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Abstract This chapter demonstrates three promising ways to combine machine
learning with physics-based modelling in order to model, forecast, and avoid ther-
moacoustic instability. The first method assimilates experimental data into candidate
physics-based models and is demonstrated on a Rijke tube. This uses Bayesian infer-
ence to select the most likely model. This turns qualitatively-accurate models into
quantitatively-accurate models that can extrapolate, which can be combined pow-
erfully with automated design. The second method assimilates experimental data
into level set numerical simulations of a premixed bunsen flame and a bluff-body
stabilized flame. This uses either an Ensemble Kalman filter, which requires no prior
simulation but is slow, or a Bayesian Neural Network Ensemble, which is fast but
requires prior simulation. This method deduces the simulations’ parameters that best
reproduce the data and quantifies their uncertainties. The third method recognises
precursors of thermoacoustic instability from pressure measurements. It is demon-
strated on a turbulent bunsen flame, an industrial fuel spray nozzle, and full scale
aeroplane engines. With this method, Bayesian Neural Network Ensembles deter-
mine how far each system is from instability. The trained BayNNEs out-perform
physics-based methods on a given system. This method will be useful for practical
avoidance of thermoacoustic instability.

1 Introduction

At present there is no realistic alternative to combustion engines for long distance
aircraft and rockets. These engines have unrivalled power to weight ratios and their
fuels have unrivalled energy to weight ratios. If we continue to fly long distances
or send rockets into space, we will continue to combust fuels in increasingly high-
performance gas turbines and rockets. Despite decades of research and the devel-
opment of sophisticated physics-based models, thermoacoustic instability in these
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engines remains difficult to predict and eliminate. The aim of this chapter is to intro-
duce some promising avenues in which machine learning methods could be used to
model, forecast, and avoid thermoacoustic instability.

1.1 The Physical Mechanism Driving Thermoacoustic
Instability

The combustion chambers in aircraft and rocket engines have extraordinarily high
power densities: from 100 MW/m3 in aircraft gas turbines to 50 GW/m3 in liquid-
fuelled rocket engines (Culick 2006). They contain flames that are typically anchored
by a recirculation zone (aircaft engines) or by fuel injector lips (rockets). Acoustic
velocity fluctuations perturb the base of the flame, creating ripples that convect
downstream and cause heat release rate fluctuations some time later, which in turn
create acoustic fluctuations either directly or via entropy spots (Lieuwen 2012). If
moments of higher (lower) heat release rate coincide sufficiently with moments of
higher (lower) pressure around the flame, then more work is done by the heated
gas during the expansion phase of the acoustic cycle than was done on it during the
compression phase. If the work done by thermoacoustic driving exceeds the work
dissipated through damping or acoustic radiation over a cycle, then the acoustic
amplitude grows and the system is thermoacoustically unstable. This is also known
as combustion instability. In high performance rocket and aircraft engines, the heat
release rate is so high and the natural dissipation so low that these engines can become
thermoacoustically unstable even if the thermodynamic efficiency of the cycle is as
little as 0.1% (Huang and Yang 2009).

Thermoacoustic oscillations were first noticed over 200 years ago (Higgins 1802)
and their physicalmechanismwas correctly identified nearly 150 years ago (Rayleigh
1878). They were recognized as a significant problem in rocket engines 80 years
ago and have been investigated seriously for 70 years (Crocco and Cheng 1956).
Nevertheless, they remain a problem for the design of gas turbine and rocket engines
because engineers are rarely able to predict, at the design stage, whether a particular
enginewill suffer from them (Lieuwen andMcManus 2003;Mongia et al. 2003). This
chapter explains why thermoacoustic instability is so difficult to predict accurately
and explores various data-driven approaches that could develop into alternatives or
additions to current physics-based approaches.

1.2 The Extreme Sensitivity of Thermoacoustic Systems

Thermoacoustic instability is difficult to predict for two main reasons. Firstly, if the
time lag between velocity fluctuations at the base of the flame and subsequent heat
release rate fluctuations is similar to or greater than the acoustic period, which is
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usually the case, then the ratio of time lag to acoustic period strongly affects the
efficiency of the thermoacoustic mechanism (Juniper and Sujith 2018). Secondly,
this time lag often depends on factors that are difficult to simulate or model accu-
rately, such as jet break-up, droplet evaporation, flame kinematics, and highReynolds
number combustion.

Rocket and aircraft engines are usually developed through component tests, sector
tests, combustor tests, and full engine tests. The response of the flame to acoustic
fluctuations, for example, might be measured in a well-characterized rig and then
included in a model of the full engine. If, however, the flame’s behaviour were
to change slightly when placed in the full engine then the model would contain
unknown model error in a critical component. The model would remain qualitatively
accurate but become quantitatively inaccurate and therefore misleading. Indeed, it
is quite common for thermoacoustic instability to recur in the later stages of engine
development, even though models compiled from component tests predicted it to be
stable (Mongia et al. 2003).

Encouragingly, this sensitivity also explains why thermoacoustic oscillations can
usually be suppressed bymaking small design changes (Mongia et al. 2003; Oefelein
and Yang 1993; Dowling and Morgans 2005). The challenge, of course, is to devise
these small design changes from a quantitatively-accurate model rather than by trial
and error. Adjoint methods combined with gradient-based optimization provide an
excellent mechanism for this (Juniper and Sujith 2018; Magri and Juniper 2013;
Juniper 2018; Aguilar and Juniper 2020). They rely, however, on a quantitatively
accurate model. This chapter explores how experimental or numerical data could be
assimilated in order to create these quantitatively-accuratemodels fromqualitatively-
accurate physics-based models or from physics-agnostic models.

1.3 The Opportunity for Data-Driven Methods in
Thermoacoustics

Allmodels contain parameters that are tuned tofit data.These range fromqualitatively-
accurate physics-based models with O(101) parameters to Gaussian Process surro-
gate models with O(103) parameters, and to physics-agnostic neural networks with
O(106) parameters. The challenge is to create models that are quantitatively accurate
with quantified uncertainties and are sufficiently constrained to be informative.1 To
this end, all the approaches in this chapter take a Bayesian perspective and, where
possible, employ rigorous statistical inference2 (MacKay 2003).

1 Freemon Dyson (2004) quoted Fermi quoting von Neumann saying: “With four parameters I can
fit an elephant, and with five I can make him wiggle his trunk.” Fermi was referring to arbitrary
parameters rather than physics-based parameters but the general point remains that models can
become un-informative if they contain too many parameters.
2 As stated in the introduction to this book: “Machine learning is statistical inference using data
collected or knowledge gained through past targeted studies or real-life experience”.
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The first example is a canonical thermoacoustic system: the hot wire Rijke tube
(Rijke 1859; Saito 1965). Although simple and cheap to operate, it is difficult to
model accurately firstly because the heat release rate is small, meaning that many
visco-thermal dissipation mechanisms are sufficiently large, in comparison, that they
must be included in themodel, and secondly because the heat release rate fluctuations
at the wire cannot be measured directly. A hot wire Rijke tube is, however, easy to
automate, meaning that millions of datapoints can be obtained cheaply and elements
of the system can be moved easily (Rigas et al. 2016). Physics-based models of
the Rijke tube can therefore be constructed sequentially, mirroring data assimilation
from component tests, sector tests, combustor tests, and full engine tests in industry.
The process (MacKay 2003; Juniper and Yoko 2022) is to:

1. choose various plausible physics-based models that could explain the data;
2. tune model parameters by assimilating data from experiments;
3. quantify the uncertainties in the parameters of each model;
4. calculate the marginal likelihood (also known as the evidence) for each model,

and thereby penalise overly-complex models;
5. compare the models against each other and select the best model;
6. add the next component and assimilate more data, allowing the parameters

describing the previous components to float within constrained priors.

