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Abstract

This paper explores the analogy between triggering in thermoacoustics and bypass transition to turbulence in hydrodynamics.
These are both mechanisms through which a small perturbation causes a system to develop large self-sustained oscillations, despite
the system being linearly stable. For example, it explains why round pipe flow (Hagen-Poiseuille flow) can become turbulent, even
though all its eigenvalues are stable at all Reynolds numbers.

In hydrodynamics, bypass transition involves transient growth of the initial perturbation, which arises due to linearnon-normality
of the stability operator, followed by attraction towards aseries of unstable periodic solutions of the Navier-Stokesequations,
followed by repulsion either to full turbulence or re-laminarization. This paper shows that the triggering process in thermoacoustics
is directly analogous to this. In thermoacoustics, the linearized stability operator is also non-normal and also givesrise to transient
growth. The system then evolves towards an unstable periodic solution of the governing equations, followed by repulsion either
to a stable periodic solution or to the zero solution. The paper demonstrates that initial perturbations that have higher amplitudes
at low frequencies are more effective at triggering self-sustained oscillations than perturbations that have similaramplitudes at all
frequencies.

This paper then explores the effect that different types of noise have on triggering. Three types of noise are considered: pink
noise (higher amplitudes at low frequencies), white noise (similar amplitudes at all frequencies) and blue noise (higher amplitudes
at high frequencies). Different amplitudes of noise are applied, both as short bursts and continuously. Pink noise is found to be
more effective at causing triggering than white noise and blue noise, in line with the results found in the first part of thepaper.

In summary, this paper investigates the triggering mechanism in thermoacoustics and demonstrates that some types of noise
cause triggering more effectively than others.
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1. Introduction

In some linearly-stable thermoacoustic systems, self-
sustained oscillations can be triggered by perturbations with
amplitudes similar to the background noise level [1, Ch1§IV].
This is known as triggering. In some linearly-stable hydrody-
namic systems, turbulence can be triggered by perturbations
with a similarly small amplitude [2]. This is known as bypass
transition to turbulence. An analogy between the two has been
suggested [1, Ch1§IV] but has not yet been investigated fully.
While it is clear that non-linear effects are important, it has only
recently been shown that non-normal effects are also influential
[3, 4].

In hydrodynamics, bypass transition can be divided into five
stages [2]. The first stage is initiation of small perturbations
to the flow. The second stage is linear amplification of these
perturbations due to non-normal growth. The third stage is non-
linear saturation towards a new unstable quasi-steady periodic
state. The fourth stage is growth of secondary instabilities on
top of this periodic base flow. The fifth stage is breakdown
to turbulence, where non-linearities and/or symmetry-breaking
instabilities excite an increasing number of scales in the flow.

The second, third and fourth stages can also be considered
in terms of dynamical systems [5, 6, 7]. A boundary in state
space is identified between trajectories that decay to a lami-
nar solution and trajectories that evolve to a turbulent solution.
This is known as the ‘edge of chaos’. Trajectories from cer-
tain regions of state space are attracted towards this boundary.
Those that are attracted from lower energy states exhibit the
non-normal transient growth identified in stage 2. The bound-
ary itself corresponds to the unstable periodic state identified in
stage 3. In hydrodynamics, this boundary contains several het-
eroclinic saddle points and at least one local relative attractor,
each corresponding to a periodic travelling wave solution [7].
The saddle points have at least two unstable eigenvalues in the
boundary. This means that trajectories enter along their stable
manifolds and exit along their unstable manifolds without leav-
ing the boundary. The state therefore wanders from the vicin-
ity of one travelling wave solution to the vicinity of another
until it reaches a local relative attractor. The local relative at-
tractor (an unstable attractor), has just one unstable eigenvalue
so trajectories enter from all directions along the boundary but
exit perpendicular to the boundary. Whether this trajectory then
evolves towards a laminar solution or towards a turbulent solu-
tion, corresponding to stage 5 above, depends on the direction
in which it exits the boundary. This, in turn, depends very sen-
sitively on its initial position in phase space at stage 1.

In thermoacoustics, the analogous boundary is between tra-
jectories that decay to zero, which are analogous to the lami-
nar solution, and trajectories that evolve to high amplitude self-
sustained oscillations, which are analogous to the turbulent so-
lution. Recent studies, such as [8], have shown that a trajectory
starting from this boundary can evolve to the high amplitude
state. If the analogy is appropriate, however, trajectories from
other regions of state space will be attracted towards this bound-
ary and then be repelled either to a high or a low amplitude
state. Thermoacoustic systems, like many hydrodynamic sys-

tems, are non-normal [3, 9], meaning that this attraction can be
from states with lower energy than the boundary.

