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Abstract

This paper explores the analogy between triggering in tbagoustics and bypass transition to turbulence in hydraahycs.
These are both mechanisms through which a small perturbediases a system to develop large self-sustained osmikkatilespite
the system being linearly stable. For example, it explaihg mund pipe flow (Hagen-Poiseuille flow) can become tuntiyleven
though all its eigenvalues are stable at all Reynolds nusaber

In hydrodynamics, bypass transition involves transieoti of the initial perturbation, which arises due to linaan-normality
of the stability operator, followed by attraction towardsexies of unstable periodic solutions of the Navier-Stad@sations,
followed by repulsion either to full turbulence or re-larafization. This paper shows that the triggering procedsémboacoustics
is directly analogous to this. In thermoacoustics, thediired stability operator is also hon-normal and also giigesto transient
growth. The system then evolves towards an unstable pergadiition of the governing equations, followed by repuisaither
to a stable periodic solution or to the zero solution. Thegpalemonstrates that initial perturbations that have highplitudes
at low frequencies are more effective at triggering sefftained oscillations than perturbations that have sinailaplitudes at all
frequencies.

This paper then explores the effect that different typesoidenhave on triggering. Three types of noise are considgried
noise (higher amplitudes at low frequencies), white ncsgmi(ar amplitudes at all frequencies) and blue noise (Bigimplitudes
at high frequencies). Different amplitudes of noise areliagpboth as short bursts and continuously. Pink noiseusdato be
more effective at causing triggering than white noise ané bloise, in line with the results found in the first part of pla@er.

In summary, this paper investigates the triggering meamann thermoacoustics and demonstrates that some typessaf no
cause triggering more effectively than others.
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1. Introduction tems, are non-normal [3, 9], meaning that this attractiontza
from states with lower energy than the boundary.

In some linearly-stable thermoacoustic systems, self- The first aim of this paper is to explore the analogy between
sustained oscillations can be triggered by perturbatioitis w triggering in thermoacoustics and bypass transition irrbghg-
amplitudes similar to the background noise level [1, Gh4]. namics. The second aim is, in light of this link, to investea
This is known as triggering. In some linearly-stable hygrod the effect that different types of noise have on triggerimgi
namic systems, turbulence can be triggered by perturtmtiorsimple thermoacoustic system.
with a similarly small amplitude [2]. This is known as bypass
transition to turbulence. An analogy between the two has bee, . .
suggested [1, ChdlV] but has not yet been investigated fully. 2. Governing equations

While itis clear that non-linear effects are important astonly The thermoacoustic system examined in this paper is identi-
recently been shown that non-normal effects are also inieien cal to that studied by Refs. [3, 10], which contain a complete
[3, 4]. description. In summary, it is a tube of length in which a hot

In hydrodynamics, bypass transition can be divided into fivewire is placed: ; from one end§6.2 of [11]. A base flow is im-
stages [2]. The first stage is initiation of small perturbas  posed through the tube with velocity. The non-dimensional
to the flow. The second stage is linear amplification of thesgjoverning equations for momentum and energy are:
perturbations due to non-normal growth. The third stageis n

linear saturation towards a new unstable quasi-steadpdieri Ou  Op -0 (1)
state. The fourth stage is growth of secondary instalslitie ot Ox ’

top of this periodic base flow. The fifth stage is breakdown

to turbulence, where non-linearities and/or symmetryakirgg dp Ou

instabilities excite an increasing number of scales in te.fl 5% Tz TSP~ Bo(z —zf)x

The second, third and fourth stages can also be considered 1 1\ 2
in terms of dynamical systems [5, 6, 7]. A boundary in state <‘— +up(t—71)| — (5) ) = 0, 2
space is identified between trajectories that decay to a- lami
nar solution and trajectories that evolve to a turbulenitsmh. The system has four control parametets:which models
This is known as the ‘edge of chaos’. Trajectories from cery,e gamping;3, which encapsulates all the information about
tain regions of state space are attracted towards this Bound 4 hot wire, base flow and ambient conditionswhich is the
Those that are attracted from lower energy states exhibit thy,e delay between the velocity at the wire and the subsequen
non-normal transient growth identified in stage 2. The beundy,g4¢ release and, which is the position of the wire. The heat
ary itself corresponds to the unstable periodic state ifletin =~ o566 parametef, is equivalent td: /v in [3].
stage_ 3 In hydrodynamics, this boundary contains_ sevetalh £ the system examined in this pap@u, 9 andp are both
eroclinic saddle points and at least one local relativaelitr, gt 6 zer0 at the ends of the tube. These boundary conditions
each corresponding to a periodic travelling wave solutidn [ 5.6 enforced by choosing an appropriate basis set:
The saddle points have at least two unstable eigenvaluégin t

