.
This means we cannot simulate the jets of the three nozzles in each section. Instead
we model the nozzles by a uniform radial flow that has the same flow rate as the three
nozzles combined. This radial flow enters through the radial inlets and leaves through
the radial outlets shown in the diagrams.

We look at the three different gas valve configurations shown in figure 4.2. For the
2-section configuration, the radial outlet flow (1a) and the radial inlet flow (1b) have
the same flowrate, QF . For the 3-section configuration, the radial inlet 3 flow has an
inlet flowrate equal to the sum of both radial 1 and 2 outlet flows. For the 4-section
configuration the first two radial flows (1a and 1b) use the same flow rate QF1, while the
second two radial flows (2a and 2b) use the same flow rate QF2. The radial flowrates
are chosen to have net zero flowrate, so that no additional flow leaves through the
exhaust. The blue numbers on the diagrams show the quantities that are fixed for the
investigations in section 4.1.

The third configuration, figure 4.2c, corresponds to the gas valve used in the laboratory.
The other two configurations are for comparison, and to investigate whether low con-
centrations of reactor gases, comparable to the 4-section configuration, can be achieved
with a smaller gas valve.

The dimensions of the model are shown in figure 4.3. The radius of the inlet section
is 25mm. The radius of the radial flow sections and the outlet is 50mm. The baffle
hole radius is measured from the centreline to the tip of the baffle, and varies from
5 to 50mm. The inlet section is 100mm long to allow the inlet flow to develop fully
before reaching the radial flow sections. We also add a 150mm long outlet section in
the model, in order to prevent the outlet conditions from affecting the flow in the radial
flow sections.

The results of the main investigation are discussed in section 4.1. We model the concen-
tration of the reactor gases in the gas valve for the three different configurations, shown
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(a) The 2-section configuration

Baffle hole
radius, RB

Reactor stream, QR Exhaust stream

Radial outlet 1a
QF

Radial inlet 1b
QF

(b) The 3-section configuration

RB1 RB2

Reactor stream, QR Exhaust stream

Radial outlet 1
QF1

Radial outlet 2
QF2

Radial inlet 3
QF3 = QF1 +QF2

(c) The 4-section configuration

RB1 RB2 RB3

Reactor stream, QR Exhaust stream

Radial outlet 1a
QF1

Radial inlet 1b
QF1

Radial outlet 2a
QF2

Radial inlet 2b
QF2

Figure 4.2 The three gas valve configurations investigated. The inlet section, outlet sec-
tion, and all radial flow sections are identical between the configurations. Only a radial
slice of the gas valve is shown, with the centreline on the bottom of each configuration.

25mm

100mm

5–50mm
5–50mm 5–50mm

6mm

50mm

150mm

3mm

7.5mm13.5mm

138.0mm

Figure 4.3 The dimensions of the gas valve, for the 4-section configuration. The three
baffle hole radii vary between 5mm and 50mm. All other dimensions are constant during
the investigation.
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in figure 4.2. We vary the flowrates through the radial inlets and outlets, and the baffle
hole radii. As the design space is relatively small, we search the design space without
using a gradient-based optimisation process. To investigate the effect the nozzles have
on the flow in the gas valve, we also perform a three-dimensional investigation, described
in section 4.2.

4.1 Dilution and recovery of hydrogen
The first objective of this investigation is to find the gas valve design that produces safe
conditions at the exhaust outlet. Lower concentrations of reactor gases at the outlet are
preferable. The second objective is to recover high-concentration reactor gases that can
be reused in the reactor. A higher concentration of reactor gases at one of the radial
outlets in the gas valve is preferable. The third objective is to minimise the amount of
nitrogen used in the gas valve. Reducing the total flowrate of nitrogen will reduce the
running cost of the process.

To evaluate the first and second objectives we simulate the concentration of reactor
gases in the reactor. We model the concentration of the reactor gases with a scalar that
convects and diffuses with the flow. The reactor inlet flow enters with a scalar value
of 1, representing pure reactor gases, while the radial inlet flows enter with a scalar
value of 0, representing pure nitrogen. We evaluate the first objective by comparing
the average scalar value at the exhaust outlet. Lower scalar values are preferable. The
second objective is evaluated by the average scalar value at the first radial outlet. Here,
higher scalar values are preferable.

The reactor flowrate is 1.4 Lmin−1 for all simulation runs. The flowrates through the
radial inlets and outlets are varied between 0–7 Lmin−1 in increments of 1.4 Lmin−1.
On the figures below, the radial flowrate, QF , is given as a number between 0 and 5,
after being nondimensionalised by the reactor flowrate, QR.

The baffle hole radii are varied between 5–50mm in increments of 5mm. On the figures
below, the baffle hole radius, RB, is given as a number between 0 and 1, after being
nondimensionalised by the 50mm gas valve radius, RE.
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4.1.1 The 2-section configuration

Figure 4.4 shows how the concentration of reactor gases at the exhaust (a), and the
radial outlet (b) varies with the radial flowrate and baffle hole radius, for the 2-section
configuration. The purple colour shows the parameter space where the concentration of
the reactor gases is low, and the majority of the fluid is nitrogen. The orange colour
shows the parameter space where the concentration of the reactor gases is high. The
dotted lines at the 0.4 baffle hole radius ratio mark show the operating points further
explored in figure 4.5 below. The solid 4% contour line in (a) shows the limit of safe
operation. Using a gas valve with a smaller baffle hole radius or a radial flowrate higher
than points on that line will ensure the exhaust fluid is safe.

An optimal design using the 2-section configuration, which minimises the concentration
of hydrogen at the exhaust while maximising the concentration of reactor gases at the
radial outlet, has a 5mm baffle hole radius (RB/RE = 0.1), and a radial flowrate of
at least 1.7 Lmin−1 (QF/QR = 1.2). This keeps the reactor gas concentration at the
exhaust below 4% (objective 1), while recovering reactor gases at the radial outlet of
approximately 60% purity (objective 2). Additionally, this design minimises the usage
of nitrogen gas (objective 3).

Figure 4.5 explores how the radial flowrate affects the streamlines in the gas valve,
and visualises the resulting change in reactor gas concentration. The baffle hole radius
is fixed at 20mm (RB/RE = 0.4). These operation points correspond to the dotted
line in figure 4.4. The background colour of the gas valve corresponds to the reactor
gas concentration. The white lines are streamlines that show the path the fluid takes
through the gas valve. Only the lines that pass through the baffle hole are shown. When
the radial flow is zero the inlet flow from the reactor passes directly to the exhaust outlet.
In this case, the reduction in reactor gas concentration is due to diffusion through the
radial inlet. At a radial flowrate ratio of QF/QR = 1, (b), a small portion of the inlet
reactor flow passes directly to the exhaust outlet, while the majority of the reactor flow
is captured and extracted by the radial outlet. Nitrogen entering from the radial inlet
replaces this captured fluid, reducing the reactor gas concentration at the exhaust outlet.
At higher radial flowrate ratios, QF/QR = 2 and above, (c–f ), the flow from the reactor
is fully captured and extracted by the radial outlet. Increasing the radial flowrate further
reduces the reactor gas concentration in the exhaust outlet, making the configuration
safer to operate (objective 1). Increasing the flowrates also reduces the concentration
of reactor gases at the radial outlet, reducing the viability of reusing the reactor gas
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(a) Exhaust outlet (b) Radial outlet

Figure 4.4 Concentration of reactor gases at the exhaust outlet (a) and radial outlet (b),
for different baffle hole radii and radial flowrates, for the 2-section geometry. The dashed
line in the lower right of each figure shows the region where the radial inlet flow enters
the reactor inlet region, which is not desirable as it may disrupt the process upstream in
the reactor. The solid line in (a) shows the 4% hydrogen concentration contour. Regions
below and to the right of this line are within safe levels of hydrogen gas at the exhaust
outlet. The dotted lines show the operating conditions explored further in figure 4.5.
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(objective 2). At the highest radial flowrate ratio investigated, QF/QR = 5, (f ), the
flow from the radial inlet reaches the reactor inlet section. Usually pure hydrogen is
the carrier gas, and the choice of carrier gas affects the optimal concentrations of the
reactants (Weller et al., 2019). Reverse flow of nitrogen into the reactor is unwanted as
it can disrupt the efficiency of the reactor.

4.1.2 The 3-section configuration

Adding an additional section to the gas valve enables a better trade-off between reducing
the reactor gas concentration at the exhaust, and increasing the concentration at the
radial outlet for reactor gas recovery. For the 3-section investigation we fix the flowrate
through the first radial outlet to 1.4 Lmin−1 (QF1/QR = 1), and the baffle hole radius
to 5mm (RB1/RE = 0.1). Figure 4.6 shows the reactor fluid concentration contours at
the exhaust outlet, (a), and the first radial outlet, (b), as the flowrate and baffle hole
radius varies. The flowrate through the second radial outlet, QF2, is varied between
0–7 Lmin−1 in intervals of 1.4 Lmin−1, and the flowrate through the radial inlet is set
to the sum of the flowrates through flush outlets 1 and 2, QF3 = QF1 + QF2. Figure
4.6, the flowrate is normalised by the 1.4 Lmin−1 reactor flowrate, QR. The baffle hole
radius of the second baffle, RB2, is varied between 5–50mm, normalised by the gas valve
radius RE in the figure.

With the 3-section configurations, a safe reactor gas concentration at the exhaust outlet
can be achieved with less nitrogen, compared to the 2-section configuration. With a
narrow 5mm second baffle hole radius, RB2, a safe concentration is achieved without
using radial outlet 2. In this case only the 1.4 Lmin−1 flowrate through radial outlet 1 is
necessary, which is 0.3 Lmin−1 lower than the flowrate necessary to make the 2-section
configuration safe. Lower flowrates through radial outlet 2, and a narrower baffle hole
2 also increases the concentration of the reactor gas recovered at radial outlet 1, up to
85% concentrated, when using the conditions described above.

4.1.3 The 4-section configuration

The 4-section configuration uses two pairs of radial inlets and outlets. This allows us to
set the flowrate and baffle hole radii in the first two sections to maximise the recovery
of reactor gases, while setting the flowrate and baffle hole radius of the last two sections
to ensure the concentration of reactor gases at the outlet is at a safe level. We set
the flowrate through the first radial inlet and outlet to 1.4 Lmin−1 (QF1/QR = 1) to
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(a) Flowrate ratio QF /QR = 0 (b) Radial flowrate ratio QF /QR = 1

(c) Radial flowrate ratio QF /QR = 2 (d) Radial flowrate ratio QF /QR = 3

(e) Radial flowrate ratio QF /QR = 4 (f) Radial flowrate ratio QF /QR = 5

Figure 4.5 Streamlines across the baffle in the 2-section geometry. The coloured back-
ground shows the concentration of reactor gases in the flow. Orange colours correspond
to higher concentrations of reactor gases, while purple colours correspond to lower con-
centrations. The baffle hole radius is 20mm (RB/RE = 0.4). As the radial flowrate
increases the nitrogen from the radial inlet is pushed further upstream, decreasing the
concentration of reactor gases at the radial and exhaust outlets.
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(a) Exhaust outlet (b) Radial outlet 1

Figure 4.6 Reactor gas concentration contours for a 3-section configuration. The back-
ground colour shows the concentration of the reactor fluid. Orange corresponds to high
concentrations of reactor fluid, while purple corresponds to low concentrations of reactor
fluid.
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extract all the fluid entering from the reactor. The first baffle hole radius is set to 10mm

(RB1/RE = 0.2) to reduce the diffusion of nitrogen into the reactor gas, while also not
overly constricting the clearance for the aerogel to pass through.

Figure 4.7 shows the concentration contours at the exhaust outlet, for six different values
of the second baffle hole radius, varying between 0.1–1 for subfigures (a–f ). The third
baffle hole radius ratio (RB3/RE) is shown on the vertical axis. The second radial
flowrate ratio, QF2, is shown on the horizontal axis. The solid black lines show the
contours of 1–4% reactor gas concentration at the exhaust outlet. The concentration
of reactor gases at the first radial outlet is not examined in this investigation. The
concentration does not significantly deviate from the 60% predicted by the 2-section
configuration using the first radial pair flowrate and first baffle hole radius described
above.

Increasing the flowrate in the second radial outlet and inlet always reduces the concen-
tration of the reactor fluid at the exhaust outlet. A stronger decrease of the reactor
fluid concentration at the exhaust outlet is seen when the second baffle hole radius is
smaller. When the second baffle hole radius is at or below 20mm (RB2/RE ≤ 0.4, (d–
f )) a concentration of reactor fluid at the outlet of less than 1% can be achieved. This
very low reactor gas concentration is possible with a radial flowrate through the second
radial inlet and outlet of 1 Lmin−1, 1.5 Lmin−1, or 3 Lmin−1, when the second baffle
hole radius is 5mm, 10mm, or 20mm respectively.

At low values of the second baffle hole radius (RB2/RE ≤ 0.2, (e) and (f )) further
restrictions of the flow, with lower third baffle hole radius (RB3), does not affect the
concentration of reactor fluid at the outlet. Only with a more open second baffle hole
(RB2/RE ≥ 0.4, (a–d)) does the third baffle ratio affect the concentration of reactor
gases at the outlet. Only when the second baffle hole radius is at or above 40mm is it
possible to have a concentration of more than 4% reactor fluid at the outlet, when there
is no flow through flush outlet 2a and inlet 2b.

The efficiency of a narrow first baffle hole radius is demonstrated in figure 4.8, which
shows example flows from the 4-section investigation. Both the left (a) and right (b)
figure show the streamlines. The first baffle hole radius is set at 10mm, and the first
radial flowrate (QF1) is 1.4 Lmin−1, as for the 4-section investigation. For these figures
the second and third baffle hole radii are both 20mm. The second radial flowrate
(QF2) is 1.4 Lmin−1 for the left figure (a), and 5 Lmin−1 for the right figure (b). The
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(a) Second baffle hole radius ratio of 1.0 (b) Second baffle hole radius ratio of 0.8

(c) Second baffle hole radius ratio of 0.6 (d) Second baffle hole radius ratio of 0.4

(e) Second baffle hole radius ratio of 0.2 (f) Second baffle hole radius ratio of 0.1

Figure 4.7 Reactor gas concentration contours for the 4-section configuration. Each
figure shows the influence of the second radial flowrate and the third baffle hole radius
on the concentration of reactor gases at the exhaust outlet. Each figure corresponds to
a specific second baffle hole radius. The contours show the concentration at the exhaust
outlet.
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contours show the concentration of reactor gases, with the orange region signifying high
concentrations of reactor gases, while the purple region signifies low concentrations.
Because the flowrate through the first radial outlet is the same as the inlet flowrate from
the reactor, the majority of reactor fluid is recovered, and can be reused. The narrow
clearance under the first baffle hole reduces the cross-sectional area, reducing diffusion of
nitrogen from the first radial inlet into the extracted reactor gases. Increasing the second
radial flowrate from 1.4 Lmin−1 (a) to 5 Lmin−1 (b) does not affect the streamlines in
the first section, where the reactor gas is extracted.

(a) Second radial flowrate of 1.4Lmin−1 (b) Second radial flowrate of 7Lmin−1

Figure 4.8 Streamlines plotted on a radial slice of a 4-section gas valve. The first baffle
hole radius is 10mm, the second and third baffle hole radii are 20mm. The first radial
flowrate (QF1) is 1.4 Lmin−1. The second radial flowrate (QF2) is 1.4 Lmin−1 on the
left (a), and 7 Lmin−1 on the right (b). The colour scale is as for figure 4.6, with the
orange colour corresponding to high concentration of reactor gases, and the purple colour
corresponding to low concentration of reactor gases.

4.2 Three-dimensional investigation
Each section in the laboratory gas valve has three angled nozzles for inlet and outlet
flow, in contrast to the radial flow we have used to model the nozzles in the axisymmetric
investigation. These nozzles break the azimuthal symmetry of the flow and impose some
azimuthal velocity (swirl). To understand how this symmetry breaking and swirl affect
the reactor flow, we solve a three-dimensional model of the 2-section gas valve. We
qualitatively compare the three-dimensional results with the results of the axisymmetric
model. For model simplicity we do not include a baffle in the three-dimensional model.
Figure 4.9 shows a three-dimensional view of the flow in the centre of the gas valve.
The faint grey lines show the boundaries of the model geometry. The blue lines show
the streamlines in the gas valve. The streamlines originate from the reactor inlet. The
majority of the streamlines exit through the nozzles in the first section. A smaller
number of streamlines are seen to exit towards the exhaust outlet of the gas valve to the
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left on the figure. The nozzles are approximated by a Fourier series on the boundary
condition in the first section, so a smaller number of streamlines exit through the region
between the three nozzles. The green colours of the streamline at the outlet nozzles
show the higher velocity of the flow as the fluid is extracted. The same high velocity is
found in the inlet flow in the second section.

The angled inlet and outlet nozzles sustain a swirling vortex in the centre of the flow
by the gas valve sections. This swirling flow will trap the aerogel as it leaves from the
reactor and cause it to precess. This precession is unwanted as the aerogel may attach
if it touches the wall of the gas valve. If the aerogel attaches to the wall the gas valve
needs to be cleaned before the aerogel production process can resume. Because of the
risk of wall-attachment, the angled nozzles negatively impact the design of the aerogel,
requiring larger baffle hole radii to avoid wall-attachment. A non-swirling flow, where
the aerogel can be contained at the centreline, enables a more efficient gas valve design,
as the risk of wall-attachment is lower.

Figure 4.9 Streamlines in the three-dimensional gas valve model. The faint white lines
show the boundaries of the model geometry. The mainly blue lines show the streamlines
of the gas valve flow originating from the reactor inlet, on the right of the figure. The
colour of streamlines correspond to the velocity magnitude, in ms−1.
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4.3 Recommendations for future designs
Based of our investigation we recommend the following design points for the gas valve.

• We recommend using small baffle hole radii. Using a small radius for the first
baffle hole gives the largest reduction in reactor gas concentration at the exhaust
outlet, while also increasing the concentration of reactor gases at the first radial
outlet. The reduced cross sectional area where the flow can pass reduces the cross-
diffusion of reactor gases and nitrogen, resulting in higher concentration of reactor
gases that can be recovered in the early sections, and lower concentration of reactor
gases at the exhaust outlet. This reduced concentration in the later sections allows
similar low outlet concentrations to be achieved with lower radial flowrates in the
second radial flow QF2.

• We recommend that any nozzles point towards the centre, instead of being angled.
Radially aligned nozzles will inhibit vortex formation in the gas valve. The vortex
increases the risk that the aerogel attaches to the gas valve walls. Preventing the
vortex from forming will allow the baffle hole radii to be lower.

