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Abstract

Hydrodynamically self-excited flames are often assumed to be insensitive to low-amplitude external
forcing. To test this assumption, we apply acoustic forcing to a range of jet diffusion flames. These flames
have regions of absolute instability at their base and this causes them to oscillate at discrete natural fre-
quencies. We apply the forcing around these frequencies, at varying amplitudes, and measure the response
leading up to lock-in. We then model the system as a forced van der Pol oscillator.

Our results show that, contrary to some expectations, a hydrodynamically self-excited flame oscillating
at one frequency is sensitive to forcing at other frequencies. When forced at low amplitudes, it responds at
both frequencies as well as at several nearby frequencies, indicating quasiperiodicity. When forced at high
amplitudes, it locks into the forcing. The critical forcing amplitude for lock-in increases both with the
strength of the self-excited instability and with the deviation of the forcing frequency from the natural fre-
quency. Qualitatively, these features are accurately predicted by the forced van der Pol oscillator. There
are, nevertheless, two features that are not predicted, both concerning the asymmetries of lock-in. When
forced below its natural frequency, the flame is more resistant to lock-in, and its oscillations at lock-in
are stronger than those of the unforced flame. When forced above its natural frequency, the flame is less
resistant to lock-in, and its oscillations at lock-in are weaker than those of the unforced flame. This last
finding suggests that, for thermoacoustic systems, lock-in may not be as detrimental as it is thought to be.
� 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

In the analysis of thermoacoustic systems, a
flame is usually characterised by the way its heat
release responds to acoustic forcing. This response
depends on the hydrodynamic stability of the
flame. Some flames, such as a premixed bunsen
flame, are hydrodynamically globally stable. They
respond only at the forcing frequency. Other
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flames, such as a jet diffusion flame, are hydrody-
namically globally unstable. They oscillate at their
own natural frequencies and are often assumed to
be insensitive to low-amplitude forcing at other
frequencies. This assumption of insensitivity was
first proposed over 20 years ago [1] and has since
been cited throughout the literature, even though
it has only ever been justified with phenomenolog-
ical models, such as the forced Landau equation.

If a hydrodynamically globally unstable flame
really is insensitive to forcing at other frequencies,
then it should be possible to weaken thermoacou-
stic oscillations by detuning the frequency of the
ute. Published by Elsevier Inc. All rights reserved.
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natural hydrodynamic mode from that of the nat-
ural acoustic modes. This would be very beneficial
for industrial combustors.

1.1. Hydrodynamic global instability

Hydrodynamic global, or self-excited, oscilla-
tions can be found in both reacting and non-react-
ing flows. Examples include flickering of candle
flames [2], bulging of jet diffusion flames [3], bulg-
ing of low-density jets [4], and vortex shedding in
bluff-body wakes [5]. Such oscillations are termed
‘hydrodynamic’ because they arise from hydrody-
namic mechanisms. In the above cases, for
instance, they arise from inflexion points in the
cross-stream profiles of axial velocity and become
increasingly unstable as the density gradient steep-
ens in the opposite direction to the velocity gradi-
ent [6].

In a jet diffusion flame, the heat release changes
the density profile and hence the velocity profile
through the action of buoyancy [7,8]. Crucially,
the inflexion point in the shear layer just outside
the flame coincides with a steep density gradient
in the opposite direction to the velocity gradient,
making it absolutely unstable [7]. This causes a
hydrodynamic global mode, which stretches the
flame and modulates its heat release in synchroni-
sation [9].

