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This theoretical study investigates spinning and
standing modes in azimuthally symmetric annular
combustion chambers. Both modes are observed
in experiments and simulations, and an existing
model predicts that spinning modes are the only
stable state of the system. We extend this model
to take into account the effect that the acoustic
azimuthal velocity, u, has on the flames, and propose
a phenomenological model based on experiments
performed on transversely forced flames. This model
contains a parameter, δ, that quantifies the influence
that the transversal excitation has on the fluctuating
heat release. For small values of δ, spinning modes are
the only stable state of the system. In an intermediate
range of δ, both spinning and standing modes are
stable states. For large values of δ, standing modes
are the only stable state. This study shows that a
flame’s response to azimuthal velocity fluctuations
plays an important role in determining the type
of thermoacoustic oscillations found in annular
combustors.

1. Introduction
Combustion systems such as aeroplane engines and
rocket engines are often susceptible to large amplitude
self-sustained pressure oscillations, called thermoacoustic
oscillations. These lead to excessive noise and sometimes
to structural damage [1]. Self-sustained oscillations occur
when the phase difference between pressure fluctuations
and heat release fluctuations is less than one-quarter
cycle, as described by Rayleigh [2]. These heat release
fluctuations arise from the flames’ response to incident
velocity or pressure perturbations. The flames’ response
therefore plays a crucial role in determining a system’s
thermoacoustic behaviour. In this paper, we use a
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low-order model of a thermoacoustic system to determine the implications of a flame response
that has been observed experimentally in annular combustors.

Annular combustion chambers are commonly used in aircraft gas turbines because they fit
efficiently between the axial compressor and the turbine. Their circumference is much longer than
their length and width, so thermoacoustic oscillations tend to develop in the azimuthal direction.
If they travel in a clockwise or anticlockwise direction, with the pressure and velocity nodes
travelling at the speed of sound, they are called spinning modes. If the nodes are fixed in space
and the wave modulates its amplitude without travelling, then they are called standing modes.
Both types of mode are found in large Eddy simulations (LES), experiments and real engines. See,
for example, Noiray & Schuermans [3] for spinning modes and Worth & Dawson [4], Wolf et al. [5]
for both spinning and standing modes.

Schuermans and co-workers [6] study an annular combustor as a network of acoustic elements,
using a state space representation. Their linear stability analysis predicts that standing modes
are linearly unstable. In time, however, these develop into a spinning mode, which they show
is the only stable limit-cycle of the system. They show that this behaviour is also seen for a
thermoacoustic model containing a one-dimensional wave equation and a nonlinear saturating
pressure-dependent heat release. This model is similar to that which will be used in this paper, in
equation (2.11).

Noiray et al. [7] consider the effect of a non-uniform heat release in the azimuthal direction.
If the acoustic mode has azimuthal dependence of the form cos(nθ ), then they show that a non-
uniform perturbation of heat release of the form cos(2nθ ) is particularly influential. The amplitude
of this non-uniformity is labelled C2n. For C2n = 0, their analysis predicts that only spinning
modes are stable. For larger values of C2n, a sum of standing and spinning modes can be stable.
Above a critical value of C2n, only standing modes are stable.

This does not explain, however, why standing modes are the preferred state of the system
in some rotationally symmetric configurations with C2n = 0, as found in Worth & Dawson [4]
and Wolf et al. [5]. Combustors are very noisy environments, and one explanation could be that
noise causes the thermoacoustic oscillations to switch between different modes [8,9]. Noiray &
Schuermans [3,10] discuss the effect of noise on the system presented by Noiray et al. [7], for a
symmetric configuration (by setting C2n = 0). The only deterministic, stable states of the system
remain the two spinning modes, as it is when there is no noise. However, noise can make the
system jump between the two modes, and, when it does so, the system passes through the vicinity
of a standing mode. Theoretical results and experimental data agree in presenting a probability
density function of the state of the system with two clear peaks on the two spinning modes.
However, this is not consistent with Wolf et al. [5] and with certain configurations of Worth &
Dawson [4], where the system has a statistical preference for standing modes.

In summary, current thermoacoustic models cannot explain why standing modes in symmetric
annular chambers should be a preferred state of the system, despite experimental evidence that
they sometimes are. In this paper, we extend the work by Noiray et al. [7] to include the influence
of transversal flame excitation and show that a phenomenological model that includes transverse
excitation can exhibit stable standing modes as well as stable spinning modes.

The paper is organized as follows: in §2, we present a concise derivation of the one-
dimensional equation (2.11) governing the problem. In §3, we discuss the model for the heat
release, taking into account the transversal forcing in §4. In §5, we discuss how to simulate
equation (2.11) numerically and present some introductory results. In §6, we reduce the problem
to a system of coupled oscillators, and in §7, we discuss its stability. We then apply the method of
averaging and study the resulting phase space, providing a graphical description of the system
in three dimensions.

