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Abstract
Several physics-based candidate models of a laboratory thermoacoustic system are developed. The most likely
parameters of these models are inferred by assimilating data from around 7000 experimental measurements. The
parameter covariance matrix is calculated with Laplace’s method using first and second order adjoint methods. This
covariance matrix quantifies the uncertainties in each parameter, as well as the joint uncertainty of each pair of
parameters. The posterior likelihood is integrated in parameter space to obtain the Marginal Likelihood and Occam
Factor for each candidate model. The Marginal Likelihood quantifies the evidence for each model, given the data, and is
used to rank the models. We find that a two parameter n− τ model is the most likely model and that a model containing
Lighthill’s time delay is the least likely. This method turns qualitatively-accurate models into quantitatively-accurate
models with known uncertainty bounds. The method is general and could be applied widely in thermoacoustics.
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Introduction
Although it is possible to create qualitatively-accurate ther-
moacoustic models, it is difficult to create a quantitatively-
accurate model of a particular system from quantitatively-
accurate models of its components1. This is because ther-
moacoustic systems are often, for physical reasons, exceed-
ingly sensitive to small changes2. This sensitivity introduces
significant systematic error into models and their parameters.
For example, a highly detailed model of thermoacoustic
oscillations of an electric heater in a tube3, despite being
carefully tuned to be quantitatively correct at one heater posi-
tion, was only qualitatively correct at nearby heater positions
(Figs. 5-5 to 5-8)3. For large devices, accurate prediction of
thermoacoustic behaviour is similarly challenging4.

In this study we propose qualitatively-accurate physics-
based thermoacoustic models and then rigorously (i) tune
their parameters by assimilating data from experiments; (ii)
quantify the uncertainties in each model’s parameters; (iii)
quantify the evidence (the marginal likelihood) for each
model; (iv) compare the models and select the best model.

We use a Bayesian approach with Laplace’s method5,6,
which is technically more difficult to implement than
methods such as Markov Chain Monte Carlo. For this
problem, Laplace’s method is several orders of magnitude
faster than Markov Chain Monte Carlo. It therefore provides
a practical method to compare different models quickly and
accurately. The long term goal is to use these quantitatively-
accurate model for adjoint-based control and design.

Experimental configuration
The experimental configuration is a vertical Rijke tube
containing an electric heater7. The stainless steel tube is
1 m long, has internal diameter 47.4 mm and wall thickness
1.7 mm. The heater consists of two concentric annular

ceramic discs with inner diameter 31.6 mm and outer
diameter 47 mm. Flow passes through the central hole
in each disc and over nichrome wire, which is wrapped
around the discs. The electric heater is placed at 19 different
positions from the bottom end of the tube (Tab. 1). Eight
probe microphones record the pressure near the inner surface
of the tube from xm/L = 0.25 to 0.95 in steps of 0.1.
Eight thermocouples are placed from xt/L = 0.2 to 0.9 in
steps of 0.1. The ambient temperature is measured with a
thermocouple at the inlet of the tube.

The heater power is set to 0, 7, 15, 30, 50, 80, 130, 180
Watts, for 62.5 minutes at each power. Every 15 seconds, a
loudspeaker at the base of the tube forces the system close to
its resonant frequency for 6 seconds, referred to in this paper
as a ‘ping’. The probe microphones measure the response
throughout the tube at 10 kHz during the forced and the
decaying period. The system is always thermoacoustically
stable at these heater powers, although the decay rate
depends on the thermoacoustic driving from the heater.

The experiment exhibits a long timescale (typically 1000
seconds), at which the tube heats up and reaches steady
state, and a short timescale (typically 1 second), at which
the acoustic oscillations decay. At the long timescale we
assimilate the thermocouple and sound speed measurements.
At the short timescale we assimilate the decay rate
measurements, assuming that the long timescale flow is
quasi-steady. The quasi-steady assumption is reasonable
because of the large difference in the timescales.
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Table 1. Summary of all the experiments assimilated in this paper. Column 1: The three different cold experiments are labelled C1,
C2 & C3 and the hot experiments are labelled H. Column 2 contains a check mark if the thermocouples were present. Column 3
contains the heater power in Watts. Columns 4 to 23 contain the number of experimental measurements taken at the heater position
shown in the second row. Column 4 is the ‘empty tube’ case, in which the heater and prongs have been removed from the tube.