The first aim of this paper is to explore the analogy between
triggering in thermoacoustics and bypass transition in hydrody-
namics. The second aim is, in light of this link, to investigate
the effect that different types of noise have on triggering in a
simple thermoacoustic system.

2. Governing equations

The thermoacoustic system examined in this paper is identi-
cal to that studied by Refs. [3, 10], which contain a complete
description. In summary, it is a tube of lengthL0 in which a hot
wire is placed̃xf from one end;§6.2 of [11]. A base flow is im-
posed through the tube with velocityu0. The non-dimensional
governing equations for momentum and energy are:
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The system has four control parameters:ζ, which models
the damping;β, which encapsulates all the information about
the hot wire, base flow and ambient conditions;τ , which is the
time delay between the velocity at the wire and the subsequent
heat release andxf , which is the position of the wire. The heat
release parameter,β, is equivalent tok/γM in [3].

For the system examined in this paper,∂u/∂x andp are both
set to zero at the ends of the tube. These boundary conditions
are enforced by choosing an appropriate basis set:

u(x, t) =
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where the relationship betweenηj andη̇j has not yet been spec-
ified. In this Galerkin discretization, all the modes are orthog-
onal. It is important to point out that these modes are not, in
general, the eigenmodes of the system. They are merely the
basis set into whichu andp are decomposed. The governing
equations then reduce to two ordinary differential equations for
each mode, labelledj:
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where

uf (t− τ) =

N
∑

k=1

ηk(t− τ) cos(kπxf ). (7)

The state of the system is given by the amplitudes of the
Galerkin modes that represent velocity,ηj , and those that rep-
resent pressure,̇ηj/jπ. These are given the notationu ≡
(η1, . . . , ηN )T andp ≡ (η̇1/π, . . . , ˙ηN/Nπ)T . The state vec-
tor of the discretized system is the column vectorx ≡ (u;p).
The most convenient measure of the size of the perturbationsis
the acoustic energy per unit volume:

E =
1

2
u2 +

1

2
p2 =

1

2
xHx =

1

2
||x||2, (8)

where|| · || represents the 2-norm.
Equations (5 - 6) can be linearized into the form dx/dt =

Lx, from which it is found thatL is non-normal [3]. (A non-
normal operator satisfiesLHL 6= LLH , whereH denotes the
Hermitian transpose.) Non-normality gives rise to linear tran-
sient growth, which is one of the main features of this paper.

3. Dynamical system behavior
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Figure 1: Bifurcation diagram for the 20-Galerkin mode system
with τ of 0.02. The black points indicate the starting points for
the time marching routine, taken atβ = 0.75.

The bifurcation diagram in Fig. 1 shows the periodic solu-
tions of (5 - 6) withζj = 0.05j2+0.01

√
j, xf = 0.3, τ = 0.02

andN = 20, calculated with a bifurcation analysis tool for De-
lay Differential Equations [12]. Fig 1 plots the minimum acous-
tic energy during the periodic solution (PS) as a function ofβ.
The Floquet multipliers of all points on the PSs are calculated
to determine whether they are stable (solid lines) or unstable
(dashed lines). Fig. 1 is similar to those in Refs. [1, Ch1 Fig.
1.17][8].

Even though the system is linearly stable for0 ≥ β ≥ 0.866,
it can support a high amplitude self-sustained PS forβ ≥ 0.478
and a separate low amplitude PS forβ ≥ 0.722. The bifurcation
to the lower PS atβ = 0.866 is sub-critical.

The system considered in this paper is discretised with 20
Galerkin modes, as results with higher numbers of modes show
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Figure 2: Energy distribution between the modes of the initial
states (modes 11-20 have zero energy). Initial states 1 to 10
have low energy, initial states 11 to 20 have high energy.

negligible difference. The time-marching procedure used is
similarly robust to changes in timestep.

From an initial state, the system converges to either a sta-
ble PS or the zero solution. If the initial state is close to a
stable solution, the system will be attracted towards it. Ifthe
initial state is far from a stable solution, however, the system
acts more interestingly. The aim of this section is to show that
the unstable PSs can act as attractors during the transient phase,
before repelling the trajectory towards one of the stable solu-
tions. Such manifolds areunstable attractors, and are found in
physical systems such as pulse-coupled oscillators [13]. These
manifolds have a stable eigenvalue in at least one dimension
(often more) and an unstable eigenvalue in at least one other
dimension.