2. Description of the problem
The geometry under investigation is a thin annular combustion chamber. We study this
problem in cylindrical coordinates and time: (z, R, θ , t) ∈ [0 z∗] × [R1 R2] × [0 2π ) × [0 ∞). z∗ is the
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longitudinal length of the combustor, and R1 and R2 are the radii of the inner and outer surfaces.
For the sake of simplicity, we consider R1 and R2 to be uniform in z. We consider mean and
fluctuating variables, neglecting the influence of viscosity on the flow field. The momentum and
pressure equations for the fluctuating variables, considering only first-order acoustics [11], are

ρ̄
∂u′

∂t
+ ∇p′ = 0 (2.1)

and
∂p′

∂t
+ γ p̄∇ · u′ = ρ̄(γ − 1)q′. (2.2)

In the above expressions, the prime indicates fluctuating components, ρ̄ and p̄ are the mean
density of the gas mixture and the mean pressure, γ = cp/cv is the ratio of specific heat capacities,
and q′ is the fluctuating heat released by the combustion. Spatial averaging has already been
applied, and the effects of a non-uniform speed of sound have been neglected [11]. This is
common to many other studies modelling this problem [7,12]. Terms of order O(ū) are neglected
by assuming a low Mach number flow.1 We study the problem in polar coordinates and drop
the dependence on the radial coordinate because this is weak, even if the gap between the two
cylinders is non-negligible [13]:

ρ̄
∂u′

∂t
+ 1

R
∂p′

∂θ
= 0 (2.3)

and
∂p′

∂t
+ γ p̄

R
∂u′

∂θ
= ρ̄(γ − 1)q′. (2.4)

Here, u′ is the component of the velocity in the azimuthal direction and R ≈ (R1 + R2)/2. We
proceed by non-dimensionalizing the equations, picking a new time scale:

t′ = c̄
R

t → ∂

∂t
= c̄

R
∂

∂t′
, (2.5)

where c̄ is the spatially averaged speed of sound. We introduce the non-dimensional variables
p∗, q∗ and u∗, defined as

p′ = ρc2p∗, (2.6)

q′ = c̄3

R(γ − 1)
q∗ (2.7)

and u′ = c̄u∗. (2.8)

The non-dimensional system of equations, dropping the asterisks and the prime on the time
variable, becomes

∂u
∂t

+ ∂p
∂θ

= 0 (2.9)

and
∂p
∂t

+ ∂u
∂θ

= q − αp. (2.10)

In this expression, we have included a damping term, with a coefficient α > 0. Equations (2.9) and
(2.10) are equivalent to the wave equation, with ∂q/∂t as a source term:

∂2p
∂t2 + α

∂p
∂t

− ∂2p
∂θ2 = ∂q

∂t
. (2.11)

This model has been the common starting point of Noiray et al. [7] and Noiray & Schuermans
[3,10]. It is the one-dimensional counterpart of the model studied by Sensiau et al. [12], where
the whole three-dimensional field is considered. This simplification is not appropriate for the
study of radial and longitudinal instabilities, but allows an analytical treatment of azimuthal
instabilities.
1The azimuthal component of the mean field is induced only by the injectors’ swirlers, and is negligible.
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3. Heat release constitutive equation
The heat release fluctuations, q, are often assumed to depend either on velocity, pressure, or both,
with the inclusion of one or more time delays. However, we start from the analysis of Noiray
et al. [7], where q is a function of p only:

q = f (p) (3.1)

and
f (p) = βp − κp3. (3.2)

The first term depicts linear growth governed by β for small fluctuating pressures. The second
term in (3.2) is a nonlinear cubic saturation, governed by a coefficient κ . For any given κ > 0,
the study of equation (2.11) in terms of a new pressure variable p̃ ≡ p

√
κ leads to a new problem

independent of κ . It follows that the coefficient κ induces simply a rescaling of the problem, and
will be set to 1 in the following analysis. By assuming q = f (p) to be an odd function of p, (3.2) is a
fourth-order-accurate Taylor expansion of f . The analysis carried out in this paper could easily be
extended to higher-order terms.

The theory developed in Noiray et al. [7] based on (3.1) does not predict stable standing
modes for symmetric configurations, which are observed as preferred state of the system in
Worth & Dawson [4] and Wolf et al. [5]. The universal validity of (3.1) is then called into question,
particularly the assumptions of (3.1), which are (i) the absence of a time delay in p and (ii) the
independence of q on anything else except p.

Regarding the first point, q has been found to be reasonably in phase with p in an LES
simulation of a specific, symmetric rig [5]. In that rig, both standing and spinning modes are
observed, suggesting that standing modes are possible in the absence of a time delay. Because
the aim of this paper is to explain how standing modes are possible in symmetric systems, we
do not consider a time delay and assume that p and q are in phase, leaving this investigation for
further research. Some results based on linear stability, applied to an n − τ model, discussing the
importance of the time delay can be found in Sensiau et al. [12].