Heater position (cm)
T Q E 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

C1 – 0 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
C2 – 0 – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
C3 – 0 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
H X 0 40 – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 7 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 15 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 30 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 50 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 80 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 130 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
H X 180 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

Measurement of the local speed of sound
The acoustic frequency at the short timescale depends
strongly on the local speed of sound in the tube. A previous
study7 inferred the local speed of sound from the local gas
temperature measurements. These were assimilated into a
model of the long timescale flow using an ensemble Kalman
filter. Assimilation of the short timescale data into physics-
based models using Markov Chain Monte Carlo implied that
the thermoacoustic behaviour of the heater depended linearly
on its position in the tube8. Although such a model could fit
the data well, we could not conceive a physical reason for this
dependence and suspected instead a systematic bias in one of
the measurements. The linear dependence on heater position
was consistent with a dependence on the length of hot gas
in the tube, which in turn was consistent with a systematic
error in the local temperature. This was also consistent with
the gas temperature measurement being affected by radiation
from the heater. We therefore decided to measure the local
speed of sound directly with the probe microphones.

Before each ping, the loudspeaker sends an impulse down
the tube, known in this paper as a ‘click’. The 8 probe
microphones measure the response along the tube at 62.5
kHz. We find the phase shift that maximises the cross-
correlation function between the microphones (i.e. brings the
measured impulses optimally in phase). This process yields
the time at which the impulse arrives at each microphone
and therefore an estimate of the local sound speed. This local
sound speed is fed into a model of the long timescale flow via
an Ensemble Kalman Filter, described in the next section.

The channels of the acquisition system have slightly
different delays. We measure these delays by performing
several clicks at ambient sound speed. We then subtract these
delays from the measurements, thus removing a significant
source of systematic error. We find that this delay depends on
the sampling frequency so we perform a second calibration
for the ping experiments.

Inference of the long timescale model
parameters with an Ensemble Kalman Filter
The long timescale flow is an unsteady plug flow conjugate
heat transfer model extended from a previous study7 to
include conductive cooling of the tube through contact
with the support structure, conductive heating of the tube

through thermal contact with the heater, heat loss from
the wires upstream of the heating element, and variation
of Nusselt number along the inner wall. Four parameters
characterize: the inviscid drag coefficient of the heater, the
Nusselt number on the outer surface of the tube, the thermal
resistance at the tube mounts, and the proportion of supplied
power that conducts through the tube wall. Two parameters
describe the Nusselt number distribution inside the tube. For
a given configuration, the model outputs the velocity of the
convective flow, the local temperature in the gas, and the
local temperature on the inner and outer walls of the tube.

100 realisations of the long timescale model are iterated as
an ensemble. The parameters of each ensemble member are
randomly sampled from a uniform prior distribution. At each
assimilation step, the ensemble forecast and experimental
measurements are supplied to an Ensemble Kalman Filter
(EnKF). These measurements consist of the temperature at
17 axial locations along the tube wall, the click arrival time at
each microphone, and the measured heater power. The EnKF
returns the expected values and variances of the system’s
state and the model’s parameters. As more data become
available, the state and parameters converge to a constant
values with high certainty. The local sound speed and local
convective velocity are then extracted and used in the model
of the short timescale flow.

Thermoacoustic Network Model for the
short timescale flow

In the ping experiments, acoustic oscillations are forced by
the loudspeaker and damped by acoustic radiation from the
tube, and by visco-thermal damping in the acoustic boundary
layers, around the prongs holding the heater, at the heater,
and at the thermocouples. Acoustic oscillations are also
driven or damped by heat release rate fluctuations at the
hot wire. Acoustic waves are modelled in 40 to 50 acoustic
elements within the tube, depending on the configuration7.
The speed of sound in each element is extracted from the
long timescale model. At the interfaces between the acoustic
elements, the waves in adjacent elements are matched by
jump conditions for the momentum and energy equations.
The viscothermal drag and the heat release rate from the
wire are all modelled as local feedback mechanisms at these
interfaces9. Viscous drag is modelled as local feedback from
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the velocity field into the momentum equation, thermal drag
is modelled as local feedback from the temperature field
into the energy equation, and the heat release rate from the
wire is modelled as local feedback from the velocity field
into the energy equation. Wave reflection at the upstream
and downstream ends of the tube are modelled by complex
reflection coefficients.