• We find that a 3-section geometry is sufficient for achieving both safe levels of
reactor gases at the exhaust outlet, and high concentration of reactor gases at the
first radial outlet, for reactor gas reuse. This allows the gas valve to be shorter,
and means less nitrogen is required to operate the gas valve, as one fewer section
is in use. One baffle fewer in the gas valve also reduces the risk of the aerogel
attaching to the wall.
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After modelling the base flow in the gas valve, the next step is to look at how the
carbon nanotube aerogel affects this flow. We use a flow-structure interaction model
to simulate how the aerogel structure is affected by the flow in the reactor, and the
internal flow enclosed by the aerogel. To reduce the complexity of the fluid model we
assume the buoyancy force is negligible compared with the momentum, pressure, and
viscous forces. This allows us to both use a simpler flow model, and to model the flow
as axisymmetric in a horizontal reactor. This is reasonable for a vertical reactor, but
should be treated with care if a more detailed investigation of the aerogel behaviour in
a horizontal reactor is performed. Additionally we extend the axisymmetric assumption
to the gas valve structure and flow as well. We will qualitatively show that this is
reasonable later on.

We do not know quantitatively the properties of the aerogel, so to produce a qualitative
model we make some further assumptions, which simplifies how the aerogel is modelled.
We know that the aerogel is thin and light, so we do not model its thickness and mass.
Additionally we know that the aerogel is flexible, so we assume it has negligible bending
rigidity. In the video of the aerogel as it exits the reactor captured by Hoecker et al.
(2016, Video 1) the radius decreases as the aerogel is convected away from the reactor
outlet. Based on this evidence we assume the radius of the aerogel is determined by
a hoop stress balancing a pressure difference between the inside and outside region of
the aerogel. We assume this hoop stress is proportional to the radius of the aerogel.
Additionally we assume that the axial tension in the aerogel is small compared to the
hoop tension. In order to reduce the complexity of the aerogel model we also assume the
aerogel is impermeable. This means we do not have to account for gas seepage through
the aerogel as it moves through the reactor.

Finally we assume that the aerogel is wound up flat on a drum, condensed and shrunk to
zero diameter, or undergoes a similar process preventing the reactor gases from collecting
inside the aerogel. This means there is net zero flux of reactor gases on at the downstream
boundary of the aerogel.



38 Modelling the aerogel in the gas valve

The new layout of the gas valve with the aerogel is presented in figure 5.1. The gas
valve configuration is similar to the 4-section configuration used in chapter 4, with the
addition of the aerogel interface around the centreline. The inlet radius of the aerogel,
RS, and the aerogel extraction velocity, US is fixed during the modelling. The approach
for modelling the aerogel is presented below.

Axis of symmetry

Radial outlet 1a
QF1

Radial inlet 1a
QF1

Radial outlet 2a
QF2

Radial inlet 2b
QF2

Sliding velocity, US

RS, aerogel radius

Figure 5.1 The 4-section gas valve configuration used to model the aerogel. The aerogel
is manually extracted with a sliding velocity US determined by the winding speed of the
collector mechanism.

5.1 Introduction to fluid-structure interaction
In a fluid-structure interaction (FSI) problem, we solve both for the motion of the fluid,
and the motion of a solid structure interacting with the fluid. In our case we solve for
the steady-state position of the aerogel as it is extracted through the gas valve. The
fluid flowing in the gas valve will change the shape of the aerogel as it is pulled through
the gas valve.

There are two main approaches to solving a FSI problem. The first approach is the
immersed boundary method, developed by Peskin (1972) to model the heart. (Mittal
and Iaccarino (2005) also provides a good overview of the immersed boundary method.)
In the immersed boundary method the boundary between fluid and structure is defined
by a function that does not necessarily align with the mesh boundaries of the modelling
grid. The force of the structure on the fluid is found by integrating the boundary-defining
function over the modelling domain. As the structure moves, the function is updated to
define the new location of the boundary. This approach is well suited for problems with
elastic boundaries, such as the walls of the heart, or where the mesh grid is structured,
or needs to be static due to numerical reasons, for example if a finite differences method
is used for solving the partial differential equations of the flow model.
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The second approach is the arbitrary Lagrange-Euler method (Donea et al. (2004);
Sarrate et al. (2001) provide a good overview). In this method the boundary between
the fluid and the solid is aligned with the edges of the modelling mesh. The force on
the fluid can then be directly applied on the mesh nodes at the relevant edges. To
update the position of the structure, all mesh points are shifted a small amount, slightly
deforming the mesh. This approach works especially well with an unstructured mesh.
An unstructured mesh can rearrange the internal mesh points at no great numerical cost,
in order to restore any degradation of the mesh that builds up from the deformation of
the mesh.

Both approaches work well with an iterative solution scheme, where a small displace-
ment of the mesh is performed each iteration. For our simulations we use the arbitrary
Lagrange-Euler method, as this works well with the unstructured mesh we use to find
our solutions.

5.2 The aerogel structure model
The motion of the aerogel is modelled as an Euler beam, similarly to the way that
Connell and Yue (2007); Shelley and Zhang (2011) model flapping flags and Alben et al.
(2004) model a flexible structure in a flow. We model the motion of the aerogel similarly
to Alben et al. (2004), where the position x of the aerogel interface obeys:

ms
∂2x

∂t2
− (Taŝ)

′ + (Eκ′n̂)
′ − Th (x · êr) êr = f , (5.1)

where ms is the mass per unit length, Ta is the axial tension of the aerogel, Th is the
hoop tension, E is the bending rigidity (negligible), κ is the curvature, ŝ is the unit
vector in the tangential direction (relative to the aerogel), n̂ is the unit vector in the
normal direction (relative to the aerogel), êr is the unit vector in the radial direction,
and f is the force on the aerogel from the surrounding fluid. The prime (·)′ denotes a
derivative along the arc length of the aerogel.

Removing the negligible term and looking for a steady-state solution, in which the time
derivatives are zero, leaves:

− (Taŝ)
′ − Th (x · êr) êr = f . (5.2)
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In the steady-state solution, the axial force is balanced by the axial tension Ta component
in the radial direction, and the radial force is balanced predominantly by the hoop tension
Th multiplied by the radius of the aerogel x · êr. We choose Th to be 1 kNm−1 in the
absence of an experimental measurement.

The force on the aerogel, f , is the resultant difference of the pressure and shear force
on either side of the aerogel:

f ≡
s
−pn̂+

µ

ρ

∂u

∂n

{
. (5.3)

The double brackets J·K represent the jump in the value of pressure and shear force when
measured on either side of the aerogel. In our model this jump is found by solving for the
pressure and shear force on the aerogel interface separately in the region above the aerogel
and the region below the aerogel, and taking the difference of the two results.

The force can be split into two components, a radial force and a axial force, which
balance the tension forces in the aerogel:

fr ≡ f · êr = − (Taŝ)
′ · êr − Th (x · êr) , (5.4)

fa ≡ f · êa = − (Taŝ)
′ · êa, (5.5)

where êa is the unit vector in the axial direction

In order to find the steady state solution of the x position of the aerogel we only need
the radial component of the force balance. We assume that the axial tension is much
smaller than the hoop tension (Ta ≪ Th), simplifying the force balance to:

fr = −Th (x · êr) . (5.6)

We use a B-spline (de Boor, 1972) to describe the position of the aerogel interface x. The
B-spline is defined by 60 control points that together create a smooth curve spanning the
length of the gas valve. The control points are placed so that the aerogel has a uniform
radius RS at the start of the simulation. The control points’ axial locations are constant
but the radial positions change, to adjust the radius of the aerogel. Each control point
defines a weighting field that is used to update its radial position. The first three are
static, to keep the inlet radius constant, and the last three control points share the same
radial position to ensure the aerogel is not angled at the outlet boundary.
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Figure 5.2 shows the gas valve geometry split into two domains by the aerogel, in blue
and pink. The domains are solved separately and the resulting difference in the pressure
and shear force is used to update the position of the aerogel. The white arrows represent
the weighting field belonging to one control point. The weighting field integrated over the
radial force on the aerogel, Fr, gives the force on that control point. To find the steady-
state solution where the force is balanced, each control point moves a small distance
proportional to the difference between this force and the hoop tension.

Figure 5.2 The 4-section gas valve configuration used to model the aerogel. The domain
is split into two parts by the aerogel. The upper part (blue) and the lower part (pink) are
solved independently, and the aerogel interface position is updated based on the resulting
difference in pressure and shear force. The white arrows represents the magnitude of the
weighting field belonging to one control point.

To find the steady-state equilibrium position of the aerogel we use an interactive method
with four steps,

1. solve the flow fields (velocity and pressure) in each of the split domains,

2. calculate the resultant force on the aerogel f ,

3. move the aerogel interface a small distance proportional to the radial force fr,

4. continue to step 1 until the force is sufficiently small.

Step 2 solves the flow inside and outside the aerogel using the same method as the two-
dimensional investigations in chapter 4. The aerogel is extracted manually by winding
it on a spool, meaning the aerogel in the gas valve has a prescribed speed, US. The
velocity of the fluid on aerogel interfaces is fixed to the velocity of the aerogel, USŝ, in
order to maintain a no-slip boundary condition.

In step 3 the aerogel is moved by adjusting the B-spline control parameters, and the
modelling mesh is regenerated using the new aerogel shape. This iterative process is con-
tinued until the force on the aerogel is sufficiently small and the steady-state equilibrium
position of the aerogel is approximated.
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5.3 Results and discussion
The radial force on the interface is the resultant of the pressure differential between
flow outside the aerogel, in the gas valve, and the flow within the hollow enclosure of
the aerogel (poutside − pinside) and the hoop tension of the aerogel (Thr). Stallard et al.
(2018) found that a processed CNT mat of 60 µm thickness has a elastic modulus of
3GPa, suggesting a hoop tension value in the order of 180 kNm−1. In the model we
use a hoop tension value of 1.0 kNm−1. This value is chosen as a lower bound of the
hoop tension of a much thinner, unprocessed, aerogel. The pressure differential is driven
by the boundary condition at the outlet inside the aerogel. We assume there is no net
fluid flux through the right boundary in the aerogel, corresponding to the aerogel being
flattened as it is extracted and wound up. This corresponds to the common practice of
winding up the aerogel on a spindle or drum, or shrinking the aerogel to zero diameter
through a liquid bath.

Figure 5.3 shows the pressure field in the gas valve with the interface in place. The white
line shows the position of the aerogel. The coloured background shows the pressure field.
The pressure inside and outside the aerogel is assumed to be equal at the reactor inlet
to the left on the figure. The pressure increases along the length of the gas valve as the
flow slows down. The pressure on the inside, below the white line, increases in order to
balance the shear force from the aerogel, which is moving left to right.

Figure 5.3 The pressure field in the gas valve. The white line shows the position of the
aerogel. Darker / red colours shows higher pressure in the fluid, while bluer / lighter
colours shows lower pressure in the fluid. The upper and lower sections separated by
the aerogel line are equal at the reactor inlet on the left.

The presence of the aerogel further constricts the flow under the baffles. Under the first
and third baffle the flow is flowing backwards causing very strong shear in the flow.
Figure 5.4 shows the velocity magnitude of the flow both inside and outside the aerogel
interface (white). The velocity is high in the positive horizontal direction (to the right
on the figure) along the aerogel (white line), due to the imposed winding velocity of the
aerogel. Inside the aerogel, there is high velocity backwards flow along the centreline,
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as the flow continuing downstream is being forced back by the flattening of the aerogel.
Figure 5.5 shows a more detailed view of the flow just underneath the third baffle,
including streamlines in white. The green vertical line shows the location where the
velocity has been plotted against the radial position in the flow, shown in figure 5.6.
This figure shows the axial (u_z, red) and radial (u_r, blue) velocities of the fluid, as a
function of radial distance from the centreline. The vertical axis shows the fluid velocity
in mms−1, the horizontal axis shows the distance from the centreline in mm. The dashed
line shows the position of the aerogel interface.

Figure 5.4 Velocity magnitude in the gas valve and the flow inside the aerogel. The
velocity is in mms−1. Red colours show high velocity while blue colours show low
velocity. The high flow in the second radial inlet/outlet pair causes a strong velocity
shear just below the third baffle.

Figure 5.5 Velocity field around the baffle. Red colours show high velocity while blue
colours show low velocity. The high velocity around the baffle from the gas valve com-
bined with the high velocity extraction of the aerogel creates a high shear region at the
third baffle (green line). The position of the aerogel is shown with the thick white line.
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Figure 5.6 Axial (uz, blue line) and radial (ur, orange line) velocity over a radial slice
at the third baffle. The vertical axis shows the distance from the centreline in mm,
the horizontal axis shows the velocity in mms−1. Positive velocity is moving in the
downstream direction (towards the right in Figure 5.5). The dotted line shows the
position of the aerogel interface.
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5.4 Flow stability
During collection of the aerogel through the gas valve there have been reports of the
aerogel precessing and occasionally attaching to the gas valve walls and baffles. This
interrupts the production process as the reactor needs to be shut down, and the gas valve
cleaned before production can resume. We wish to ascertain whether an instability in
the flow can explain the observed precession, or if it is predominantly caused by the
swirling flow that exists in the laboratory gas valve.

5.4.1 Introduction to global stability analysis

We perform a global stability analysis on the flow in our gas valve model, with the
aerogel included. A global stability analysis (GSA) solves an eigenvalue problem of a
steady-state flow to find the eigenmodes of a flow that have a positive eigenvalue. A
positive eigenvalue indicates that the corresponding eigenmode will grow over time and
produce a time-varying instability developing on top of the steady-state solution. We
present a brief introduction to the subject below. A more detailed introduction to global
stability analysis can be found in Brewster (2019).

To perform global stability analysis we start with a solution u that satisfies our governing
equations G,

G(u) = 0. (5.7)

Our solution, u, can vary both in space, x, and time, t, so we split it into two compo-
nents, one large component that is constant, ū, and one small component that varies
in time, u′. We perform a modal decomposition in time of the small, time-varying,
component. To look at instabilities that break axial symmetry we also perform a modal
decomposition in the azimuthal (xϕ) direction, decomposing the flow into different az-
imuthal wave numbers m:

u(x, t) = ū(x) + u′(xz, xr)e
steimπxϕ , (5.8)

s = σ − iω. (5.9)
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We can now expand our governing equation into the constant and time-varying parts,
ignoring higher-order terms,

G(u) = G(ū+ u′) = Ḡ(ū) +G′(u′) +O(u′2) = 0. (5.10)

The steady-state solution already satisfies the steady-state governing equation, G(ū) =

0, leaving the unsteady governing equation, G′(u′). We use the eigenvalue solver SLEPc
(Hernandez et al., 2005) to find the eigenmodes, u′(x) and eigenvalues, s = σ − iω, for
several different azimuthal wave numbers, m. We find solutions where the real part of
the eigenvalue σ is positive, indicating an instability.

5.4.2 Results and discussion

For the global stability analysis, we look at two different boundary conditions on the
aerogel, first when the aerogel is treated as a fixed no-slip boundary and second when
the aerogel is treated as a flexible boundary that can move. The base case in the sta-
bility analysis is the 4-section configuration, with the baffle hole radii all at 30mm, and
3.0 Lmin−1 flowrate through the second pair of radial inlet and outlet. The extraction
velocity of the aerogel is 15mmin−1.

The global stability analysis calculates the eigenmodes the flow supports and their cor-
responding eigenvalues (s = σ − iω). Each eigenvalue has a real valued growth rate, σ,
and an imaginary valued angular frequency, iω. If at least one eigenvalue has a positive
real part the flow is unstable. In this axisymmetric flow we also look at the stability of
different azimuthal wave numbers, m. We use these stability modes to investigate non-
axisymmetric modes m ̸= 0, in addition to the axisymmetric mode m = 0. The zeroth
mode, m = 0, is axisymmetric; the higher-order modes, m = 1 and above, correspond
to helical disturbances, such as precession. The low order azimuthal modes, m = 0 and
m = 1, are more unstable for flows with low swirl (Loiseleux et al., 1998), therefore we
consider only the first 3 modes, m = 0, 1, 2.

Figure 5.7 plots the eigenvalues for the different eigenmodes found in the reactor. Fig-
ures 5.7(a)-(c) plots the eigenvalues when the aerogel is assumed to be a static, no-slip
boundary, while Figures 5.7(d)-(f) plots the eigenvalues when the aerogel is allowed to
be a flexible boundary. The eigenvalues are plotted for the three different modes we
investigated, m = 0, m = 1, and m = 2. All six stability calculations did not show any
unstable modes, which would have positive growth rates (the grey area on the figures).
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The first mode of the flexible aerogel has one eigenvalue with a growth rate of σ = −0.59

that could become unstable at higher flow velocities in the reactor.

Because we found no unstable modes in our stability analysis we conclude that the
precession of the aerogel observed in the laboratory is caused only by the swirling flow
in the gas valve. The swirling flow is caused by the angling of the gas valve inlets and
outlets, and would be avoided if the inlets and outlets were instead radial.

Figure 5.7 The vertical axis shows the growth rate, and and the horizontal axis shows
the angular frequency of each eigenmode found in the gas valve with the aerogel present.
The upper three figures use the assumption that the aerogel is a fixed boundary, while
the lower three figures shows the eigenvalues when the aerogel is flexible. The grey zone
above 0 growth rate shows the region where the flow is unstable.





Part III

Chemistry and Precursors





6 Modelling the precursor behaviour: thio-
phene and ferrocene

In the Cambridge Process, the reactor is fed with precursors to provide the required
iron, sulphur, and carbon for the production of carbon nanotubes. In Li et al. (2004)
the precursors were ferrocene, thiophene, and ethanol to provide iron, sulphur and car-
bon respectively. Kaniyoor et al. (2019) performed several experiments using ferrocene
as the iron source, benzyl alcohol as the carbon source, and a varying sulphur source
from thiophene, carbon disulphide, or elemental sulphur. Bulmer et al. (2020) further
compared the use of toluene with that of benzyl alcohol as a carbon source, using fer-
rocene and thiophene as the iron and sulphur source. Many studies Hoecker et al. (2016);
Hou et al. (2016); Lee et al. (2015) use ferrocene and thiophene as the precursors for iron
and sulphur. The review by Weller et al. (2019) also finds that ferrocene and thiophene
are the predominant choices. For the CUED and MML reactors the main precursor
combination in use is ferrocene (C10H10Fe) as the iron source, thiophene (C4H4S) as the
sulphur source, and methane (CH4) as the carbon source.

Understanding precisely the decomposition of the precursors is important because the
order in which iron and sulphur are released in the reactor significantly affects the prop-
erties of the carbon nanotubes. Earlier release of sulphur produces more single walled
carbon nanotubes, while later release of sulphur produces more multi-wall carbon nan-
otubes (Lee et al., 2015). Thiophene and ferrocene decompose at different temperatures
and rates. Therefore the temperature profile in the reactor and the flowrate affects at
what point in the reactor iron and sulphur is made available.

The decomposition of ferrocene and thiophene in a hydrogen atmosphere is well studied
in inert atmospheres, such as argon or nitrogen, but not in hydrogen. We use the
values of ferrocene decomposition from Conroy et al. (2010); Kuwana and Saito (2005)
to model the decomposition of ferrocene. We find that the position of decomposition in
the model agree with the observed bands of sooty deposition found on the quartz reactor
used by Hoecker et al. (2016). For the decomposition of thiophene we instead infer the
decomposition parameters from experimental data from Hoecker et al. (2016). We use
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an adjoint-driven gradient-based optimisation method to find the best-fit decomposition
parameters that explain the experimental data.