Regarding the second point, one possibility is to assume that the heat release depends on
the azimuthal coordinate, because combustion happens mainly near the injectors. This can be
performed by introducing a shape function ψ(θ ), which is large near the flames and small far
from the flames:

q =ψ(θ ) f (p) (3.3)

and

ψ(θ ) = 1 + cos(Mθ )
2

, (3.4)

where M is the number of injectors.
The expression (3.4) is one of the many possibilities for such a shape function. The adoption of

the constitutive equation (3.3) instead of (3.1) in the analysis we will develop next does not lead to
any qualitative differences in the stability analysis of the standing and spinning modes, and will
therefore not be discussed further. This means that a spatially accurate description of the heat
release does not explain standing modes in symmetric annular chambers, and therefore suggests
that it is sufficient to consider spatially averaged models for the heat release q. We stress that this
statement does not apply to non-symmetric annular combustors, in which the shape function ψ
is no longer M-periodic in the azimuthal direction, and in the very specific case where M = 2n in
(3.4), where n is the unstable acoustic mode. This latter case is covered by the stability analysis
of Noiray et al. [7], and shows that mixed modes and standing modes are possible. In this case,
the shape function has peaks at the pressure antinodes, and troughs at the pressure nodes of the
standing mode.

One other possibility is to assume, in addition to the dependence of p, a dependence of q on
the azimuthal velocity u, which excites transversally the flames. This possibility is investigated in
this paper.
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(a) (b)

Figure 1. Phase-averaged chemiluminescence images of a standingmode limit cycle in an annular combustor. The imageswere
taken, looking upstream, at two different azimuthal locations. In (a), the flame at the centre is at a pressure antinode, where
there are no azimuthal velocity fluctuations; the chemiluminescence is approximately axisymmetric. In (b), the flame at the
centre is at a velocity antinode,where the azimuthal velocity fluctuations aremaximal; the chemiluminescence is approximately
antisymmetric. The experimental configuration is described in Worth & Dawson [4,15]. (a) Pressure antinode and (b) velocity
antinode. (Online version in colour.)

4. Model of transversal forcing
The effect of transverse excitation on swirling premixed flames is a current topic of research.
Hauser et al. [14] report that an asymmetric perturbation of higher hydroxil radical intensity
is generated by the transversal velocity. This asymmetric region of stronger combustion spirals
around the injector at the forcing frequency. This asymmetry also persists in addition to
longitudinal forcing, suggesting that the two phenomena are superposable.

We report in figure 1 two phase-averaged chemiluminescence images of flames at a pressure
antinode (velocity node) and at a pressure node (velocity antinode), kindly provided by James
Dawson and Nicholas Worth.

In figure 1, at pressure antinodes, there is no transverse velocity excitation. Circles of
positive/negative heat release are shed from the injector and propagate outwards. The fluctuating
heat release is found to be approximately axisymmetric around the injector: at every instant
in time of a limit-cycle, the phase of the perturbation is approximately axisymmetric. This is
consistent with O’Connor & Lieuwen [16], where the vorticity disturbance is symmetric around
the injector at pressure antinodes. At velocity antinodes, the symmetry of the perturbation breaks:
the heat release is found to be approximately in anti-phase on the two sides of the flame, in the
direction of the transverse velocity. In O’Connor & Lieuwen [16], the same break of symmetry
happens for vorticity disturbances, which are asymmetric at velocity antinodes. This means that
the spatially averaged heat release fluctuation of an injector is smaller at velocity antinodes. This
happens because, in the averaging, the zones in anti-phase cancel out in figure 1b. Because the
flame diameter is small compared with the wavelength of the unstable acoustic mode, we can
assume that the flame is acoustically compact, and spatially average the heat release on each
burner.2 Based on this observation, we assume that the fluctuating heat release of an injector is
smaller if a transverse excitation is present, introducing a dependence on the velocity u:

q(p, u) = f (p)μ(u). (4.1)

In expression (4.1), f is the same function introduced in (3.2), and all the previous considerations
apply to it. The function μ is the degree of symmetry of q around a burner, and must be unity for
zero transverse excitation, and smaller than 1 for u �= 0, in the range of velocities investigated:

0 ≤μ(u) ≤ 1 ∧ u
∂μ

∂u
(u) ≤ 0. (4.2)

We study two possibilities for μ:

μ(u) = 1 − δ|u| Case A (4.3)

2See also the comment on the use of spatially averaged models for q in §3.
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and

μ(u) = 1 − δu2 Case B, (4.4)

where δ is a positive coefficient that expresses how strongly the transverse forcing influences
the heat release. Both models must respect (4.2) at every instant of time. The structure (4.1) and
the choice of μ in (4.3) and (4.4) are not intended to be an accurate representation of the flame’s
behaviour, because they are based on qualitative observations. The model is phenomenological,
and the aim is to discuss the effect of transverse forcing on the stability of standing and spinning
modes on a qualitative level.

5. Numerical set-up
Because it is not straightforward to evaluate the time derivative of q in equation (2.11), we opt
to study the system of equations (2.9) and (2.10), where such a derivative is not required. We
project the equations into Fourier space, obtaining a system of ordinary differential equations.
The generic nth complex Fourier mode is governed by the equations

{
u′

n = −i npn,

p′
n = −i nun − αpn + qn

∀n = 1, 2, . . . , Nf . (5.1)

Because q is a nonlinear function of u and p, at each timestep the two functions u(θ ) and p(θ ) are
evaluated from the Fourier coefficients {un} and {pn}, and then q(θ ) is calculated as f (p(θ ))μ(u(θ )).
Finally, the {qn} coefficients are evaluated as a Fourier transform of q(θ ). The system (5.1) can then
be numerically integrated with a numerical scheme.