We only assimilate data from pings recorded after the
long timescale system has reached steady state. This removes
systematic error due to the delay between the experiment and
the Ensemble Kalman filter. For each configuration we group
all the fixed parameters, variable parameters, and associated
experimental measurements. We then obtain the eigenvalue
(decay rate and frequency) of each configuration and, using
first and second order adjoint methods, obtain the first and
second derivatives of the eigenvalue with respect to all the
variable parameters. These derivatives are then combined to
obtain the derivatives with respect to the viscothermal drag
at the prongs holding the heater, at the heater itself, and at
the thermocouples, as well as the derivatives with respect to
the heat release rate model at the heater. These derivatives
are used in the data assimilation process, described next.

Maximum a Posteriori parameter estimation
Each short timescale model, Hi, has a set of variable
parameters, a. First we assume that each model is true
and infer its parameters from the data D 5. The posterior
probability of the parameters a is:

P (a|D,Hi) =
P (D|a,Hi)P (a|Hi)

P (D,Hi)
(1)

At this level of inference the denominator of (1) is
ignored and the maximum posterior likelihood of the model
parameters, aMP , is found by maximizing the numerator.

The data, D, consists of nine complex numbers for each
ping: the eigenvalue, s (whose real part is the growth rate
and whose imaginary part is the angular frequency), and
the Fourier-decomposed complex pressure, P , at the eight
microphone locations. A cost function, J , is defined as the
negative log of the posterior likelihood. If all distributions
are assumed to be Gaussian then J is the sum of the
squares of the discrepancy between the model parameters
and their prior estimates, weighted by the confidence in
the prior estimates, added to the sum of the squares of
the discrepancies between the model predictions and the
experimental measurements, weighted by the confidence in
the experimental measurements:

J = − log {P (D|a,Hi)P (a|Hi)}
= (sr(a)− zr)TC−1sr (sr(a)− zr) . . .
+ (si(a)− zi)TC−1si (si(a)− zi) . . .
+ (Pr(a)−Qr)

TC−1pr (Pr(a)−Qr) . . .

+ (Pi(a)−Qi)
TC−1pi (Pi(a)−Qi) . . .

+ (a− af )
TC−1aa (a− af ) (2)

where: a is a column vector containing the parameter values;
Caa is the prior covariance matrix of the parameters; af
is a column vector containing the prior estimates of the
parameter values; sr(a) is the model’s growth rate; Csr is

the covariance matrix of the growth rate measurements; zr is
the measured growth rate in the experimental configuration
represented by parameters a; si(a) is the model’s frequency;
zi is the measured frequency; Csi is the covariance of
the frequency measurements; Pr and Pi are the real
and imaginary components of the pressure predictions at
each microphone; Qr and Qi are the real and imaginary
components of the pressure measurements.

The first derivative of the cost function J with respect to
the parameters, a, is derived via a first order Taylor expansion
of (2). It is expressed in terms of the first derivatives of
s and P with respect to the parameters. The derivatives
of s and P are calculated from the network model using
first order adjoint methods2,10. A BFGS (Broyden-Fletcher-
Goldfarb-Shanno) gradient-based optimization algorithm is
used to find the parameter values, aMP , that minimize the
cost function J , given the prior covariance Caa, and the
measurement variances Csr, Csi, Cpr, Cpi. This is known
as the maximum a posteriori estimation (MAP).

If the measurement uncertainties are unknown, for
example if an un-measured or unknown factor is affecting
the measurements, then the measurement variancesCsr,Csi,
Cpr, Cpi can be allowed to float. The derivative of J with
respect to Csr, Csi, Cpr, Cpi is easily calculated from (2).
These derivatives can be included in the BFGS optimization
algorithm in order to find the values of Csr, Csi, Cpr, Cpi

and aMP at which J is minimized.