boundary. This means that trajectories enter along theiirest N

manifolds and exit along their unstable manifolds with@at- u(w,t) = Y m;(t)cos(jmz), 3)
ing the boundary. The state therefore wanders from the-vicin j=1

ity of one travelling wave solution to the vicinity of anothe N 0 (t)

until it reaches a local relative attractor. The local iekat- plat) = =Y (;—W> sin(jmx), (4)

tractor (an unstable attractor), has just one unstableneidee j=1

so.trajectorie:-s enter from all directions along the bquylmm where the relationship betwegnands; has not yet been spec-
exit perpendicular to the boundary. Whether this trajgcioen jgeq. |n this Galerkin discretization, all the modes aréhog-
evolves towards a laminar solution or towards a turbuleltt-so o5 1t s important to point out that these modes are not, in
tion, corresponding to stage 5 above, depends on the @recti yaperal, the eigenmodes of the system. They are merely the
in which it exits the boundary. This, in turn, depends veny-se pacis set into which andp are decomposed. The governing

sitively on its initial position in phase space at stage 1. equations then reduce to two ordinary differential equmestitor
In thermoacoustics, the analogous boundary is between tra:n mode labellegt

jectories that decay to zero, which are analogous to the lami
nar solution, and trajectories that evolve to high ampétaellf- .

sustained oscillations, which are analogous to the turibsie- qIT (j_ﬂ) =0, (5)
lution. Recent studies, such as [8], have shown that a trajec

starting from this boundary can evolve to the high amplitude d /9
state. If the analogy is appropriate, however, trajecsoiiem dt <
other regions of state space will be attracted towards thisid-

ary and then be repelled either to a high or a low amplitude % (‘} Fup(t—7)

state. Thermoacoustic systems, like many hydrodynamic sys
2

7:.
) + 7 + G (ﬁ) +2Bsin(jmay). ..

- (3) )0, ©

im

=




where
N

up(t —7) =Y it — 7) cos(kmay). (7)
k=1
The state of the system is given by the amplitudes of the
Galerkin modes that represent velociy, and those that rep-
resent pressurej;/jm. These are given the notatian =
(n,...,nn)T andp = (11 /x, ..., nn /Nm)T. The state vec-
tor of the discretized system is the column vectoe (u; p).
The most convenient measure of the size of the perturbagons
the acoustic energy per unit volume:
1 1 1 g

E:—2 _2:_
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where|| - || represents the 2-norm.

Equations (5 - 6) can be linearized into the form/dt = Figure 2: Energy distribution between the modes of thedhiti
Lx, from which it is found thail. is non-normal [3]. (A non- states (modes 11-20 have zero energy). Initial states 1 to 10
normal operator satisfids” L # LL*, whereH denotes the have low energy, initial states 11 to 20 have high energy.
Hermitian transpose.) Non-normality gives rise to lineant
sient growth, which is one of the main features of this paper.
negligible difference. The time-marching procedure used i
similarly robust to changes in timestep.

From an initial state, the system converges to either a sta-
ble PS or the zero solution. If the initial state is close to a
100 stable solution, the system will be attracted towards itthéf

/ initial state is far from a stable solution, however, thetegs

3. Dynamical system behavior

) acts more interestingly. The aim of this section is to shoat th
10 the unstable PSs can act as attractors during the transiase p
before repelling the trajectory towards one of the stabla-so
e AELT tions. Such manifolds anenstable attractorsand are found in
physical systems such as pulse-coupled oscillators [13s&
— manifolds have a stable eigenvalue in at least one dimension
10™ s (often more) and an unstable eigenvalue in at least one other
dimension.
' . . To demonstrate this, twenty differentinitial states araweed
15 2 forward in time for3 = 0.75 using a4*" order Runge-Kutta
scheme to solve (5 - 6). These initial states have been chosen
Figure 1: Bifurcation diagram for the 20-Galerkin mode syst  because they are all initially attracted towards the higimsta-

with 7 of 0.02. The black points indicate the starting points for ble PS. For each initial state, the total initial acoustiergy is
the time marching routine, taken @t= 0.75. shown as a dot on Fig. 1 and the initial energy distribution be