The damping of this problem has to be adjusted to avoid excessive growth of higher-order
harmonics.

Specifically, we consider only the dissipation owing to the boundary layers, which scales as
the square root of the frequency [11,17]. We take this into account fixing αn = α

√
n in (5.1).

Two examples of two simulations showing a spinning and a standing mode are reported in
figure 2, truncating the number of Fourier modes to Nf = 161. The two pictures do not imply
that the two modes are stable, and only time marching for a long time allows us to check this at
this stage.3 We present here both cases A and B only to show what the two different μ functions
defined in (4.3) and (4.4) look like. Both cases present spinning modes for small values of δ and
standing modes for large values of δ.

The existence of a standing mode at one value of δ and a spinning mode at another is a key
result of this paper. In the following sections, we conduct a stability analysis of these modes to
confirm that they are indeed both stable limit cycles of the nonlinear governing equations.

6. Reduction to a system of coupled oscillators
In this section, we carry out spatial averaging in the azimuthal direction, in the same way carried
out in Noiray et al. [7]. When annular combustors are subject to azimuthal instabilities, there is
usually only one strong Fourier component, which corresponds to the nth lowest acoustic mode
of the chamber. This is apparent from the power spectral density of the Fourier transform of
pressure signals from experiments Worth & Dawson [15], and is also observed in the numerical
solutions of (5.1). We truncate the modal expansion and consider only the nth mode:

u(t, θ ) = nη1(t) sin(nθ ) − nη2(t) cos(nθ ) (6.1)

and

p(t, θ ) = η′
1(t) cos(nθ ) + η′

2(t) sin(nθ ) (6.2)

3The two modes in the two cases will be proved to be stable later with rigour.
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Figure 2. Instantaneous snapshots of two simulations, forα = 0.08,β = 0.10. Pressure and velocity values are reported on
the left scale, whereasμ(u(θ )) values are reported on the right scale. (a)μ from case A, δ = 0.5. The pressure and velocity
waves travel either to the left (if in antiphase, as in this case) or to the right (if in phase). δ is small, so the influence of the
transverse velocity forcing is small, and the spinning mode is stable. The curveμ(θ ) also travels left, following the two waves.
(b)μ from case B, δ = 12. The velocity and pressure are standing waves, and their nodes are fixed in space; pressure nodes
correspond to troughs ofμ, and velocity nodes correspond to peaks ofμ. At the instant in time when the velocity is zero in all
the domain, the functionμ is unitary in all the domain. (a) Stable spinning mode; (b) stable standing mode.

where the second expression was obtained substituting (6.1) into (2.9). We now apply spatial
averaging [11] to this system: we substitute (6.1) and (6.2) into (2.10), multiply the expression by
2 cos(nθ ), and then average over 2π in the azimuthal coordinate, obtaining (6.3):

η′′
1 + αη′

1 + n2η1 = F1 (6.3)

and

η′′
2 + αη′

2 + n2η2 = F2. (6.4)

Here, (6.4) was obtained similarly by multiplying by 2 sin(nθ ). Note that these expressions are
exact, and the assumption that higher-order modes are negligible is applied assuming that the
two source terms Fi on the RHS depend only on the Fourier modes η1 and η2. They are

F1 = 1
π

∫ 2π

0
q
(
η′

1 cos(nθ ) + η′
2 sin(nθ ), nη1 sin(nθ ) − nη2 cos(nθ )

)
cos(nθ ) dθ (6.5)

and

F2 = 1
π

∫ 2π

0
q
(
η′

1 cos(nθ ) + η′
2 sin(nθ ), nη1 sin(nθ ) − nη2 cos(nθ )

)
sin(nθ ) dθ . (6.6)

We can study the system in the new time scale t′ = nt, and obtain

η′′
1 + αη′

1 + η1 = f1(η1, η2, η′
1, η′

2) (6.7)
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Table 1. Characterization of spinning and standing modes.

mode amplitudes and phase trajectory in the plane (η1, η2)

spinning φ = ±π
2 , A= B circle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

standing φ = ±π , arbitrary A, B line with arbitrary slope
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and

η′′
2 + αη′

2 + η2 = f2(η1, η2, η′
1, η′

2), (6.8)

where α �−→ α/n, and the expressions of fi ≡ Fi/n2 and how to evaluate them are reported in
appendix A. This is a system of coupled oscillators, which can be numerically integrated in time
in a four-dimensional phase space, as opposed to the phase space with Nf dimensions introduced
in (5.1).