Parameter error estimation with Laplace’s
Method
The MAP method gives the most likely parameters, a, given
a model, Hi, but does not yet give the uncertainties in the
parameters. This is found with the Laplace Approximation,
which is also known as the Saddle Point Method. In order
to estimate these uncertainties we re-use the assumption
that P (a|D,Hi) is Gaussian around aMP and we define its
inverse covariance matrix around this point as A:

− log {P (a|D,Hi)} =
1

2
(a− aMP )

TA(a− aMP ) + const

(3)

By inspection, A is simply the Hessian of J :

Aij =
∂2J
∂aiaj

(4)

The second derivative of the cost function J with respect
to the parameters, a, is derived via a second order Taylor
expansion of (2). This is expressed in terms of the first and
second derivatives of s and P with respect to the parameters.
The second derivatives, like the first derivatives, are found
with adjoint methods11,12. It is worth mentioning that the
contribution of the second derivatives to A is usually an
order of magnitude smaller than the contribution of the first
derivatives. It is also worth mentioning that the approximate
Hessian created during the BFGS optimization algorithm is
usually an excellent approximation to A. This means that
the second derivatives of s and P , which are expensive
to calculate, often do not need to be calculated. In this
paper, they are only used to improve accuracy of the final
calculation and are not used in interim calculations.
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Model Comparison with Laplace’s Method
At the second level of inference, we wish to infer which
model is most plausible given the data5. By Bayes’ theorem
the posterior probability of each model is:

P (Hi|D) ∝ P (D|Hi)P (Hi) (5)

The second term on the RHS is our prior estimate for
the probability of model Hi, while the first term is the
denominator of (1), which is known as the evidence or
marginal likelihood. Assuming that each prospective model
has equal probability P (Hi) then the models are ranked by
evaluating the evidence:

P (D|Hi) =

∫
a

P (D|a,Hi)P (a|Hi)da (6)

Assuming furthermore that P (Hi|D) is Gaussian, this can
be approximate by

P (D|Hi) ≈ P (D|aMP ,Hi)P (aMP |Hi) (det(A/2π))
−1/2

(7)

where A is the Hessian calculated in (4). This evidence,
which is also known as the Marginal Likelihood, is
calculated cheaply with Laplace’s Method. The most likely
model is that with the largest Marginal Likelihood. The
larger the number of parameters, a, in the model, Hi, the
larger the Hessian, A. This penalizes over-elaborate models
even if they fit the data well.

The Marginal Likelihood, like the MAP point, depends on
the measurement uncertainty. Laplace’s method also gives
the gradient of the Marginal Likelihood with respect to the
measurement uncertainties. This gradient can then be used to
find the Maximum Marginal Likelihood (MML) of a model,
given some data, allowing the measurement noise to float. In
this paper we calculate both the MAP parameter values and
the MML parameter values, and find that both are similar.

MAP and error estimation from the dataset
The data assimilation process described above is an
optimization problem solved with a gradient-based method.
It is tempting to assimilate all the parameters simultaneously
using the entire experimental dataset. This requires, however,
a good initial guess for the parameters and is usually
impractical. Indeed there may be many local optima
corresponding to unphysical model parameters and these
would need to be de-selected after a global optimization
procedure. Instead, in this paper, we assimilate the
parameters sequentially using a priori knowledge that some
of the parameters are zero in some of the experiments.

We start by assimilating the reflection coefficients, Ru

and Rd, at ambient temperature. We use the decay rates
and frequencies from the empty tube experiments, for which
we can assume that Ru = Rd ≡ R by symmetry. Using
reasonable estimates for the measurement noises we obtain
the posterior expected values and covariances for R shown
in row 1 of table 2. We use these values as priors for the
next assimilation, inflating the covariance of R so that it is
not tightly constrained. We then re-assimilate R, together
with the viscothermal drag coefficients of the heater prongs,

kvisp and kthp , using experiments C3 in table 1, in which the
heater prongs were moved down the tube without the heater
attached. At this stage we also calculate the measurement
noises that maximize the MAP. This gives row 2 of table 2.
The prongs have a small but non-negligible influence on the
system. Having calculated kvisp and kthp , we freeze them so
that they play no further role in the assimilation.