6.1 Modelling thiophene
We model thiophene and ferrocene as species convecting with and diffusing in the flow.
We assume that the species do not affect the flow. This is a reasonable assumption since
the mass fraction of thiophene (0.5mass%) and ferrocene (3.0mass%) is low (Hoecker
et al., 2016). We use the low Mach-number flow model to solve the base flow of the
fluid. On top of this model, the mass conservation of the species obeys,

∂ρc

∂t
+∇ · (ρuc) = ∇ · (ρDc∇c)− ρck, (6.1)

where c is the concentration of the species (thiophene or ferrocene), ρ and u are the
fluid density and velocity as described in Section 3.4, Dc is the diffusivity of the species,
and k is the decomposition rate of the species.

We assume the decomposition rate of thiophene and ferrocene can be modelled using
Arrhenius equations. Using this assumption k is modelled by,

k = A exp

(
− Ea

RT

)
, (6.2)

where A is the rate constant, Ea is the activation temperatures of the reaction, T is the
temperature of the fluid, and R is the universal gas constant.

We re-arrange this expression into a form that is easier to implement,

k = exp

(
lnA− Ea

RT

)
= exp(β − Ta/T ), (6.3)

where β ≡ lnA is the natural logarithm of the rate constant, which we label the rate
exponent, and Ta ≡ Ea/R is the activation temperature of the reaction.

6.2 Estimating the decomposition parameters
Hoecker et al. (2016) measured the concentration of the thiophene at the outlet of
the reactor, at a low flowrate of 0.5 Lmin−1 and at several temperatures. Figure 6.1
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presents the experimental observations of Hoecker et al. (2016). They were measured
at four different reactor temperatures; 750, 850, 950, and 1050 ◦C. We also assume that
no thiophene decomposes if the reactor is run at room temperature, giving us five data
points.

Figure 6.1 Comparison of the thiophene decomposition model (red) with experimental
observations (green) from Hoecker et al. (2016). We use the experimental observations
to guide a gradient-based optimisation process to find the decomposition parameters
that best model the observed decomposition curve of thiophene in the reactor.

We use an adjoint method to calculate the gradients needed for our optimisation. We
use the approach described in chapter 2. The adjoint method is suitable for a problem
that can be presented as a control problem, with a functional that should be minimised,
and constraints that should be maintained. It is particularly useful for the Bayesian
inference as it allows us to quickly calculate the gradient of of the objective functional
with respect to the parameters.

6.2.1 Constructing the objective function

We use the negative log of the posterior probability of the model’s parameters as the
objective function. The negative log posterior has three main parts: the negative log
of the prior, the negative log of the parameter likelihood, and normalisation terms that
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are independent of the parameters and the data. Ignoring the normalisation terms, we
have a two part objective function:

J(θ,x) = 1
2
(θ − µθ)

⊤Σ−1
θ (θ − µθ) +

1
2
(q − x)⊤ Σ−1

x (q − x). (6.4)

The first term is the negative log of the prior, where µθ and Σθ are the prior expected
value and the prior uncertainty of the parameters, respectively. The second part is the
negative log of the parameter likelihood, where x are the experimental observations, and
q are the model predictions. The model predictions are the normalised surface averaged
thiophene concentrations, c, at the reactor outlet, for the different reactor operating
conditions:

q(ci) ≡
1

c0

1

A

∫
outlet

ci dA, (6.5)

where A = πR2 is the area of the reactor outlet, and c0 is the concentration of thio-
phene at the reactor inlet. The thiophene concentration is calculated using the model’s
parameters θ. To minimise the objective function we use a gradient-based optimisation
process. The gradients with respect to the parameters are obtained with the adjoint
equation explained in the next section.

6.2.2 The first order adjoint

We first construct the Lagrangian of the objective function, by including the constraint
on the thiophene concentration c,

L = J + ⟨λ,G(c,θ)⟩ , (6.6)

where λ is the adjoint variable corresponding to the modelling variable c, ⟨·, ·⟩ represents
a suitable inner product, in this case a volume integral over the modelling domain, and
G is the governing equation for c, (6.1). We assume the experimental observations are
made in the steady-state. In the steady-state the time-derivative is zero, leaving the
governing equation as:

G(c,θ) ≡ ∇ · (ρuc)−∇ · (ρDc∇c) + ρck = 0, (6.7)
k = k(θ) ≡ exp (β − Ta/T ) . (6.8)
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To use a gradient-based optimisation process to find the best-fit parameters we derive
an expression for ∂L/∂θ. We begin by taking small variations of the Lagrangian,

δL = δJ + ⟨λ, δG(c,θ)⟩ , (6.9)

= δJ +

〈
λ,

∂G

∂c
δc

〉
+

〈
λ,

∂G

∂θ
δθ

〉
. (6.10)

The variation of the objective function has two terms, one from the variations of the
model observation q, and one from the variations of the parameters, θ,

δJ = (q − x)σ−1
x

∂q

∂c
δc+ (θ − µθ)

⊤Σ−1
θ δθ, (6.11)

Similarly, the variation of the governing equation has two terms, one from the variations
of the concentration c, and one from the variations of the parameters, θ,

δG = ∇ · (ρuδc)−∇ · (ρDc∇δc) + ρδck + ρc
∂k

∂θ
δθ (6.12)

= δGcδc+ δGθδθ, (6.13)
∂G

∂c
δc = ∇ · (ρuδc)−∇ · (ρDc∇δc) + ρδck, (6.14)

∂G

∂θ
δθ = ρc

∂k

∂θ
δθ = ρc[kδβ − (k/T )δT a]. (6.15)

Next we perform integration by parts to shift the derivatives from the variations of the
concentration to the adjoint variable λ,〈

λ,
∂G

∂c
δc

〉
=
〈
G†λ, δc

〉
, (6.16)

G†λ ≡ −ρu ·∇λ−∇ · (ρDc∇λ) + ρλk

+ boundary conditions, (6.17)

where the boundary conditions are presented in appendix A.
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After integration-by-parts, the expression of the variations of the Lagrangian is,

δL = (q − x)σ−1
x

∂q

∂c
δc+ (θ − µθ)

⊤Σ−1
θ δθ

+
〈
G†λ, δc

〉
+

∂G

∂θ
δθ, (6.18)

= (θ − µθ)
⊤Σ−1

θ δθ +
∂G

∂θ
δθ

+ (q − x)σ−1
x

∂q

∂c
δc+

〈
G†λ, δc

〉
. (6.19)

We now choose to define λ as the value that eliminates the terms including δc. The
variation in the model observation δϕ(c) is evaluated at the outlet boundary. This term
is removed by our choice of boundary conditions, making the governing equation for
λ,

−ρu ·∇λ−∇ · (ρDc∇λ) + ρλk = 0, (6.20)

(q − x)σ−1
x

∂q

∂c
δc+ boundary conditions = 0. (6.21)

Using this value of the adjoint variable leaves the variations of the Lagrangian as,

δL = (θ − µθ)
⊤Σ−1

θ δθ +

〈
λ,

∂G

∂θ
δθ

〉
, (6.22)

δL

δθ
= (θ − µθ)

⊤Σ−1
θ +

〈
λ,

∂G

∂θ

〉
, (6.23)〈

λ,
∂G

∂θ

〉
≡
∫
V

ρcλ

(
k

−k/T

)
dV . (6.24)

The gradient of the Lagrangian can be calculated by first solving for the adjoint variable,
λ, using the governing equation and boundary conditions in (6.20) and (6.21), and then
integrating (6.24).

The power of the adjoint technique is clear when the number of parameters is great, as
the adjoint variable only needs to be solved once, and it is only the term ∂G/∂θ that
scales with the number of parameters. The governing equation of the adjoint is also
based on the linearised governing equation, meaning the adjoint governing equation is
linear, and less computationally intensive to solve than the direct governing equation in
most cases. This means the computational effort needed to perform adjoint-based gra-



6.2 Estimating the decomposition parameters 57

dient calculations is lower than for a finite difference approach, for which the governing
equation needs to be solved once per parameter.

6.2.3 The second order adjoint

We also calculate the second order gradients of the objective function, using the adjoint-
adjoint approach of Papadimitriou and Giannakoglou (2008). That paper uses sec-
ond order adjoints for aerodynamic shape optimisation, but the theoretical approach is
equally valid for our case of decomposition modelling. With second order information it
is possible to use a Newton method for optimisation, significantly speeding up the opti-
misation process. Additionally, the second order information allows us to approximate
the uncertainty of the posterior probability distribution.

To derive an expression for the second order gradient of the objective function with
respect to the model parameters, we take small variations of the first order gradient
expression:

δL

δθ
= (θ − µθ)

⊤Σ−1
θ +

〈
λ,

∂G

∂θ

〉
, (6.25)

δ

(
δL

δθ

)
= Σ−1

θ δθ +

〈
δλ,

∂G

∂θ

〉
+

〈
λ,

∂2G

∂θ2
δθ

〉
+

〈
λ,

∂2G

∂θ∂c
δc

〉
, (6.26)

∂2G

∂θ2
δθ ≡ ρc

∂2k

∂θ2
δθ = ρc

(
k −k/T

−k/T k/T 2

)
δθ, (6.27)

∂2G

∂θ∂c
δc ≡ ρδc

∂k

∂θ
= ρ

(
k

−k/T

)
δc. (6.28)

We derive the governing equation of δλ from the governing equation of λ (6.20):

H(λ,θ) ≡ −ρu · ∇λ−∇ · (ρDc∇λ) + ρλk = 0, (6.29)

δH ≡ −ρu · ∇δλ−∇ · (ρDc∇δλ) + ρkδλ︸ ︷︷ ︸
∂H/∂λδλ

+ ρλ
∂k

∂θ
δθ︸ ︷︷ ︸

∂H/∂θδθ

= 0 (6.30)
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We now create a secondary Lagrangian by adding the governing equations of δλ and δc

to (6.26), and introduce two new adjoint variables, ϕ and ψ:

δ

(
δL

δθ

)
= Σ−1

θ δθ +

〈
δλ,

∂G

∂θ

〉
+

〈
λ,

∂2G

∂θ2
δθ

〉
+

〈
λ,

∂2G

∂θ∂c
δc

〉
+

〈
ϕ,

∂H

∂λ
δλ+

∂H

∂θ
δθ

〉
+

〈
ψ,

∂G

∂c
δc+

∂G

∂θ
δθ

〉
(6.31)

The first order adjoint variable λ has the same dimensionality as the modelling variable
c, in our case a scalar. The newly introduced adjoint variables, ϕ,ψ have the same
dimensionality as the outer product of the modelling variable, c, and the parameter
vector, θ, in this case a vector. If the modelling variable is a vector, however, the new
adjoint variables is a two-dimensional tensors.

We perform the adjoint transform:

δ

(
δL

δθ

)
= Σ−1

θ δθ +

〈
∂G

∂θ
, δλ

〉
+

〈
∂2G

∂θ2
λ, δθ

〉
+

〈
∂2G

∂θ∂c
λ, δc

〉
+
〈
H†

λϕ, δλ
〉
+

〈
∂H

∂θ
ϕ, δθ

〉
+
〈
G†

cψ, δc
〉
+

〈
∂G

∂θ
ψ, δθ

〉
, (6.32)

= Σ−1
θ δθ +

〈
∂2G

∂θ2
λ, δθ

〉
+

〈
∂H

∂θ
ϕ, δθ

〉
+

〈
∂G

∂θ
ψ, δθ

〉
+

〈
H†

λϕ+
∂G

∂θ
, δλ

〉
+

〈
G†

cψ +
∂2G

∂θ∂c
λ, δc

〉
+ boundary conditions, (6.33)

where we make use of the fact that several terms are free from derivatives and therefore
are self adjoint, such as ⟨λ, δGθcδc⟩ = ⟨δGθcλ, δc⟩. As for the first order adjoint variable,
the boundary conditions are very important for a correct model, and are derived in
Appendix A.

As for the first order adjoint, we now choose our second order adjoint variables such
that the terms involving δλ and δc are eliminated,〈

H†
λϕ+

∂G

∂θ
, δλ

〉
+ boundary conditions = 0, (6.34)〈

G†
cψ +

∂2G

∂θ∂c
λ, δc

〉
+ boundary conditions = 0. (6.35)
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The volume integral terms are,

H†
λϕ+

∂G

∂θ
= ∇ · (ρuϕ)−∇ · (ρD∇ϕ) + ρϕk + ρc

∂k

∂θ
= 0, (6.36)

G†
cψ +

∂2G

∂θ∂c
λ = −ρu ·∇ψ −∇ · (ρDc∇ψ) + ρψk + ρλ

∂k

∂θ
= 0. (6.37)

These two equations are coupled, because ψ appears in the boundary condition for ϕ.
The boundary conditions are derived in Appendix A.

Eliminating the expressions containing δλ and δc leaves,

δ

(
δL

δθ

)
= Σ−1

θ δθ +

〈
∂H

∂θ
ϕ, δθ

〉
+

〈
∂G

∂θ
ψ, δθ

〉
, (6.38)

δ2L

δθ2
= Σ−1

θ +

∫
V

∂H

∂θ
ϕ dV +

∫
V

∂G

∂θ
ψ dV, (6.39)

= Σ−1
θ +

∫
V

ρλ
∂k

∂θ
ϕ dV +

∫
V

ρc
∂k

∂θ
ψ dV (6.40)

6.2.4 The posterior

We use a Newton method (chapter 2) to find the set of parameters that minimises the
objective function. After the optimisation process finds a suitable solution we can con-
struct the posterior probability distribution of our model parameters. The parameters
found by the optimisation process are the expected value of the posterior µp, while the
second order gradient gives the inverse of the covariance matrix of the posterior, Σ−1

p .
From this we construct the posterior probability distribution, which gives the uncertainty
of the optimised parameters:

P (θ | x, H) = 1
Z
exp

(
1
2
(θ − µp)

⊤Σ−1
p (θ − µp)

)
. (6.41)

6.3 Demonstrating the Bayesian inference with syn-
thetic data

To demonstrate how to use adjoints and gradient information for Bayesian information
we generate synthetic data for which we know the ground truth parameters. We generate
a ground truth solution with a known set of parameters, Ta = 12 000K, β = 8.57. We
sample the ground truth solution along the reactor length to generate a data set for which
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we only need to solve the thiophene model once. To simulate experimental uncertainty
we add Gaussian noise to our samples, with a mean of 0 and standard deviation of 0.03,
producing our synthetic data set. Figure 6.2 shows the ground truth data (green solid
line) and the synthetic data generated from the ground truth (green circles).

Figure 6.2 Plot of the ground truth solution (green line) generating the synthetic data
(green circles), the prior solution (blue) before optimisation, and the posterior solution
(red) after optimisation.

For our prior, we intentionally choose model parameters that produce a solution with
poor data fit, shown in blue on figure 6.2. After three iterations a solution is found that
satisfies the gradient tolerance limit, show in red on figure 6.2.

The optimisation path, the prior mean and uncertainty, and the posterior mean and
uncertainty are shown in parameter space on figure 6.3. The blue square shows the
prior mean, and the blue ellipses show the 1

4
σ and 1

8
σ confidence bounds on the prior.

The red circle shows the posterior mean, and the red ellipses show the 1
4
σ and 1

8
σ

confidence bounds on the posterior. The black cross shows the ground truth parameter
used to generate the noisy synthetic data. The dotted black line shows the path the
optimisation process takes from prior to posterior. The background colours shows the
objective value of the data only (discounting the objective penalty from the prior), the
yellow end of the scale shows regions of poor fit with the synthetic data, while the blue
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end of the scale shows regions with good fit with the synthetic data. The ground truth
marker deviates from the location of minimum negative log likelihood because we added
noise to the synthetic data.

Figure 6.3 Confidence interval plots of the prior (blue) and posterior (red). The inner and
outer ellipses show the one eighth and one quarter standard deviation confidence intervals
respectively. The background colour shows the log of the negative log likelihood of the
parameters given the data. The black dotted line shows the path of the optimisation,
starting from the prior. The cross marks the ground truth parameters that generated
the noisy data.

The numerical values of the prior, posterior and ground truth are listed here,

prior : µf =

[
9500

9.50

]
,Σf =

[
12000 0

0 8.00

]
, (6.42)

posterior : µp =

[
11678

8.43

]
,Σp =

[
7650 205

205 6.57

]
, (6.43)

ground truth : µt =

[
12000

8.57

]
. (6.44)

The posterior is within 2.7% and 1.6% of the ground truth for the activation temperature
Ta and the rate exponent β, respectively. This shows that the optimisation process
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works, and that the adjoint method of producing the first and second order gradients is
valid.

6.4 Applying Bayesian inference to the experimental
observations.

To apply Bayesian inference to the experimental observations of Hoecker et al. (2016)
we first need to select a prior distribution on the decomposition parameters.

We have one reference point against which we can compare our prior distribution.
Ur Rahman Memon et al. (2003) studied the decomposition of thiophene in argon, using
a shock tube experiment. Their estimated decomposition parameters are listed in equa-
tion (6.45) below. The conditions of their environment deviate significantly from the
conditions in our reactor. In the reactor the environment is mainly hydrogen gas. The
high temperature hydrogen gas found in the reactor contains a significant concentration
of free hydrogen radicals. We do not know how the free radicals affect the decomposition
of thiophene, so we account for this uncertainty with a very large prior covariance,

prior : µf =

[
32 473

26.12

]
,Σf =

[
200 000 0

0 100.00

]
. (6.45)

To improve the convergence of the optimisation process we select a starting point that
differs from the estimated value of the prior, with a value of Ta = 12000 and β =

8.0.

Figure 6.4 shows the decomposition trend predicted by the expected values of the prior
(in blue), and the posterior (in red), compared against the observations (in green). After
the optimisation process using Bayesian inference, the posterior predicts the observations
very accurately, within 0.03 units of normalised thiophene concentration. The numerical
value of the posterior is,

posterior : µp =

[
12851

9.35

]
,Σp =

[
23786 724

724 2.09

]
. (6.46)

The optimisation path is shown in figure 6.5. The background colour shows the logarithm
of the objective function, which is the negative log likelihood of the parameters given the



6.4 Applying Bayesian inference to the experimental observations. 63

Figure 6.4 Plot of the prior solution (blue) before optimisation, and the posterior solution
(red) after optimisation. The experimental observations are marked with the green
circles.
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data. The valley that can be seen stretching diagonally across the figure demonstrates
that a range of pairs of decomposition parameters will generate similar decomposition
curves, which all fit the experimental observations well. To reduce the ambiguity of
the parameters, more observations at different flowrates are needed, in addition to the
observations at different peak reactor temperatures.

Figure 6.5 Confidence plots of the posterior. The inner and outer ellipses show the
one eighth and one quarter standard deviation confidence intervals respectively. The
background colour shows the log of the negative log likelihood of the parameters given
the data. The black dotted line shows the path of the optimisation, starting from the
diamond.

The posterior produced using our method and the sparse experimental observations we
have access to is only usable for modelling the particular reactor condition used in the
Cambridge process. In order to produce a predictive model more experimental data on
the decomposition of thiophene in different temperatures and flowrates is needed. The
next studies described in this thesis all use the optimised decomposition parameters to
model the decomposition of thiophene in the reactor.