To demonstrate this, twenty different initial states are evolved
forward in time forβ = 0.75 using a4th order Runge-Kutta
scheme to solve (5 - 6). These initial states have been chosen
because they are all initially attracted towards the higherunsta-
ble PS. For each initial state, the total initial acoustic energy is
shown as a dot on Fig. 1 and the initial energy distribution be-
tween the Galerkin modes is shown in Fig. 2. Initial states 1
to 10 have less energy than the minimum energy on the higher
unstable PS. Initial states 11 to 20 have more energy than this.

For the ten initial states with low energy, the evolution of
the first three Galerkin modes is plotted in Fig. 3. They ini-
tially evolve towards the same periodic trajectory in statespace,
which is the higher unstable PS. The energies of the first two
modes grow transiently towards this while those of the third
(and higher) modes decay. Although not shown in Fig. 3, the
trajectories then continue alongside the unstable PS for several
hundred time units before either decaying to the lower stable
PS or growing to the higher stable PS [10]. It is worth noting
that most of the energy in these initial states is in the first three
Galerkin modes. A full analysis of the transient growth process
and a non-linear adjoint looping algorithm for finding the low-
est initial energy than can evolve to the higher unstable PS can
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Figure 3: Time evolution from the ten low energy initial states
shown in Figure 1. The acoustic energy of the first 3 Galerkin
modes is plotted. Higher Galerkin modes exhibit a similar de-
cay to the third mode.
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Figure 4: Time evolution from the ten high energy initial states
shown in Figure 1. The acoustic energy of the first 3 Galerkin
modes is plotted. Higher Galerkin modes exhibit a similar de-
cay to the third mode.

be found in Ref. [10].
For the ten initial states with high energy, the evolution of

the first three Galerkin modes is plotted in Fig. 4. They also
evolve towards the higher unstable PS and, from there, either
to the lower stable PS or to the higher stable PS. These initial
states, however, lose a large proportion of their energy during
the transient period. This can partly be explained by the damp-
ing model,ζj = 0.05j2 + 0.01

√
j, which damps higher modes

more than lower modes. It is worth noting, however, that most
of the initial states 11 to 20 start with more energy in the first
three modes than initial states 1 to 10. Thus growth or decay
from an initial state cannot be determined simply with an en-
ergy threshold condition.

Figs 1 to 4 demonstrate that the higher unstable PS is an un-
stable attractor whose basin of attraction spans a wide energy
range. Trajectories that are attracted towards this PS are ulti-
mately repelled either towards the higher stable PS or the lower
stable PS. Although not shown in this paper, the same is true
of the lower unstable PS [10]. The basins of attraction of both

unstable PSs include regions with lower energy than the point
with lowest energy on the respective unstable PS. This low en-
ergy region reaches the unstable PS via linear transient growth,
which is a feature of non-normal systems. This process of at-
traction followed by repulsion is directly analogous to bypass
transition to turbulence in hydrodynamics. Specifically, it cor-
responds to stages three and four in Ref. [2] and the unstable
attractors are simpler versions of the ‘edge of chaos’ described
in Refs. [5, 6, 7].

During the evolution, each Galerkin mode oscillates at its
own frequency, which varies in time and is not necessarily its
natural frequency. The frequency and growth rate of the first
Galerkin mode, which has the highest energy, are calculated
from the data in Figs. 3 and 4. They are plotted as functions
of each other in Fig. 5 for initial states 1 to 10 (upper figure)
and initial states 11 to 20 (lower figure). The PSs have zero
growth rate. The low energy stable PS (LES) lies to the right of
Fig. 5 and the high energy stable PS (HES) lies to the left. The
unstable PS, to which the initial states all converge, lies in the
middle. Initial states 1 to 10 have positive growth rates towards
this point while initial states 11 to 20 have negative growthrates
towards this point.

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56
−0.15

−0.1

−0.05

0

0.05

0.1

 G
ro

w
th

 r
at

e ω
1

 

 

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56
−0.15

−0.1

−0.05

0

0.05

0.1

 G
ro

w
th

 r
at

e ω
1

Frequency f

 

 

SP LES HES

SP LES HES

Figure 5: Evolution of the frequency and growth rate of the
1st Galerkin mode from starting points (white circles) to either
the high stable PS (black squares) or the low stable PS (black
circles). Top frame: low energy initial states. Bottom frame:
high energy initial states.

