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Abstract

This paper examines nonlinear thermoacoustic oscillations of a ducted Burke–Schumann diffusion
flame. The nonlinear dynamics of the thermoacoustic system are studied using two distinct approaches.
In the first approach, a continuation analysis is performed to find limit cycle amplitudes over a range of
operating conditions. The strength of this approach is that one can characterize the coupled system’s non-
linear behaviour over a large parameter space with relative ease. It is not able to give physical insight into
that behaviour, however. The second approach uses a Flame Describing Function (FDF) to characterize
the flame’s response to harmonic velocity fluctuations over a range of forcing frequencies and forcing
amplitudes, from which limit cycle amplitudes can be found. A strength of the FDF approach is that it
reveals the physical mechanisms responsible for the behaviour observed. However, the calculation of the
FDF is time consuming, and it must be recalculated if the flame’s operating conditions change. With
the strengths and shortcomings of the two approaches in mind, this paper advocates combining the two
to provide the dynamics over a large parameter space and, furthermore, physical insight into that behav-
iour at judiciously-chosen points in the parameter space. Further physical insight concerning the flame’s
near-linear response at all forcing amplitudes is given by studying the forced flame in the time domain.
It is shown that, for this flame model, the limit cycles arise because of the flame’s nonlinear behaviour when
it is close to the inlet.
� 2012 Published by Elsevier Inc. on behalf of The Combustion Institute.
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1. Introduction

Thermoacoustic oscillations can occur when-
ever combustion takes place inside an acoustic
resonator. Unsteady combustion is an efficient
acoustic source [1], and combustors tend to be
highly resonant systems. Therefore for suitable
phase between unsteady combustion and acoustic
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perturbations, large-amplitude self-excited oscilla-
tions can occur.

Most recent studies of combustion oscillations
have focused on low NOx premixed gas turbine
combustors, which are particularly susceptible to
thermoacoustic instability [2,3]. These studies typ-
ically assume linear acoustics: the low Mach num-
ber means that the acoustic pressure fluctuations
are small even when the acoustic velocity fluctua-
tions are large [4]. The heat release is therefore
treated as the nonlinear element in the coupled
system.
nc. on behalf of The Combustion Institute.
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Few studies have focused on non-premixed
combustors [5–8], even though most gas turbines
operate under non-premixed or partially-pre-
mixed conditions and are also susceptible to ther-
moacoustic oscillations (albeit less so). In this
paper we therefore consider thermoacoustic oscil-
lations in an acoustic resonator containing a
Burke–Schumann flame, which is a simple model
of a non-premixed flame. We consider linear
acoustics and nonlinear heat release, and our
main focus is the nonlinear behaviour of the cou-
pled system.

Figure 1 shows the steady state amplitude, as,
for two types of nonlinear behaviour that we
expect to find. The first is a supercritical bifurca-
tion, in which the limit cycle amplitude grows
gradually as the control parameter, P, increases
past Pl (Pl denotes the Hopf bifurcation, at which
point the system becomes linearly unstable). The
second is a subcritical bifurcation, in which the
limit cycle amplitude grows suddenly as P
increases past Pl, and for which there are two sta-
ble solutions in the region Pc 6 P 6 Pl.

Limit cycles can be found in the frequency
domain using a Flame Describing Function
(FDF), which involves measuring the flame’s
response to harmonic forcing for different forcing
frequencies and forcing amplitudes. By assuming
that the flame’s response to a given forcing fre-
quency is predominately at that frequency (i.e. by
discarding higher harmonics), the FDF provides
the flame’s gain and phase as a function of forcing
frequency and forcing amplitude. Dowling [9,
Fig. 10] calculates the FDF for a kinematic model
of a premixed ducted flame and finds that the limit
cycle amplitude of her coupled system is deter-
mined by the amplitude-dependence of the gain.
Noiray et al. [10] measure the FDF of a premixed
flame experimentally and find that the limit cycle
amplitude of their coupled system is determined
by the amplitude-dependence of both the gain
and the phase of the flame’s response. At this point
it is important to relate the describing function
analysis (in particular, its description of the varia-
tions in the flame’s gain and phase with forcing
amplitude) to the supercritical and subcritical
b
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Fig. 1. The limit cycle amplitude, aS, as a function of a
control parameter, P, for (a) a supercritical bifurcation
and (b) a subcritical bifurcation. Pl is the Hopf point
where the system becomes linearly unstable. Pc is the
point below which no oscillations can be sustained.
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bifurcations seen in Fig. 1. If the flame’s phase
does not change with forcing amplitude, then one
would expect to find only supercritical bifurcations
(provided that the flame’s gain decreases with
increasing forcing amplitude, which is a sensible
assumption). This is because as the forcing ampli-
tude increases, the positive feedback between
unsteady heat release and acoustics can only
weaken, since the flame’s gain is decreasing, while
the phase between them remains fixed. If both the
gain and the phase vary, however, then both super-
critical and subcritical bifurcations are possible. In
this case, even if we assume that the flame’s gain
decreases with increasing forcing amplitude as
before, variations in phase can actually lead to
stronger positive feedback between unsteady heat
release and acoustics. Now relating these consider-
ations to previous studies: the variations in the
flame’s phase with forcing amplitude seen by Dow-
ling are either zero [4] or small [9], and so only
supercritical behaviour is seen; while in Noiray
et al. [10], the experimentally-determined FDF
exhibits appreciable changes in both gain and
phase, and so both types of bifurcation behaviour
are seen (and predicted).