7 Reactor inlet conditions and the precur-
sor decomposition

In the reactor studied in the previous chapters (Hoecker et al., 2016), the upstream inlet
is a diffuser injector, which allows the flow to develop fully to a parabolic flow a very short
distance downstream. By contrast, the reactor used in the Macromolecular Materials
Laboratory (Kaniyoor et al., 2019) uses a jetting inlet. The jetting inlet produces a jet
that reaches far downstream in the reactor before the streamlines hit the walls. After
the streamlines hit the walls the flow becomes parabolic (Revuelta et al., 2002). Because
the distance taken for flow with the diffuser inlet to fully develop to a parabolic flow is
very short, our model approximates the diffuser inlet by prescribing a parabolic flow at
the model inlet.

Figure 7.1 shows the temperature fields and streamlines in the reactor, contrasting the
effect of the two inlets. The top half shows the streamlines and temperature for a
jetting inlet, which agrees well with the analytical model by Revuelta et al. (2002), and
the previous simulation of the flow in the reactor by Conroy et al. (2010). The bottom
half shows the streamlines and temperature for a parabolic inlet, which agrees with
the simulation performed by Hoecker et al. (2016). The parabolic inlet begins at the
top of the reactor, while the jetting inlet exits at the end of a nozzle 0.13m into the
reactor. In the model reactor we add a wall at the jetting inlet entry point to simplify
the modelling. In the physical reactor there is no blockage at the nozzle entry point,
and the recirculation would extend to the upstream wall at 0m. With the jetting inlet,
the cold inlet flow penetrates quickly into the heated region of the reactor. Beyond the
jet length the temperature field becomes nearly identical for both inlet conditions. The
velocity of the fluid in the jet is significantly higher than the velocity in the parabolic
flow, and therefore the precursors reach the hot zone faster in the jet inlet compared to
the diffuser inlet.

In the jetting flow, thiophene and ferrocene decompose further downstream in the reac-
tor. Figure 7.2 shows the decomposition profiles of the thiophene and ferrocene, for the
two different inlet conditions. The profiles show fraction of the precursor that remains,
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Figure 7.1 Comparison of the temperature field for a jetting inlet (top half) and a
parabolic inlet (bottom half). Both flows have the same temperature profile at the
walls, and have an inlet flowrate of 5 Lmin−1. The background colour corresponds to
the temperature of the flow. The white lines show streamlines of the flow. The first
measurement line shows the length of the injector, 0.13m into the reactor. The jetting
model domain does not include the region of the reactor above the jet inlet. The second
line marks the length of the jet, 0.40m downstream, which shows the region where the
jetting strongly affects the flow, and the temperature, in the reactor.

as a function of distance from the inlet along the horizontal axis. The profiles are mea-
sured from the centreline of the model. The solid lines show the profiles for the jetting
inlet, while the dashed lines show the profiles for the parabolic inlet. The red lines show
the profiles for the ferrocene decomposition, while the blue lines show the profiles for the
thiophene decomposition. Each subfigure corresponds to a specific flow rate, as listed
on the left of each figure. At flow rates below 2 Lmin−1 the decomposition profiles for
both inlets are very similar. As the flowrate increases, all species decomposes further
downstream. For the case of parabolic flow (dashed lines) the increase in downstream
distance is small for both thiophene and ferrocene. For the case of the jetting flow (solid
lines) the increase in downstream distance is small for thiophene but large for ferrocene.
This increase in the downstream distance is due to the reduced temperature in the flow
at the higher flowrates. As the flowrate increases the residence time decreases and the
temperature is reduced upstream of the heated region. This reduction in temperature
reduces the rate at which thiophene and ferrocene breaks down. For thiophene, where
the decomposition is slower but starts at a lower temperature, this reduction in tem-
perature means the decomposition occurs over a larger range of downstream distances.
For ferrocene, the decomposition is much faster but requires a critical temperature to be
reached. The reduction in temperature means the decomposition begins further down-
stream in the reactor, but does not take a significantly longer time to complete.
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Figure 7.2 Comparison of decomposition profiles for the jetting inlet (solid lines) and
parabolic inlet (dashed lines). The red lines show the profile for ferrocene, labelled “Fc”,
the blue lines the profile for thiophene, labelled “Th”. The horizontal axis shows the
distance from the reactor inlet, in millimetres.
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The data from Figure 7.2 can be seen more succinctly in Figure 7.3. Here, the decom-
position range, from 5% to 95% completed decomposition of the precursor is plotted as
a field, with the flowrate (Q) on the horizontal axis, and distance from the inlet on the
vertical axis. The red colour shows the extent of the ferrocene decomposition region,
from the 5% bound on the bottom to the 95% bound on the top of the coloured region.
The blue regions shows the same region for thiophene. The solid lines in the figure
on the left, and the dashed lines in the figure on the right, show the midpoint of the
decomposition, where 50% of the precursor has decomposed. The black dash-dotted line
in both figures shows the point where the temperature reaches 1100 ◦C. At this point we
suspect the methane becomes activated, and is able to produce carbon nanotubes.

In the low flow rate regime, where the flow rate is less than 2 Lmin−1, both the jet inlet
and the parabolic inlet produce similar decomposition fields, as also seen in Figure 7.2.
As the flow rate increases, the thiophene decomposes further downstream in the reactor
for both inlets. For the parabolic inlet the ferrocene decomposition stays in a narrow
range upstream of the thiophene decomposition, as seen in the left plot on Figure 7.3.
For the jetting inlet, however, the ferrocene decomposition region is pushed further
downstream as the flow rate increases. At high flow rates, 3.5 Lmin−1 and higher, the
bulk of the ferrocene decomposition, the last 50% of the decomposition, overlaps with
the start of the thiophene decomposition.

This overlap in the decomposition of the ferrocene and thiophene at high flow rates
is even more evident if the decomposition regions are plotted as a function of reactor
temperature, as shown in Figure 7.4, or as a function of reactor residence time, as shown
in Figure 7.5 and Figure 7.6. Figure 7.5 shows the decomposition of the precursor
plotted against the reactor residence time of the precursor, as a logarithmic scale on
the vertical axis. As the flow rate increases, the residence time decreases, because the
fluid velocity increases and the precursor spends less time in the reactor before it reaches
decomposition temperatures and begins to decompose. In this figure it is noticeable that
the parabolic inlet (figure on the right) has a significantly higher residence time than
the jetting inlet. The jet achieves higher velocities in the core of the jet and pushes the
precursor to the decomposition region is a very short time, less than 1 s for the ferrocene
in the jetting flow, compared to 3 s to 10 s for the ferrocene in the parabolic flow.

Figure 7.6 shows the travel time in the reactor of the precursor until decomposition for
the jetting inlet, on a linear time scale on the vertical axis. The left plot shows the full
decomposition region, while the right plot shows a zoomed-in region from 0 s to 1 s. The
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Figure 7.3 Comparison of the boundaries of 5% (decomposition just started) and 95%
(decomposition nearly finished) thresholds of decomposition progress of both ferrocene
(red, labelled “Fc”) and thiophene (blue, labelled “Th”) for a jetting inlet (left) and a
parabolic inlet (right). The red and blue solid lines show the point of 50% decomposition,
for ferrocene and thiophene respectively. The vertical axis shows the distance from the
inlet where the decomposition starts (lower boundary) and ends (upper boundary). The
horizontal axis shows the flowrates through the reactor. The black dash-dotted line
shows the estimated point where the carbon source becomes active in producing carbon
nanotubes.

Figure 7.4 Comparison of the boundaries of 5% (decomposition just started) and 95%
(decomposition nearly finished) thresholds of decomposition progress of both ferrocene
(red, labelled “Fc”) and thiophene (blue, labelled “Th”) for a jetting inlet (left) and
a parabolic inlet (right). The solid lines show the point of 50% decomposition. The
dash-dotted line at 1100 ◦C shows the estimated temperature where the carbon source
activates and start to produce carbon nanotubes.
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Figure 7.5 As for Figure 7.4 but with the vertical axis showing the time take for a unit
of fluid to travel from the inlet to the particular point where precursor is decomposing.
The travel time is also shown on a logarithmic scale to more easily see the effects of high
flowrate in the jetting inlet. The jetting inlet shows on the left and the parabolic inlet
is shown on the right.

zoomed-in view shows that as the flow rate increases above 3 Lmin−1 the decomposition
overlap grows to around 50ms. 50ms is sufficient time for particles to nucleate, so
at the high flow rates some particles are expected to have nucleated in a sulphur-rich
environment, compared to the sulphur-poor environment for lower flow rates in the jet
inlet, or any flow rates for the parabolic inlet.

7.1 Nucleation in a sulphur-rich environment
Kaniyoor et al. (2019) find that the number of walls in the individual carbon nanotubes
changes as the flowrate in the reactor increases. Lower flowrates, below 2.5 Lmin−1,
produce predominantly mutli-walled carbon nanotubes, while higher flowrates, above
2.5 Lmin−1, produce predominantly single-walled carbon nanotubes. Kaniyoor et al.
use a jetting inlet in their reactor. This jetting flow at the inlet of the reactor reduces
the residence time of the precursors in the reactor before they decompose, and also
decreases the residence time of released iron before thiophene begins to decompose and
release sulphur. This phenomenon is shown in figure 7.5. For the parabolic inlet in the
right figure, the ferrocene decomposes fully before the thiophene starts to decompose.
The released iron has a residence time of the order of a second before sulphur starts to be
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Figure 7.6 As for Figure 7.5 but at a linear scale on the vertical axis. The left figure
shows the full plot from 0 s to 5 s travel time. The right figure shows a details plot of
the region 0 s to 1 s travel time.

released. By contrast, for the high velocity jetting flow (left figure, above 3.0 Lmin−1)
thiophene begins to decompose and release sulphur before the ferrocene decomposes
fully. Additionally, the iron that is released before the sulphur has a much shorter
residence time until the sulphur is released (less than 0.1 s). This shorter residence
time means that the particles produced do not grow as large as they would in a reactor
with a parabolic inlet. The smaller particles produce single-walled nanoparticles, while
large particles produce multi-walled nanoparticles. This explanation also agrees with
the results of Lee et al. (2015), who found that earlier release of sulphur produces more
single-walled carbon nanotubes.





Part IV

Particles





8 The particle model

To improve the Cambridge process of floating catalyst carbon nanotube production, we
wish to know how the carbon nanotube aerogel is formed. To understand the aerogel
formation we need to know how the particles in the reactor are created and grow. After
developing a model of the precursors in the previous chapter, we now develop a particle
model to simulate the particle creation and growth in the reactor.

We use the General Dynamic Equation (GDE) from Friedlander (2000, Chapter 11),
(8.2), to simulate the evolution of the particles size distribution, n = n(dp,x, t), inside
the reactor. The particle size distribution is a function that describes the number of
particles, of diameter dp, that exist per unit volume, at location x at time t, and is
defined as:

∂n

∂t
+∇ · (nu)−∇ ·D∇n =

[
∂n

∂t

]
growth

+

[
∂n

∂t

]
coag

, (8.1)

=
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+ 1
2

∫ dp

0

β(d′p, dp − d′p)n(d
′
p)n(dp − d′p) d

(
d′p
)

︸ ︷︷ ︸
smaller particles coagulating to size dp

−
∫ ∞

0

β(dp, d
′
p)n(dp)n(d

′
p) d

(
d′p
)

︸ ︷︷ ︸
loss due to coagulation with other particles

, (8.2)

where u is the velocity of the carrier gas, D is the particle diffusivity, which can be a
function of the particle diameter dp. The derivative ∂I

∂dp
is the rate at which particles

grow in size. The first integral is the rate at which smaller particles, of sizes (dp − d′p)

and d′p collide and form a new particle of size dp, while the second integral is the rate
at which particles of size dp collide with other particles. β(dp, d

′
p) is the collision rate

between two particles of sizes dp and d′p. In this expression we discount the term for
the relative particle velocity due to an external field, −∇ · (cn), because we have no
external fields, the particles are small enough to neglect the effect of sedimentation due
to gravity, and the motion due to thermophoresis is several orders of magnitude lower
than the motion due to convection.
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The particle growth rate term has contributions both from the nucleation of new parti-
cles, and from the condensation and evaporation of existing particles. Both the collision
rate and the condensation-evaporation rate depend on the particle diameter. In partic-
ular, there are two size regimes that affect how the rates scale with particle diameter.
For particle diameters smaller than the mean free path of the carrier gas the particles
are said to be in the free-molecular regime, while for particle diameters larger than the
mean free path of the carrier gas the particles are in the continuum regime.

The mean free path can be calculated by (Panda and Pratsinis, 1995):

λ =
µ

ρ

√
πMm

2RT
, (8.3)

where ρ is the density of the hydrogen carrier gas, Mm is the molar mass of hydrogen, µ is
the viscosity of hydrogen, R is the universal gas constant, and T is the temperature of the
hydrogen gas. The mean free path of hydrogen in the reactor is shown in figure 8.1. The
wall temperature of the reactor is included in the figure for comparison purposes.

Figure 8.1 The mean free path of the hydrogen gas in the reactor. The orange line shows
the wall temperature.

In the reactor the mean free path is always larger than 400 nm, which is an order of
magnitude larger than the expected particle size in the reactor. The diameters of the
vast majority of the measured particles in the reactor are smaller than the mean free
path of the carrier gas, and therefore we assume that the model particles are always
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in the free-molecular regime. This assumption simplifies the expressions for particle
diffusion and coagulation.

8.1 Approximating a particle size distribution
It is not possible to work with a continuous particle size distribution computationally,
instead we look at three different approaches of approximating the particle size distri-
bution. Whitby and McMurry (1997, Table 1) provides a brief overview of the main
approaches and their strengths and limitations. Based on that table we have looked at
the three main approaches listed below.

8.1.1 Discrete particle size distributions

A discrete particle size distribution model approximates the shape of the particle size
function. The approximating function may be piecewise constant (Gelbard et al., 1980),
in which case the model is known as a sectional model. If the approximating function is
piecewise linear the model is known as a nodal model (Mukherjee et al., 2006; Prakash
et al., 2003). All discrete approaches require that a large number of variables are tracked,
one per degree of freedom of the approximating function. This is computationally viable
for a 1-dimensional model, where only n degrees of freedom have to be computed and
stored per iteration, where n is the degrees of freedom of the approximating function. For
a 2- or 3-dimensional the computational and memory requirements increase significantly,
as n degrees of freedom have to be computed and stored per grid point in the modelling
domain. The computational cost of a discrete model is too great for our purposes, so
we instead look at models that are less computationally expensive.

8.1.2 Method of Moments

To reduce the number of variables needed to track the particle size distribution, a method
of moment approach can be employed (Phanse and Pratsinis, 1989; Pratsinis and Kim,
1989). The particle size distribution is approximated by taking several moments, typi-
cally 3, of the particle size distribution,

Mk =

∫ ∞

0

(dp)
kn d(dp), (8.4)
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where n is the particle size distribution; Mk is the kth moment of the particle size
distribution; and dp is the diameter of the particle. At least three moments need to
be tracked to have a closed solution of the General Dynamic Equation (Pratsinis and
Kim, 1989). This approach is used by Brown et al. (2008) to track the evolution of iron
nanoparticles in their carbon nanotube reactor.

A method of moment approach is well suited to problems where there is a single peak in
the particle size distribution, and the effects of condensation and evaporation are more
influential than the particle growth dynamics. In these circumstances a set of closed-
form equations can be easily derived. A set of closed-form equations is more difficult
to derive when the effects of coagulation are significant. Including coagulation in the
method of moments approach defies the main benefit – the mathematical simplicity of
the model. This difficulty in modelling the coagulation of particles makes developing
the adjoint equations very mathematically challenging. Therefore we choose to not use
a method of moments, and instead use the simplest particle model.

8.1.3 Monodisperse particle distribution

The simplest approach of the three is to use a monodisperse particle distribution, where
all particles at a point in space are assumed to be identical (Panda and Pratsinis, 1995).
This model is used by Conroy et al. (2010) for their work on modelling the iron nanopar-
ticles in the Cambridge Process, and by Kuwana and Saito (2005) in their work on a
similar process used to produce carbon nanotubes.

In the monodisperse model, we assume that at any particular point, all the particles have
the same size. To model the particle size we only require two variables: the number of
particles per unit volume N , and the total volume of particles per unit volume V . From
these values the monodisperse particle diameter can be calculated,

dp =

(
6V

πN

)1/3

. (8.5)

This approach significantly simplifies the expressions for coagulation and diffusion, be-
cause only one particle size needs to be considered. This also simplifies the derivation
of the adjoint equations.
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8.2 Modelling the particles in the reactor
For our particle model, we extend the standard monodisperse particle model used by
Kuwana and Saito (2005) and Panda and Pratsinis (1995). This standard model only
simulates the particle coagulation process, and assumes that the decomposition of a
ferrocene molecule creates an iron particle the size of one iron atom. It does not include
the effects of nucleation, condensation, or evaporation. The temperature in the reactor
increases in the middle, so we expect evaporation of particles to play a significant role.
After the middle of the reactor the temperature drops again, and condensation has an
impact on the particle sizes. Therefore we include the mass transfer between particles
and the carrier gas due to evaporation and condensation.

The monodisperse particle model has two particle variables; the particle number density
M , and the particle mass fraction Y ; and one gas phase variable, the iron gas number
density g. The particle number density M represents the number of particles per unit
mass of reactor gas. The particle mass fraction Y represents the mass fraction of solid
particles in the reactor gas, and the iron gas number density g represents the number of
gaseous iron atoms per unit mass of reactor gas.

In the particle modelling literature, the variables are typically expressed per unit volume.
We express the variables per unit mass because this simplifies the governing equations
when the convection and diffusion forces are included. The particle model variables
can be easily converted to volume-based units by multiplying them by the reactor gas
density ρ: n = ρg, N = ρM , V = ρY/ρp. The conversion from particle mass fraction
Y to particle volume fraction V also divides the mass fraction by the particle density
ρp.

The governing equations of the particles in the reactor are:

ρ
∂g

∂t
+ ρu · ∇g −∇ · (ρD∇g) = ρS − ρ(g∗I + E) (8.6)

ρ
∂M

∂t
+ ρu · ∇M −∇ · (ρDp∇M) = ρ(I − C) (8.7)

ρ
∂Y

∂t
+ ρu · ∇Y −∇ · (ρDp∇Y ) = ρm1(g

∗I + E) (8.8)

where ρ and u are the density and velocity of the carrier gas, m1 is the mass of a single
iron atom, D is the gas diffusivity of iron atoms, Dp is the diffusivity of the iron particles,
S is the iron gas source term, I is the particle nucleation nucleation rate, E is the mass
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transfer from gas to particles due to condensation and evaporation, C is the particle
coagulation rate, and g∗ is the number of atoms of nucleated particles. We assume mass
is conserved during particle coagulation, therefore the coagulation rate only affects the
particle number density M . All terms are typically in units per volume in the literature,
so we multiply all terms by ρ to turn them into units per mass.

The iron gas source term S is modelled as:

S ≡ ck = c exp(β − Ta/T ), (8.9)

ρ
∂c

∂t
+ ρu · ∇c−∇ · (ρDc∇c) = −ck, (8.10)

where c is the ferrocene concentration, and β, Ta are the decomposition parameters.