In this paper, we test and refute the assumption
that hydrodynamically self-excited flames are
insensitive to forcing. We do this experimentally,
by acoustically forcing a range of jet diffusion
flames. We control the strength of their global
instability by changing the coflow velocity and
the fuel composition. For each flame, we examine
the forced response over a range of frequencies
(not just at the forcing frequency) and discover
much richer behaviour than that which is reported
in the literature. We then show that this behaviour
is similar to that of a simple model: the forced van
der Pol oscillator [10]. As well as providing new
insight into the way acoustic oscillations interact
with hydrodynamic oscillations, this paper pro-
vides a useful tool for describing and analysing
such interactions.
2 The ff increment is 1 Hz, except when fn is more than
2. Methodology

2.1. Experimental

The experiments are performed on a round
coaxial injector1 with jet diffusion flames created
from mixtures of methane and nitrogen. The
flames are forced sinusoidally by a loudspeaker
1 The diameter of the inner exit is d1 = 6 mm and that
of the outer exit is d2 = 30 mm, for an annular gap of
12 mm [11].
mounted upstream, over a range of frequencies
(7 6 ff 6 35 Hz)2 around the natural global fre-
quency, fn.

The forcing amplitude, A, is measured with the
two-microphone method [12]. It is defined, at the
injector plane, as the amplitude of the velocity
perturbation at ff normalised by the bulk jet veloc-
ity: A � ju01;ff

j=U 1. At each ff, A is incrementally
increased3 to 0.90, even though lock-in (i.e. fre-
quency entrainment or synchronisation) often
occurs earlier. Lock-in is when fn locks into ff,
leaving no sign of the natural global mode in the
power spectral density (PSD). This is a qualitative
change, meaning that the onset of lock-in can be
found by inspecting the PSD.

The flame response is measured with a high-
speed camera (Phantom V4.2) via broadband
chemiluminescence at 180 frames s�1. The lumi-
nosity in each frame is summed across every
pixel column, resulting in a time series (five pixel
rows in height) at each axial station: I(t,x/d1).
In this paper, however, only one axial station,
x/d1 = 10, is examined. This station is chosen
for three reasons: (i) it is sufficiently far down-
stream that the chemiluminescent emission leads
to a reliable signal-to-noise ratio without satura-
tion; (ii) it is sufficiently far downstream that the
global mode (if one exists) has time to grow and
interact with the forcing; but (iii) it is not so far
downstream that it coincides with the location
of vortex roll-up, where the strain rates can be
high enough to cause local flame extinction,
especially if high forcing amplitudes are used.

Two methods are used to control the strength
of the hydrodynamic global instability. In the
first, coflow air is added around the flame base.
This reduces the shear and advects perturbations
downstream, both of which weaken the instabil-
ity. In the second, the relative concentrations of
methane and nitrogen are changed. Reducing
the methane concentration, for example, increases
the stoichiometric mixture fraction. This causes
the flame to shift towards the jet centreline, closer
to the shear layer. The resultant changes to the
density and velocity profiles are such that the
flame becomes less unstable [13].

2.2. Modelling

The forced flame system is modelled with the
forced van der Pol (VDP) oscillator [10]. This par-
ticular oscillator is used because it is one of the
simplest nonlinear models with self-excited
0.25 Hz from an integer frequency value, in which case
an additional setting, at the 0.5 Hz increment, is used.

3 The A increment is usually 0.20, but is reduced to
0.050 around lock-in and to 0.025 if lock-in occurs for
A < 0.10.



Table 1
Flow conditions of the six flames under investigation (293 K and 101.3 kPa). GU, globally unstable; GS, globally stable;
U2/U1, coflow-to-jet velocity ratio; fn, natural global frequency.

Flame [CH4] [N2] U2/U1 fn [Hz]

1 GU 1.00 0.00 0 12.5
2 GU 1.00 0.00 0.083 13.9
3 GU 0.80 0.20 0 13.0
4 GU 0.60 0.40 0 13.3
5 GU 0.60 0.40 0.083 14.7
6 GS 0.40 0.60 0 14.3a

a This is for the lightly damped global mode, which arises only with forcing. Without forcing, Flame 6 is globally
stable, with two weak modes at 14.8 and 16.1 Hz.

Fig. 1. Image sequence of a globally unstable flame (Flame 5) oscillating through one natural cycle. The sequence runs
from left to right, and the images are separated in time by a quarter period. The white arrow indicates the axial station at
which data are extracted for analysis (x/d1 = 10).