Next we use the above prior for R, with covariance
inflation, and re-assimilateR, together with the viscothermal
drag coefficients of the heater, kvish and kthh

, using
experiments C1, C2, and C3, which contain the prongs and
heater but no thermocouples. This gives row 3 of table 3.

Next we use the above priors, with covariance inflation,
and re-assimilate R, kvish , kthh

, and a factor K, defined
such that kvist = K × kvish and ktht = K × kthh

, using the
hot experiments at 0 Watts. This gives row 4 of table 3
and, further, that Re(K) = 0.0156± 0.0074 and Im(K) =
(−8.99± 2.69)× 10−3.

For all the cold experiments, Fig. 1 shows the
model predictions alongside the experimental values, with
uncertainty intervals of two standard deviations. For the
experiments with prongs, heater, and thermocouples, each
heater position was tested on a different day. The variation
in the predicted and measured growth rate and frequency is
due to the different temperature and pressure on each day.

The reflection coefficients and the visco-thermal drag of
the prongs, heater, and thermocouples are assimilated with
the heater turned off so that the thermoacoustic effect is
inactive and can be excluded from the assimilation. When the
heater is turned on, the air leaving the tube is hot and it cannot
be assumed that the downstream reflection coefficient, Rd,
will not change13. We therefore measure Rd using the
multi-microphone method during the hot experiments. This
requires us to re-calibrate the probe microphones and their
acquisition system at the new acquisition rate. We calibrate
the microphones just before each hot run. We predict the
pressure mode from the 0 Watt experiments using the
visco-thermal drag coefficients assimilated previously. The
calibration factor is calculated by dividing the predicted
complex pressure by the measured complex pressure. With
the calibrated microphones, we use the multi-microphone
method to measure Rd during the hot experiments. The
thermoacoustic effect is active and as yet unquantified,
meaning that only the microphones between the heater and
the downstream end of the tube can be used. We find that
Abs(Rd) changes by less than 0.01 and Angle(Rd) changes
by less than 0.04 radians across all the hot experiments. We
find later that, when assimilating keuh

, there is negligible
difference between using Rd from the multi-microphone
method and Rd from the 0 Watt experiments.

Having carefully obtained priors for the reflection
coefficients and the visco-thermal drag coefficients of the
prongs, heater, and thermocouples, we now assume that these
are fixed across all experiments and assimilate keuh

, the heat
release rate at the heater as a function of the acoustic velocity
around the heater. This allows us to inspect the inferred keuh

and its uncertainty as a function of heater power, Qh and
heater position, Xh. Figure 2 shows the expected values and
two standard deviations of Abs(keuh

)/Qh and Angle(keuh
)

from each configuration independently. As expected, the
uncertainty is large when the heater is around the middle of
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Table 2. Parameter values assimilated during assimilations 1 and 2: R is the reflection coefficient at both ends, kvisp and kthp are
the viscous and thermal drag coefficients of the prongs, V (sr) is the variance of the growth rate measurements and V (si) is the
variance of the frequency measurements

Re(R) Im(R) Re(kvisp) Im(kvisp) Re(kthp) ×107 Im(kthp) ×106 V (sr) V (si)
1 −0.9754± 0.0008 +0.0913± 0.0056 – – – – 0.01 1.00
2 −0.9755± 0.0002 +0.0900± 0.0015 +0.102± 0.009 +0.887± 0.109 +3.18± 0.275 −2.99± 0.329 0.070 0.841

Table 3. As for table 2 but for kvish and kthh , which are the viscous and thermal drag coefficients of the heater.