8.2.1 The nucleation rate

The particle nucleation rate I is a function of the iron gas concentration n, iron gas
saturation concentration ns = f(T ), iron gas saturation ratio Sr = n/ns, and nondi-
mensional surface tension Θ = sa1σ/kT , where sa1 is the surface area of one iron atom,
σ is the surface tension of iron, k is the Boltzmann constant, and T is the temperature.
We use the self-consistent kinetic model by Girshick and Chiu (1990),

I = n ns

(
2σ

πm1

) 1
2

exp

(
Θ− 4Θ

27 ln2 Sr

)
. (8.11)

The rate I determines the number of new particles formed per second. Each newly
formed particle consists of a minimally-stable number of atoms, modelled by the term
g∗:

g∗ =

(
2Θ

3 lnSr

)3

. (8.12)

This nucleation size, g∗, depends on the saturation ratio Sr, which in turn depends
on the iron gas concentration n. This dependency adds significant complexity to the
derivation of the adjoint, while the value of g∗ does not vary strongly in the regions
where the nucleation rate is significant. While testing our model we found that in
the regions where nucleation is the dominant source of particles the value of g∗ is fairly
constant at O(10). Therefore we treat the nucleation size as a uniform parameter for the
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adjoint-based optimisation investigation, and avoid the added mathematical complexity
of deriving the dependency of the nucleation size on the model variables, which would
allow the nucleation size to be a function of reactor position.

8.2.2 The coagulation rate

When using the monodisperse particle distribution assumption we calculate the coagula-
tion rate from first principles. Each particle is expected to collide with another particle
at a rate of β(dp, dp)N per unit time, where N is the number of particles per unit vol-
ume and β is the collision rate of two particles of diameter dp. Summed up across all N
particles the coagulation rate per unit volume is:

Cvol =
1
2
β(dp,dp) N

2, (8.13)

where the factor of 1
2

accounts for the double-counting of all particles.

The collision rate β for the free-molecular regime is:

β(dp, dp) = 4

(
6kT

ρp
dp

)1/2

, (8.14)

where ρp is the particle density.

Substituting in the expression for the collision rate, the coagulation rate is,

Cvol = 2

(
6kT

ρp
dp

)1/2

N2, (8.15)

Cmass = 2

(
6kT

ρp
dp

)1/2

ρ2M2, (8.16)

where (8.15) is the rate per unit volume and (8.16) is the rate per unit mass.

8.2.3 The condensation-evaporation rate

Once the total particle surface area grows sufficiently large through nucleation, the
particle mass gain due to condensation becomes greater than the particle mass gain due
to nucleation. In the reactor, this occurs upstream of the region of peak temperature.
As the temperature in the reactor reaches the peak temperature, the particle mass loss
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due to evaporation becomes becomes influential, and particle mass is lost as the particles
evaporate.

The condensation-evaporation rate in the free-molecular regime depends on the collision
rate between iron gas atoms and particles, and the oversaturation of the iron gas,

E = β(d1, dp)N(n−Kns), (8.17)

where β(d1, dp) is the collision rate between a particle of diameter dp and a iron gas
atom, N is the number of particles per unit volume, and n−Kns is the oversaturation
of the iron gas. K is the Kelvin constant that further increases the effective iron gas
saturation concentration ns due to the curvature of the particle. In practice this explains
why smaller particles are more likely to evaporate than larger particles.

The collision rate between a particle and a gas atom β(d1, dp) obeys:

β(d1, dp) =

(
RT

2πMm

) 1
2

(πd2p), (8.18)

where R is the universal gas constant and Mm is the molar mass of gaseous iron.

Substituting this expression for the collision rate into (8.17) gives:

E =

(
RT

2πMm

) 1
2

πd2pN(n−Kns), (8.19)

where πd2pN is the total surface area of all particles. This can be rewritten as a volume
term:

E =

(
RT

2πMm

) 1
2 6V

dp
(n−Kns). (8.20)

The calculated particle diameter dp is ill-defined at the points where both the particle
volume fraction and number is 0. This occurs at the wall due to the boundary conditions,
as well as in some regions of the flow due to the evaporation of the particles. We can avoid
the numerical problems of an ill-defined dp by instead using a representative particle
size dp,0. The representative particle size is constant over the whole modelling domain,
and ensures that the evaporation term remains bounded when the particle diameter
dp = (6V/πN)1/3 decreases to a very small number.



8.2 Modelling the particles in the reactor 83

Because the evaporation term only affects the particle volume V , and not the particle
number N we choose to use the volume-based expression (8.20) instead of the parti-
cle number-based expression. This makes the governing equation implicit rather than
explicit and improves the numerical stability. This forces us to use the representative
particle size dp,0 to avoid further numerical issues as the volume decreases.

We further rewrite the expression for the condensation-evaporation rate to use the units
per mass instead of units per volume:

E =

(
RT

2πMm

) 1
2 6ρY

ρpdp
(ρg −Kns). (8.21)

The representative particle size is passed to the model as a parameter and its value is
assimilated from the experimental data during the optimisation process.

The Kelvin effect K in (8.20) is modelled as:

K = exp

(
4σMm

dpρpRT

)
, (8.22)

where σ is the surface tension of iron, and the other variables are as stated above.

The value of K is very sensitive to changes in dp, and the value of dp in the model is very
sensitive to changes in K. To avoid the numerical instabilities this tight co-dependency
creates we choose a constant and uniform value of K for the model, to approximate the
effect of evaporation in the hot zone. The value of K is a variable in the optimisation
and is assimilated from the data.

8.2.4 The particle diffusivity

The diffusivity of particles depends on the size regime. For the free-molecular regime
the particle diffusivity is modelled by (Panda and Pratsinis, 1995),

Dp =
kT

3πµ

(
1

dp
+

3.314 λ

d2p

)
, (8.23)

where µ is the kinematic viscosity of the carrier gas, and λ is the mean free path of
hydrogen.
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The diffusivity varies inversely with the particle size. At very small particle sizes the
diffusivity is high, while at large particle size the diffusivity is low. At low diffusivities,
the finite element method experiences numerical problems, and particle mass is no longer
conserved. To avoid this problem we do not use the theoretical calculation in (8.23), but
instead prescribe the diffusivity over the modelling domain. For the prescribed diffusivity
field we have a region of high diffusivity close to the inlet, where we expect particles
to be small. Further downstream the prescribed field has a region of low diffusivity,
as the particles increase in size, down to a minimum value for the diffusivity to ensure
the numerical computation still conserves mass. We define the prescribed diffusivity D̂p

as,

D̂p = χD̂1 + (1− χ)D̂0

(
T
T0

)1.6
, (8.24)

χ ≡ 1

1 + exp
(
z−z0
0.01L

) , (8.25)

where z0 = (0.2 + 0.05 Q)/1.5 is the approximate location of the small to large particle
transition point, D̂1 = 4 × 10−4 is the large particle diffusivity, D̂0 = 4 × 10−7 is the
small particle diffusivity which is affected by the reactor temperature, T0 is the reactor
reference temperature at 800 ◦C, used to scale the diffusivity with reactor temperature,
and L is the length of the reactor, 700mm.

Figure 8.2 shows how the prescribed particle diffusivity, D̂p (orange line), compares
with the theoretical particle diffusivity from (8.23), Dp (blue line). In the small-particle
regime, before particle growth becomes significant at a distance of 200mm from the
reactor inlet, the theoretical and prescribed diffusivity agree well. The curves diverge
only in the large-particle regime, at a distance of 400mm from the inlet, which is after the
peak temperature zone. At this point the particles grow sufficently large that diffusivity
becomes negligible, less than 10 × 10−6 m2 s−1, and the prescribed diffusivity we use is
larger, in order to maintain the stability of the computational model.

8.2.5 The iron gas saturation concentration

The iron gas saturation concentration ns is a significant term in the nucleation rate
(8.11) and condensation-evaporation rate (8.20). The saturation concentration of iron
gas atoms depends on the saturation pressure of iron gas, which varies with gas temper-
ature. The saturation pressure is modelled with an empirical expression from Haynes
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Figure 8.2 The particle diffusivity, theoretical estimate calculated from the model solu-
tion in blue, and the approximation function D̂p in orange.

(2014):

log10 Ps = 12.106− 21 723/T + 0.4536 log10 T − 0.5896/T 3, (8.26)

where T is the temperature in K, Ps is the saturation pressure in Pa. Figure 8.3 shows
the saturation pressure of iron in the reactor as a function of distance from the reactor
inlet. The saturation pressure is then converted to saturation concentration using the
ideal gas law,

ns = PsNA/RT, (8.27)

where NA is Avogadro’s constant.
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Figure 8.3 The saturation pressure of iron in the reactor. The orange line shows the wall
temperature.



9 Modelling the nanoparticles in the reac-
tor

This work first appeared in Gökstorp, F. K. A. and Juniper, M. P. (2020).
Flow Simulations Including Iron Nanoparticle Nucleation, Growth and Evap-
oration for Floating Catalyst CNT Production. Catalysts, 10(12):1383.

We use our particle model described in chapter 8 to investigate the effect of flowrate,
temperature, and ferrocene mass fraction on the production of catalyst nanoparticles.
This work does not include optimisation, and we instead manually vary the input pa-
rameters. We use a fixed particle model and vary the reactor flowrate and the ferrocene
mass fraction. We set the particle model parameters to dp,0 = 10 nm which is of the
order of the expected particle sizes, K = 2 to model the evaporation found in the middle
of the reactor, but not higher to avoid numerical problems as all the particle mass evap-
orates. The nucleation size g∗ was calculated at each point in the modelling domain,
based on the local temperature and saturation ratio according to equation (8.12). The
ferrocene decomposition rate was set at the best fit values found in chapter 6. These
values give good agreement with the experimental data for a reactor peak temperature
of 1250 ◦C.

We perform three sets of simulations. In each set, only one input parameter is varied.
In the first set, we vary the flowrate from 0.5 Lmin−1 to 2.0 Lmin−1 with a peak tem-
perature of 1250 ◦C and 0.5mass% ferrocene mass fraction (Hoecker et al., 2016). For
the second set, we keep the flowrate at 1.0 Lmin−1 and vary the peak temperature from
1150 ◦C to 1300 ◦C, also with a ferrocene mass fraction of 0.5mass%. For the third set
we keep the flowrate fixed at 1.0 Lmin−1, and the peak temperature fixed at 1250 ◦C,
while we vary the ferrocene mass fraction from 0.5mass% to 2.0mass%.

For each simulation we generate the base flow velocity (u), temperature (T ), and density
(ρ); as well as the iron vapour mass fraction (g), iron particle mass fraction (Y ) and iron
particle number density (M). We also calculate the particle diameter (dp) from Y and
M . The particle number density depends heavily on the specific nucleation expression
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used, and has a significantly higher uncertainty than the particle mass fraction result.
Therefore we use the particle mass fraction to compare with experimental results.

9.1 Model comparison
We compare our numerical results with the experimental results from Hoecker et al.
(2016). In their study, Hoecker et al. measure the particle mass concentration as a
function of distance from the reactor inlet, with the reactor peak temperature at the
same values as ours (1150 ◦C to 1300 ◦C), and a flowrate of 0.5 Lmin−1. The temperature
profile used is the profile shown in figure 1.3 scaled to the appropriate peak temperature.
Figure 9.1 shows our numerical results (solid lines) compared with the experimental
results (red dots) for different peak temperatures. For 1250 ◦C peak temperature, our
model results match the experimental results well. The 1300 ◦C case also matches the
experimental results well, with a slight overprediction of the peak mass fraction. The
lower temperature cases, 1150 ◦C and 1200 ◦C, are only qualitatively correct.

9.2 Results
In all our simulations, the ferrocene decomposes and releases iron vapour about 200mm

downstream from the reactor inlet. Figure 9.2 shows how this distance varies with
flowrate and peak temperature. Figure 9.3 (a) plots the resulting rapid increase of
the saturation ratio to very high orders of magnitude as iron vapour is released by the
ferrocene decomposition. The extremely high saturation ratio, of the order of 1015,
drives rapid nucleation and particle growth. Figure 9.3(b) shows the difference between
the mass fraction of iron vapour, and the saturation amount. The difference peaks at
200mm, after which there is enough particle surface area for condensation to dominate
further iron release from the decomposition of ferrocene.

The peak in the particle mass fraction appears at a distance of 250mm from the reactor
inlet, increasing slightly for higher flowrates. The particle nucleation and growth appears
first close to the wall, where the convection velocity is lower, and therefore the residence
time is higher. The increased residence time gives particles a longer time to grow before
they enter the hot zone, situated from 300mm to 400mm downstream from the inlet.
In the hot zone, the high temperature increases the saturation pressure of the carrier
gas, and the particles start to evaporate. Some of the evaporated iron vapour condenses
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Figure 9.1 Model data (blue line) compared to experimental measurements by Hoecker
et al. (2016) (red circles). The model and experiments use a flowrate of 0.5 Lmin−1 and
ferrocene mass fraction of 0.5mass%. The flow in (a) has a peak temperature of 1150 ◦C,
in (b) has a peak temperature of 1200 ◦C, in (c) has a peak temperature of 1250 ◦C, and
in (d) has a peak temperature of 1300 ◦C.



90 Modelling the nanoparticles in the reactor

on the reactor walls, decreasing the overall mass of iron in the reactor. Lower flowrates
lead to a longer residence time in the hot zone and therefore lead to more iron vapour
condensing on the reactor wall. Figure 9.4 plots the particle mass fraction and particle
number within the reactor. At 0.5 Lmin−1, particle mass is rapidly lost to the wall
once the flow enters the hot zone at 300mm. Beyond 400mm the temperature drops,
the particles stop evaporating, and the particle mass fraction stabilises. The particles
continue to grow slightly as the flow cools and iron vapour condenses onto the particles.
At these conditions, roughly 400mm to 500mm downstream of the inlet, the carbon
nanotubes grow, align, and bundle, and form an aerogel.
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Figure 9.2 Plot of the decomposition of ferrocene as a function of distance from the
inlet, normalised by the ferrocene mass fraction at the inlet. Each line corresponds to a
different flowrate.
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Figure 9.3 Plots of the (a) iron vapour saturation ratio S = g/g∗s and (b) iron vapour
oversaturation ∆g = g− g∗s , as a function of distance from the reactor inlet, for different
flowrates.
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Figure 9.4 Plots of (a) normalised particle mass fraction and (b) normalised particle
number density, for different inlet flowrates, at a peak temperature of 1250 ◦C and a
ferrocene mass fraction of 0.5mass%. Nucleation starts at about 200mm from the inlet,
and the main evaporation zone is between 300mm to 400mm.
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Figure 9.5 (a) and (b) shows the radial profile of particle mass fraction and how it varies
as a function of the input parameters. The dashed green line shows the common reference
case of 1 Lmin−1, 1250 ◦C, and 0.5mass% ferrocene. At low flowrates (0.5 Lmin−1) or
low ferrocene mass fractions (0.25mass%) most of the particle mass is found very close
the the centreline. Additionally, at low flowrates the iron particles have a longer residence
time in the hot zone, and more iron vapour is able to evaporate and diffuse to the wall.
Therefore, only the particles that are furthest from the wall survive the hot zone, and
the particle mass is concentrated on the centreline. At low ferrocene mass fraction
there is less particle mass, so a shorter residence time in the hot zone is required for
the same evaporation, therefore the mass is also concentrated at the centreline for low
ferrocene mass fractions, even at normal flowrates (1 Lmin−1). At higher flowrates and
higher ferrocene mass fractions, the peak particle mass is found some distance away from
the centreline. The distance of the peak from the centreline increases with increasing
flowrates and increasing ferrocene mass fraction. As the particles closer to the wall
evaporate first in the hot zone, reducing the residence time leads to reduced mass loss
from the particles close to the wall, and therefore the particle mass fraction peak shifts
towards the wall. The same effect is seen as the ferrocene mass fraction increases. As
particles have larger mass, it takes a longer time for them to evaporate and therefore
more particles close to the wall survive the hot zone, moving the mass fraction peak
towards the wall.

Figure 9.5 (c) and (d) shows the axial profile of the radially-averaged particle mass
fraction and how it varies as a function of the input parameters. Increased ferrocene
mass fraction uniformly increases the particle mass fraction profile, while increasing
flowrate reduces the mass particle fraction before the hot zone and increases it after the
hot zone. This suggests that at higher flowrates the particle nucleation and growth is
stretched out over a longer region, therefore leading to a lower peak.

The effect of the process parameters on the particle diameter is similar to that on the
particle mass fraction. Figure 9.6 (a) and (b) plots the radial profiles of particle diameter,
at 500mm from the reactor inlet. At low flowrates (0.5 Lmin−1) or low ferrocene mass
fractions (0.25mass%), the peak of the particle diameter is located at the centreline.
As flowrate and ferrocene mass fraction increase, however, the peak of the particle
diameter moves away from the centreline. Increasing the flowrate significantly increases
the particle diameter. This is because higher flowrates reduce the time the iron vapour
spends in conditions favourable to nucleation, so fewer particles are formed. Instead,
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Figure 9.5 Plots of the normalised particle mass fraction. (a) and (b) plot the radial
profile of the particle mass fraction, 500mm downstream from the inlet. (c) and (d)
plot the axial profile of the particle mass fraction, averaged over the reactor radius. (a)
and (c) show the variations with flow rate (at 1250 ◦C peak temperature and 0.5mass%
ferrocene mass fraction). (b) and (d) show the variations with input iron mass (at
1 Lmin−1 and 1250 ◦C peak temperature).
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the iron vapour condenses on the existing particles, increasing the particle diameter.
Increasing the flowrate also reduces the time spent in the hot evaporation zone, therefore
reducing the mass evaporated from the particles and subsequently lost to the wall, and
leaving larger particles. Increasing the ferrocene mass fraction also increases particle
diameter, because there is more iron mass in the system to form particles, and therefore
the particles coagulate faster, to larger sizes, during their residence in the reactor.

Figure 9.6 (c) and (d) shows the axial profile of the radially-averaged particle diameter.
The particle diameter peaks at 250mm just at the start of the hot zone, decreases during
the hot zone until 400mm at which point it starts growing again. After 400mm the parti-
cle growth is mainly due to coagulation, as particle mass fraction is constant. Increasing
the flowrate has only a small effect on the particle diameter as flowrate is increased
from 0.5 Lmin−1 to 1.0 Lmin−1. At higher flowrates (1.5 Lmin−1 and 2.0 Lmin−1), the
particle diameter is much larger despite the reduced time for particles to coagulate.
This happens because fewer particles nucleate and therefore the released iron vapour
condenses onto fewer particles, making the average particle larger. Increasing the fer-
rocene mass fraction instead reduces the particle diameter peak before the hot zone,
again because fewer particles are nucleated and instead the existing particles grow due
to condensation. The particle diameter after the hot zone increases with increasing
ferrocene mass fraction, as more mass remains in the reactor after the hot zone and
therefore particles can grow larger. More ferrocene also produces more particles through
nucleation, therefore there is more rapid size growth due to coagulation after the hot
zone.