L.K.B. Li, M.P. Juniper / Proceedings of the Combustion Institute 34 (2013) 947–954 949
solutions, an essential feature for modelling self-
excited flows. As in the experiments, the forcing
is external and sinusoidal:

€x� �ð1� x2Þ _xþ x2
nx ¼ Avdp sinðxf tÞ; ð1Þ

where Avdp is the forcing amplitude and xf is its
angular frequency. The feedback parameter �,
which controls the degree of self-excitation and
nonlinear self-limitation, is fixed at an arbitrarily
small value of 0.1. The natural angular fre-
quency,4 xn, is 1. Equation (1) is solved numeri-
cally using a multistep variable-order algorithm
[15]. This is done for a range of forcing frequen-
cies (0.3 6 xf 6 2.5) and amplitudes in order to
replicate the experimental conditions.
3. Results

3.1. Experimental

Six different flames are studied (Table 1): five
globally unstable and one globally stable. For
each flame, the total flow rate of the reactants is
fixed at 5.0 � 10�5 m3 s�1, giving a bulk jet veloc-
ity of U1 = 1.77 m s�1.
4 Owing to the nonlinearity, the actual frequency of
the self-excited oscillations is slightly below xn [14]. For
e = 0.1 (weak nonlinearity), however, this difference is
negligible (<0.07%) and the oscillation frequency can be
taken as x � xn.
The globally unstable flames (Flames 1–5) all
have similar natural frequencies: 12.5 6
fn 6 14.7 Hz. Figure 1 shows one of them (Flame
5) oscillating axisymmetrically through one natu-
ral cycle. The globally stable flame (Flame 6)
has two natural frequencies, 14.8 and 16.1 Hz,
when unforced. These, however, are replaced by
a lightly damped global mode, at fn = 14.3 Hz,
whenever forcing is applied [11].

3.1.1. Before lock-in
First we examine the forced response before

lock-in. We focus on Flame 5 because it exhibits
most clearly the dynamics common to all five
globally unstable flames. With the forcing fre-
quency slightly above the natural frequency
(ff/fn = 1.09), Fig. 2a shows time traces of the
luminosity for five forcing amplitudes:
0.025 6 A 6 0.30. For comparison, a time trace
of the same signal from the same flame but with-
out forcing is also shown (bottom). The corre-
sponding PSD curves are shown in Fig. 2b.

The flame exhibits a rich range of dynamics:

(i) When unforced (A = 0), it has a global
mode at a discrete natural frequency, repre-
sented in the PSD by a sharp peak at
fn = 14.7 Hz. There are similar, but weaker,
peaks at the superharmonics, indicating
that the natural varicose oscillation is not
perfectly sinusoidal.

(ii) When forced at a low amplitude
(A = 0.025), the flame responds at ff as well
as fn. Around these two frequencies, there



Fig. 2. (a) Time trace, (b) PSD, and (c) Poincaré map of the luminosity from Flame 5 forced at a frequency, ff = 16 Hz,
slightly above the natural frequency, fn = 14.7 Hz: ff/fn = 1.09. The data shown are for five forcing amplitudes,
0.025 6 A 6 0.30, and for the unforced case, all at x/d1 = 10. The onset of lock-in occurs at Aloc = 0.075.

Fig. 3. Forced response of Flame 5: (a) consolidated
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are multiple spectral peaks. Known as side-
bands, they are caused by nonlinear (wave-
triad) interactions between the natural
mode and the forcing. Their presence sug-
gests that the flame has become quasiperi-
odic via a Neimark – Sacker bifurcation,
behaving like a typical forced oscillator
before lock-in.5 There are also spectral
peaks at low frequencies, f < 3 Hz. Among
them, the strongest corresponds to the beat
frequency: jff � fnj. In the time traces
(Fig. 2a), this beating phenomenon can be
seen as low-frequency (long-wavelength)
modulations of the signal amplitude.