tween the Galerkin modes is shown in Fig. 2. Initial states 1

The bifurcation diagram in Fig. 1 shows the periodic solu-t0 10 have less energy than the minimum energy on the higher
tions of (5 - 6) with¢; = 0.0542+0.01y/7, z; = 0.3,7 = 0.02 unstable PS. Initial states 11 to 20 have more energy than thi
andN = 20, calculated with a bifurcation analysis tool for De-  For the ten initial states with low energy, the evolution of
lay Differential Equations [12]. Fig 1 plots the minimumase  the first three Galerkin modes is plotted in Fig. 3. They ini-
tic energy during the periodic solution (PS) as a functiopof tially evolve towards the same periodic trajectory in sttace,
The Floquet multipliers of all points on the PSs are caladat which is the higher unstable PS. The energies of the first two
to determine whether they are stable (solid lines) or utstab modes grow transiently towards this while those of the third
(dashed lines). Fig. 1 is similar to those in Refs. [1, Chl Fig (and higher) modes decay. Although not shown in Fig. 3, the
1.17][8]. trajectories then continue alongside the unstable PS ferak

Even though the system is linearly stableor 5 > 0.866, hundred time units before either decaying to the lower stabl
it can support a high amplitude self-sustained PSfor 0.478 PS or growing to the higher stable PS [10]. It is worth noting
and a separate low amplitude PS for 0.722. The bifurcation  that most of the energy in these initial states is in the finste
to the lower PS af = 0.866 is sub-critical. Galerkin modes. A full analysis of the transient growth @

The system considered in this paper is discretised with 2@nd a non-linear adjoint looping algorithm for finding thevio
Galerkin modes, as results with higher numbers of modes showest initial energy than can evolve to the higher unstabled?s c
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unstable PSs include regions with lower energy than thetpoin
with lowest energy on the respective unstable PS. This low en
ergy region reaches the unstable PS via linear transientlyro
which is a feature of non-normal systems. This process of at-
traction followed by repulsion is directly analogous to bgp
transition to turbulence in hydrodynamics. Specificallydr-
responds to stages three and four in Ref. [2] and the unstable
attractors are simpler versions of the ‘edge of chaos’ desdr

in Refs. [5, 6, 7].

During the evolution, each Galerkin mode oscillates at its

% 5 ) 5 20  » 30 own frequency, which varies in time and is not necessasly it
Time natural frequency. The frequency and growth rate of the first

Galerkin mode, which has the highest energy, are calculated

Figure 3: Time evolution from the ten low energy initial ssit o .
shown in Figure 1. The acoustic energy of the first 3 Galerkinfrom the data in Figs. 3 and 4. They are plotted as functions

modes is plotted. Higher Galerkin modes exhibit a similar deg;sa}ﬁ:ligltr;?;tgslzllgl. t(? fz%r I(?c;mrs;?frse)l t?rhlg éljszpﬁ;cgl"zr:r)o
cay to the third mode. 9 '

growth rate. The low energy stable PS (LES) lies to the right o
Fig. 5 and the high energy stable PS (HES) lies to the left. The
unstable PS, to which the initial states all converge, lethée
middle. Initial states 1 to 10 have positive growth ratesag

this point while initial states 11 to 20 have negative groreties
towards this point.
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Figure 4: Time evolution from the ten high energy initialtsta
shown in Figure 1. The acoustic energy of the first 3 Galerkin
modes is plotted. Higher Galerkin modes exhibit a similar de
cay to the third mode.

Growth ratewy,

be found in Ref. [10]. Figure 5: Evolution of the frequency and growth rate of the
For the ten initial states with high energy, the evolution of 1** Galerkin mode from starting points (white circles) to eithe

the first three Galerkin modes is plotted in Fig. 4. They alsdhe high stable PS (black squares) or the low stable PS (black

evolve towards the higher unstable PS and, from there, reith&ircles). Top frame: low energy initial states. Bottom fiexm

to the lower stable PS or to the higher stable PS. Theselinitidigh energy initial states.

states, however, lose a large proportion of their energindur

the transient period. This can partly be explained by thepgdam

ing model,(; = 0.0552 + 0.01+/j, which damps higher modes

more than lower modes. It is worth noting, however, that most The phase portraits in Fig. 5 represent measurable outputs

of the initial states 11 to 20 start with more energy in the firs and can be compared with previous theoretical and experimen

three modes than initial states 1 to 10. Thus growth or decagal results. In a comprehensive theoretical and experiahent

from an initial state cannot be determined simply with an enstudy, Ref. [8] found trajectories between the unstable RS a

ergy threshold condition. the stable PSs that are very similar to those found in thigipap
Figs 1 to 4 demonstrate that the higher unstable PS is an uiRef. [8, Figs. 8,9], however, considered only the fundamlent

stable attractor whose basin of attraction spans a wideggner mode. Transient growth or transient decay towards the unsta

range. Trajectories that are attracted towards this PSltéfe u ble PS cannot be modelled in a single mode system [10], which

mately repelled either towards the higher stable PS or therlo means that Ref. [8] could capture the transition away froen th

stable PS. Although not shown in this paper, the same is truenstable PS but could not capture the preceding transient be

of the lower unstable PS [10]. The basins of attraction ohbot haviour that is the subject of this paper.
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4. Triggering with noise