The second example is the assimilation of DNS and/or experimental data into
a simplified combustion model, the G-equation (Williams 1985) with around 4000
degrees of freedom (Hemchandra 2009). Two approaches are demonstrated. The first
approach assimilates snapshots of the data sequentiallywith aKalman filter (Evensen
2009), refining model parameters on the fly (Yu et al. 2020). The second approach
assimilates 10 snapshots simultaneously with a Bayesian ensemble of Deep Neural
Networks (BayNNE) (Pearce et al. 2020). This gives almost the same results as the
Kalman filter but is around 106 times faster. Both approaches assimilate data into
physics-based models and obtain the expected values and uncertainties of the model
parameters.

The third example is the assimilation of experimental data into physics-agnostic
models. The models are trained to recognize how close a thermoacoustic system is
to instability from the noise that it emits (Sengupta et al. 2021; Waxenegger-Wilfing
et al. 2021;McCartney et al. 2022).As for thefirst two examples, aBayesian approach
is used so that the model can output its certainty about its prediction. This physics-
agnostic approach is compared with model-based approaches quantified by the Hurst
exponent (Nair et al. 2014), the permutation entropy (Kobayashi et al. 2017), and the
autocorrelation decay (Lieuwen and Banaszuk 2005), which are based on a priori
assumptions of how the noise signal will change as instability approaches.

Other examples of the application of Machine Learning to Thermoacoustics are
in learning the nonlinear flame response with Neural Networks (Jaensch and Polifke
2017; Tathawadekar et al. 2021), identifying nonlinear flame describing functions
(McCartney et al. 2020), modelling the flame impulse response from LES with a
Gaussian Process surrogate model (Kulkarni et al. 2021), and the use of Gaussian
Processes for Uncertainty Quantification (Guo et al. 2021a).
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2 Physics-Based Bayesian Inference Applied to a Complete
System

Physics-basedBayesian inference starts froma set of physics-based candidatemodels
Hi , each of which has a set of model parameters a. For thermoacoustic systems,
typical model parameters would be physical dimensions, temperatures, reflection
coefficients, and a flame transfer function. Data, D, arrive and, at the first level of
inference, we find the parameters of each model that are most likely to explain the
data (MacKay 2003, Sect. 2.6). For thermoacoustic systems, typical data would be
temperatures, pressure fluctuations, or natural emission fluctuations. We start from
the product rule of probability:

P(a, D|Hi ) = P(a|D,Hi )P(D|Hi ) = P(D|a,Hi )P(a|Hi ) (1)

where P(a|Hi ) is our prior assumption about the probability of the parameters,
a, given the model Hi . Bayesian inference requires us to impose prior values for
the model parameters and their uncertainties. This is appropriate because we usu-
ally know the model parameters approximately from previous experiments and will
become increasingly certain about them as an experimental campaign progresses.
The term P(D|a,Hi ) contains the data, D, which is fixed by the experiment, and
the parameters, a, which we wish to obtain for model Hi . For given D, the term
P(D|a,Hi ) defines the likelihood of the parameters, a, of modelHi (MacKay 2003,
p. 29). This likelihood does not have to sum to 1 because the proposed models Hi

are not mutually exclusive or exhaustive. On the other hand, for a given model Hi

and parameters, a, the term P(D|a,Hi ) defines the probability of the data, which
does have to sum to 1. This distinction becomes important when incorporating mea-
surement noise.

The term P(D|Hi ) is the evidence for themodel. This is the RHS of (1) integrated
(also known as marginalized) over all parameter values:

P(D|Hi ) =
∫
a
P(D|a,Hi )P(a|Hi ) da (2)

which is known as themarginal likelihood. At the first level of inference, this quantity
has no significance because we simply find a that maximizes P(a|D,Hi ) for a given
model Hi . It is used in the second level of inference, in which we compare the
marginal likelihoods of different candidate models.

The experiments in this section are performed on a vertical Rijke tube containing
an electric heater, which is moved through 19 different positions from the bottom
end of the tube (Juniper and Yoko 2022; Garita et al. 2021; Garita 2021). The heater
power is set to eight different values until the system reaches steady state. Then a
loudspeaker at the base of the tube forces the system close to its resonant frequency
and probe microphones measure the response throughout the tube. We assimilate the
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decay rates, Sr , frequencies, Si , and relative pressures of the microphones, (Pr , Pi )
into a thermoacoustic network model.

2.1 Laplace’s Method

The most likely parameters, a, and their uncertainties can be found with sampling
methods such as Markov Chain Monte Carlo (Metropolis et al. 1953; MacKay 2003)
or Hamiltonian Monte Carlo. These sample the posterior probability distribution
through a random walk. They can be applied to this thermoacoustic problem (Garita
2021) but are quite slow. The assimilation process can be accelerated greatly by
assuming that all the probability distributions areGaussian (MacKay2003,Chap.27).
The prior probability distribution, which must integrate to 1, is then:

P(a|Hi ) = 1√
(2π)Na |Caa|

exp

{
−1

2
(a − ap)

TCaa(a − ap)

}
(3)

where Na is the number of parameters, ap are their prior expected values and Caa is
their prior covariance matrix. We assume that, for a given modelHi with parameters
a, the measurements D are normally-distributed around the model predictionsD(a):

P(D|a,Hi ) = 1√
(2π)ND |CDD|

exp

{
−1

2
(D(a) − D)TCDD(D(a) − D)

}
(4)

where ND is the number of datapoints and CDD is a diagonal matrix containing the
variance of each measurement. In this example, epistemic uncertainty such as model
error and systematic measurement error is included within CDD .

We define J to be the negative log of the RHS of (1):

J = − log {P(D|a,Hi )P(a|Hi )} (5)

so that the most probable parameter values, amp, are found by minimizing J using
an optimization algorithm. The RHS of (1) is the product of two Gaussians (3), (4),
meaning that the posterior likelihood of the parameters, P(a|D,Hi ), is a Gaussian
centred around amp:

− log {P(a|D,Hi )} = 1

2
(a − amp)

T A (a − amp) + constant (6)

whereA is the inverse of the posterior covariance matrix which, by inspection, is the
Hessian of J :

Ai j = ∂2J
∂aia j

(7)
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The posterior uncertainty in the parameters,A−1, is therefore calculated cheaply. The
integral (2), which can be prohibitively expensive to calculate without the Gaussian
assumption, is now simply:

P(D|Hi ) = P(D|amp,Hi )P(amp|Hi ) (det(A/2π))−1/2 (8)

This integral allows us to rank different models,Hi . By the product rule of probabil-
ity P(Hi |D)P(D) = P(D|Hi )P(Hi ). If the prior probability, P(Hi ), is the same
for each model then the models can be ranked by P(D|Hi ). The fact that (8) is
proportional to det(A)−1/2 penalizes models for which det(A) is large. This tends to
favour models with fewer parameters (hence smaller A) even if they do not fit the
data as well as models with more parameters. This does not, of course, prevent a
model with many parameters from being the highest ranked, as long as the model
fits the data well and the measurement uncertainty is small.