The phase portraits in Fig. 5 represent measurable outputs
and can be compared with previous theoretical and experimen-
tal results. In a comprehensive theoretical and experimental
study, Ref. [8] found trajectories between the unstable PS and
the stable PSs that are very similar to those found in this paper.
Ref. [8, Figs. 8,9], however, considered only the fundamental
mode. Transient growth or transient decay towards the unsta-
ble PS cannot be modelled in a single mode system [10], which
means that Ref. [8] could capture the transition away from the
unstable PS but could not capture the preceding transient be-
haviour that is the subject of this paper.
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4. Triggering with noise

The previous section assumes that the system is noiseless and
deals with triggering to sustained oscillations from a given ini-
tial state. This is useful as it gives the maximum initial energy
below which all states decay to the zero solution (or to the lower
stable PS) in a noiseless system. This section examines the ef-
fect of forcing the system with low levels of noise, firstly as
bursts of noise, secondly as continuous noise.

Noise can be divided conceptually into four types: additive
noise, where a small forcing is added continually to the system;
parametric noise, where coefficients in the governing equations
vary; multiplicative noise, where noise amplitude is propor-
tional to the current state of the system [14]; and modal noise,
where energy is redistributed between the Galerkin modes,
without any overall change in energy. This paper deals with
additive noise.

At certain parameter values and forcing levels, the evolution
of the system is very sensitive to the initial conditions andthe
forcing. This means that simulations with stochastic forcing
become less clear to analyse. In order to make simulations re-
peatable and comparable with each other, the characteristics of
the noise are determined in advance by specifying amplitudes
and relative phases of the forcing of the first 10 Galerkin modes.
Above the10th Galerkin mode, the response of the system to
forcing is very weak and thus is not used here to form the noise
profiles. This forcing signal is periodic, with period equalto
that of the natural frequency of the first Galerkin mode. Three
types of noise are considered: white noise, in which each mode
is forced equally; pink noise, in which the lower modes are
forced more than the higher modes; and blue noise, in which
the higher modes are forced more than the lower modes.

4.1. Bursts of noise

Small bursts of noise in the system are examined in order
to discover whether certain noise profiles are more successful
than others at triggering sustained oscillations. As shownin §3,
certain initial states are more successful at triggering sustained
oscillations in a noiseless system. It seems logical to suppose,
therefore, that the same will be true of bursts of noise.

The first noise profile is white noise, in which every Galerkin
mode has equal amplitude, Fig. 6. The evolution of acoustic
energy is shown in Fig. 7, in which this noise is added for 4,
5 and 6 periods. Each time unit corresponds toL0/c0 seconds,
whereL0 is the tube length andc0 is the speed of sound, so
these bursts would be of order 10 ms in a typical Rijke tube.

The three plots in Fig. 7 capture the three types of behavior
that are expected. After forcing for 4 periods (top plot), the
system is not yet in the basin of attraction of the unstable PS
(dashed line) and subsequently decays to the zero solution.Af-
ter forcing for 5 periods, the system reaches the basin of attrac-
tion of the unstable PS, is attracted towards this solution and,
from there, grows to the stable PS (solid line). After forcing for
6 periods, the system decays to the stable PS without passing
via the unstable PS.

The second noise profile is shown in Fig. 8. This is a blue
noise profile, in which the higher Galerkin modes are forced
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Figure 6: White noise profile in terms of the forcing signal’s
amplitude (top time series) and energy (bottom time series).
Each Galerkin mode is forced with equal amplitude (bottom
bar chart) but randomly-distributed phase (top bar chart).The
noise level is quantified by the maximum energy of the signal,
which is1.49× 10−3.
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Figure 7: Evolution of the energy of the system with bursts of
white noise for 4, 5 and 6 periods (shaded), showing attraction
to the stable (S) and unstable (U) PSs.

with higher amplitude than the lower Galerkin modes. The
maximum energy of the forcing signal is8.6 × 10−3, which
is 2.5 times greater than that of the white noise profile. The
evolution of acoustic energy is shown in Fig. 9, in which this
noise is added for 4, 5 and 6 periods.