The previous section assumes that the system is noiselgss an
deals with triggering to sustained oscillations from a giirg-
tial state. This is useful as it gives the maximum initial yye
below which all states decay to the zero solution (or to theslo
stable PS) in a noiseless system. This section examine$-the e
fect of forcing the system with low levels of noise, firstly as
bursts of noise, secondly as continuous noise.

Noise can be divided conceptually into four types: additive
noise, where a small forcing is added continually to theesyist
parametric noise, where coefficients in the governing egusit
vary; multiplicative noise, where noise amplitude is prepo
tional to the current state of the system [14]; and modaleois
where energy is redistributed between the Galerkin modes,

without any overall change in energy. This paper deals with ) ] o ] .
additive noise. Figure 6: White noise profile in terms of the forcing signal’s

At certain parameter values and forcing levels, the evauti @MPplitude (top time series) and energy (bottom time series)
of the system is very sensitive to the initial conditions #mel ~ Each Galerkin mode is forced with equal amplitude (bottom
forcing. This means that simulations with stochastic fogci Par chart) but randomly-distributed phase (top bar chare
become less clear to analyse. In order to make simulations r&0ise level is quantified by the maximum energy of the signal,
peatable and comparable with each other, the charaateristi  Which is1.49 x 1072,
the noise are determined in advance by specifying ampktude
and relative phases of the forcing of the first 10 Galerkin esod

u,and p,

Energy

Phase

Amp.

Above thel0'" Galerkin mode, the response of the system to -l Y
forcing is very weak and thus is not used here to form the noise Bl AW ,,,,,,,,,,,,,,,,,,,
profiles. This forcing signal is periodic, with period equal 0
that of the natural frequency of the first Galerkin mode. €hre osf

Energy

types of noise are considered: white noise, in which eachemod
is forced equally; pink noise, in which the lower modes are
forced more than the higher modes; and blue noise, in which /\’\’VM

,,,,,,,

the higher modes are forced more than the lower modes. .l

Energy

4.1. Bursts of noise % 0 20 3 40 50 e 70 8

Small bursts of noise in the system are examined in order
to discover whether certain noise profiles are more suagessf
than others at triggering sustained oscillations. As shiowi3,
certain initial states are more successful at triggerirsgesned
oscillations in a noiseless system. It seems logical to asgp
therefore, that the same will be true of bursts of noise.

The first noise profile is white noise, in which every Galerkin ) ) ]
mode has equal amplitude, Fig. 6. The evolution of acousti®ith higher amplitude than the lower Galerkin modes. The

energy is shown in Fig. 7, in which this noise is added for 4Maximum energy of the forcing signal &6 x 10~?, which

5 and 6 periods. Each time unit correspondéda, seconds, is 2.5.t|mes greate.r than tha_t of the V\{hlte. noise profllle. T_he
where L, is the tube length and, is the speed of sound, so evqlut!on of acoustic energy is shown in Fig. 9, in which this
these bursts would be of order 10 ms in a typical Rijke tube. Noise is added for 4, 5 and 6 periods.

The three plots in Fig. 7 capture the three types of behavior The three plots in Fig. 9 capture the same three types of
that are expected. After forcing for 4 periods (top plote th behavior seen for the white noise. The blue noise, howeser, r
system is not yet in the basin of attraction of the unstable PQuires much higher energy than the white noise to triggér sel
(dashed line) and subsequently decays to the zero soldtfen. sustained oscillations. This is expected from the resolfS]
ter forcing for 5 periods, the system reaches the basinwfatt in which it was shown that a system reaches sustained oscilla
tion of the unstable PS, is attracted towards this solutimh a tions from a lower initial energy when that energy is maimly i
from there, grows to the stable PS (solid line). After fogsfor  the lower Galerkin modes.  Although not shown here, similar
6 periods, the system decays to the stable PS without passiggnulations with pink noise show that, as expected, leseygne
via the unstable PS. (6.9 x 10~%) is required to trigger the system to self-sustained

