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Abstract
This study uses a Bayesian machine learning method to infer the parameters of a physics-based model of a bluff-
body-stabilized premixed flame in real-time. An ensemble of neural networks is trained on a library of simulated flame
fronts with known parameters, generated using a level-set solver, LSGEN2D. This trained ensemble then observes
experimental images of a qualitatively similar flame. The ensemble provides reliable estimates of the parameters and
their uncertainties, from which the flame can be re-simulated beyond the observation window of the experiment. Using
the re-simulated flame, the flame surface area, a proxy for the heat release rate, is calculated. The method is general:
once trained, the ensemble can be used to infer the parameters from any bluff-body-stabilized premixed flame as long
as the flame is qualitatively similar and the parameters lie within the ranges in the training library. Recognizing each set
of 10 frames takes milliseconds, which is fast enough to work in real-time.
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Introduction

Thermoacoustics
The prediction and control of thermoacoustic instability is
a persistent challenge in jet and rocket engine design1.
The drive towards lower NOx emissions in gas turbines
has led to the use of lean premixed combustion, which
is particularly susceptible to thermoacoustic instabilities2.
When the heat release rate and the pressure are in phase
during combustion, thermoacoustic instabilities can arise3.
Heat release rate fluctuations are caused by flame surface
area fluctuations, which in turn are caused by velocity
perturbations and flame dynamics4–7. Any physics-based
model must therefore contain the flame’s response to velocity
perturbations. Detailed CFD simulations of the flame can
be used to calculate this response. However, these CFD
simulations are expensive. In this paper we use data to tune
the parameters of physics-based reduced-order models, in
order to reduce the cost while retaining as much accuracy
as possible.

In the simplest physics-based model, the heat release rate
fluctuation is a linear multiple of the velocity perturbation
at the base of the flame some time earlier. The time taken for
perturbations to travel down the flame is modelled by a delay,
τ . This is known as the n− τ model8. This model is too
simple for our purposes as it cannot be used to simulate the
flame dynamics. In this paper we model the flame as the zero
contour (or level-set) of a continuous function that advects
with the flow. This is known as the G-equation model9 and
allows the flame dynamics to be simulated cheaply. To render
the model quantitatively accurate, the parameters of this
model need to be assimilated from experimental data. The
ensemble Kalman filter10 (EnKF) has been used previously

to assimilate data into the G-equation model11,12. The
EnKF performs Bayesian inference to infer the parameters
of the G-equation model by statistically combining model
forecasts with experimental measurements. However, the
computational requirements of the EnKF render online
Bayesian inference unfeasible when measurements are taken
at high frequency. Furthermore, the method can fail to infer
parameters when these vary quickly in time, and suffers
from numerical stability issues when the measurements are
noisy. These are both the case for our experimental data,
which come from high frequency OH planar laser induced
fluorescence (OH PLIF) measurements of a version of the the
Volvo combustor rig13. This study uses an alternative method
for practical online assimilation of data into the G-equation
model of a bluff-body-stabilized flame.

Bayesian deep learning
Bayesian deep learning refers to the use of deep learning
algorithms, such as deep artificial neural networks (NNs),
for Bayesian inference14. Bayesian NNs15 replace the point
estimates of each of the NN’s weights and biases with
Gaussian probability distributions, with means and variances
learned during training. The distribution of every weight
and bias in the NN can be used to infer the outputs from
the inputs, for example inferring the parameters of a model
from experimental measurements. Unfortunately, Bayesian
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NNs of practical size are too expensive to train16. More
recently, ensembles of deep, wide NNs have been used
to perform approximate Bayesian inference17–19, with the
approximation improving with increasing width of the NN’s
hidden layers. These Bayesian NN ensembles (BayNNEs)
learn the mean and variance of the posterior distribution
of the outputs given the inputs. When multiple outputs are
to be inferred, heteroscedastic BayNNEs learn the means
and variances of each output, without assuming a common
variance for all outputs. This study uses heteroscedastic
BayNNEs to infer the parameters of the G-equation model
given experimental observations20,21.

Methods

bluff-body-stabilized premixed flame experiment
Experiments are performed on a version of the Volvo
combustor13,22,23 shown schematically in Figure 1. Premixed
air and propane flow into the combustor and are burnt
by a flame stabilized on a triangular bluff body with side
length D = 3.8 cm. Images of the flame are recorded at
10kHz using OH planar laser induced fluorescence (OH
PLIF) through a window 3D tall and 3.4D wide. As the
air-fuel mixture flows through the combustor, vortices are
shed periodically from the bluff body. These vortices cause
wrinkling and cusping of the flame front.

The images are processed to find discretisations of the
position y = f(x) of the flame front by thresholding and
interpolating the magnitude of the OH gradient vector at each
point. The vectors of positions y are smoothed using splines
with 10 knots. To create an observation vector z representing
a sequence of 10 flame front positions, 10 position vectors
are appended together.