(a) Amplitudes and phase representation
Instead of studying the system in terms of displacements, ηi, and velocities, η′

i, it is more useful
to study it in terms of amplitudes and phases,

η1(t) = A(t) cos(ωt + ϕ1(t)), (6.9)

η′
1(t) = −A(t)ω sin(ωt + ϕ1(t)), (6.10)

η2(t) = B(t) cos(ωt + ϕ2(t)) (6.11)

and η′
2(t) = −B(t)ω sin(ωt + ϕ2(t)). (6.12)

In these expressions, the frequency ω can, in principle, be perturbed by the parameters of the
problem from the natural frequency of the two oscillators, which is 1. Equations (6.7) and
(6.8) are symmetric in η1, η2. It is useful to introduce the phase difference between the two
oscillators, φ(t) ≡ ϕ1(t) − ϕ2(t). If φ settles to ±π/2 and A = B, then the substitution of (6.10) and
(6.12) into (6.2) shows that the pressure distribution corresponds to a spinning mode in the
counterclockwise/clockwise direction, respectively:

p(t, θ ) = −Aω sin(ωt + ϕ1 ∓ nθ ). (6.13)

This solution spins in the azimuthal direction as in figure 2a. On the other hand, if φ settles to π
or 0, then there is a standing mode, for any value of A, B:

p(t, θ ) =ω sin(ωt + ϕ1)(−A cos(nθ ) ± B sin(nθ )). (6.14)

The pressure nodes can be found by studying the zeros of the θ -term in (6.14). They are fixed
in space, as shown in figure 2b. It is convenient to examine the two cases in the (η1, η2) plane
as a function of time. With reference to equations (6.9)–(6.12), the two modes give rise to limit-
cycles which are either circles or lines. The situation is summarized in table 1. Figure 3 shows two
simulations of trajectories in the (η1, η2) plane for case B. This is similar to fig. 11 in Paschereit
et al. [6]. It is worth noting that the complex number C(t) = 2(η1(t) + i η2(t)) is the indicator
proposed by Poinsot et al. [8] to study the nature of these modes. The two cases have different
values of δ, and lead to either spinning or standing limit-cycles. The simulations have been started
with nearly the same initial condition for φ, and from two random values for A, B.

The main objective of this section is to reduce the original partial differential equation to a
system of coupled oscillators, and to present a simpler way to look at standing and spinning
modes in terms of amplitudes and phase in the (η1, η2) plane. In §7, we will perform a stability
analysis of these modes, and in §9, we will present a phase space realization of the system in terms
of the two amplitudes and of the phase here introduced.
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Figure 3. Temporal evolution to stable limit-cycles, for two different values of δ. In both simulations, α= 0.08,β = 0.10
andμ is from case B. The top plots show the trajectory of the system in the (η1, η2) plane; the black dot is the initial position
and the darkness of the line is proportional to the simulation time t. In this plane, spinningmodes are circles around the origin,
and standing modes are lines centred on the origin, at an arbitrary angle that depends only on the initial conditions. In the left
frames, the spinning mode is stable. In the right frames, the standing mode is stable. The bottom plots show the temporal
evolution of the phase φ between the two oscillators. The values of φ can be compared with those in table 1. (a) δ = 3,
transition to a spinning mode and (b) δ= 12, transition to a standing mode.

7. Stability of the coupled oscillator system
We first report some results from the linear analysis of the fixed point p(t, θ ) = u(t, θ ) = 0 of the
system (6.7) and (6.8). This fixed point is stable for β < α. A double Hopf bifurcation occurs
at β = α, where two complex eigenvalues cross the imaginary axis at the same time. Similarly,
Sensiau et al. [12] perform a linear stability analysis of an azimuthally symmetric chamber and
find two linearly unstable spinning modes with exactly the same growth rate. They conclude
that, in perfectly symmetric systems, the sum of the two identical spinning modes would lead
to a stable standing mode. This is not the case, however, as shown by the fact that, for δ = 0,
and β > α, this system converges to a stable spinning mode, in accordance with Paschereit
et al. [6].

We proceed by analysing the case of the oscillating system, fixing α = 0.08 and β = 0.10, and
focusing on case A. Figure 3 shows that two different values of δ lead to two different limit cycles:
a spinning mode and a standing mode. We now study the system over a range of δ. To do this, we
numerically integrate the system until it converges to a limit cycle, and then track the limit cycle
as we vary δ using MatCont, a numerical continuation package [18]. Figure 4 shows the stability
of the spinning and standing modes.

For δ = 0, the spinning mode is stable, because all its Floquet multipliers are smaller than 1
in figure 4a. At δc2 ≈ 1.027, the modulus of two Floquet multipliers crosses 1, which corresponds
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Figure 4. Stability of standing and spinning limit-cycles with respect to the transversal forcing parameter δ. (a) Modulus of
the Floquet multipliers of both modes. To each, multiplier corresponds an invariant manifold on which the system is attracted
towards the limit-cycle if themodulus is smaller than 1 (continuous lines) or repelled from the limit-cycle if themodulus is larger
than 1 (dashed lines). One limit-cycle is unstable, if there is at least one multiplier larger than 1. From (a), for small values of δ
only the spinning mode is stable, and for large values of δ only the standing mode is stable. The standing limit cycle has two
coincident multipliers equal to 1, whereas the spinning limit cycle has only one multiplier equal to 1 (not visible, covered by the
black line) and a couple of complex conjugate multipliers (indicated with the arrow). From the zoom in (b), we observe there
is a range of δ where both modes are stable. (c) Argument of the Floquet multipliers, which is needed to discuss the type of
bifurcation at criticality. The two non-zero arguments of the spinning mode belong to the complex conjugate pair presented in
(a). (a) Modulus of the Floquet multipliers; (b) zoom of figure; (a,c) argument of the Floquet multipliers.