2.2 Accelerating Laplace’s Method with Adjoint Methods

If all probability distributions are assumed to be Gaussian then J is the sum of
the squares of the discrepancies between the model predictions and the experimental
measurements, weighted by our confidence in the experimentalmeasurements, added
to the sum of the squares of the discrepancies between the model parameters and
their prior estimates, weighted by our confidence in the prior estimates:

J = − log {P(D|a,Hi )P(a|Hi )}
= (Sr (a) − Sr )

TC−1
Sr (Sr (a) − Sr ) . . .

+ (Si (a) − Si )
TC−1

Si (Si (a) − Si ) . . .

+ (Pr (a) − Pr )
TC−1

Pr (Pr (a) − Pr ) . . .

+ (Pi (a) − Pi )
TC−1

Pi (Pi (a) − Pi ) . . .

+ (a − a f )
TC−1

aa (a − a f ) + . . . (9)

By inspection, the Jacobian andHessian ofJ contain ∂�/∂ai and ∂2�/∂aia j respec-
tively, where � refers to S�(a) and P�(a). These first and second derivatives can be
found cheaply with first (Magri and Juniper 2013) and second (Tammisola et al.
2014; Magri et al. 2016) order adjoint methods. The remaining terms in J contain
the normalizing factors in (3), (4). The derivatives w.r.t. the measurement uncertain-
ties can also be calculated and one can then optimize to find the measurement noise
that maximizes the posterior likelihood. In this example, the epistemic uncertainty
is embedded within the measurement noise, so assimilating the measurement noise
also assimilates the epistemic uncertainty.

Adjoint codes require a careful code structure and must avoid non-differentiable
operators. The code used here consists of a low level thermoacoustic network model
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that contains floating parameters to quantify all possible local feedback mechanisms
Juniper (2018). The gradients of (S�,P�) w.r.t. all possible feedback mechanisms
are calculated. These mechanisms are then ascribed physical meaning by candidate
models and the gradients w.r.t. each model’s parameters are extracted. The low level
function is called by a mid-level function that calculates J and all its gradients. In
turn this is called by a high level function that converges to amp and then calculates
the likelihoods and marginal likelihoods using Laplace’s method. A separate high
level function performs Markov Chain Monte Carlo by calling the same mid-level
and low-level functions. The code is available at Juniper (2022).

2.3 Applying Laplace’s Method to a Complete
Thermoacoustic System

Matveev (2003) set out to create a quantitatively-accurate model of the hot wire
Rijke tube by compiling quantitatively-accurate models of its components from the
literature. Despite being tuned to be quantitatively correct at one heater position, this
carefully-constructed model is only qualitatively correct at nearby heater positions
(Matveev 2003, Figs. 5-5 to 5-8). This demonstrates the danger of relying on quanti-
tative models from the literature: these models may have been quantitatively correct
for the reported experiment, but they are probably only qualitatively correct for other
experiments. The Bayesian inference demonstrated in this section uses qualitative
models from the literature but, crucially, allows their parameters to float in order to
match the new experiment at all operating points. As will be shown later, this creates
a quantitatively-accurate model over the entire range studied and, if the model is
physically-correct, it can extrapolate beyond the range studied.

Developing a quantitatively accurate model of the hot wire Rijke tube is challeng-
ing because the heat release rate is small and therefore the thermoacoustic driving
mechanism is weak. For the experiment shown here, which is taken from Juniper
and Yoko (2022), the thermoacoustic mechanism contributes around±10 rad s−1 to
the growth rate and±100 rad s−1 to the frequency. For comparison, Fig. 1 shows the
decay rate (negative growth rate) and frequency of acoustic oscillations in the cold
Rijke tube (i) when empty, (ii) with the heater prongs in place, (iii) with the heater
and prongs in place, and (iv) with the heater, prongs, and thermocouples in place.
The growth rate and frequency drifts caused by these elements of the rig, even when
the heater is off, are a similar size to the thermoacoustic effect and cannot be ignored
in a quantitative model. These elements must be modelled but, even after reading the
extensive literature on the Rijke tube such as Feldman (1968); Raun et al. (1993);
Bisio and Rubatto (1999) and the references within them, it is not evident a priori
which physical mechanisms must be included and which can be neglected. Instead,
we propose several physics-basedmodels, assimilate the data into thosemodels using
Laplace’s method combined with adjoint methods, and then select themodel with the
highest marginal likelihood because it is the one that is best supported by the experi-



Machine Learning for Thermoacoustics 315

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-13

-12

-11

-10

-9

-8

-7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1035

1040

1045

1050

1055

1060

1065

Fig. 1 Expected values (±2 standard deviations) of model predictionsD(a) verses experimentally
measured values (±2 standard deviations) D of the growth rates and frequencies of the cold Rijke
tube in four configurations: (i) empty tube; (ii) tube containing heater prongs; (iii) tube containing
heater prongs and heater; (iv) tube containing heater prongs, heater, and thermocouples. Image
adapted from Juniper and Yoko (2022)
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Table 1 log(Best Fit Likelihood) per datapoint and log(Marginal Likelihood) per datapoint for
seven models of the heater prongs in the cold Rijke tube. The second column contains the number
of parameters in each model. The third column describes how the viscous boundary layer on the
prongs is modelled: it is the viscous dissipation in the tube’s boundary layer multiplied by a real
number, a complex number, or zero. The fourth column is the equivalent for the thermal boundary
layer. If the third and fourth columns are joined then the same factor is used for both the viscous
and thermal boundary layers. The fifth column notes whether the blockage of the prongs is included
in the model. Model 4 gives the best fit to the data but is not the most likely model. Model 6 is the
most likely model (highest marginal likelihood) because it achieves a good data fit with just two
model parameters. (Table adapted from Juniper and Yoko 2022)

Model Params Viscous b.l. Thermal b.l. Blockage log(BFL) log(ML)

1 1 Real No −0.3622 −0.7183

2 2 Complex No −0.3549 −0.9117

3 2 Real Real No −0.3529 −0.7683

4 4 Complex Complex No +0.9360 −0.2949

5 1 Zero Zero Yes −3.6955 −3.8696

6 2 Real Yes +0.6781 +0.1010

7 3 Real Real Yes +0.7099 −0.1096

mental data. For example, Table 1 shows the best fit likelihood, P(D|aMP ,Hi ), and
the marginal likelihood, P(D|Hi ), for seven candidate models of the heater prongs.
These models contain various combinations of the viscous boundary layer, the ther-
mal boundary layer, and the blockage caused by the prongs, as described in the
caption. The best data fit is achieved by model 4 but the highest marginal likelihood
is achieved by model 6, which fits the data well with just two parameters. Model 6
contains the blockage caused by the prongs and the visco-thermal drag of the prong’s
boundary layers, which is expressed as a real multiple of the visco-thermal drag of
the tube’s boundary layers. It is re-assuring that the model with the highest marginal
likelihood contains all the expected physics, but remains simple.