Limit cycles can also be found in the time
domain. This can be achieved using continuation
analysis of the governing equations of the coupled
system (to be described in Section 3). Continua-
tion analysis finds a limit cycle and tracks its evo-
lution as the system parameters change. Unlike
the FDF, continuation analysis does not discard
the higher harmonics of the heat release. It has
already been applied to small thermoacoustic sys-
tems with N � 10 degrees of freedom [11–13].
With recent advances in matrix-free iterative
methods, which require less computational time
and less memory, it can now be applied to larger
systems such as thermal convection [14]. Although
a continuation analysis allows a rapid sweep over
parameter values to explore behaviour, it does not
provide a physical explanation of that behaviour.
With the FDF at one’s disposal, however, a phys-
ical understanding is provided via its description
of the changes in the flame’s gain and phase with
varying forcing amplitude.

In this paper we combine the two methods to
study the nonlinear dynamics of the Burke–Schu-
mann flame under acoustic coupling. There are
two advantages to this approach. First, their com-
bination allows one to explore behaviour over a
large parameter space using the continuation
analysis, but also to explain that behaviour by
using the FDF at interesting points in that param-
eter space. Second, since a continuation analysis
makes use of the underlying model directly with-
out discarding any of its dynamics, it can be used
to validate the FDF. Specifically, since the main
simplification made by the FDF is to discard
higher harmonics of the flame’s response, one
can investigate how valid this simplification is.
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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The paper is organized as follows. The
unsteady Burke–Schumann flame and the acoustic
model are described in Section 2. In Section 3 the
matrix-free continuation methods are described,
and continuation results over a range of parame-
ters are presented. The FDF approach is
employed in Section 4, and its prediction of the
coupled system dynamics is compared to that
given by the continuation methods of Section 3.
An explanation of the near-linear dynamics seen
at all forcing amplitudes is given in Section 5.
2. The unsteady Burke–Schumann flame

The Burke–Schumann flame is a simple model
of a diffusion flame. It has been used to study the
steady-state structure of non-premixed flames
[15,16] and, more recently, their unsteady behav-
iour under acoustic coupling [6,8].

A schematic of the Burke–Schumann flame is
given in Fig. 2. Fuel is delivered into the com-
bustion zone in the middle slot of width 2aH,
with co-flowing oxidizer delivered on either side.
For thermoacoustic analysis, the flame sits in a
simple open–open duct of length L at a distance
xf from the duct’s upstream end. We assume a
low Mach number mean flow in the duct. We
assume one-step, infinite-rate chemistry; that
the system is two-dimensional; that the density
is constant; that the transverse velocity is zero;
and that the axial velocity, although varying in
time, does not vary in space. Combustion is
assumed to be compact, which means that the
flame is short in comparison with the acoustic
wavelengths of interest.

2.1. The Z field and its boundary conditions

Choosing the mixture fraction, Z, as our pas-
sive scalar of interest, the transport equations
for the two species reduce to a single non-dimen-
sional equation:

@Z
@tc
þ U

@Z
@xc
¼ 1

Pe

@2Z
@x2

c

þ @
2Z
@y2

c

� �
: ð1Þ

The combustion time- and length-scales, tc, xc, yc

are non-dimensionalized using the mean free-
stream velocity and the flame half-width, H.

The boundary conditions are the same as those
used in [7]. At the inlet we impose Z = 1 for the
fuel slot (jycj < a), and Z = 0 for the two oxidizer
ig. 2. The Burke–Schumann flame: (a) flame geometry
F

and (b) duct geometry.
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slots (a < jycj < 1). Two more boundary condi-
tions are imposed:

@Z
@y
¼ 0 for yc ¼ �1; 8 x;

@Z
@x
¼ 0 for xc !1; 8 yc;

which say that there is no flux of species at the
wall; and that all quantities are bounded. (The
second boundary condition is imposed at the
downstream end of the flame’s domain.)