to a subcritical4 Neimark–Sacker bifurcation at which the spinning mode becomes unstable. The
argument of these two Floquet multipliers, shown in figure 4c, is small. Note that, for δ > δc2,
there is one multiplier with modulus smaller than 1 and two multipliers with modulus greater
than 1. This means that the system is attracting from an invariant manifold5 with dimension 1,
and repelling to another invariant manifold with dimension 2. This is consistent with figure 3b,
where the point is first attracted to the spinning mode (circular line) before being repelled towards
a standing mode (straight line).

For the standing mode, for every value of δ, two multipliers are exactly equal to 1. One of
these is due to the fact that the system is at a limit-cycle and any movement in the direction of
the limit-cycle remains on the limit-cycle (the spinning mode has one too, under the horizontal
black line in figure 4a). The other is due to the fact that the nodes of the standing mode can
rotate arbitrarily around the annulus, i.e. the black line in figure 3b can take any angle with the
axes. A fold bifurcation occurs at δc1 = 0.949, making the mode stable for δ > δc1. Note that, for
δ < δc1, there is one multiplier with modulus smaller than 1 and one multiplier larger than 1. This
means that the system is attracting from a one-dimensional invariant manifold and repelling from
another one-dimensional invariant manifold. This can be seen in figure 3a, where for a while the
solution lingers as a standing mode (straight line) before being repelled towards the spinning
mode (circle line).

4Based on the first Lyapunov exponent, which is positive.

5For the purposes of this paper, an invariant manifold can be thought of as a particular surface in the phase space such that all
points on it are either attracted to or repelled from the same limit-cycle or fixed point. Refer to [19], for a rigorous definition.
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The angular frequency of the limit cycles is not changed by the nonlinearities of the problem:
in the range of parameters investigated, the period of oscillations was found to be constant and
equal to 2π . In summary

— for δ < δc1 ≈ 0.949, only the spinning mode is stable;
— for δ > δc2 ≈ 1.027, only the standing mode is stable;
— for δc1 < δ < δc2, the system is multistable, with both standing and spinning modes stable.

Moreover, for δ < δc1 and δ > δc2, the unstable mode attracts the solution on a one-dimensional
invariant manifold, before repelling it towards the stable mode.

We checked that these stability results, obtained for the system (6.7) and (6.8), apply also
to the original system (2.11) by performing numerical simulations of (5.1) for different values
of δ. For each value of δ, we started the simulation with both standing and spinning modes as
initial conditions, and evaluated their stability by time-marching. The same qualitative picture
was found, with the two critical values of δ confined in these intervals: 0.9< δc1 < 1.0 and
1.1< δc2 < 1.2, in good agreement with the values just presented. This shows that the reduction
to a system of coupled oscillators by considering only the fundamental unstable harmonic, as
presented in §6, is a powerful tool to study the stability of the original wave equation (2.11), at
least for the values of α,β investigated here.

We do not report here the analysis for case B, because the overall behaviour is the same as that
of case A.

8. Slow flow
In this section, we apply the method of averaging to the system of coupled oscillators (6.7) and
(6.8) for case B. We will obtain a new system of differential equations in terms of the amplitudes of
oscillation A, B and of the phase difference φ, introduced from equation (6.9) onwards. This will
reduce the dimensions of the problem from 4 to 3, allowing us to visualize the complete dynamics
of the problem. The method of averaging [20] gives the following formulation of the slow flow:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A′ = α

2
A − 〈s1 f1〉,

B′ = α

2
B − 〈s2 f2〉

ωφ′ = 1
B

〈c2f2〉 + 1
A

〈c1 f1〉,
(8.1)

where si ≡ sin(ωt + ϕi) and ci ≡ cos(ωt + ϕi), and the averaging operator of a generic function h is
introduced as

〈h(η1, η′
1, η2, η′

2)〉 ≡ ω

2π

∫ t+2π/ω

t
h(A cos(ωt + ϕ1), −Aω sin(ωt + ϕ1),

B cos(ωt + ϕ2), −Bω sin(ωt + ϕ2)) dt. (8.2)

Note that, while in the definitions (6.9)–(6.12), the amplitudes and the phases are functions of
time, they are constants in the RHS of (8.2). We fix ω= 1, consistent with the period being 2π as
reported earlier. Some details on how to tackle the four integrals can be found in appendix B,
together with the full equations of the system (8.1).