(iii) When forced at a moderate amplitude
(A = 0.050), the flame continues to respond
at both ff and fn, but the natural mode is
noticeably weaker and its frequency is
shifted slightly towards ff.

(iv) When forced at a critical amplitude
(A = 0.075), the flame locks into the forc-
ing: the PSD becomes dominated by ff and
its superharmonics, with no sign of the ori-
ginal natural mode. The PSD of the locked-
in flame resembles that of the unforced
flame, except that the dominant frequency
is now ff. (Lock-in can also occur for ff < fn.
For brevity, however, these results are not
shown.)

The flame response at other forcing frequencies
can be examined in the consolidated PSD: a con-
tour plot of the PSD with the response frequency
PSD for A = 0.10 and (b) normalised RMS luminosity
for 0 6 A 6 0.90, with the onset of lock-in indicated by
square markers.

5 In many dynamical systems, quasiperiodicity tends
to arise when a self-excited oscillator is driven at a low
amplitude and at a frequency that is not a rational
multiple of the natural frequency (i.e. when ff and fn are
incommensurate).
on the horizontal axis and ff on the vertical axis.
Figure 3a shows this for Flame 5 forced at



Fig. 4. Lock-in map for CH4–N2 jet diffusion flames.
The diagonal lines through the data around ff/fn = 1 are
linear fits. The error bars denote the increment with
which A is varied.
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A = 0.10. The natural mode is indicated by a ver-
tical stripe at fn, which runs through all values of ff

except those to which the flame is locked in. Its
second harmonic, 2fn, is similarly indicated. At
lock-in, the forcing dominates, causing the
response to consist of a diagonal stripe at ff = f,
with a weaker stripe at 2ff = f from the second
harmonic. Although not shown, the ff band in
which lock-in occurs expands vertically as A
increases (Section 3.1.2).

Away from lock-in, nonlinear interactions
occur between the natural mode and the forcing,
giving rise to spectral peaks at low frequencies
as well as around ff and fn – especially if the two
are close. Similar interactions occur between ff

and the superharmonics of fn. The result is that,
between the vertical stripes marking fn and its
superharmonics, there are spectral peaks set in a
distinctive diamond pattern.

The dynamics of the forced flame system can
be understood more easily by inspecting the topol-
ogy of its reconstructed phase space. Using time-
delay embedding [16], we reconstruct the phase
space from our high-speed camera data. We then
visualise the attractors within it on the Poincaré
map: a two-dimensional section through the
three-dimensional phase portrait, where the sys-
tem trajectory (the flame luminosity) is plotted
against itself shifted by a time delay and by two
time delays.6 The Poincaré maps for Flame 5
forced at the conditions of Fig. 2a and b are
shown in Fig. 2c. For clarity, these maps are
cropped such that only half the section is shown.

When unforced, the phase trajectory is closed,
indicating that the flame oscillates periodically at
a limit cycle (of fn). A half-section of this trajec-
tory contains data points scattered around one
blob. If the system were free of noise, the trajec-
tory would be perfectly closed and the cropped
Poincaré map would show one discrete point.

When forced at amplitudes below lock-in, the
phase trajectory follows the surface of a torus.
In the cropped Poincaré map, this is seen as a ring.
The appearance of a torus-like structure is charac-
teristic of quasiperiodicity – a feature corrobo-
rated by our calculations of the correlation
dimension,7 which, for intermediate Euclidean
distances, show values of approximately two.
For weak forcing (A = 0.025–0.050), the rings
grow as A increases. For strong forcing
(A = 0.075–0.30), they close to another limit cycle,
this time at ff. The final limit cycle resembles the
one for the unforced flame.
6 For the optimal time delay, we use the first zero-
crossing of the autocorrelation function [17].