The three plots in Fig. 9 capture the same three types of
behavior seen for the white noise. The blue noise, however, re-
quires much higher energy than the white noise to trigger self-
sustained oscillations. This is expected from the results in §3,
in which it was shown that a system reaches sustained oscilla-
tions from a lower initial energy when that energy is mainly in
the lower Galerkin modes. Although not shown here, similar
simulations with pink noise show that, as expected, less energy
(6.9 × 10−4) is required to trigger the system to self-sustained
oscillations than is required for white noise.

As well as triggering the system from the zero solution to the
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Figure 8: Blue noise with energy8.6× 10−3 (as for Fig. 6)
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Figure 9: As for Fig. 7 but for blue noise.

lower stable PS, noise can trigger the system from the lower
stable PS to the upper stable PS. An example of this is shown
for the pink noise profile in Fig. 10 with maximum energy
3.92×10−4, applied for 10 periods. This corresponds to veloc-
ity and pressure perturbations of less than±2.2% at the wire.
The evolution of acoustic energy is shown in Fig. 11. The top
plot shows the jump from the lower stable PS (solid line) to the
higher unstable PS (higher dashed line) during the time when
the noise is applied (shaded). The bottom plot shows the subse-
quent evolution from the higher unstable PS to the higher stable
PS in the absence of noise. As expected from§3, it takes very
little energy for pink noise to trigger the system to the higher
stable PS.

In summary, pink noise is more effective at triggering to the
stable PSs than white noise, which in turn is more effective than
blue noise. Noise can cause triggering from the zero solution
to the stable PSs, as well as from the lower to the higher stable
PS. Very little noise is required, particularly if it leavesthe sys-
tem in a similar state to the 10 lower energy points in§3, which
will grow transiently to the unstable PS. In more complex ther-
moacoustic systems, where the degree of non-normality and
transient growth is higher [4], the latter effect will be more
pronounced. Such rapid triggering to high energy oscillations
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Figure 10: Pink noise with energy3.92× 10−4 (as for Fig. 6)
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Figure 11: Energy evolution of the system with a 10 period
burst of pink noise (shaded), showing transition from the lower
stable PS (S) to the higher stable PS (S) via the higher unstable
PS (U).

through the action of low energy noise has been seen in experi-
mental combustors, such as in Lieuwen [15, Fig. 15].

It is worth noting that additive noise can also reduce the sys-
tem’s acoustic energy, particularly when added to the higher
Galerkin modes. This is as expected from the 10 higher energy
points in§3.

4.2. Continuous noise

Continuous noise is more representative of a real system than
the bursts of noise studied in§4.1 but the analysis in§3, which
was for a noiseless system, is less applicable. Continuous noise
was added to the system in a similar manner to§4.1 and as
before, pink noise was the most effective for triggering to the
high stable PS, and blue noise was the least effective.

5. Conclusions

This paper explores the analogy between triggering in ther-
moacoustics and bypass transition in hydrodynamics. The be-
haviour of a simple thermoacoustic system [3, 10] is com-
pared with that of simplified models of hydrodynamic systems
[2, 5, 6, 7]. In the thermoacoustic system, it is shown that initial
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states over a wide energy range evolve first towards an unstable
attractor and then towards a stable solution, which is either pe-
riodic or zero. Some of these states have lower energy than the
lowest energy on the unstable attractor and make use of non-
normal transient growth to reach it, which is directly analogous
to bypass transition in hydrodynamics. These initial states have
higher amplitudes at low frequencies.

In light of this analogy, this paper then explores the effect
that different types of noise have on triggering. Three types
of noise are considered: pink noise (higher amplitudes at low
frequencies), white noise (similar amplitudes at all frequencies)
and blue noise (higher amplitudes at high frequencies). The
noise is applied both as short bursts and continuously. In both
cases, pink noise is more effective than white noise, which is
more effective than blue noise, at causing triggering to a higher
stable periodic solution. Indeed, blue noise can even inhibit
triggering. These results concur with the results in the first part
of the paper. The noise signature of flames has been shown to
be pink in nature [16], so these results are pertinent for ducted
flame systems.

In hydrodynamics, non-normal transient growth is a key part
of bypass transition, and explains why flows that have no un-
stable eigenvalues become turbulent with small perturbations.
In thermoacoustics, triggering is directly analogous to bypass
transition and therefore non-normal transient growth could play
an important role. Even though the thermoacoustic system ex-
amined in this paper is only slightly non-normal, it exhibits sig-
nificant transient growth towards an unstable attractor. This is
likely to be even more important in more realistic thermoacous-
tic systems, which are significantly more non-normal [4].
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