From now on we fix, as previously, κ = 1,α = 0.08,β = 0.1. The two critical values of δ for
standing and spinning modes are respectively δc1 ≈ 6.2076 and δc2 ≈ 6.2165. We can then visualize
this phase space in terms of A, B and φ, as a function of δ. The amplitudes A, B are non-
negative numbers, and φ ∈ [0, 2π ]. Because the phase space is symmetric with respect to the planes
φ = kπ/2 with k = 0, 1, 2, we restrict the visualization to φ ∈ [π/2,π ]. The system is also symmetric
with respect to the plane defined by A = B.
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Figure 5. Two views of the three-dimensional phase space, in terms of the amplitudes A and B of the two modes and of the
phaseφ between them. δ= 3< δc1. The line A= B= 0 corresponds to the trivial solutionwith zero pressure and velocity in
the whole domain. The three surfaces are invariant manifolds and the direction of the local vector field, which is tangential to
them, is described by the arrows. The spinningmode is reported as a red dot, and the standingmode as a blue arc. For this value
of δ, the spinning mode is stable, and the standing mode is unstable. The phase space is symmetric with respect to the plane
φ = π , with the image of the red dot under symmetry indicating a spinning mode with the opposite azimuthal direction.
There is one more invariant manifold, which is a vertical plane defined by the condition A= B, which is also a second plane of
symmetry of the phase space. It is reported in figure 6. (a) Front view; (b) back view. (Online version in colour.)

Because of the difficulty of drawing a three-dimensional phase space, we report the flow on a
few invariant manifolds. These completely describe the stability of the problem.6 Figure 5 shows
two convenient slices of the same phase space for δ = 3. In figure 5, every shaded surface is an
invariant manifold, and all invariant manifolds are reported, with the exception of the two planes
A = 0 and B = 0, and the plane A = B, which is reported in figure 6. In figure 5, only the spinning
mode is stable, because δ < δc1. We then fix δ = 12> δc2 and present the same slices of the phase
space in figure 7, in which only the standing mode is stable.

In this representation, the addition of a non-zero asymmetry parameter, C2n, as proposed in
Noiray et al. [7], shifts the red point of figure 5 towards one of the A, B axes, maintaining it on
the same plane φ ± π/2. Doing so, the system exhibits a superposition of standing and spinning
modes. As discussed in Noiray et al. [7], above a certain threshold, the red point hits and gets stuck
on one of the A, B axes, becoming a pure standing mode. The current analysis shows that, with
the addition of transverse forcing introduced in (4.1), with μ(u) from case B as defined in (4.4),
the standing mode becomes stable in a different way, without passing through a superposition
of standing and spinning modes. It is worth noting that this analysis could easily be extended to
include the parameter C2n in order to discuss the stability of transverse forcing in non-symmetric
annular chambers.

9. Conclusions
This study improves the current understanding of standing and spinning modes in symmetric
annular combustion chambers, which is the subject of current research [5,6,10,12,15]. The starting
point of this study is the model proposed in Noiray et al. [7]: the fluctuating heat release q is
assumed to grow linearly and saturate nonlinearly as the pressure increases, as q = f (p) = β −
κp3. In our analysis, we add an extra dependence, which reflects experimental observations [14]:

6The flow perpendicular to an invariant manifold is zero.
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Figure 6. Dependence of the slice A= B of the phase space on the transversal forcing parameter δ. This slice is an invariant
manifold, because the normal component of the field is constantly zero. On the left, δ= 3< δc1 and the spinning mode (red
dot) is stable; on the right, δ= 12> δc2 and the standing mode (blue dot) is stable. Note that the parameter δ changes
qualitatively only the vertical component of the vector field, as could be inferred from the previous three-dimensional pictures.
Along theφ-axis, i.e. for A= B= 0, theφ component of the vector field is zero in both cases. (Online version in colour.)
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Figure 7. Two views of the same three-dimensional phase space with δ= 12> δc2. In comparison with figure 5, there is now
a change in direction of the arrows on the non-planar surface. For this value of δ, the standingmodes (blue arc) are now stable,
and the spinning mode (red dot) is unstable. (a) Front view; (b) back view. (Online version in colour.)

the fluctuating heat release fluctuates axisymmetrically at velocity nodes (pressure antinodes),
whereas it fluctuates from side to side at velocity antinodes (pressure nodes), as in figure 1. When
integrated over a sector of the chamber, the q fluctuations are larger in the first case. We then
assume that q = f (p)μ(u), and we study two ways in which q can depend on u. We consider a
case A with μ(u) = 1 − δ|u|, and a case B with μ(u) = 1 − δu2.

For both cases, we find that (i) for small δ, only spinning modes are stable; (ii) for intermediate
δ, both standing and spinning modes are stable, and the system is multistable; (iii) for large δ, only
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standing modes are stable. We show that this standing mode is fundamentally different from the
one found in Noiray et al. [7] in non-symmetric chambers, and it affects the phase space in a
different way, as described in §8 for case B.

Another result is that, when the system has only one stable limit-cycle, the other unstable limit-
cycle is not a repellor: it attracts the solution on one invariant manifold, and repels it on another.
Figure 12 in Paschereit et al. [6] suggests that the same property also applies to their system. If this
property holds in industrial combustors, then noise could randomly shift the point in the phase
space also to the attracting manifold of the unstable mode, and the system could linger for longer
close to the unstable mode before decaying to the stable one. We give an example of this transient
behaviour in figure 3, and we comment on it based on the stability results in §7.