7 The correlation dimension is a measure of the
number of degrees of freedom in a dynamical system.
We estimate it using the Grassberger–Procaccia algo-
rithm [18] as per [19,20].
These results show that a self-excited flame
responds to forcing in a way that is more compli-
cated than that which is expected from the litera-
ture. Before lock-in, the flame responds not just at
its natural frequency, but also at the forcing fre-
quency as well as at several other discrete frequen-
cies. For combustion systems, this implies that
thermoacoustic oscillations cannot be weakened
simply by detuning the flame’s natural frequency
from the combustor’s acoustic frequencies. In
fact, the flame response at other frequencies may
excite other acoustic modes.

3.1.2. Lock-in
Next we examine the forced response at lock-

in. We start by considering the relationship
between the minimum forcing amplitude required
for lock-in, Aloc, and the normalised forcing fre-
quency, ff/fn. This is shown in Fig. 4 for all six
flames. The diagonal lines through the data
around ff/fn = 1 are linear fits. For lock-in around
the fundamental, the data at ff/fn < 1 are regressed
separately from the data at ff/fn > 1. For lock-in
around the subharmonic, the data are not
regressed at all because the trends do not fit a lin-
ear model.

Several features are shared by all six flames.
When ff is near fn or fn/2, Aloc is low; otherwise
it is high. Around the fundamental, Aloc increases
in proportion to jff � fnj, indicating a Hopf bifur-
cation to a global mode. This linear relationship
gives rise to _-shaped curves, similar to those seen
for other self-excited flows [4,5,21,22]. For each
flame, despite the use of strong forcing, there is
a limit to how far ff can deviate from fn before
lock-in is not possible: ff/fn � 1.2–1.4. Around
the subharmonic, the relationship between Aloc

and jff � fnjis not as linear as that around the fun-
damental, although the overall trends are similar.
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Several differences exist between the six flames.
As noted in Section 2.1, adding coflow weakens
their global instability, which should make them
more receptive to forcing, enabling lock-in to
occur at lower A. This behaviour is indeed
observed when Flame 1 is compared to Flame 2,
and when Flame 4 is compared to Flame 5. The
flames with coflow (Flames 2 and 5) lock in more
readily than do their counterparts without coflow
(Flames 1 and 4). This is seen not only for ff

around fn but also for ff on the high-frequency
side of fn/2.

Another way to weaken global instability is to
reduce the fuel concentration. According to
Fig. 4, reducing [CH4] from 100% (Flame 1) to
80% (Flame 3) to 60% (Flame 4) has only a small
effect on Aloc. Although the curves seem to shift
downwards, the change is so small that it is within
the experimental uncertainty. Reducing [CH4] fur-
ther to 40% (Flame 6), however, causes a marked
decrease in the slopes of the _-shape. This sug-
gests that the flame with a weak global mode
(Flame 6) locks in more readily than do the flames
with strong global modes (Flames 1, 3, and 4).

A final observation concerns the asymmetry of
the lock-in curves about fn: lock-in occurs more
readily for ff/fn > 1 than it does for ff/fn < 1. This
asymmetry is more pronounced for the flames
with coflow (Flames 2 and 5) than for those with-
out (Flames 1, 3, 4, and 6). As we will show in Sec-
tion 3.2, simple model equations, such as the VDP
oscillator, have symmetric lock-in curves, which
means that the asymmetry is a feature of the flow,
not a feature of lock-in. Theoretical work based
on the Ginzburg–Landau equation suggests that
when there is competition between two modes at
different frequencies, one will take over and satu-
rate nonlinearly before the other [23]. A possible
explanation of asymmetric lock-in is that higher-
frequency forcing produces higher peak accelera-
tions at the flame base. In isothermal jets, higher
peak accelerations have been shown to promote
vortex-ring formation [24]. Forcing at higher fre-
quencies could therefore cause toroidal vortices
to roll up earlier, closer to the injector. If the vor-
tices caused by the forcing roll up before the vor-
tices caused by the natural global mode, they will
dominate, increasing the tendency of the flame to
lock in.