Figure 9.7 (a) and (b) plots the total particle surface area (sum of the surface area of
all the particles in the reactor, per kg of carrier gas) as a function of radius, at 500mm

from the reactor inlet. At low flowrates or low ferrocene mass fractions (0.5 Lmin−1 and
0.25mass% respectively) the total surface area is concentrated around the centreline.
At higher flowrates or higher ferrocene mass fractions, the radial profile forms a plateau
instead of a distinct peak away from the centreline. Figure 9.7 (c) and (d) plots the
radially-averaged total particle surface area over the reactor length. Increasing ferrocene
mass fractions increases the total surface area in the reactor, both at the peak before
the hot zone, and in the CNT growth region after the hot zone. Increasing the flowrate
reduces the total surface area before the hot zone, and increases it slightly after the hot
zone. At very high flowrates (2 Lmin−1) the total surface area after the hot zone is lower
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Figure 9.6 Average particle diameter in the reactor. (a) and (b) plot the radial particle
diameter profile, 500mm downstream from the inlet. (c) and (d) plot the axial profile,
averaged over the reactor radius. (a) and (c) plot the variations with flowrate (at 1250 ◦C
peak temperature and 0.5mass% ferrocene). (b) and (d) plot the variations with input
iron mass (at 1 Lmin−1 and 1250 ◦C peak temperature).
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than for the other cases. This is because fewer particles are formed, and therefore the
total surface area is lower, despite the particle mass fraction being higher.
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Figure 9.7 Total particle surface area in the reactor, assuming a monodisperse size dis-
tribution. (a) and (b) plot the radial profile, 500mm downstream from the inlet. (c)
and (d) plot the axial profile, averaged over the radius. (a) and (c) shows the variations
with flowrate (at 1250 ◦C peak temperature and 0.5mass% ferrocene mass fraction). (b)
and (d) shows the variations with input iron mass (at 1 Lmin−1 and 1250 ◦C peak tem-
perature).

9.3 The tendency of the aerogel to form a sock
As reported by many different sources, Conroy et al. (2010); Hoecker et al. (2016); Li
et al. (2004); Motta et al. (2007a), the CNTs aggregate into a hollow and flexible tube
(a sock) towards the end of the reactor. Hou et al. (2017) found that increased iron
mass is correlated with increased CNT production rate. Except for at low flowrates or
low ferrocene mass fractions, the iron particle peaks are found a distance away from the
centreline. The fluid velocity is lower closer to the wall, which increases the residence
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Figure 9.8 Plots of the dimensional mass concentration (a) over the length of the reactor
and (b) as a radial slice 500mm downstream of the reactor, each line corresponds to a
different flowrate.

time. Higher residence times means particles grow larger due to more condensation and
coagulation occurring. However, particles also diffuse and if the particles collide with
the wall they stick and the mass is lost from the flow. Close to the wall the diffusion
dominates and the particle mass fraction is very low. Slightly further away from the
wall, the residence time is still high, particles grow larger, and more mass condenses onto
the particles. At the centreline there is still significant particle mass, but because the
residence time is lower the particle mass fraction is also lower. Therefore, the particle
mass fraction peaks are found a distance away from the centreline, and this distance
varies with the reactor flowrate.

Hoecker et al. (2017b) found that there is a critical particle mass concentration required
for the production of spinnable CNTs of 110mgm−3 to 160mgm−3. Figure 9.8 shows
the dimensional mass concentration estimated using the model, (a) shows the radially-
averaged mass concentration evolution over the length of the reactor, while (b) shows
the radial profile of mass concentration at 500mm downstream from the reactor inlet.
For all flowrates, the radial averaged values are below the minimum mass concentration,
however, for the higher flowrates (1.5 and 2.0 Lmin−1), the mass concentration peak is
very close to the minimum mass concentration of 110mgm−3. As the iron particle mass
peaks are found a distance away from the centreline, CNTs are more likely to be pro-
duced in these regions. At the centreline, the mass concentration is around 80mgm−3,
significantly below the minimum particle mass concentration, so no CNTs are produced
there.
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Figure 9.9 Radial location of the peak values of particle mass fraction and particle
diameter as a function of flowrate, at a peak temperature of 1250 ◦C and ferrocene mass
fraction of 0.5mass%. The experimentally measured aerogel diameter from Conroy et al.
(2010) are included as the green line. The aerogel measurements are for a reactor with
a larger diameter and a process that uses a different ferrocene mass fraction.

As most CNTs are produced in an annulus, the resulting aerogel is hollow as observed
in experiments. Figure 9.9 plots the radial location of the peaks of the particle mass
fraction and particle diameter as a function of flowrate, along experimental results from
Conroy et al. (2010). The shift of the peak of the particle mass fraction towards the
wall as flowrate increases agrees qualitatively with the experimental observations. As
our model does not include the dynamics of the aerogel itself, or the effect of its winding
speed, we do not expect the results to match quantitatively.

9.4 Conclusions of the investigation
In this study we develop a model capable of simulating the nucleation, growth, and
evaporation of catalyst nanoparticles in a reactor for the production of carbon nanotubes.
We looked at three different measurements of the particles: i) particle mass fraction, ii)
average particle diameter, and iii) total particle surface area. We found that varying the
flowrate or the ferrocene mass fraction entering the reactor has the most significant effect
on the measurements in two different regions: the region before the hot zone (150mm

to 300mm), and the region after the hot zone (400mm to 700mm). As the flowrate
through the reactor increases, the particle mass fraction found in the region after the
hot zone increases, while the particle mass fraction in the region before the hot zone
decreases. With increasing ferrocene mass fractions, the particle mass fraction increases
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over in both zones. For the particle diameter, increasing flowrate from 0.5 Lmin−1 to
1.0 Lmin−1 increases the diameter only in the region after the hot zone, while increasing
the flowrate further from 1.0 Lmin−1 to 2.0 Lmin−1 increases the particle diameter in
both regions. The total particle surface area sees an decrease in the region before the
hot zone as flowrate increases, while the value in the region after the hot zone is does not
change strongly with flowrates above 0.5 Lmin−1. As ferrocene mass fraction increases,
the total surface area increases in both zones.

At low flowrate or low ferrocene mass fraction, the particle mass fraction is concentrated
at the centreline of the reactor. The profile of particle diameter is also highest at the
centreline for those conditions. As flowrate in the reactor increases, the peaks of the
particle mass fraction, and the particle diameter, move away from the centreline. The
same effect occurs for increasing ferrocene mass fraction. This displacement away from
the centreline of the mass fraction peak explains why the CNTs form a hollow sock-like
aerogel at the downstream end of the reactor.

With further experimental data, our model can be made more predictive, as we show in
chapter 10. The model can also be extended to model the growth of the CNTs. Further
numerical studies on different reactor geometries will also help to explore what process
parameters are critical for the production of the nanoparticles that produce CNTs. The
effects of sulphur on the nucleation process could also be explored by including an
additional modelling term. This would help us understand what role the sulphur could
have on the nucleation of the nanoparticles, and why sulphur is so critical in the FC-CVD
process.





10 Fitting the particle model to experimen-
tal data

The model used in chapter 9 can qualitatively model the behaviour of particles in the
reactor. In order to obtain more quantitative results from the model, we need to fit
the model’s parameters to a set of experimental observations. Once the parameters are
fitted we can try to extrapolate from the results and make more predictions on what will
affect the particle growth. Once the particle model is calibrated we can estimate what
effect any changes in flow rate, reactor temperature, reactor length, flow characteristics,
and even reactor shape, might have on the production of the nanoparticles. Additionally,
understanding where the nanoparticles nucleate and grow allows us to further understand
under what conditions the carbon nanotubes best grow.

10.1 The experimental data
To fit the models we use data from Hoecker et al. (2016). To collect the data, a thin
aluminium probe is inserted into the flow from the outlet of the reactor, with the probe
inlet at the location where the measurement is to be taken. A sample of the gas is
extracted through the probe and enters a scanning mobility particle sizer (SMPS), in
order to count and size the particles found in the flow. We integrate the particle number
data by the particle size, in order to obtain the total particle volume at the measurement
location. We assume that the particles contain a negligible mass of elements other than
iron, and we therefore calculate the particle mass by multiplying the particle volume by
the density of iron (7800 kgm−3).

Figure 10.1 shows the data collected by Hoecker et al. (2016). The vertical axis shows
the particle mass concentration, and the horizontal axis shows distance from the inlet
of the measurement. The four different curves show the measurements at four different
reactor peak temperatures, from 1150 ◦C to 1300 ◦C. All four measurement sets were
taken with a flow rate of 0.5 Lmin−1.
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Figure 10.1 The experimental observations of particle mass concentration measured at
different distances from the reactor inlet, at four different reactor temperatures, 1150–
1300 ◦C. All measurements are for a flow rate of 0.5 Lmin−1.

To use the data in the simulation and optimisation code we nondimensionalise the mass
concentration by the mass of iron that enters the reactor per unit volume in the form of
ferrocene. Figure 10.2 shows the experimental data after being scaled by the input iron
mass.

10.2 Optimising the particle model
We compare the particle model and the experimental observations, in order to con-
struct an objective function which we can use to evaluate the marginal likelihood of the
model. We follow the process for optimising the model of the ferrocene decomposition,
in chapter 6, and assume that all distributions are Gaussian. We first define the objec-
tive function, then we derive the adjoint governing equations that allow us to construct
the expression for the gradient of the objective function with respect to the model’s
parameters.

The objective function is the negative log of the posterior probability of the model
parameters. By Bayes’ theorem, the negative log posterior is equivalent to the sum of
the negative log of the modelling parameter prior distribution and the negative log of
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Figure 10.2 The scaled experimental data compatible with the code.

the parameter likelihood:

J(θ,x) = − logP (θ | x, H) (10.1)
= 1

2
(θ − µθ)

⊤Σ−1
θ (θ − µθ)︸ ︷︷ ︸

− logP (θ|H)

+ 1
2
(q(s)− x)⊤ Σ−1

x (q(s)− x)︸ ︷︷ ︸
− logP (x|θ,M)

+ constants, (10.2)

where x is the experimental observation vector, q(s) is the model prediction vector, µθ

is the parameter prior, Σ−1
θ is the parameter certainty matrix, Σ−1

x is the experimental
observation certainty matrix, and the constants are the terms that do not depend on x,
s, or θ. The negative log of the parameter likelihood measures the discrepancy between
the model predictions and the experimental measurements, while the negative log of
the parameter prior measures the discrepancy between the model parameter values and
what we expect the model parameter values to be.

The experimental observations are particle mass fraction measurements taken at the cen-
treline of the reactor, at different distances from the reactor inlet. For each experimental
observation, xi, we produce a compatible modelling prediction, qi(s), by integrating the
particle mass fraction field, Y , over a radial slice of area 2πR2, at the same measurement
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depth z = zi:

qi(s) =
1

2πR2

∫
Y |z=zi

dA. (10.3)

We use the governing equations of the direct model from chapter 8 to find the model
state s = (g,M, Y, c). The measurements were taken once the system reached a steady
state, therefore the particle model contains no unsteady terms:

ρu · ∇g −∇ · (ρD∇g)− ρS + ρ(g∗I + E) = 0, (10.4)
ρu · ∇M −∇ · (ρDp∇M)− ρ(I − C) = 0, (10.5)

ρu · ∇Y −∇ · (ρDp∇Y )− ρm1(g
∗I + E) = 0. (10.6)

We also include the governing equation for a model of the decomposition of ferrocene,
which enables us to calculate how the decomposition parameters affects the particle
model directly through the iron gas source term S ≡ ck:

ρu · ∇c−∇ · (ρDc∇c) + ρck = 0. (10.7)

The governing equations describe the evolution of the model’s four variables: the iron
gas mass density, g, the particle number density, M , the particle mass fraction, Y , and
the ferrocene molecule number density, c. The model contains five parameters, where β

and Ta determine the decomposition of ferrocene, defined in chapter 6, and dp,0, K, and
g∗ determine the particle dynamics, defined in chapter 8. We minimise this objective
function, J , with a gradient-based optimisation process to find the parameters that best
describe the experimental data.
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The adjoint governing equations and boundary conditions are derived in appendix B.
The expression for the gradient of the objective function is:

∂J

∂β
= (β − µβ)σβ +

∫
V

ρc
(
g† + c†

)
k dV, (10.8)

∂J

∂Ta

= (Ta − µTa)σTa +

∫
V

−ρc
(
g† + c†

)
k/T dV, (10.9)

∂J

∂g∗
= (g∗ − µg∗)σg∗ +

∫
V

ρIg† − ρIM † − ρIY † dV, (10.10)

∂J

∂K
= (K − µK)σK +

∫
V

ρm1E0nsY
† − ρE0nsg

† dV, (10.11)

∂J

∂dp,0
= (dp,0 − µdp,0)σdp,0 +

∫
V

ρ(E0/dp,0)(ρg −Kns)
[
m1Y

† − g†
]
dV

+

∫
V

−ρ(C0/2dp,0)M
2M † dV, (10.12)

where µ is the parameter prior mean, σ is the parameter prior standard deviation, and
all terms with a dagger superscript (†) are adjoint variables.

For this problem we only develop the first-order adjoint in order to save time on both
the derivation and implementation. However the second-order adjoint could be derived
using the same process we used to derive the second-order adjoint for the precursor
decomposition in section 6.2.3.

We test and validate the optimisation process and this gradient expression by assimilat-
ing test data generated with a known ground truth.

10.3 The optimisation process
We test the developed first-order gradients using the same approach we used to test
the optimisation process in section 6.3. First we generate a model solution using know
parameters, listed in the first column in table 10.1. We add Gaussian noise with a mean
of 0 and a standard deviation of 0.03 to this ground truth solution to create the synthetic
observations. The results are the blue circles in figure 10.3.

We choose a prior that we know is some distance from the ground truth, shown in
figure 10.3 as the green dotted line. The corresponding parameters are listed in ta-
ble 10.1.
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Table 10.1 Comparison of synthetic parameter and fitted model’s parameters for optimi-
sation validation. The first parameter is most influential, while p1 and p2 do not greatly
affect the output of the model.

Ground truth Prior Posterior
p0 K 3.0 1.2 2.4
p1 dp,0 80.0× 10−9 40.0× 10−9 44.9× 10−9

p2 g∗ 80.0 40.0 39.3
p3 β 32.236 8.087 9.858
p4 Ta 30× 103 11× 103 8.96× 103

Figure 10.3 We test the optimisation process by fitting the model to noisy synthetic
data.
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The posterior fit is presented as the red dashed line in figure 10.3, with the parameters
also listed in table 10.1. The optimisation process found a posterior parameter set that
agrees well with the observation data, even though many parameter values are closer to
the prior distribution than the ground truth values. Only the parameter for the Kelvin
effect K is closer to the ground truth than the prior value. This term determines how fast
the particle mass evaporates in the heated region of the reactor, and therefore governs
the loss of particle mass after a distance of about 0.2m downstream in the reactor.
The next term, dp,0, affects the particle coagulation rate and also the condensation-
evaporation rate. The impact of this term is less than that of K, based on the fact that
the posterior value has not increased significantly from the prior value. The nucleation
size parameter g∗ has changed the least of all five parameters, suggesting it has the least
impact on the model results and is therefore weakly observable. The nucleation size
parameter only affects the nucleation rate, and the effect of a variation of the nucleation
size is very small compared to the several orders of magnitude the nucleation rate varies
over the length of the reactor. The last two parameters govern the decomposition rate
of the ferrocene, and determine when, and how quickly, the iron gas is released. These
two parameters are coupled by the temperature of the reactor. They appear in the
expression for decomposition rate as k = exp (β − Ta/T ). This means that, for the
same representative temperature T , there are pairs of (β, Ta) that produce the same
decomposition rate k.

Figure 10.4 Comparison of the decomposition rates for the three different parameters
sets in table 10.1.
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10.4 Results
For the optimisation with experimental data we use a different prior, as shown in ta-
ble 10.2. We use expected values for the Kelvin constant, representative particle diameter
and nucleation size (K, dp,0, g

∗) based on the expected size of the nanoparticles. The
prior for the ferrocene decomposition was set to the literature value used by Kuwana
and Saito (2005). We are unsure whether or not these prior values are close to the true
parameters, so we use a large uncertainty in the prior distribution.

Using this prior we perform two separate optimisations: one where the initial param-
eters are set to the prior values, and one where the initial parameters are set to an
alternative initial guess using the thiophene rate of decomposition calculated in chap-
ter 6. This alternative initial guess is also listed in table 10.2. For the second run the
same prior is used for the Bayesian penalty term; only the start point of the optimisation
is different.

Table 10.2 The parameter prior and the initial guess used for the two optimisation runs
using experimental observations.

Prior Alternative initial guess
p0 K 2.0 2.0
p1 dp,0 10.0× 10−9 10.0× 10−9

p2 g∗ 40.0 40.0
p3 β 26.12 9.35
p4 Ta 32 473 12 851

There are four sets of data, each characterised by the peak reactor temperature. Each
set is assimilated independently. This indicates whether the parameters are universal
for the different temperatures or whether there is an additional temperature dependence
that the model is unable to fully describe.

The results of the optimisation are compared to the experimental observations, and the
prediction of the prior in figure 10.5. The expected values of the posterior distribution of
the parameters are shown in table 10.3. From all figures it is clear that starting from the
prior does not result in good agreement with the observations. The model consistently
predicts larger mass fractions peaks at 250mm from the inlet. This is both an indication
that the starting parameters are far from the true values, and also that the optimisation
process is stuck a local optimum.
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Table 10.3 The optimised parameters starting from the mean of the prior.

Prior 1150 ◦C 1200 ◦C 1250 ◦C 1300 ◦C

K 2.00 5.00 4.10 2.73 2.00
dp,0 10.00× 10−9 7.60× 10−9 6.63× 10−9 10.00× 10−9 10.00× 10−9

g∗ 40.00 39.41 39.85 39.99 40.00
β 26.12 25.15 26.48 26.05 26.12
Ta 32 473 31 041 32 121 32 436 32 473

(a) Peak temperature of 1150 ◦C (b) Peak temperature of 1200 ◦C

(c) Peak temperature of 1250 ◦C (d) Peak temperature of 1300 ◦C

Figure 10.5 Plot of the experimental observation of the particle mass (green), the predic-
tion using the prior (orange) and the prediction using the fitted posterior (red), starting
from the prior.
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Table 10.4 The optimised parameters starting from the alternate start.

Start 1150 ◦C 1200 ◦C 1250 ◦C 1300 ◦C

K 2.00 3.54 3.04 2.52 2.91
dp,0 10.00× 10−9 9.67× 10−9 9.67× 10−9 10.00× 10−9 10.00× 10−9

g∗ 40.00 38.07 38.07 41.70 42.30
β 26.12 10.17 10.17 10.25 10.52
Ta 32 473 10 932 10 932 14 531 15 131

In contrast, the optimisation run from the alternative initial guess, using the thiophene
decomposition parameters instead of the ferrocene parameters, produces a good fit for
the high temperature cases of peak reactor temperature of 1250 ◦C and 1300 ◦C. The
peak of the mass fraction is captured well, and the general shape of the mass fraction
curve over the length of the reactor agrees well with the experimental results. For the
low temperature cases of 1150 ◦C and 1200 ◦C reactor peak temperature, the agreement
with experimental results is poor.