This process is repeated for the heater itself and the thermocouples (Juniper and
Yoko 2022) until a quantitatively-accurate model of the cold Rijke tube has been
created. Figure 1 shows the model predictions and experimental measurements for
the final model. This model is quantitatively accurate across the entire operating
range with just a handful of parameters (Juniper and Yoko 2022). Using Laplace’s
method, accelerated by first and second order adjoint methods, this data assimilation
takes a few seconds on a laptop. Using MCMC takes around 1000 times longer on
a workstation (Garita 2021). Although time-consuming, MCMC can be useful in
order to confirm that the posterior likelihood distributions are close to Gaussian,
which justifies the use of Laplace’s method.

The fluctuating heat release rate at the wire cannot be measured directly. Analyti-
cal relationships between velocity fluctuations and heat release rate fluctuations have
been developed (King 1914; Lighthill 1954; Carrier 1955; Merk 1957) but subse-
quent numerical simulations (Witte and Polifke 2017) have shown that numerically-
calculated relationships have a more intricate dependence on Re and St than can be
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Table 2 log(Best Fit Likelihood) per datapoint and log(Marginal Likelihood) per datapoint for
nine models of the heater in the hot Rijke tube. Model parameters are denoted as k with a numerical
index. kc are the model parameters from the cold experiments, which are fixed. The second column
contains the number of parameters in each model. The third and fourth columns describe how the
magnitude and phase of the fluctuating heat release rate are modelled. Qh is the heater power and
QKing is adjusted for King’s lawKing (1914); Juniper and Yoko (2022). The fifth and sixth columns
describe how the visco-thermal drag at the heater is modelled, where is is the angular frequency
and τL is Lighthill’s time delay Lighthill (1954). (Table adapted from Juniper and Yoko 2022)

Model Params Magnitude Phase Viscous
(kc = cold
value)

Thermal
(kc = cold
value)

log(BFL) log(ML)

1 2 k1 × Qh k2 kc kc −4.6018 −4.7039

2 2 k1 × Qh k2 × is kc kc −4.4942 −4.5976

3 3 k1 × Qk3
h k2 kc kc −4.5567 −4.6960

4 2 k1 ×
QKing

k2 kc kc −4.5926 −4.6991

5 2 k1 ×
QKing

k2 × is kc kc −4.5670 −4.6750

6 2 k1 ×
QKing

k2 × isτL kc kc −5.6770 −5.7794

7 4 k1 × Qh k2 × is kc +(k3 +
ik4) × Qh

kc −3.3439 −3.6113

8 6 k1 × Qh k2 × is kc +(k3 +
ik4) × Qh

kc +(k5 +
ik6) × Qh

−3.1981 −3.5952

9 6 k1 × Qh k2 kc +(k3 +
ik4) × Qh

kc +(k5 +
ik6) × Qh

−3.5735 −3.9589

derived analytically. Since the 1970s (Bayly 1986) therefore, researchers have tended
to use CFD simulations or simple relations that are tuned to a particular operating
point (Witte 2018, Table1; Ghani et al. 2020).

Here we propose six candidate models for the heat release rate and two candi-
date models for how the thermo-viscous drag of the heater changes with the heater
power. We then calculate the marginal likelihoods of these models, allowing the
measurement noise to float in order to accommodate epistemic uncertainty such as
systematic measurement error and model error. Table 2 shows the candidate models,
their assimilated parameters, their log best fit likelihood (BFL) per datapoint, and
their log marginal likelihood per datapoint. Model 8 has the highest Marginal Like-
lihood. In this model, the fluctuating heat release rate is proportional to the steady
heat release rate; the time delay between velocity perturbations and subsequent heat
release rate perturbations is the same for all configurations, and the thermo-viscous
drag of the heater element is proportional to the heater power. There is, of course, no
limit to the number of models that can be tested. The interested reader is encouraged
to generate and test their own models using the code (Juniper 2022).
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Fig. 2 Expected values of model 8’s predictionsD(a) verses experimental measurements D of the
growth rates and frequencies of the hot Rijke tube, as a function of heater power and heater position.
The model parameters are obtained by assimilating data from all 105 experimental configurations.
The model is quantitatively-accurate over the entire operating range. (Image adapted from Juniper
and Yoko 2022)

Figure 2 shows the experimental measurements verses the predictions of model 8
for the growth rates and frequencieswhen assimilating data from all 105 experiments.
The agreement is excellent, particularly for the growth rate, which is more practi-
cally important than the frequency. Figure 3 is the same as Fig. 2 but is obtained by
assimilating data from just 8 of the 105 experiments. The results are almost indistin-
guishable, which shows that, once a good physics-based model has been identified,
very little data is required to tune its parameters. This model can then extrapolate
to other operating points, even if they are far from those already examined. This is
a desirable feature of any model and shows the advantage of assimilating data into
physics-based models with a handful of parameters, rather than physics-agnostic
models with many parameters, which would not be able to extrapolate.

As a final comment, this assimilation of experimental data with rigorous Bayesian
inference forces the experimentalist to design informative experiments. Firstly, with-
out an excellent initial guess for the parameter values, it is almost impossible to
assimilate all the parameters simultaneously. This encourages the experimentalist
to assimilate the parameters sequentially with an experimental campaign in which
some of the parameters take known values (usually zero) in some of the experiments.
Secondly, this process reveals systematic measurement error that was previously
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Fig. 3 As for Fig. 2 but when the model parameters are obtained by assimilating data from the eight
circled configurations. This model is also quantitatively accurate over the entire operating range,
showing that this model can extrapolate beyond the assimilated datapoints. (Image adapted from
Juniper and Yoko 2022)

unknown to the experimentalist. This epistemic error is revealedwhen the parameters
shift to absorb the error and seem to uncover impossible physical behaviour.3 Once
this systematic measurement error becomes known, the experimentalist is forced to
remove it or avoid it with good experimental design.

3 Physics-Based Statistical Inference Applied to a Flame

The most influential element of any thermoacoustic system is the response of the
flame to acoustic forcing. This is also the hardest element to model. In this section,
experimental images of forced flames are assimilated into a physics-based model
using the first level of inference described in Sect. 2. The physics-based model can
then be used in thermoacoustic analysis for example (i) in nonlinear simulations, (ii)
to create a nonlinear flame describing function (FDF), or (iii) to create a linear flame
transfer function (FTF).

3 As the OPERA team found in 2012, it is wise to search for systematic error before publishing
results, however eye-catching they seem (Brumfiel 2012).
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3.1 Assimilating Experimental Data with an Ensemble
Kalman Filter

We take our model,H , to be a partial differential equation (PDE) discretized onto a
grid, with unknown parameters a. As before, we wish to infer the unknown param-
eters, a, by assimilating data, D, from an experiment. The model, which has state
ψ , is marched forwards in time from some initial condition to produce a model
prediction, D(ψ), that can be compared with the experimental measurements, D,
over some time period T . In principle, it is possible to use the same method as in
Sect. 2.1 to iterate to the values of a that minimize an appropriate J for all the data
simultaneously. This requires the model predictions,D(ψ), and their gradients w.r.t.
all parameters, ai , to be stored at all moments at which they are compared with the
data D. This is not practical because it would require too much storage. This section
describes an alternative approach that requires less storage.