The fact that lock-in occurs asymmetrically
suggests that there may be other asymmetries
between forcing above and below fn. To investi-
gate this, we show in Fig. 3b contours of the
response amplitude as a function of A and ff/fn.
As before, the focus is on Flame 5 because it is
representative of the globally unstable flames.
The response amplitude is defined as the ratio of
the root-mean-square (RMS) luminosity fluctua-
tion with forcing to the same quantity without
forcing: I 0rms;for=I 0rms;unf . Also shown on the figure
are selected data from Fig. 4 indicating the onset
of lock-in.

As A increases for ff/fn slightly below 1
(Fig. 3b), the response amplitude increases above
unity and saturates. As A increases for ff/fn

slightly above 0.5 or 1, it decreases below unity,
reaches a minimum near the onset of lock-in
(square markers), and then increases back
towards unity. As A increases for ff/fn � 1, it
develops in a way that is between these two
extremes. For ff/fn > 1.36, lock-in is not possible
even with high A. Instead, over a wide band of
forcing frequencies (1.36 < ff/fn < 2.38, not
shown), increasing A causes a gradual rise in the
response above unity, which peaks at
A � 0.30 � 0.50 before decreasing.

In summary, lock-in occurs most readily for
flames with weak global instability and for ff near
fn, as expected. What was not expected, though,
was that the details would depend on whether ff

is above or below fn. When forced below fn, the
flame is more resistant to lock-in, and its oscilla-
tions at lock-in are stronger than those of the
unforced flame. When forced above fn, the flame
is less resistant to lock-in, and its oscillations at
lock-in are weaker than those of the unforced
flame. This last finding suggests that, for thermoa-
coustic systems, lock-in may not be as detrimental
as it is thought to be.

3.2. Modelling

For the VDP oscillator, we consider a case
with the forcing frequency slightly above the nat-
ural frequency: xf/xn = 1.09. Time traces of the
steady-state solution are shown in Fig. 5a for five
forcing amplitudes (0.14 6 Avdp 6 0.40) and for
the unforced case. The corresponding PSD curves
are shown in Fig. 5b. These figures are analogous
to those for the flame (Fig. 2). The VDP oscillator
behaves qualitatively like the flame:

(i) When unforced (Avdp = 0), it has a domi-
nant natural frequency, represented in the
PSD by a sharp peak at xn � 1. There are,
however, no even harmonics, only odd ones
(not shown), which are weak because the
solution is nearly sinusoidal – because the
cubic nonlinear term is small.

(ii) When forced at a low amplitude
(Avdp = 0.14), the VDP oscillator responds
at xf as well as xn, with multiple spectral
peaks around these two frequencies. Thus,
like the flame, the VDP oscillator is quasi-
periodic before lock-in.

(iii) When forced at a moderate amplitude
(Avdp = 0.28), the VDP oscillator continues
to respond at both xf and xn. The natural
mode, though, is markedly weaker and its
spectral envelope is biased towards frequen-
cies below xn – as indicated by the longer tail.



Fig. 5. (a) Time trace, (b) PSD, and (c) Poincaré map of the VDP oscillator forced at a frequency, xf = 1.09, slightly
above the natural frequency, xn = 1: xf/xn = 1.09. The solutions shown are for five forcing amplitudes,
0.14 6 Avdp 6 0.40, and for the unforced case. The onset of lock-in occurs at Aloc = 0.30. This figure can be compared
to Fig. 2, which is for a self-excited flame.

Fig. 6. Forced response of the VDP oscillator: (a)
consolidated PSD for Avdp = 0.40 and (b) normalised
RMS motion for 0 6 Avdp 6 0.90, with the onset of lock-
in indicated by triangular markers. This figure can be
compared to Fig. 3, which is for a self-excited flame.
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(iv) When forced at a critical amplitude
(Avdp = 0.30), the VDP oscillator locks into
the forcing. This occurs because its stable
equilibrium points change as the amplitude
of the forcing term changes [25].