The second noise profile is shown in Fig. 8. This is a blueoscillations than is required for white noise.
noise profile, in which the higher Galerkin modes are forced As well as triggering the system from the zero solution to the

5

Figure 7: Evolution of the energy of the system with bursts of
white noise for 4, 5 and 6 periods (shaded), showing attracti
to the stable (S) and unstable (U) PSs.
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Figure 8: Blue noise with energy6 x 10~3 (as for Fig. 6) Figure 10:
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Time Figure 11: Energy evolution of the system with a 10 period
burst of pink noise (shaded), showing transition from ttvedo
Figure 9: As for Fig. 7 but for blue noise. stable PS (S) to the higher stable PS (S) via the higher uestab
PS (V).

lower stable PS, noise can trigger the system from the lower . ) ) .
stable PS to the upper stable PS. An example of this is showhjrough the action of low energy noise has been seen in experi

for the pink noise profile in Fig. 10 with maximum energy men.tal combust_ors, such as Fn Liegwen [15, Fig. 15].
3.92 x 10~4, applied for 10 periods. This corresponds to veloc- It is worth noting that additive noise can also reduce the sys

ity and pressure perturbations of less tha®.2% at the wire. (€M'S acoustic energy, particularly when added to the fighe

The evolution of acoustic energy is shown in Fig. 11. The topGalerkin modes. This is as expected from the 10 higher energy

plot shows the jump from the lower stable PS (solid line) ® th POINts In§3.
higher unstable PS (higher dashed line) during the time when . )
the noise is applied (shaded). The bottom plot shows thessubs?-2- Continuous noise
quent evolution from the higher unstable PS to the highélsta  Continuous noise is more representative of a real system tha
PS in the absence of noise. As expected ff@nit takes very  the bursts of noise studied §.1 but the analysis i§3, which
little energy for pink noise to trigger the system to the ligh Wwas for a noiseless system, is less applicable. Continumias n
stable PS. was added to the system in a similar manneg4dl and as

In summary, pink noise is more effective at triggering to thePefore, pink noise was the most effective for triggeringtte t
stable PSs than white noise, which in turn is more effectimat ~ Nigh stable PS, and blue noise was the least effective.
blue noise. Noise can cause triggering from the zero salutio
to the stable PSs, as well as from the lower to the higherestabls conclusions
PS. Very little noise is required, particularly if it leavé® sys-
tem in a similar state to the 10 lower energy point§3nwhich This paper explores the analogy between triggering in ther-
will grow transiently to the unstable PS. In more complexthe moacoustics and bypass transition in hydrodynamics. The be
moacoustic systems, where the degree of non-normality anldaviour of a simple thermoacoustic system [3, 10] is com-
transient growth is higher [4], the latter effect will be mor pared with that of simplified models of hydrodynamic systems
pronounced. Such rapid triggering to high energy osailfegi  [2, 5, 6, 7]. In the thermoacoustic system, it is shown thisigin
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states over a wide energy range evolve first towards an uastab
attractor and then towards a stable solution, which is ejtkee
riodic or zero. Some of these states have lower energy tlean th
lowest energy on the unstable attractor and make use of non-
normal transient growth to reach it, which is directly amglos

to bypass transition in hydrodynamics. These initial staigve
higher amplitudes at low frequencies.

In light of this analogy, this paper then explores the effect
that different types of noise have on triggering. Three $ype
of noise are considered: pink noise (higher amplitudeswat lo
frequencies), white noise (similar amplitudes at all freies)
and blue noise (higher amplitudes at high frequencies). The
noise is applied both as short bursts and continuously. th bo
cases, pink noise is more effective than white noise, whsch i
more effective than blue noise, at causing triggering tayaéui
stable periodic solution. Indeed, blue noise can even inhib
triggering. These results concur with the results in thé fiest
of the paper. The noise signature of flames has been shown to
be pink in nature [16], so these results are pertinent fotedlic
flame systems.

In hydrodynamics, non-normal transient growth is a key part
of bypass transition, and explains why flows that have no un-
stable eigenvalues become turbulent with small pertushati
In thermoacoustics, triggering is directly analogous tpdss
transition and therefore non-normal transient growth d @iy
an important role. Even though the thermoacoustic system ex
amined in this paper is only slightly non-normal, it exhélstg-
nificant transient growth towards an unstable attractois &h
likely to be even more important in more realistic thermags:zo
tic systems, which are significantly more non-normal [4].
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