We consider a level set model of a premixed laminar flame, taken from Yu et al.
(2020). The state, ψ , is the flame position, and the parameters, a, are the flame
aspect ratio β, the Markstein length L , the ratio, K , between the mean flow speed
and the phase speed of perturbations down the flame, the amplitude, ε, of velocity
perturbations, and the parabolicity parameter, α of the base flow, where U/U =
1+ α(1− 2(r/R)2). The parameters β, L , and α are inferred from an image of an
unforced steady premixed bunsen flame. This flame is then forced at 200, 300, and
400 Hz, and the data, D, are experimental images taken at 2800 Hz. The state, ψ , is
marched forward in time by the model,H , with parameters a to an assimilation step.
At the assimilation step, the model prediction D(ψ) is compared with the data D,
and the state ψ and remaining parameters a are both updated to statistically optimal
estimates, as described in the next paragraph. The state, ψ , is then marched forward
to the next assimilation step and the process is repeated until the parameters a have
converged.

If the evolution were linear or weakly nonlinear then a Kalman filter or extended
Kalman filter would be appropriate. The evolution is highly nonlinear, however, with
wrinkles and cusps forming at the flame.We therefore use an ensemble Kalman filter
(EnKF) in which we generate an ensemble of N states ψi from the model H with
different parameter values ai (Evensen 2009). At each assimilation step, we append
each parameter vector ai to its state vector ψi to form an augmented state 
i . The
expected value 
̄ and covariance C

 of the augmented state 
 are then derived
from the ensemble:


̄ = 1

N

N∑

i (10)

C

 = 1

N − 1

N∑
(
i − 
̄)(
i − 
̄)T (11)
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The expected value 
̄ becomes the prior expected value and replaces ap in (3).
The covariance C

 becomes the prior expected covariance and replaces Caa in
(3). The predicted flame position D(ψ̄) is found from the expected state, ψ̄ . The
discrepancy between the experimental flame position D and the model prediction
D(ψ) is then combined with an estimate of the measurement error CDD in (4). The
posterior augmented state 
mp and its inverse covariance A is calculated to be that
which maximizes the RHS of (1), as in Sect. 2.1. The state ψ and parameters a
are extracted from the expected value of the posterior augmented state. N states are
createdwith this posterior expected value and covariance, and the process is repeated.

Figure 4 shows the RMS discrepancy between the experiments, D, and the
expected value of the simulations,D(ψ), for flames forced at three different frequen-
cies. The EnKF is switched on from time periods 10 to 15. The RMS discrepancy
drops by more than one order of magnitude during this time, to a floor set by the
model error. The largest drops in discrepancy occur when the EnKF is assimilat-
ing data just as a bubble of unburnt gases is pinching off from the flame. During
these moments, which are relatively rare, the parameters converge rapidly towards
their final values. This shows that relatively rare events contain more information
than relatively common events, as is quantified, for example, through the Shannon
information content of an event (MacKay 2003, Eq. (2.34)). After 5 time periods the
EnKF is switched off and the tuned models evolve for a further 3 periods without
assimilating data. Figure5 shows the models’ expected values and uncertainties (yel-
low) and the experimental measurements (black) for one further period. This shows
that the EnKF has successfully assimilated the model parameters from the experi-

Fig. 4 Root-mean-square (RMS) discrepancy between experimental data, D, and model predic-
tions,D, for a conical bunsen flame forced at 200, 300 and 400Hz (blue/orange/green, respectively).
Data is assimilated from the experiments into the model (DA) between 10 and 15 periods. The snap-
shots shown in Fig. 5 are taken from the grey window. Image taken from Yu et al. (2020)
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Fig. 5 Snapshots of log-normalized likelihood over one forcing period after combined state and
parameter estimation for 200, 300 and 400 Hz (top/middle/bottom row, respectively). Highly likely
positions of the flame surface are shown in yellow; less likely positions in green. The flame surface
from experimental images is shown as black dots. Image taken from Yu et al. (2020)

mental images and that simulations with these parameters remain accurate beyond
the assimilation period.

The EnKF has the advantages that (i) no calculations are required before the
assimilation process begins, (ii) it can assimilate any experimental flame that can be
represented by the model H . It has the disadvantages that (i) it cannot run in real
time because the computational time of the simulations, O(101) seconds, exceeds
the time between assimilation steps, O(10−3) seconds; (ii) if the ensemble starts far
from the data, the ensemble tends to diverge rather than converge to the experimental
results.

3.2 Assimilating with a Bayesian Neural Network Ensemble

The twodisadvantages of theEnKFcanbeovercome,while retaininguncertainty esti-
mates, by assimilating data, D, with aBayesianNeuralNetwork ensemble (BayNNE)
(Pearce et al. 2020; Gal 2016; Sengupta et al. 2020). Each Neural Network, Mi , in
the ensemble is a repeated composition of the function f (Wix + bi ) where f is a
nonlinear function, x are the inputs, Wi is a matrix of weights, and bi is a vector of
biases. TogetherWi and bi comprise the parameters θi of each neural network. The
set of all parameters in the ensemble is denoted {θi }. The posterior state, 
(D, {θi }),
contains the predicted parameters (e.g. β, L , K , ε, α) of the numerical simulation.
The true targets, a, are the actual parameters of the simulations. The distribution
of the prediction is assumed to be Gaussian: P(
|D, {θi }) = N(
̄,C

). Creating
this predictionmeans learning themean 
̄(D, {θi }) and the covarianceC

(D, {θi })
of the ensemble.
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Each NN in the ensemble produces the expected value,μi (D, θi ), and covariance,
σ 2
i (D, θi ), of a Gaussian distribution by minimising the loss function:

Ji = (a − μi )
T�−1

i (a − μi ) + log(|�−1
i |) (12)

+(θi − θi,anc)
T�−1

prior (θi − θi,anc) (13)

where
�−1

i = diag
(
σ 2
i

)
(14)

and θi,anc are the initial weights and biases of the i th NN. These are sampled from
the prior distribution P(θ) = N(0, �p), where �p = diag(1/NH ), where NH is
the number of units in each hidden layer. The above task is time-consuming but is
performed just once.

The ensemble therefore contains a set of Gaussians, each with their own means,
μi , and covariances, σ 2

i . These are approximated by a single Gaussian with mean

̄(D, {θi }) and covariance C

(D, {θi }) using (Lakshminarayanan et al. 2017):


̄(D, {θi }) = 1

N

N∑
i=1

μi (D, θi ) (15)

C

(D, {θi }) = diag
(
c

(D, {θi })

)
(16)

where N is the number of NNs in the ensemble and

c

(D, {θi }) = 1

N

N∑
i=1

σ 2
i (D, θi ) + 1

N

N∑
i=1

μ2
i (D, θi ) −

(
1

N

N∑
i=1

μi (D, θi )

)2

(17)

The uncertainty of the ensemble therefore contains the average uncertainty of its
members, combined with uncertainty arising from the distribution of the means of
the ensemble members. If this uncertainty is large, the observed data is likely to have
been outside the training data. This task is quick and is performed at each operating
condition.