Re(R) Im(R) Re(kvish) Im(kvish) Re(kthh) ×10
6 Im(kthh) ×10

5 V (sr) V (si)
3 −0.9755± 0.0001 +0.0900± 0.0005 +3.80± 0.0623 +22.5± 0.433 +1.95± 0.288 −2.74± 0.201 0.116 0.813
4 −0.9756± 0.0001 +0.0902± 0.0005 +3.88± 0.103 +22.4± 0.428 +2.18± 0.490 −2.82± 0.204 0.216 0.888
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Figure 1. Model predictions and experimental measurements
of the growth rate (top) and frequency (bottom) for the C1, C2,
C3 and 0 Watt H experiments in table 1 after assimilation of the
visco-thermal drag coefficients of the prongs, heater, and
thermocouples. Error bars show two standard deviations.

the tube, because it is then located at a velocity node and
the heat release rate barely fluctuates. Also as expected, the
uncertainty is large when the heater power is low, because
the thermoacoustic effect is weak and difficult to observe.
In regions in which the thermoacoustic effect is strong, this
method successfully assimilates keuh

with small uncertainty.
The values vary smoothly, particularly at high heater powers,
even though all assimilations are independent of each other
and the experiments were done on different days.

Before assimilating all data into candidate models, it
is worth interpreting Abs(keuh

) and Angle(keuh
) through

a simple time delay, through King’s law14, and through
Lighthill’s model15. If the heat release rate at the heater is
proportional to the velocity at the heater some time, τ , earlier
such that q′h = nu′(t− τ) then we calculate τ with:

τ ≡ Angle(keuh
)

ω
(8)

where ω = si is the angular frequency of the acoustic
oscillations. τ is plotted as a function ofQh andXh in figure
3. It is nearly constant across all configurations.

King’s law predicts that Abs(keuh
)/QKing should be a

constant, where

QKing ≡
1

(π Re Pr /2)−0.5 + 2

Qh

Uh
(9)

Figure 4 shows Abs(keuh
)/QKing for all configurations.

There is excellent consistency as the heater power varies but
a significant linear dependence on heater position, which is
unlikely to be physical. This could be caused artificially by
a systematic error in Uh, which is inferred with the Kalman
filter from the long timescale model.

At these Reynolds numbers (Re ∼ 20), Lighthill’s
model15 predicts that τ/τLight should be 1, where τLight ≡
0.2dwire/Uh. Figure 5 shows τ/τLight across all the
configurations. There is a significant dependence on heater
position, which is unlikely to be physical, and significant
deviation from 1. This could also be caused by a systematic
error in Uh, although such a large deviation is not consistent
with our experimental observations. This process highlights
the importance of measuring Uh or Uin if possible. In
our experiment we tried this with a hot wire and with
shadowgraphy but could not achieve sufficient accuracy.
Future experiments will impose Uin with forced convection.

Finally we impose candidate models Hi and assimilate
their parameters for all the configurations. We fix kvist
and ktht but re-assimilate kvish and kthh

to accommodate
possible changes when the heater is hot. The above
parameters are less influential than keuh

, meaning that the
hot measurements could be assimilated either by a small
adjustment in keuh

or a large adjustment in kvish or kthh
.

Having obtained good priors for kvish and kthh
with the

cold experiments, it is important not to allow them to
shift far from their cold values. We achieve this by using
their posterior covariances from the cold experiments as the
prior covariances of the hot experiment. As before, we re-
assimilate the measurement noise.
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Figure 2. The heat release rate is modelled as feedback from
the fluctuating velocity into the energy equation with fluctuating
heat release q′h = u′

h × keuh . This figure shows Abs(keuh)/Qh

and Angle(keuh) assimilated for each configuration individually.

Figure 3. The same data as figure 2(bottom) but with
q′h = Abs(kehh)× u

′
h(t− τ), where τ = Angle(keuh)/si

Figure 6 compares the modelled and measured growth
rates and frequencies for model A, in which q′h = n×
Qh × u′(t− τ). The model parameters are n and τ . Figure
7 compares the modelled and measured results for model

Figure 4. The same data as figure 2(top) but plotting
Abs(keuh)/QKing from equation 9

Figure 5. The same data as figure 2(bottom) but with
q′h = Abs(kehh)× u

′
h(t− τLight).