The variance in the fitted parameters also indicates which parameters are of high impor-
tance to the model. In both the optimisation starting at the mean of the prior, and the
alternative initial guess, the nucleation size g∗ did not significantly change. Additionally,
the representative particle size, dp,0, only changed for the low temperature optimisation
runs (1150 ◦C and 1200 ◦C) starting from the mean of the prior. For the other optimisa-
tion runs the representative particle size remained close to the initial value of 10.0×10−9.
This shows that the impact on the model of both the representative particle size, dp,0,
and the nucleation size, g∗, is small compared to the other three parameters. The repre-
sentative particle size affects the coagulation rate, and the condensation rate. However,
the Kelvin factor, K, affects the condensation rate more strongly than the representative
particle size. The nucleation size affects the nucleation rate linearly. The low variation
of this parameter for the different optimisation cases means that the impact of this pa-
rameter on the nucleation rate is negligible compared to the other terms. In addition to
the nucleation size, g∗, the nucleation rate depends nonlinearly on the saturation ratio
of the iron gas. Therefore the nucleation size parameter does not strongly influence the
modelling results or the results of the optimisation.

In addition to the representative particle size, dp,0, the Kelvin factor, K, affects the con-
densation and evaporation rate of the particles. The Kelvin factor changed significantly
for all except one optimisation run: it remained at 2.0 for the case with a peak reactor
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(a) Peak temperature of 1150 ◦C (b) Peak temperature of 1200 ◦C

(c) Peak temperature of 1250 ◦C (d) Peak temperature of 1300 ◦C

Figure 10.6 Plot of the experimental observation of the particle mass (green), the predic-
tion using the prior (orange) and the prediction using the fitted posterior (red), starting
from the alternate initial guess.
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temperature of 1300 ◦C that started from the expected value of the prior. A large value
of the Kelvin factor promotes evaporation of the particles. The particles evaporate once
the reactor temperature reaches the peak temperature, at a distance of about 250mm

downstream from the inlet. The iron gas produced when the particles evaporate con-
denses onto the wall of the reactor and is removed from the fluid flow, reducing the total
iron mass in the flow. This evaporation effect is clearly present in all four experimental
observation sets, and the Kelvin factor is the most significant parameter that models
the evaporation rate.

The remaining two parameters are the decomposition parameters of the iron precur-
sor. In this model, the formation of the iron particles depends solely on the amount
of iron gas released by the modelled precursor. This precursor is either modelled with
the decomposition rate of ferrocene, as was done for the optimisations using the mean
of the prior as a starting point, or with the decomposition rate of thiophene, as was
done for the optimisations using the alternate initial guess as a starting point. In prac-
tice, the interplay between iron and sulphur to produce the catalyst nanoparticles is
unclear (see chapter 7 for more discussion on this topic). The results of the optimisation
shows that using the current model, the decomposition rate of thiophene predicts the
experimental observations at higher reactor peak temperatures (1250 ◦C and 1300 ◦C)
significantly better than the decomposition rate of ferrocene does. Additionally, reactor
peak temperatures of 1250 ◦C to 1300 ◦C are more commonly used in the Cambridge
process (Hoecker et al., 2016; Kaniyoor et al., 2019; Weller et al., 2019), therefore a
model that is only predictive at these temperature ranges is still useful.



Part V

Conclusions
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In this thesis the dynamics of the Cambridge process (Li et al., 2004) is investigated.
Part I explains the Cambridge process for carbon nanotube production and introduces
the geometry of the reactor used. Optimisation in a Bayesian framework is described,
and the fundamentals of using adjoints to derive the gradient of an objective function is
presented.

In part II the Low Mach-number flow model used for the majority of the work is intro-
duced. A simpler, uniform density, Navier–Stokes model is used to simulate the flow
of the gas valve attached to the end of the reactor, and three different geometries of
the gas valve are investigated with different flow rates and internal baffle sizes. The
performance of each gas valve configuration is evaluated with the conflicting aims of
maximising the purity of hydrogen recycled, while minimising the concentration of hy-
drogen at the outflow of the gas valve. With a three-section geometry, where the first
two sections extract reactor gas, and the last section injects nitrogen gas, it is possible
to ensure a concentration of hydrogen gas at the gas valve outlet below the safe limit
of 4%, while maintaining a high concentration of hydrogen gas at the first extraction
sections, above 75%. This high concentration hydrogen gas can be reused and fed back
to the inlet of the reactor, reducing the amount of hydrogen required to run the process.
Additionally, the analysis shows that it is possible to ensure safe levels of hydrogen at
the outlet of the gas valve with the four-section geometry, while using lower flowrates
of the flush gas, nitrogen, compared to the current practice, reducing the flowrate by
around 5 Lmin−1. Finally a simple dynamic model of the aerogel product is constructed,
and the stability of the flow in the reactor with the aerogel presence is calculated. We
find that the extraction of the aerogel does not cause a noticeable flow instability in the
gas valve.

Part III first introduces the model of the decomposition of the precursors, ferrocene and
thiophene. A gradient-based optimisation is used to find the decomposition rate param-
eters that best predict the experimental data of the decomposition of thiophene. We find
that a decomposition rate of k = 11 498 s−1 exp(−107 kJmol−1/RT ) best describes the
behaviour of thiophene in the reactor. Next the optimised decomposition parameters
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are used to study the effect of reactor inlet condition on the decomposition of ferrocene
and thiophene, comparing a parabolic inlet condition to a jetting inlet condition, at a
range of flowrates. We find that, as the flowrate increases from 2 Lmin−1 to 4 Lmin−1,
the spatial and temporal separation of the decomposition of ferrocene and thiophene
decreases. This effect is significantly stronger when the reactor inlet is a jet instead of
a parabolic flow. At flowrates above 3.5 Lmin−1 there is an overlap in the decomposi-
tion of both ferrocene and thiophene, where sulphur from thiophene is being released
concurrently with the iron from ferrocene. This coexistence of iron and sulphur pro-
duces smaller catalyst nanoparticles which are more likely to grow single-walled carbon
nanotubes.

Finally, in part IV a model of the particle evolution over the length of the reactor is
constructed. This model is used to first estimate the effect of reactor flowrate and input
ferrocene concentration on the growth of the particles in the reactor. Next, the model’s
parameters are optimised with a gradient-based method to find the set of parameters
that best explain four different experimental observations, corresponding to four different
peak temperatures in the reactor: 1150, 1200, 1250, and 1300 ◦C. The model is able to
predict the mass fraction evolution over the length of the reactor for the experimental
cases with a peak reactor temperature of 1250 and 1300 ◦C. Three parameters are found
to have a significant impact on the evaluation of the model: the Kelvin factor governing
the condensation and evaporation rate of the particles, and the two decomposition rate
parameters that govern the rate at which the iron gas is released. The optimised values
of the decomposition rate parameters are comparable with the decomposition rate of
thiophene found in part III. This reinforces that the presence of sulphur is necessary for
the formation of the nanoparticles in the process.

11.1 Future work
Building upon this thesis, the natural next lines of research are improving and extending
upon the particle model, and incorporating more experimental data, in order to achieve
a more robust and predictive model. The code developed with this study can easily
assimilate more data to improve the models, and also be extended to handle different
reactor geometries. The current particle model uses a simple model for the particle size
distribution, assuming all particles are of the same size. Extending the model to model
a wider distribution of particle sizes could improve the predictive abilities of the model.
Further, the second order derivative of the particle model could be derived, to improve
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the optimisation process and allow the Newton method to be used to find the parameters
that best explain the data.

The next step of modelling, the formation of the carbon nanotubes, could also be ex-
plored. We know that the majority of the carbon nanotube mass is produced after the
mid-point of the reactor (Hoecker et al., 2017a), so a simple model could be constructed
that takes into account both the nanoparticles and the carbon source. This model could
then be compared with the experimental observations by Hoecker et al. (2017a).

The analysis of the gas valve in chapter 4 could also be improved by using a three-
dimensional model for all three geometry configurations to capture the three dimensional
structure of the flow, as well as the effect of buoyancy due to the temperature difference
between the reactor fluid and the injected nitrogen. The fluid model could also be
improved, by modelling the difference in density in the hydrogen gas from the reactor
and the nitrogen being injected into the gas valve.

The model of the aerogel could be further extended and different assumptions could
be explored. This would require more background work on the meso- and microscale
composition and behaviour of the aerogel structure so any model could be compared
with experimental observations.
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A Precursor model boundary conditions

The governing equation of the decomposition of the precursor is, under the steady-state
assumption:

G(c,θ) ≡ ∇ · (ρuc)−∇ · (ρDc∇c) + ρc exp (β − Ta/T ) = 0, (A.1)

where β and Ta are the model parameters.

The amount of precursor, c, is known and prescribed at the inlet:

c = c0 on the inlet boundary. (A.2)

We assume that in the steady-state the reactor walls are saturated with precursor
molecules, and therefore there are no losses of the precursor to the walls:

ρc(u · n̂) + ρDc
∂c

∂n
= 0 on the wall boundary. (A.3)

At the outlet we use a standard gradient-free condition:

ρDc
∂c

∂n
= 0 on the outlet boundary. (A.4)

For the variations of the precursor, δc, these boundary conditions are:

δc = 0 on the inlet boundary, (A.5)

ρ(u · n̂)δc− ρDc
∂δc

∂n
= 0 on the wall boundary, (A.6)

ρDc
∂δc

∂n
= 0 on the outlet boundary. (A.7)

After using the divergence theorem to shift the derivatives from the variations of the
precursor δc onto the adjoint variable λ the adjoint governing equation becomes:

−ρu · ∇λ−∇ · (ρDc∇λ) + ρλk = 0, (A.8)
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with the boundary conditions such that:

(q − x)σ−1
x

∂q

∂c
δc+

∮
Γ

ρ(u · n̂)λδc+ ρDc
∂λ

∂n
δc− ρDcλ

∂δc

∂n
dΓ

=

∮
outlet

1
A
(c− x)σ−1

x δc dΓ +

∮
Γ

ρ(u · n̂)λδc+ ρDc
∂λ

∂n
δc− ρDcλ

∂δc

∂n
dΓ

= 0, (A.9)

where we have projected the difference between the observations x uniformly onto the
outlet area to transform ∂q/∂c onto the modelling domain.

Substituting in (A.5)–(A.7) into (A.9) leaves:∮
inlet

− [ρDcλ]
∂δc

∂n
dΓ = 0 on the inlet, (A.10)∮

wall

[
ρDc

∂λ

∂n

]
δc dΓ = 0 on the wall, (A.11)∮

outlet

[
1
A
(c− x)σ−1

x + ρ(u · n̂)λ+ ρDc
∂λ

∂n

]
δc dΓ = 0 on the outlet, (A.12)

which gives us the required boundary conditions on the adjoint variable:

λ = 0 on the inlet, (A.13)
∂λ

∂n
= 0 on the wall, (A.14)

1
A
(c− x)σ−1

x + ρ(u · n̂)λ+ ρDc
∂λ

∂n
= 0 on the outlet. (A.15)

A.1 The second order adjoint variables
The second order adjoint introduces two more governing equations for the two additional
adjoint variables, ϕ and ψ. The first governing equation is for the variations of the
adjoint variables, λ. The boundary conditions (A.13)–(A.15) become:

δλ = 0 on the inlet, (A.16)
∂δλ

∂n
= 0 on the wall, (A.17)

1
A
σ−1
x δc+ ρ(u · n̂)δλ+ ρDc

∂δλ

∂n
= 0 on the outlet. (A.18)
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The construction of the two additional governing equations produces the following
boundary integrals, which will indicate the boundary conditions:∮

Γ

−ρ(u · n̂)ϕδλ+ ρDc
∂ϕ

∂n
δλ− ρDcϕ

∂δλ

∂n
dΓ

+

∮
Γ

ρ(u · n̂)ψδc+ ρDc
∂ψ

∂n
δc− ρDcψ

∂δc

∂n
dΓ = 0. (A.19)

Substituting (A.16)–(A.18) into (A.19) leaves:∮
inlet

[−ρDcϕ]
∂δλ

∂n
dΓ +

∮
inlet

[−ρDcψ]
∂δc

∂n
dΓ = 0 on the inlet, (A.20)∮

wall

[
−ρ(u · n̂)ϕ+ ρDc

∂ϕ

∂n

]
δλ dΓ +

∮
wall

[
ρDc

∂ψ

∂n

]
δc dΓ = 0 on the wall, (A.21)∮

outlet

[
ρDc

∂ϕ

∂n

]
δλ dΓ

+

∮
outlet

[
1
A
σ−1
x ϕ+ ρ(u · n̂)ψ + ρDc

∂ψ

∂n

]
δc dΓ = 0 on the outlet, (A.22)

which gives the boundary conditions imposed on ϕ:

ϕ = 0 on the inlet, (A.23)

−ρ(u · n̂)ϕ+ ρDc
∂ϕ

∂n
= 0 on the wall, (A.24)

∂ϕ

∂n
= 0 on the outlet, (A.25)

and on ψ:

ψ = 0 on the inlet, (A.26)
∂ψ

∂n
= 0 on the wall, (A.27)

1
A
σ−1
x ϕ+ ρ(u · n̂)ψ + ρDc

∂ψ

∂n
= 0 on the outlet. (A.28)





B The particle model first-order adjoint

To derive the adjoint equations of the particle model we begin with the governing equa-
tions of the direct model as listed in section 10.2:

G1 ≡ ρu · ∇g −∇ · (ρD∇g)− ρck + ρ(g∗I + E) = 0, (B.1)
G2 ≡ ρu · ∇M −∇ · (ρDp∇M)− ρ(I − C) = 0, (B.2)
G3 ≡ ρu · ∇Y −∇ · (ρDp∇Y )− ρm1(g

∗I + E) = 0, (B.3)
G4 ≡ ρu · ∇c−∇ · (ρDc∇c) + ρck = 0. (B.4)

The governing equations are labelled G1 to G4 such that when all are satisfied:

G(θ, s) = 0. (B.5)

We first define the objective function. Then we derive the adjoint governing equations
that allow us to construct the expression for the gradient of the objective function with
respect to the model’s parameters.

The objective function as defined in section 10.2 is:

J(θ,x) = − logP (θ | x, H) (B.6)
= 1

2
(θ − µθ)

⊤Σ−1
θ (θ − µθ)︸ ︷︷ ︸

− logP (θ|H)

+ 1
2
(q(s)− x)⊤ Σ−1

x (q(s)− x)︸ ︷︷ ︸
− logP (x|θ,M)

+ constants. (B.7)

We minimise this objective function J with a gradient-based optimisation process to
find the parameters that best described the experimental data. To this end we need
the expression of the variations of the objective function with respect to the model’s
variables, s, and model’s parameters, θ,

δJ = (θ − µθ)
⊤Σ−1

θ︸ ︷︷ ︸
∂J/∂θ

δθ + (q(s)− x)⊤Σ−1
x

∂q

∂s︸ ︷︷ ︸
∂J/∂s

δs, (B.8)
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where we also label the term containing the variations with the model’s parameters
δθ as ∂J/∂θ, and the term containing the variations with the model’s variables δs as
∂J/∂s.

B.1 The first order adjoint
We construct the Lagrangian of the objective function by adding the governing-equations
constraint to the objective function J ,

L = J + ⟨λ,G(θ, s)⟩ , (B.9)

where λ is the adjoint vector corresponding to the model’s variables vector s, and the in-
ner product ⟨λ,G⟩ is an integration of the dot-product over the modelling volume:

⟨λ,G(θ, s)⟩ ≡
∫
V

λ ·G(θ, s) dV. (B.10)

We take variations of the Lagrangian (B.9), which we can split into two parts, one that
depends on the variations in the model’s variables δs, and one that depends on the
variations in the model’s parameters δθ:

δL = δJ + ⟨λ, δG(θ, s)⟩ (B.11)

=
∂J

∂s
δs+

∂J

∂θ
δθ +

〈
λ,

∂G

∂s
δs

〉
+

〈
λ,

∂G

∂θ
δθ

〉
. (B.12)

Next we use the divergence theorem to shift the derivatives from the model’s variables,
δs onto the adjoint variables, λ. The resulting equations and boundary conditions are
grouped into G†

s for the terms paired with δs and G†
θ for the terms paired with δθ:

δL =
∂J

∂s
δs+

〈
δs,G†

sλ
〉
+

∂J

∂θ
δθ +

〈
δθ,G†

θλ
〉
. (B.13)

At optimality this expression must be 0 for arbitrary values of δs. Therefore optimality
requires ∂J

∂s
+G†

sλ = 0. The expression for the gradient of the objective function with
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respect to the model’s parameters is:

δL =
∂J

∂θ
δθ +

〈
δθ,G†

θλ
〉
, (B.14)

δL

δθ
=

∂J

∂θ
+G†

θλ. (B.15)

The detailed derivation of (B.13) is shown below.

B.1.1 Deriving the adjoint equations

We start with the variations of the governing equations δG(θ, s). To find the variations
of the governing equations we first find the variations of the four particle dynamics
terms: the nucleation rate I, the condensation-evaporation rate E, the coagulation rate
C, and the ferrocene decomposition rate ck.

The variation of the ferrocene decomposition rate ck is:

δ(ρck) = ρkδc+ ρcδk, (B.16)

where δk is short-hand for the variations of the ferrocene decomposition rate with respect
to the decomposition parameters, (kδβ − kδTa/T ).