TheBayNNE is trained on 8500 simulations of the level set solver used in Sect. 3.1.
The parameters varied are the flame aspect ratio β, the Markstein length L , the ratio,
K , between the mean flow speed and the phase speed of perturbations down the
flame, the amplitude of velocity perturbations, ε, the mean flow parabolicity, α, and
the Strouhal number, St. The parameters are sampled using quasi-Monte Carlo in
order to obtain good coverage of the parameter space within fixed ranges. For each
simulation, 200 evenly-spaced snapshots of a forced periodic solution are stored. The
data, D, used for training takes the form of 10 consecutive snapshots extracted from
these images. The total library of data therefore consists of 8500× 200 = 1.7× 106

sets of data, D, each with known parameters a. The neural networks are trained to
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Fig. 6 Top row: experimental images of one cycle of an acoustically forced conical Bunsen flame;
the left half a shows the raw image while the right half b shows the detected edge. Bottom row:
the flame edge and its uncertainty when assimilated into a G-equation model with an EnKF (c) and
a BayNNE (d). With this model, propagation of perturbations down the flame is captured well but
the pinch-off event is not. Image adapted from Croci et al. (2021)

recognize the parameter values a from the data D. Training takes around 12 hours
per NN on an NVIDIA P100 GPU. Recognizing the parameter values takesO(10−3)

seconds on an Intel Core i7 processor on a laptop, which is sufficiently fast to work
in real time.

The top row of Fig. 6 shows 10 snapshots of a forced bunsen flame experiment
alongside the automatically-detectedflameedge.Thebottom rowshows themodelled
flame edge and its variance, assimilatedwith the EnKF (left) and theBayNNE (right).
The flame edge is shown in black. As expected, the expected values found with both
assimilation methods are almost identical. The prediction is close to the experiments
but, because of model error, the EnKF and the BayNNE both struggle to fit the most
extreme pinch off event at 0.6T . The uncertainty in the BayNNE is greater than
that of the EnKF because it assimilates just 10 flame images, while the EnKF has
assimilated over 500 images by the time this sequence is generated. Alternative NN
architectures, such as long-short term memory networks may be able to reduce this
uncertainty.

The fact that the BayNNE assimilates just 10 snapshots is a disadvantage when
the flame behaviour is periodic over many cycles, as in the previous example, but an
advantage when the flame behaviour is intermittent, as in the next example. Inter-
mittency is commonly observed in thermoacoustic systems, particularly when they
are close to a subcritical bifurcation to instability (Juniper and Sujith 2018; Nair
et al. 2014). Bursts of periodic behaviour are interspersed within moments of quasi-
stochastic behaviour and, while these can be identified by eye and with recurrence
plots (Juniper and Sujith 2018), they are not sufficiently regular to be assimilated
with the EnKF.
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In the next example, images of a bluff-body stabilized turbulent premixed flame
Paxton et al. (2019, 2020) are recorded at 10 kHz using OH PLIF, and the flame edge
is extracted and smoothed to remove the turbulent wrinkles. ABayNNE trained on 10
snapshots of G-equation simulations with 2400 combinations of parameters, a, then
identifies the most likely parameters from 10 observed snapshots. In this example
the model contains an extra parameter: the spatial growth rate, η, of perturbations,

Figure 7 shows the five assimilated parameters, (K , ε, η, St, β) and their uncer-
tainties during 430 timesteps of an experimental run imaged at 2.5 kHz. During
this run, there are four to five oscillation cycles. The BayNNE successfully identi-
fies the G-equation parameters that match the experimental results and, importantly,
estimates their uncertainties. At four moments during the run, Fig. 7 shows snap-
shots of the experimental image (top left quadrant) alongside the expected value and
uncertainty from the G-equation simulations. Because the G-equation simulation is
physics-based, it can extrapolate beyond the window viewed in the experiments, as
shown in the images. The distribution of fluctuating heat release rate, with its uncer-
tainty, can be calculated from the model. This can then be expressed as a spatial
distribution of the flame interaction index, n, and the flame time delay, τ , as in Fig. 8,
which can then be entered into a thermoacoustic network model or Helmholtz solver.

4 Identifying Precursors to Thermoacoustic Instability
with BayNNEs

The noise from a thermoacoustically-stable turbulent combustor has broadband char-
acteristics and is often assumed to be stochastic (Clavin et al. 1994; Burnley and
Culick 2000). This assumption is a reasonable starting point for stochastic analysis
(Clavin et al. 1994) but does not exploit the fact that combustion noise contains useful
information about the system’s proximity to thermoacoustic instability (Juniper and
Sujith 2018, Sect. 4). Analysis of this noise usually involves a statistical measure to
detect transition away from stochastic behaviour. This can be a measure of departure
from chaotic behaviour, using techniques for analysing dynamical systems (Gotoda
et al. 2012; Sarkar et al. 2016; Murugesan and Sujith 2016), or the detection of pre-
cursors such as intermittency (Juniper and Sujith 2018; Nair et al. 2014; Scheffer
et al. 2009).

These methods quantify the behaviour that a researcher thinks should be impor-
tant, based on observation of similar systems. This approach is generally applicable
but has the disadvantage that it will miss information that the researcher does not
think is important, and cannot extract information that is peculiar to a particular
engine. Given that this research is motivated by industrial applications in which sev-
eral nominally-identical models of the same engine are deployed, it makes sense
to extract as much information as possible from that particular engine model. In
other words, we ask whether machine learning techniques can learn to recognize
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Fig. 7 Assimilated parameters (K , ε, η,St, β) of a G-equation model of a bluff-body-stabilized
premixed flame during a sequence of 428 snapshots. The parameters are assimilatedwith a Bayesian
Neural Network Ensemble (BayNNE), which also estimates the uncertainty in the assimilated
values. The four flame images show (top-left of each frame) the detected flame edge from the
experimental OH PLIF image and (remainder of each frame) the expected values and uncertainties
in the G-equation model prediction. Image adapted from Croci et al. (2021)

Fig. 8 Spatial distribution of n and τ derived from the G-equation model of the bluff-body-
stabilized premixed flame shown in Fig. 7
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precursors on one set of engines and then identify precursors on another set of
nominally-identical engines. Further we ask whether the machine learning approach
is better than techniques that use a statistical measure. In this section, we examine a
laboratory scale combustor to develop the method, then three aeroplane engine fuel
injector nozzles in an intermediate pressure rig, and then 15 full scale commercial
aeroplane engines.

4.1 Laboratory Combustor

In the first study we place a 1 kW turbulent premixed flame inside a steel tube with
length 800 mm and diameter 80 mm (Sengupta et al. 2021). The system is run at 900
different operating conditions varying power, equivalence ratio, fuel composition,
and the tube exit area. All operating points are thermoacoustically stable, but the
thermoacoustic mechanism is active and some points are close to thermoacoutic
instability.

For each operating point, the combustion noise is recorded at 10, 000 Hz. The
system is then forced for 50 ms at 230 Hz, which is close to the natural frequency of
the first longitudinal mode. The decay rate of the acoustic oscillations is extracted
from the microphone signal. We then train a Bayesian Neural Network ensemble
(BayNNE) to identify the decay rate from 300 ms clips of combustion noise before
the acoustic excitation. The decay rate changes from negative to positive at the point
of thermoacoustic instability, so is a goodmeasure of the proximity to thermoacoustic
instability. The BayNNE returns the uncertainty in its predictions, ensuring that the
model does not make overconfident predictions from inputs that differ significantly
from those on which it was trained. If the priors are specified correctly, this technique
can work with smaller amounts of data and be more resistant to over-fitting (Pearce
et al. 2020).