The similarities between the VDP oscillator
and the flame are also apparent in the Poincaré
maps (Fig. 5c). When unforced, the solution starts
off as a limit cycle, but becomes quasiperiodic as
Avdp increases towards lock-in – as indicated by
the ring-like structure and by a correlation dimen-
sion that approaches two. After lock-in, the solu-
tion converges to a new limit cycle and the phase
trajectory converges to a new orbit.

The consolidated PSD (Fig. 6a) resembles the
analogous plot for the flame (Fig. 3a). The vertical
stripe is the response of the natural mode. When
forced around xn, it locks into the forcing, repre-
sented by the diagonal stripe at xf = x. There is,
however, no diamond pattern because the VDP
motion is nearly sinusoidal.

The lock-in map is shown in Fig. 6b, with Aloc

indicated by triangular markers. The greyscale is
the response amplitude, defined as the RMS of
the forced solution normalised by that of the
unforced solution: x0rms;for=x0rms;unf . This quantity
decreases below unity as Avdp increases towards
lock-in, regardless of whether xf is above or below
xn. At lock-in, it reaches a minimum, and its value
decreases as xf deviates from xn. The lock-in
curve is _ shaped and symmetric about xn.
Although most of these features are observed in
the flame, two are not: (i) the flame’s response
amplitude at lock-in is above (not below) unity
when ff < fn; and (ii) the flame’s lock-in curve is
not symmetric about fn.
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4. Conclusions

We have applied acoustic forcing to a range of
jet diffusion flames. These flames are self-excited
by hydrodynamic resonance and thus oscillate at
discrete natural frequencies. We applied the forc-
ing around these frequencies, at varying ampli-
tudes, and measured the response leading up to
lock-in. We then modelled the system as a forced
VDP oscillator.

Our results show that, contrary to some expec-
tations, a hydrodynamically self-excited flame
oscillating at one frequency is not insensitive to
forcing at other frequencies. When forced at low
amplitudes, it responds at both frequencies, and
there is beating, indicating quasiperiodicity. When
forced at high amplitudes, it locks into the forc-
ing. The critical forcing amplitude for lock-in
increases as the global instability strengthens
and as the forcing frequency deviates from the
natural frequency. This latter dependence is lin-
ear, giving rise to a _-shaped lock-in curve.

The lock-in curve has two subtle asymmetries
about the natural frequency. First, a lower forcing
amplitude is required for lock-in when the forcing
frequency is above the natural frequency. Second,
the response amplitude at lock-in is weaker than
the unforced amplitude when the forcing fre-
quency is above the natural frequency, but is
stronger than it when the forcing frequency is
below the natural frequency.

Many of these features can be predicted by the
forced VDP oscillator. They include (i) the coexis-
tence of the natural and forcing frequencies before
lock-in; (ii) the presence of multiple spectral peaks
around these competing frequencies, indicating
quasiperiodicity; (iii) the occurrence of lock-in
above a critical forcing amplitude; (iv) the _-
shaped lock-in curve; and (v) the reduced response
amplitude at lock-in. There are, however,
some features that cannot be predicted. They
include (i) the asymmetry of the forcing amplitude
required for lock-in; and (ii) the asymmetry of the
response amplitude at lock-in. One of our next
steps is to modify the classical VDP oscillator so
that it can predict both of these asymmetries.

Our results have conflicting implications for
thermoacoustics. On one hand, they show that a
flame’s response at the forcing frequency cannot
be eliminated simply by ensuring that it has a
hydrodynamically self-excited mode at another
frequency. In fact, the flame responds at several
discrete frequencies, potentially exciting other
acoustic modes in the combustor. On the other
hand, our results also show that when lock-in
occurs with the forcing frequency above the
natural frequency, the flame oscillations are sup-
pressed relative to the unforced case. This suggests
that lock-in may not be as detrimental as it is
thought to be.
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