Figure 1. Diagram of the Volvo combustor rig and G-equation
model of the flame. A flame burns premixed air and propane
stabilized on a triangular bluff body. As the air-fuel mixture flows
through the combustor, vortex shedding causes wrinkling and
cusping of the flame front. In the G-equation model, the flame
front is represented by the G = 0 contour (or level-set) of a
continuous scalar field G(x, y, t). Unburnt and burnt gases are
regions where G < 0 and G > 0 respectively. The flame front
travels normal to itself into the unburnt gases with speed sL.
The flame front advects under the prescribed velocity field,
which comprises continuity-obeying velocity perturbations
u′(x, y, t) and v′(x, y, t) superimposed onto a steady base flow
U .

Flame front model
The flame front is assumed to be a thin boundary between
unburnt and burnt gases (see Figure 1). The flame travels
normal to itself into the unburnt gases with laminar flame
speed sL which depends on the gas composition. The

Figure 2. (Top) Plots of OH planar laser induced fluorescence
(OH PLIF) intensity images of the flame taken through the
observation window of the rig. (Bottom) Plots of the magnitude
of the gradient vector of OH intensity, which is taken to be the
flame front.

velocity in the burnt gases does not affect the flame
kinematics. The unburnt and burnt gases are assumed to
travel with velocity u(x, y, t). Under these assumptions, the
flame front is modelled by the G(x, y, t) = 0 contour (or
level-set) of a continuous scalar field G whose motion is
governed by the G-equation:

∂G

∂t
+ u · ∇G = sL|∇G|. (1)

The flow velocity field u is assumed to comprise a constant
and uniform base flow U and super-imposed continuity-
obeying velocity perturbations u′(x, y, t) and v′(x, y, t):

u(x, y, t)
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where U is a characteristic speed, ε is a non-dimensional
amplitude, St is the Strouhal number of the flame with
characteristic length D, excitation frequency f , and nominal
aspect ratio β: St = 2πfβD/U , and K is the ratio of the
characteristic speed U to the perturbation phase speed. The
parameter η is introduced to the flame perturbation model
to allow for the horizontal velocity perturbations to increase
in size with distance from the flame holder, which is the
qualitative behaviour observed in the experiment. This has
proven to be a versatile flame front model in several previous
studies, despite having only a few parameters24. To make
theG-equation model quantitatively accurate, the parameters
K, ε, η, St and β must be tuned to fit an observed flame shape.

Simulated flame front library
LSGEN2D25 is a level-set solver that iterates the G field of
the G-equation model for known parameters K, ε, η,St and
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β. In this study, the G field is iterated until convergence to
a set of 200 different periodic solutions. This is repeated for
2400 combinations of parameters sampled from the ranges
shown in Table 1. The forced cycle states are processed to
find a y = f(x) discretisation of the G = 0 contour, for all
x in the range of the experiment observation window. This is
done by interpolating the G field values for every vertical
coordinate, and recording the positions y in vectors y. To
create a single observation vector z representing a sequence
of 10 flame front positions, 10 position vectors are appended
together. This is repeated for every state in the forced cycle.
The result is a library of 4.8× 105 observation - parameter
pairs.

Table 1. Parameters of the G-equation model that are varied in
this study and the range over which they are varied in order to
generate the synthetic flame front library. vp is the perturbation
phase speed.

Parameter Range Description

K 0.5 - 2 Ratio U/vp
ε 0 - 0.5 Perturbation amplitude
η 0 - 3 Perturbation exponent
St 5 - 30 Strouhal number
β 4 - 8 Flame aspect ratio

Inference using a heteroscedastic Bayesian
neural network ensemble

The posterior probability distribution p(t|z) of the G-
equation parameters t, given the observations z is assumed
to be a multivariate Gaussian with mean vector µ(z)
and diagonal covariance matrix Σ(z) = diag(σ2(z)). An
ensemble of M neural networks are trained on the synthetic
flame front library to predict the mean and variance vectors,
µ(z) and σ2(z). Each neural network in the ensemble
produces estimates µj(zi) and σ2

j (zi) for each observation
vector zi. These estimates are combined as follows:

µ(zi) =
1

M

∑
j

µj(zi), (5)

σ2(zi) =
1

M

∑
j

σ2
j (zi) +

1

M

∑
j

µ2
j (zi)− µ2(zi), (6)

following Ref.26. Each neural network comprises 4 fully
connected layers 600 hidden units wide, and two output
layers (one for the mean vector, one for the variance vector)
each 6 units wide. ReLU activations are used for the hidden
layers, a sigmoid activation is used for the output layer for the
mean and an exponential activation is used for the variance
layer, to ensure positivity. The architecture of one such neural
network is shown in Figure 3. Further hyperparameter details
are listed in Table 3. The weights θj of each neural network
are initialised by sampling from Gaussian prior distributions
with means 0 and covariance matrices Σprior according
to He normalisation27. During training, the weights are
anchored to their initial values θj,anc. The loss function used

for training is:

Lj =
(
µj(z)− t

)T
Σj (z)

−1 (
µj(z)− t

)
+ log (|Σj (z) |)

+ (θj − θanc,j)
T
Σ−1prior (θj − θanc,j) .