Before training, all the input variables are normalized in order to remove the
amplitude information. The parameters ai of each ensemble member are initialized
by drawing from a Gaussian prior distribution with zero mean and variance equal to
1/NH , where NH is the number of hidden nodes in the previous layer of the NN.
This initialization means that the distribution of predictions made by the untrained
prior neural network will be approximately zero-centred with unit variance. Each
ensemble member is trained normally, but with a modified loss function that anchors
the parameters to their initial values. This procedure approximates the true posterior
distribution for wide neural networks (Pearce et al. 2020). We train on 80% of the
operating points, retain 20% for testing, and train ten different models using ten
random test-train splits. This ensures the stability of our algorithm’s performance
with respect to different train-test splits.

Figure 9a shows the decay timescale (the reciprocal of the decay rate) predicted
by the BayNNE, compared with the decay timescale measured from the subsequent
response to the pulse. The grey bars show the uncertainty outputted by the BayNNE.
The decay timescales are predicted reasonably accurately. The grey uncertainty bars
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Fig. 9 a Decay timescale, ±2 standard deviations, predicted with a BayNNE, b Hurst exponent c
autocorrelation decay, as functions of the measured decay timescale for thermoacousic oscillations
of a turbulent premixed Bunsen flame in a tube. The BayNNE provides the most reliable indicator
of proximity to thermoacoustic instability. This figure recreated is based on the data in Sengupta
et al. (2021)

widen for the operating points closer to instability because there are only a few
operating points close to instability; the decay timescale exceeds 0.3 s for just 13
operating points in the training set. This shows that the BayNNE can successfully
predict how far the system is from instability while also indicating how confident it
is in that prediction.

Figure 9b, c show the generalizedHurst exponent and theAutocorrelation decay of
the combustion noise as functions of the measured decay timescale. As expected, the
Hurst exponent drops and the autocorrelation decay increases as the decay timescale
increases, showing that thesemeasurements are working as precursors of combustion
instability. They are not as accurate, however, as theBayNNE and contain nomeasure
of uncertainty. It is clear therefore that, when trained on this specific combustor, the
BayNNE out-performs the Hurst exponent and autocorrelation decay. This outcome
would be reversed, of course, if the BayNNE were applied to a different combustor,
without retraining.

We also trained the BayNNEs to recognize the equivalence ratio and burner power
from 300 ms of combustion noise. The BayNNe could recognize the equivalence
ratio with a rms error of 3.5% and the power with a rms error of 2%. This shows
that each operating condition has a unique acoustic signature that the BayNNE can
learn. The experimentalist in the room can hear that all operating conditions sound
slightly different, but cannot recognize the operating condition to the accuracy that
the BayNNE can achieve.

4.2 Intermediate Pressure Industrial Fuel Spray Nozzle

The second study is on an industrial intermediate pressure combustion test rig, which
is equipped with three pressure transducers, sampling at 50 kHz. Experiments are
performed on three different fuel injectors over a range of operating points in order
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Fig. 10 The black line shows the thermoacoustic instability threshold as a function of air-fuel
ratio (AFR) and exit temperature T30 for three aeroplane engine fuel injectors in an intermediate
pressure rig. The coloured lines show the distance to the black line. Injectors 1a and 1b are nominally
identical

Fig. 11 a Hurst exponent, b autocorrelation decay, c permutation entropy calculated from the
pressure signal of injector 1a in the intermediate pressure rig, as a function of the distance to the
instability threshold in Fig. 10a. A positive (negative) distance indicates stable (unstable) thermoa-
coustic behaviour

to identify operating points that are thermoaoustically unstable. The injectors are
labelled 1a, 1b, and 2. Injectors 1a and 1b are nominally identical. The operating
points are identified by their air-fuel ratio (AFR) and their exit temperature (T30). The
threshold of thermoacoustic instability is defined as the operating points at which
the acoustic amplitude exceeds 0.5% of the static pressure. The black lines in Fig. 10
show this threshold in (AFR,T30)–space. Despite being nominally identical, injectors
1a and 1b have instability thresholds at slightly different positions in (AFR,T30)–
space.

We normalize the ranges of AFR and T30 to run from 0 to 1 and then train a
BayNNE to recognize the Euclidian distance to the instability threshold, based on
500 ms of normalized pressure measurements. Stable points are assigned positive
distances and unstable points are assigned negative distances.We compare the predic-
tions from the BayNNE with those from the autocorrelation decay, the permutation
entropy, and the Hurst exponent.

Figure 11a–c show the Hurst exponent, the autocorrelation decay, and the permu-
tation entropy for injector 1a. The Hurst exponent reduces significantly as the system
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Fig. 12 Predicted distance to the instability threshold ±2 s.d. as a function of measured distance
to instability threshold for a injector 1a, b injector 1b, c injector 2 when the prediction is obtained
from a BayNNE trained on injector 1a. Injectors 1a and 1b are nominally identical

becomes unstable and this is a useful indicator of the instability threshold, albeit with
significant unquantified uncertainty. The autocorrelation decay tends towards zero
as the system becomes more unstable but, for this data, barely changes across the
instability threshold and therefore does not provide a useful indicator for the thresh-
old. The permutation entropy drops after the system has crossed the threshold from
stable to unstable operation, meaning that it is not useful as a precursor in these
experiments.

The BayNNE is trained on the training points of 1a and then applied to test points
of 1a, 1b, and 2. Figure 12a shows the distance from instability threshold predicted
by the BayNNE compared with the true distance. Uncertainty bands of the BayNNE
are shown in grey. The BayNNE provides a remarkably accurate prediction of the
distance to instability from the pressure signal alone. Figure 12b shows the distance
from the instability threshold predicted by the BayNNE trained on injector 1a when
applied to the pressure data from the nominally identical injector 1b. The BayNNE
performs well when the system is unstable (distance less than 0) but performs less
well, and assigns itself greater uncertainty, when the system is stable (distance greater
than 0). As mentioned above, 1b is unstable over a different range of (AFR,/T30)–
space than 1a, and, despite this difference, the BayNNE has successfully identified
the distance to instability on the new injector. The prediction is most inaccurate and
uncertain, however, when the system is stable, which is the most useful scenario
because it then acts as a precursor to instability. Figure 12c shows the distance from
the instability threshold predicted by the BayNNE trained on 1a when applied to
the pressure data from injector 2. The BayNNE performs badly, particularly when
the system is stable. This confirms that a BayNNE trained on one thermoacous-
tic system is a good indicator of thermoacoustic precursors on nominally-identical
thermoacoustic systems, out-performing statisticalmeasures, but is not useful for dif-
ferent systems. This is not surprising, given that the BayNNE is using all available
information from the pressure signal of this particular system, while the statistical
methods are quantifying general features in all systems.
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4.3 Full Scale Aeroplane Engine

The third study is on 15 full scale prototype aeroplane engines operating at sea
level (McCartney et al. 2022). The engines are equipped with two dynamic pres-
sure sensors upstream of the combustor, sampling at 25 kHz. The compressor exit
temperature, compressor exit pressure, fuel flow rate, primary/secondary fuel split,
and core speed are sampled at 20 Hz. The core speed is increased (known as a ramp
acceleration) such that the engines deliberately enter a thermoacoustically-unstable
operating region. The instability threshold is defined by the point at which the peak
to peak amplitude exceeds a certain value. Although the engines are nominally iden-
tical, the instability threshold is exceeded at a different core speed for each engine.
Here, we investigate whether a BayNNE trained on the operating points and pres-
sure signals from some of the engines can provide a useful warning of impending
instability during a ramp acceleration in the other engines.