B, in which q′h = nKing ×QKing × u′(t− τ). The model
parameters are nKing and τ . Figure 8 compares the modelled
and measured results for model C, in which q′h = nKing ×
QKing × u′(t− fτLight). The model parameters are nKing

and f . Table 4 shows the parameter values and the log
marginal likelihood per datapoint for each model. This table
includes model D, in which q′h = n×Qh × exp(iθ) where
n and θ are model parameters, and model E, in which
q′h = nKing ×Qh × exp(iθ) where nKing and θ are model
parameters. The table includes the log best fit likelihood
per datapoint, which measures how well the model fits the
data (less negative implies better fit), and the log Occam
Factor per datapoint, which measures how much the model
has learned from the data (more negative implies better
learning). The Occam Factor is the ratio of the posterior
accessible volume of Hi’s parameter space to the prior
accessible volume, i.e. the factor by which Hi’s hypothesis
space collapses when the data arrive5. As expected, the most
suitable models learn most from the data.

Assuming that the models were equally probable before
the experiment, the evidence for each model is given by
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Figure 6. Predictions vs. measurements for model A

the Marginal Likelihood. This process therefore ranks the
models in order of suitability as: A, D, B, E, C. Model C can
only fit the data with an un-realistically large measurement
error in the frequency. This indicates that the simple n− τ
law (A) is best, with a time delay of 2.26 ms. Figure 6 shows
that it is quantitatively accurate over the range investigated
experimentally. Note that it would be possible to improve
the growth rate fit, if desired, by reducing the uncertainty in
the growth rate measurement. This would, of course, worsen
the frequency fit. King’s law with a simple time delay (B)
performs reasonably well but, as we saw earlier, could be
being let down by systematic error in Uh. The model with
Lighthill’s time delay (C) performs badly.

Conclusion

In this paper we propose several physics-based candidate
models of a thermoacoustic rig. We automate experiments
on the rig and obtain thousands of datapoints at around 170
different configurations. We assume that all uncertainties
are normally distributed and find an expression for the
likelihood of the parameters, given the data, the model, and
prior expected values and covariances of the parameters. We
assimilate the parameters of each candidate model with first
order gradient-based optimization, using first order adjoints.
We then obtain the uncertainties of the parameters with

Figure 7. Predictions vs. measurements for model B

Laplace’s method, using second order adjoints. We integrate
the posterior likelihood in order to obtain the Marginal
Likelihood, which quantifies the evidence for each model.
We then rank each model and conclude that a simple n− τ
model performs best, with a time delay τ = 2.26± 0.02 ms

The method demonstrated here uses experimetal data
to turn qualitatively-accurate models into quantitatively-
accurate models with known uncertainty bounds. It provides
a rigorous and quantitative method to rank candidate models,
based on Bayesian inference. This method can be applied
generally. The most challenging procedure is deriving the
first and second derivatives of the model predictions with
respect to all the parameters. Here, manually-derived first
and second order adjoint methods are used. With recent
software developments, however, automatic differentiation
could also work. In future work we will apply the same
method to a flame in a tube.
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Table 4. Characteristics of five models, Hi, for the heat release rate, q′h, as a function of the acoustic velocity, u′(t), at the heater.
The second column contains the models with their assimilated parameter values. During the assimilation, kvish and kthh are
allowed to drift from their prior expected values, with tight prior covariances; columns 3 and 4 show their posterior values. V (sr) is
the assimilated measurement uncertainty in the growth rate and V (si) is that in the frequency. ML is the marginal likelihood (6),
BFL is the best fit likelihood, and OF is the Occam Factor 5.

Hi q′h × 103 kvish kthh × 106 V (sr) V (si) log(ML) log(BFL) log(OF)

A 0.904×Qh × u′(t− 0.00226) 3.94 + 22.5i 2.39− 26.7i 1.92 2.81 −3.85 −3.68 −0.17
B 0.422×QKing × u′(t− 0.00223) 3.85 + 22.2i 2.09− 28.7i 1.68 17.28 −4.67 −4.52 −0.15
C 0.292×QKing × u′(t− τLight × 2.06) 3.85 + 22.4i 2.04− 28.2i 2.45 128.35 −5.13 −5.00 −0.14
D 0.901×Qh × exp(2.58i) 3.93 + 22.4i 2.35− 26.4i 2.64 2.20 −3.89 −3.72 −0.17
E 0.427×QKing × exp(2.54i) 3.86 + 22.1i 2.11− 28.7i 1.76 17.17 −4.69 −4.54 −0.15

Figure 8. Predictions vs. measurements for model C
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