(7)

Training the ensemble in this way is known as Bayesian
ensembling with maximum a-posteriori (MAP) sampling.
An ensemble of size M = 20 is trained for 100 epochs
on a Tesla P100 GPU on Google Colab*. This takes
approximately 3 hours. Once converged, the ensemble is
evaluated on the observations, which takes milliseconds.

Figure 3. Architecture of each neural network in the ensemble
of 20. The input and hidden layers have 600 units each, while
each output layer has 6 units each. All layers are fully
connected (FC). Rectified Linear Unit (ReLU) activation
functions are used for the hidden layers and sigmoid and
exponential (Exp) activation functions are used for the mean
and variance output layers respectively.

Results
As each flame front position vector appears in 10 consecutive
observation vectors, there are 10 sets of ensemble parameter
predictions for each flame time step. For each time step,
the re-simulated flame is a weighted average of the flames
re-simulated with the 10 sets of parameters, with a greater
weight given to flames re-simulated using parameters
predicted from an observation vector with the flame front
position vector appearing in the middle of the observation
vector.

Figures 4a - 4d show the experimental images, the
inferred flame positions, and the predictions of the BayNNEs
for 4 consecutive time steps. Each figure also shows the
inferred flame surface area ā(x) as a function of downstream
distance, both in the observed region and in the un-observed
region. As expected, the uncertainty of the flame surface
area increases beyond the observed region. The inferred
flames match the experimental images well in the observed
region. The appropriately-tuned flame model matches the
oscillations in the flame front position and their evolution
with time†. This shows that the method is working well in
the observed region. The model then extrapolates beyond
the observed region, using a velocity field (for the unburnt

∗Google Colaboratory (“Colab”) is a Jupyter notebook environment for
interactive development, https://colab.research.google.com/.
†Supplementary videos can be found at:
https://github.com/nailimixaM/sotic-2021-baynne.
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gas) that obeys continuity and that retains the spatial
growth of oscillation amplitude observed in the observation
window. Although there are no downstream observations, the
predicted flame positions seem reasonable. The parameters
and uncertainties at each time step, shown in Table 2, take
0.5 ms per ensemble member to calculate on a laptop.

Table 2. Mean ± 3 standard deviation parameter predictions by
the ensemble for the sequence of images in Figs 4a to 4d.

Param. Fig. 4a Fig. 4b Fig. 4c Fig. 4d

K 0.7± 0.4 0.7± 0.2 1.0± 0.4 1.1± 0.4
ε 0.3± 0.2 0.3± 0.1 0.2± 0.1 0.2± 0.1
η 1.5± 0.5 1.6± 0.2 1.3± 0.5 1.1± 0.5
St 23.5± 6.8 23.9± 6.6 16.6± 4.2 15.6± 2.9
β 7.5± 0.7 7.4± 1.0 6.8± 0.8 7.2± 0.7

Conclusions
This study uses a Bayesian machine learning method to
infer the parameters of a physics-based model of the flame
front of a bluff-body-stabilized premixed flame. The method
comprises an expensive neural network training step after
which the parameters of any bluff-body-stabilized flame
experiment can be inferred, so long as the parameters fall
within the range of the training data set, in milliseconds.
The surface area per unit depth, a proxy for the heat release
rate, is calculated as a function of downstream distance by
re-simulating the flame beyond the experiment observation
window. Using this method, parameters can be inferred
reliably and in real-time.

This study shows how BayNNEs can be trained to
recognise the parameters of numerical simulations from
images of those simulations, and then used to find
the simulation that best fits experimental results. It is
demonstrated here for a kinematic flame model, but this
could in principle be performed for any CFD solution.
Firstly, this provides a cheap way to store CFD data -
e.g. the parameters of the most relevant CFD solution
for a given experiment can be extracted cheaply, and the
CFD solution then re-calculated. Secondly, it shows how
sparse experimental results can be combined with complete
numerical results to extrapolate, with defined confidence
levels, beyond experimental observations.
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Supplemental material

Table 3. Hyperparameter settings used for neural network
training.

Hyperparameter Value

Training
Train-test split 80:20
Batch size 256
Epochs 100
Optimiser Adam
Learning rate 10−4

Architecture
Input units 600
Hidden layers 4
Units per hidden layer 600
Output layers 2
Units per output layer 6
Ensemble size 20
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