Previously we used BayNNEs to predict the decay rate of acoustic oscillations
(Sect. 4.1) or the distance to instability in parameter space (Sect. 4.2). Now we con-
sider a more practical quantity: the probability that the combustor will become ther-
moacoustically unstable within the next �t seconds during a ramp acceleration. We
assume that this probability depends on the current operating point of the system, the
future operating point, and the time it will take to reach the future operating point. In
line with Sects. 4.1 and 4.2 we also assume that the current pressure signal contains
useful information about how close the combustor is to thermoacoustic instability.
We downsample the signal from a single sensor to 25 kHz, extract 4096 datapoints,
which corresponds to around 160 ms, and then process it: (i) into a binary indica-
tion of whether the peak to peak pressure threshold has been exceeded; (ii) with
de-trended fluctuation analysis (DFA) (Gotoda et al. 2012). The BayNNE is trained
to learn the binary signal at time �t in the future, based on the operating conditions
at time �t in the future and the pressure signal in the present. The future time, �t ,
is varied from 100 ms to 1000 ms in steps of 100 ms. For comparison, a BayNNE
is trained to learn the binary signal at time �t in the future, based on the operating
conditions alone (i.e. without the pressure data).

There are three stages: tuning, training, and testing. In the tuning stage the number
of hidden layers (2–10) and number of neurons in each layer (10–100) are optimized
by performing a random search over these hyperparameters. For each combination,
a BayNNE is trained on the training data and evaluated on the tuning data. We
then select the hyperparameters and number of training epochs that perform best.
In the testing stage, the BayNNE with optimal hyperparameters is applied to the
testing data. This outputs the log likelihood of the BayNNE model, M, given the
data D. The different BayNNEs can then be ranked by the relative sizes of their log
likelihoods. (The absolute value is not important.)

Figure 13 shows the log likelihoods of the BayNNE trained on the operating point
(OP) alone and the BayNNE trained on the operating point and the DFA pressure
signal (DFA). The OP BayNNE is the baseline against which to compare the DFA
BayNNE. For future times below 400 ms, the tuned DFA BayNNE model fits the
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Fig. 13 The log likelihood of observing this data, given (i) the BayNNE trained on the operating
point alone (OP) and (ii) the BayNNE trained on the operating point and DFA pressure signal (OP&
DFA). For prediction horizons lower than 400 ms, inclusion of the pressure signal renders the model
more likely and therefore more predictive. This figure is recreated based on the data in McCartney
et al. (2022)

binary signal at that future time better than the tuned OP BayNNE model. In other
words, the inclusion of pressure data gives smaller errors in the predicted probability
that the threshold will be exceeded at that future time. For future times above
400 ms, the tuned DFA BayNNE model is marginally less likely than the OP
BayNNE. This shows that the current pressure signal contains information that is
useful up to 400 ms into the future, but no longer.

Figure 14 shows the error in the predicted core speed at which the system becomes
unstable. The OP BayNNE knows only the future operating point. The error in the
predicted onset core speed arises fromdifferences between the engines being tested. If
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Fig. 14 Mean error in the predicted core-speed at which the enginewill become thermoacoustically
unstable as a function of time to instability onset as predicted by the BayNNE trained on the OP
alone, and the BayNNE trained on the OP and the DFA pressure signal. This figure is recreated
based on the data in McCartney et al. (2022)
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all the engineswere to behave identically, this errorwould be zero. TheDFABayNNE
knows the future operating point and the current pressure signal. As expected from
Fig. 13, the error in the predicted onset core speed drops around 400 ms before
the instability starts. In other words, in this ramp acceleration, the pressure signal
becomes informative around 400 ms before an instability starts but is not informative
before then.

5 Conclusion

In the late 1990s, we were promised that the internet would change everything.
Three decades later, very few internet-only companies have survived. The winners
have been the companies who integrated the internet into what they did well already.
IfMachine Learning is to sciencewhat the internet was to business then the fields that
thrive will be those that integrate machine learning into what they do well already.
Fluid Dynamics in general, and Thermoacoustics in particular, is well placed to do
this because the methods work well and the industrial motivation is strong.

Machine learning is successful because of its relentless focus on data, rather
than on models, correlations, and assumptions that the research community has
become used to. These models are not badly wrong, but they are rarely quantitatively
accurate, and are therefore of limited use for design. It is particularly powerful to
combine these physics-based models with one of the tools of probabilistic machine
learning: Bayesian inference. By assimilating experimental or numerical data, we
can turn qualitatively-accurate models into quantitatively accurate models, quantify
their uncertainty, and rank the evidence for each model given the data. This should
become standard practice at the intersection between low order models and experi-
ments (numerical or physical). The days of sketching a line by eye through a cloud
of points on a 2D plot should be over. This should be replaced by rigorous Bayesian
inference, with all subjectivity well-defined, and in as many dimensions as required.

For low order models, assimilation with Laplace’s method combined with first
and second order adjoints of those models is fast and powerful. For models with
more than a few hundred degrees of freedom, this method becomes cumbersome.
Nevertheless, it is still possible to assimilate data into larger physics-based models
and to estimate the uncertainty in their parameters using iterativemethods such as the
Ensemble Kalman Filter, or parameter recognition with Bayesian Neural Network
Ensembles. This is a powerful way to combine the practical aspects of Machine
Learning with the attractive aspects of physics-based models. It is demonstrated here
for a simple level set solver but, with enough simulations, could be extended to CFD.

Sometimes, however, we must accept that we do not recognise or cannot model
the influential physical mechanisms in a system we are observing. In these circum-
stances, physics-agnostic neural networks are an ideal tool because they can learn
to recognise features that humans will miss. Perhaps the most striking conclusion
of the experiment reported in Sect. 4.1 is that every operating point had a different
sound and that a Neural Network could recognise the operating point just from that
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sound. A human may suspect this but would be unable to remember them all. This
is an interesting feature for aircraft engines because fleets contains thousands of
nominally-identical but slightly different engines. The signs of impending thermoa-
coustic instability can therefore be learned from the sound on a handful of engines
and applied confidently to the others. This gives a way to avoid thermoacoustic
instability, even if it has been impossible to design it out.

For thermoacoustics, this chapter shows some promising ways to combine 30
years of machine learning with 200 years of physics-based learning. If we continue
to fly long distance or send rockets into space, we will need to continue to avoid
thermoacoustic instability. With novel research methods and continual industrial
motivation, the field of thermoacoustics looks set to be interesting for many decades
to come.
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