The variation of the particle nucleation rate I (8.11) is:

I = ρg ns (2σ/πm1)
1
2 exp

(
Θ− 4Θ/27 ln2 Sr

)
= I0g, (B.17)

δI =
(
1 + 8Θ/27 ln3 Sr

)
ρns (2σ/πm1)

1
2 exp

(
Θ− 4Θ/27 ln2 Sr

)
δg (B.18)

=
(
1 + 8Θ/27 ln3 Sr

)
I0δg. (B.19)

The variation of the coagulation rate C (8.16) is:

C = 2 (6kTdp,0/ρp)
1
2 ρ2M2 = C0M

2 (B.20)
δC = (6kT/ρpdp,0)

1
2 ρ2M2δdp,0 + 4 (6kTdp,0/ρp)

1
2 ρ2MδM (B.21)

= (C0/2dp,0)M
2δdp,0 + 2C0MδM. (B.22)
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The variation of the condensation-evaporation term E (8.20) is:

E = (RT/2πMm)
1
2 (6ρY/ρpdp,0) (ρg −Kns) = E0(ρg −Kns) (B.23)

δE = (RT/2πMm)
1
2 (6ρY/ρpdp,0) ρδg + (RT/2πMm)

1
2 (6ρ/ρpdp,0) (ρg −Kns) δY

− (RT/2πMm)
1
2 (6ρY/ρpdp,0) δKns

− (RT/2πMm)
1
2
(
6ρY/ρpd

2
p,0

)
(ρg −Kns)δdp,0 (B.24)

= E0ρδg + (E0/Y )(ρg −Kns)δY − E0nsδK − (E0/dp,0)(ρg −Kns)δdp,0 .(B.25)

With these variations we can derive the variations of the governing equations:

δG1 = ρu · ∇δg −∇ · (ρD∇δg)− ρδ(ck) + ρ(Iδg∗ + g∗δI + δE) (B.26)
= ρu · ∇δg −∇ · (ρD∇δg)− ρkδc− ρcδk + ρIδg∗

+ ρg∗
(
1 + 8Θ/27 ln3 Sr

)
I0δg

+ ρE0ρδg + ρ(E0/Y )(ρg −Kns)δY

− ρE0nsδK − ρ(E0/dp,0)(ρg −Kns)δdp,0. (B.27)

We now collect the terms that contain variations of the model’s variables δs and label
the collection (∂G1/∂s)δs. Similarly we collect the terms that contain variations of the
model’s parameters θ and label the collection (∂G1/∂θ)δθ:

δG1 =
∂G1

∂s
δs+

∂G1

∂θ
δθ (B.28)

= ρu · ∇δg −∇ · (ρD∇δg)− ρkδc+ ρg∗
(
1 + 8Θ/27 ln3 Sr

)
I0δg + · · ·︸ ︷︷ ︸

(∂G1/∂s)δs

· · ·+ ρE0ρδg + ρ(E0/Y )(ρg −Kns)δY︸ ︷︷ ︸
(∂G1/∂s)δs

+ −ρcδk + ρIδg∗ − ρE0nsδK − ρ(E0/dp,0)(ρg −Kns)δdp,0︸ ︷︷ ︸
(∂G1/∂θ)δθ

. (B.29)
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We repeat this for the remaining governing equations,

δG2 = ρu · ∇δM −∇ · (ρDp∇δM)− ρδI − δC, (B.30)
= ρu · ∇δM −∇ · (ρDp∇δM)− ρg∗

(
1 + 8Θ/27 ln3 Sr

)
I0δg − 2ρC0MδM︸ ︷︷ ︸

(∂G2/∂s)δs

+ −ρIδg∗ − ρ(C0/2dp,0)M
2δdp,0︸ ︷︷ ︸

(∂G2/∂θ)δθ

. (B.31)

δG3 = ρu · ∇Y −∇ · (ρDp∇Y )− ρm1(g
∗I + E), (B.32)

= ρu · ∇δY −∇ · (ρDp∇δY )− ρm1g
∗ (1 + 8Θ/27 ln3 Sr

)
I0δg + · · ·︸ ︷︷ ︸

(∂G3/∂s)δs

· · · − ρm1E0ρδg − ρm1(E0/Y )(ρg −Kns)δY︸ ︷︷ ︸
(∂G3/∂s)δs

+ ρm1 (−Iδg∗ + E0nsδK + (E0/dp,0)(ρg −Kns)δdp,0)︸ ︷︷ ︸
(∂G3/∂θ)δθ

. (B.33)

δG4 = ρu · ∇c−∇ · (ρDc∇c) + ρδ(ck), (B.34)
= ρu · ∇δc−∇ · (ρDc∇δc) + ρkδc︸ ︷︷ ︸

(∂G4/∂s)δs

+ ρcδk︸︷︷︸
(∂G4/∂θ)δθ

. (B.35)

Now we introduce the adjoint variables λ = (g†,M †, Y †, c†) and take the volume integral
of the adjoint variables vector dotted with the collection of all governing equations. We
can split the expression into two parts: one part with the variations with respect to
the model’s variables, and one part with variations with respect to the model’s param-
eters. ∫

V

λ · δG(θ, s) dV =

∫
V

λ · ∂G
∂s

δs dV +

∫
V

λ · ∂G
∂θ

δθ dV. (B.36)
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We use the divergence theorem to shift the derivatives from δs to the adjoint variables
λ:∫

V

λ · δG(θ, s) dV =

∫
V

λ · ∂G
∂s

(δs) dV +

∫
V

λ · ∂G
∂θ

δθ dV, (B.37)

=

∫
V

δs ·G†(λ) dV +

∮
Γ

GΓ(λ, δs, n̂) dΓ +

∫
V

λ · ∂G
∂θ

δθ dV. (B.38)

We work through each ∂G/∂s term separately. For the first governing equation the
shifted expression becomes:∫

V

g†
∂G1

∂s
δs dV =

∫
V

g† [ρu · ∇δg −∇ · (ρD∇δg)] dV

+

∫
V

g†
[
−ρkδc+ ρg∗

(
1 + 8Θ/27 ln3 Sr

)
I0δg

]
dV

+

∫
V

g† [ρE0ρδg + ρ(E0/Y )(ρg −Kns)δY ] dV, (B.39)

=

∫
V

[
−ρu · ∇g† −∇ ·

(
ρD∇g†

)]
δg dV

+

∮
Γ

[
g†ρ(u · n̂)− ρD

∂g†

∂n

]
δg +

[
ρDg†

] ∂δg
∂n

dΓ

+

∫
V

[
−ρkg†

]
δc dV

+

∫
V

[
ρg∗
(
1 + 8Θ/27 ln3 Sr

)
I0g

† + ρE0ρg
†] δg dV

+

∫
V

[
ρ(E0/Y )(ρg −Kns)g

†] δY dV, (B.40)

=

∫
V

δs ·G†
s,1g

† dV =
〈
δs,G†

s,1g
†
〉
. (B.41)
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The particle number density equation shifts to:∫
V

M †∂G2

∂s
δs dV =

∫
V

M † [ρu · ∇δM −∇ · (ρDp∇δM)] dV

+

∫
V

M † [−ρ
(
1 + 8Θ/27 ln3 Sr

)
I0δg − 2ρC0MδM

]
dV (B.42)

=

∫
V

[
−ρu · ∇M † −∇ ·

(
ρDp∇M †)] δM dV

+

∮
Γ

[
M †ρ(u · n̂)− ρDp

∂M †

∂n

]
δM +

[
ρDpM

†] ∂δM
∂n

dΓ

+

∫
V

[
−ρ
(
1 + 8Θ/27 ln3 Sr

)
J0M

†] δg dV
+

∫
V

[
−2ρC0MM †] δM dV. (B.43)

The particle mass fraction equation shifts to:∫
V

Y †∂G3

∂s
δs dV =

∫
V

Y † [ρu · ∇δY −∇ · (ρDp∇δY )] dV

+

∫
V

Y † [−ρm1g
∗ (1 + 8Θ/27 ln3 Sr

)
I0δg

]
dV

+

∫
V

Y † [−ρm1E0ρδg − ρm1(E0/Y )(ρg −Kns)δY ] dV, (B.44)

=

∫
V

[
−ρu · ∇Y † −∇ ·

(
ρDp∇Y †)] δY dV

+

∮
Γ

[
Y †ρ(u · n̂)− ρDp

∂Y †

∂n

]
δY +

[
ρDpY

†] ∂δY
∂n

dΓ

+

∫
V

[
−ρm1g

∗ (1 + 8Θ/27 ln3 Sr

)
I0ρY

† − ρm1E0Y
†] δg dV

+

∫
V

[
−ρm1(E0/Y )(ρg −Kns)Y

†] δY dV. (B.45)

The ferrocene concentration equation shifts to:∫
V

c†
∂G4

∂s
δs dV =

∫
V

c† [ρu · ∇δc−∇ · (ρDc∇δc)] dV +

∫
V

c† [ρkδc] dV, (B.46)

=

∫
V

[
−ρu · ∇c† −∇ ·

(
ρDc∇c†

)]
δc dV

+

∮
Γ

[
c†ρ(u · n̂)− ρDc

∂c†

∂n

]
δc+

[
ρDcc

†] ∂δc
∂n

dΓ

+

∫
V

[
ρkc†

]
δc dV. (B.47)



136 The particle model first-order adjoint

We now sum all integrals and combine the terms that share the same variations of the
model’s variables. Collecting all terms with δg gives:∫

V

λ · ∂G
∂g

δg dV =

∫
V

[
−ρu · ∇g† −∇ ·

(
ρD∇g†

)]
δg dV

+

∫
V

[
ρg∗
(
1 + 8Θ/27 ln3 Sr

)
I0g

† + ρE0ρg
†] δg dV

+

∫
V

[
−ρ
(
1 + 8Θ/27 ln3 Sr

)
I0M

†] δg dV
+

∫
V

[
−ρm1g

∗ (1 + 8Θ/27 ln3 Sr

)
I0Y

† − ρm1E0ρY
†] δg dV

+

∮
Γ

[
g†ρ(u · n̂)− ρD

∂g†

∂n

]
δg +

[
ρDg†

] ∂δg
∂n

dΓ. (B.48)

Collecting all terms with δM we have,∫
V

λ · ∂G
∂M

δM dV =

∫
V

[
−ρu · ∇M † −∇ ·

(
ρDp∇M †)] δM dV

+

∫
V

[
−2ρC0MM †] δM dV

+

∮
Γ

[
M †ρ(u · n̂)− ρDp

∂M †

∂n

]
δM +

[
ρDpM

†] ∂δM
∂n

dΓ.(B.49)

Collecting all terms with δY we have,∫
V

λ · ∂G
∂Y

δY dV =

∫
V

[
−ρu · ∇Y † −∇ ·

(
ρDp∇Y †)] δY dV

+

∫
V

[
ρ(E0/Y )(ρg −Kns)g

†] δY dV

+

∫
V

[
−ρm1(E0/Y )(ρg −Kns)Y

†] δY dV

+

∮
Γ

[
Y †ρ(u · n̂)− ρDp

∂Y †

∂n

]
δY +

[
ρDpY

†] ∂δY
∂n

dΓ. (B.50)
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Collecting all terms with δc we have,∫
V

λ · ∂G
∂c

δc dV =

∫
V

[
−ρu · ∇c† −∇ ·

(
ρDc∇c†

)]
δc dV

+

∫
V

[
−ρkg†

]
δc dV

+

∫
V

[
ρkc†

]
δc dV

+

∮
Γ

[
c†ρ(u · n̂)− ρDc

∂c†

∂n

]
δc+

[
ρDcc

†] ∂δc
∂n

dΓ. (B.51)

The last remaining term with a variation of the model’s variables δs is the variation in
the objective function (∂J/∂s)δs:

∂J

∂s
δs = (q(s)− x)⊤ Σ−1

x

∂q

∂s
δs (B.52)

= (q(s)− x)⊤ Σ−1
x

∂q

∂Y
δY . (B.53)

The objective function only depends on the particle mass fraction Y , so we add (B.53)
to (B.50):∫
V

λ · ∂G
∂Y

δY dV +
∂J

∂s
δs =

∫
V

[
−ρu · ∇Y † −∇ ·

(
ρDp∇Y †)] δY dV

+

∫
V

[
ρ(E0/Y )(ρg −Kns)g

†] δY dV

+

∫
V

[
−ρm1(E0/Y )(ρg −Kns)Y

†] δY dV

+

[
(q(s)− x)⊤ Σ−1

x

∂q

∂Y

]
δY

+

∮
Γ

[
Y †ρ(u · n̂)− ρDp

∂Y †

∂n

]
δY +

[
ρDpY

†] ∂δY
∂n

dΓ.(B.54)

We now choose the adjoint variables λ in order to ensure all the expressions with the
variations of the model’s variables (B.48), (B.49), (B.51), and (B.54) are equal to zero.
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This gives us the following governing equations for the adjoint variables:

G†
g ≡ −ρu · ∇g† −∇ ·

(
ρD∇g†

)
+ ρg∗

(
1 + 8Θ/27 ln3 Sr

)
I0g

† + ρE0ρg
†

− ρ
(
1 + 8Θ/27 ln3 Sr

)
I0M

†

− ρm1g
∗ (1 + 8Θ/27 ln3 Sr

)
I0Y

† − ρm1E0ρY
† = 0, (B.55)[

g†ρ(u · n̂)− ρD
∂g†

∂n

]
δg +

[
ρDg†

] ∂δg
∂n

= 0 on boundaries, (B.56)

G†
M ≡ −ρu · ∇M † −∇ ·

(
ρDp∇M †)− 2ρC0MM † = 0, (B.57)[

M †ρ(u · n̂)− ρDp
∂M †

∂n

]
δM +

[
ρDpM

†] ∂δM
∂n

= 0 on boundaries, (B.58)

G†
Y ≡ −ρu · ∇Y † −∇ ·

(
ρDp∇Y †)− ρm1(E0/Y )(ρg −Kns)Y

†

+ ρ(E0/Y )(ρg −Kns)g
†

+

[
(q(s)− x)⊤ Σ−1

x

∂q

∂Y

]
projected

= 0, (B.59)[
Y †ρ(u · n̂)− ρDp

∂Y †

∂n

]
δY +

[
ρDpY

†] ∂δY
∂n

= 0 on boundaries, (B.60)

G†
c ≡ −ρu · ∇c† −∇ ·

(
ρDc∇c†

)
− ρkg† + ρkc† = 0, (B.61)[

c†ρ(u · n̂)− ρDc
∂c†

∂n

]
δc+

[
ρDcc

†] ∂δc
∂n

= 0 on boundaries. (B.62)

The adjoint boundary conditions depend on the boundary conditions of the direct equa-
tion. The particle model has the following boundary conditions:

δg = δM = δY = 0 on the wall and inlet, (B.63)
∂δg

∂n
=

∂δM

∂n
=

∂δY

∂n
= 0 on the outlet, (B.64)

δc = 0 on the inlet, (B.65)
∂δc

∂n
= 0 on the wall and outlet. (B.66)
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Therefore, the adjoint boundary conditions that cancel the adjoint boundary integrals
are:

g† = M † = Y † = 0 on the wall and inlet, (B.67)
∂g†

∂n
=

∂M †

∂n
=

∂Y †

∂n
= 0 on the outlet, (B.68)

c† = 0 on the inlet, (B.69)
∂c†

∂n
= 0 on the wall and outlet. (B.70)

And the final adjoint governing equations are:

G†
g ≡ −ρu · ∇g† −∇ ·

(
ρD∇g†

)
+ ρg∗

(
1 + 8Θ/27 ln3 Sr

)
I0g

† + ρE0ρg
†

− ρ
(
1 + 8Θ/27 ln3 Sr

)
I0M

†

− ρm1g
∗ (1 + 8Θ/27 ln3 Sr

)
I0Y

† − ρm1E0ρY
† = 0, (B.71)

G†
M ≡ −ρu · ∇M † −∇ ·

(
ρDp∇M †)− 2ρC0MM † = 0, (B.72)

G†
Y ≡ −ρu · ∇Y † −∇ ·

(
ρDp∇Y †)− ρm1(E0/Y )(ρg −Kns)Y

†

+ ρ(E0/Y )(ρg −Kns)g
†

+ f(Y ) = 0, (B.73)
G†

c ≡ −ρu · ∇c† −∇ ·
(
ρDc∇c†

)
− ρkg† + ρkc† = 0, (B.74)

where fi is the forcing produced by the projection of the variation of the objective
function, δJ .

The objective function term added to the governing equation of Y † needs to be treated
with care, since we need to make the model predictions compatible with the experimen-
tal measurement points. A solution that works and produces good results is to linearly
interpolate the experimental measurements onto the modelling mesh, assuming a uni-
form value in the radial direction. This allows us to use the same volume integral for
calculating the objective function as we use for deriving the adjoint equations. A more
mathematically rigorous approach would be to project the model prediction onto the
experimental points (which is easy), and then project the difference between the pre-
diction and the observation back onto the modelling mesh (which is hard). Figure B.1
shows how such a projeting may look like. As there was not time to perfect the pro-
jection method, we use a simple linear interpolation of the observations to construct
(q(s)− x)⊤Σ−1

x ∂q/∂Y .
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a) Experimental rig Measurement location

To SMPS

z = ziz

b) Projection to modelling domain

z = ziz

δ(z − zi)

c) Smoothing the projection

z = ziz

N(zi; σz)

Figure B.1 Projection of the difference between the observations and model prediction
(q(s) − x) onto the modelling domain. The difference is a scalar value measured at a
position zi. This is first projected uniformly as a 1-dimensional line across the diameter
of the reactor. Then this is further projected and smoothed-out as a Gaussian curve
centred at zi.
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After removing the variations in the model’s variables with the choice of the adjoint
variables λ we are left with the terms that contain the variations of the model’s param-
eters, ⟨λ, ∂G/∂θδθ⟩. Because the term ∂G/∂θ does not contain any derivatives, the
adjoint transform is linear and we have:〈

λ,

(
∂G

∂θ

)
δθ

〉
=

〈(
∂G

∂θ

)
λ, δθ

〉
=
〈
G†

θλ, δθ
〉
, (B.75)

=

∫
V

g†
∂G1

∂θ
δθ dV +

∫
V

M †∂G2

∂θ
δθ dV +

∫
V

Y †∂G3

∂θ
δθ dV

+

∫
V

c†
∂G4

∂θ
δθ dV, (B.76)

without any boundary conditions.

We group the terms in (B.29), (B.31), (B.33), and (B.35) by the variation in the model
parameter δθ: 〈

G†
θλ, δθ

〉
δk

=

∫
V

[
−g†ρc

]
δk dV +

∫
V

[
c†ρc

]
δk dV (B.77)

=

∫
V

ρc
(
c† − g†

)
δk dV (B.78)

=

∫
V

ρc
(
c† − g†

)
(kδβ − δT ak/T ) dV (B.79)

〈
G†

θλ, δg
∗
〉
=

∫
V

[
g†ρI

]
δg∗ dV

∫
V

[
−M †ρI

]
δg∗ dV

∫
V

[
−Y †ρI

]
δg∗ dV (B.80)

=

∫
V

[
ρI
(
g† −M † − Y †)] δg∗ dV (B.81)

〈
G†

θλ, δK
〉
=

∫
V

[
−ρE0nsg

†] δK dV +

∫
V

[
ρm1E0nsY

†] δK dV (B.82)

=

∫
V

[
ρm1E0nsY

† − ρE0nsg
†] δK dV (B.83)
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〈
G†

θλ, δdp,0

〉
=

∫
V

[
−ρ(E0/dp,0)(n−Kns)g

†] δdp,0 dV
+

∫
V

[
−ρ(C0/2dp,0)M

2M †] δdp,0 dV
+

∫
V

[
ρm1(E0/dp,0)(ρg −Kns)Y

†] δdp,0 dV (B.84)

=

∫
V

ρ(E0/dp,0)(ρg −Kns)
[
m1Y

† − g†
]
δdp,0 dV

+

∫
V

[
−ρ(C0/2dp,0)M

2M †] δdp,0 dV (B.85)

We now have the required expressions to substitute into the expression of δL (B.14).
For each parameter, we add the Bayesian prior term, which gives us the final gradient
term of the objective function,

∂L

∂β
= (β − µβ)σβ +

∫
V

ρc
(
c† − g†

)
k dV, (B.86)

∂L

∂Ta

= (Ta − µTa)σTa +

∫
V

−ρc
(
c† − g†

)
k/T dV, (B.87)

∂L

∂g∗
= (g∗ − µg∗)σg∗ +

∫
V

ρIg† − ρIM † − ρIY † dV, (B.88)

∂L

∂K
= (K − µK)σK +

∫
V

ρm1E0nsY
† − ρE0nsg

† dV, (B.89)

∂L

∂dp,0
= (dp,0 − µdp,0)σdp,0 +

∫
V

ρ(E0/dp,0)(ρg −Kns)
[
m1Y

† − g†
]
dV

+

∫
V

−ρ(C0/2dp,0)M
2M † dV, (B.90)

where µ is the parameter prior mean, and σ is the parameter prior deviation.
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