The analysis can be extended by adding higher-order terms in u and p to the model for q in
order to match the model to results from experiments on a single injector. The analysis can be
extended to complex geometries, as long as the flame is acoustically compact.

We mention that the oscillators formulation (6.7) and (6.8), and the slow flow equations (8.1)
can both be used as a physically based model of the combustion process for purposes of control.

This study suggests that transversal forcing plays an important role in annular combustion
instabilities, and should be taken into account to accurately predict instabilities in annular
configurations. The experimental characterization of a single injector to longitudinal forcing
seems to not be sufficient to predict the final state of the combustor.

Acknowledgements. We are very grateful to Nicholas Worth and James Dawson for making their data available
at a previous stage of this work, for offering figure 1, and for helpful discussions on their experiment.
Funding statement. This work was supported by the European Research Council through project ALORS
N.259620.

Appendix A

(a) Spatial averaging
Here, we include the terms on the RHS of (6.7) and (6.8), evaluated with the help of a computer
algebra system. For case B, they are

f1(η1, η̇1, η2, η̇2) = 1
8 (2δη1η2η̇2(2β − 3η̇2

1κ) − 2βη̇1(δη2
1 + 3δη2

2 − 4)

+ η̇3
1κ(δη2

1 + 5δη2
2 − 6) + 3η̇2

2η̇1κ(δ(η2
1 + η2

2) − 2) − 2δη1η2η̇
3
2κ) (A 1)

and

f2(η1, η̇1, η2, η̇2) = 1
8 (δη̇2η

2
2(−2β + 3η̇1

2κ + η̇2
2κ) − 2δη̇1η1η2(−2β + η̇1

2κ + 3η̇2
2κ)

+ η̇2(δη2
1(−6β + 3η̇1

2κ + 5η̇2
2κ) + 8β − 6(η̇1

2 + η̇2
2)κ)). (A 2)

For case A, the evaluation of the integrals (6.5) and (6.6) is difficult. It is necessary to split the
integrals into two domains, in which the argument of the absolute value is either positive or
negative, and then put together the results afterwards. The boundaries of these domains depend
on the argument ϕ of the complex number η1 + iη2. The final result is therefore in terms of ϕ, and
it is too long to be written here. It depends on cosine and sine functions of φ and its multiples.
It is possible to eliminate the dependence on ϕ by trigonometrically expanding the terms, and
substituting these relations for the sine and cosine of ϕ:

sinϕ = η2√
η2

1 + η2
2

(A 3)

and

cosϕ = η1√
η2

1 + η2
2

. (A 4)
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Both cases A and B contain forcing terms that are the same as the ones obtained in Noiray et al. [7]
for δ = 0.

(b) Method of averaging
Here, we show how to evaluate the terms of (8.1) for case B. It is possible to prove that

〈c1f1〉 + i〈s1f1〉 = 1
2π

∫ 2π

0
ei(t+ϕ1)f1(t) dt ≡ F1, (A 5)

where we did not indicate the explicit dependence of f1 on A, B, θ as in the definition (8.2) of the
averaging operator for conciseness, and we set ω= 1. Then, from F1, we can evaluate the two
terms on the left as real and imaginary parts. We can set z = eit, and operate these substitution
in F1: ⎧⎪⎪⎨

⎪⎪⎩
2c1 = ϕ1z + 1

ϕ1z
2s1 = −i

(
ϕ1z − 1

ϕ1z

)
with ϕ1 ≡ eiϕ1

2c2 = ϕ2z + 1
ϕ2z 2s2 = −i

(
ϕ2z − 1

ϕ2z

)
with ϕ2 ≡ eiϕ2 .

(A 6)

We can then change the line integral in F1 to a contour integral on the unit circle of the
complex plane:

F1 = 1
2π

∫ 2π

0
ei(t+ϕ1)f1(t) dt = ϕ1

2π

∮
zf1(z)

dz
iz

= ϕ1

2π i

∮
f1(z) dz. (A 7)

It can be shown that this function presents a single pole at the origin with no branch cuts, so that

F1 = ϕ1

2π i
2π i

∑
|z|<=1

Res[f1] = ϕ1Resz=0[f1]. (A 8)

Note that the expression for f1 is long, and the evaluation of the residue requires the use of a
computer algebra system. The system of equations of the slow flow is

A′ = 1
128

A[64(β − α) − 2B2 cos(2φ)(κ(8A2δ + B2δ + 6) − 10βδ)

− 4βδ(A2 + 6B2) + κ(A4δ + 18A2(B2δ − 2) + 3B2(B2δ − 8))], (A 9)

B′ = 1
128

B[64(β − α) − 2A2 cos(2φ)(κ(8B2δ + A2δ + 6) − 10βδ)

− 4βδ(B2 + 6A2) + κ(B4δ + 18B2(A2δ − 2) + 3A2(A2δ − 8))] (A 10)

and φ′ = 1
64

(A2 + B2) sin(2φ)[κ(δ(A2 + B2) + 6) − 10βδ]. (A 11)
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