2.2. Temperature field

To find the heat release rate Q(t), one must first
relate the Z field to the temperature field, T [17]:

T ðZÞ ¼ T i þ Z

oxidizer-rich region; Z < Zst; ð2aÞ

T ðZÞ ¼ T i þ
Zst

1� Zst

ð1� ZÞ

fuel-rich region; Z P Zst: ð2bÞ

Zst is the stoichiometric mixture fraction and
Z = Zst describes the flame surface (see Fig. 2).
Ti is the inlet temperature.

2.3. Heat release rate

The total heat release rate, QðtÞ ¼ Qþ qðtÞ, is
given by the rate of change of the temperature
field, integrated over the whole domain. We must
use the material derivative at each point in the
domain D to account for the transport of fresh
fuel and oxidizer into the domain:

QðtÞ ¼
Z
D

@T
@t
þ U

@T
@x

� �
dD: ð3Þ

The temperature field is discontinuous, so we
must split this integral into the contributions from
the fuel-rich region and from the oxidizer-rich re-
gion (see Fig. 2).

2.4. Numerical scheme

The Z field is solved using a Chebyshev discret-
ization. Symmetry in yc is assumed, and the solu-
tion is therefore on the half-domain only,
yc 2 [0,H]. The grid has 31 Chebyshev points in
the xc-direction, and 17 points in the yc-direction.

The top-hat boundary condition used at the
inlet (i.e. Z = 1 for the fuel slot, Z = 0 outside it)
is not well-suited to a Chebyshev discretization.
However, the diffusive term in Eq. (1) ensures that
this top-hat profile is smoothened some short dis-
tance from the inlet. An effective inlet is therefore
defined a small distance from the top-hat profile.
The mixture fraction profile at this location —
which is provided by a separation-of-variables
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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solution of the steady Z field — serves as the inlet
boundary condition for the Chebyshev
discretization.

2.5. Acoustics

For thermoacoustic analysis, acoustic pertur-
bations are considered on top of the mean veloc-
ity. The perturbations are governed by the
momentum and energy equations:

@u
@ta
þ @p
@xa
¼ 0;

@p
@ta
þ @u
@xa
þ fp ¼ bT df q: ð4Þ

u and p are the non-dimensional perturbations in
velocity and pressure. (The pressure has been non-
dimensionalized using cM.) df is the Dirac delta
function; f represents acoustic damping; and
bT = 1/Tref. Here Tref is a non-dimensional refer-
ence temperature, Tref = (Ti + Tad)/2, where Tad

is the adiabatic flame temperature, given by set-
ting Z = Zst in Eq. (2). The acoustic time- and
length-scales, ta, xa are non-dimensionalized using
the speed of sound and the duct length.

For the simple duct considered (see Fig. 2),
ou/ox and p are both set to zero at the ends of
the tube. These boundary conditions are enforced
by choosing basis sets that match them:

uðxa; taÞ ¼
XN

j¼1

gjðtaÞ cosðjpxaÞ;

pðxa; taÞ ¼
XN

j¼1

ajðtaÞ sinðjpxaÞ:
ð5Þ

(For the momentum equation to be satisfied, gj(ta)
and aj(ta) must be related by ajðtaÞ ¼ _gjðtaÞ=jp.)
The acoustic damping, f, is dealt with by assigning
a damping parameter, fj, to each mode:

fj ¼ c1j2 þ c2j1=2: ð6Þ

This model is based on correlations developed by
Matveev [18] from models in Landau and Lifs-
chitz [19]. The Galerkin discretization of Eq. (5)
leads to a state-space model relating the perturba-
tion in heat release rate, q(t), to the acoustic veloc-
ity perturbation at some point in the duct:

_wðtaÞ ¼ AwðtaÞ þ bT BqðtaÞ; ð7aÞ

uðtaÞ ¼ CwðtaÞ; ð7bÞ

where w is the column vector w ¼ ½g; _g� and A, B,
C are suitably-dimensioned matrices. bT remains a
variable in Eq. (7a) to make clear that it enters lin-
early into the acoustics. bT will serve as one of two
parameters which will be varied in the continua-
tion analysis of Section 3.

In Section 4 we will make use of the transfer
function corresponding to Eq. (7). This is pro-
Please cite this article in press as: S.J. Illingworth et a
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vided by taking Laplace transforms of Eq. (7)
and substituting Eq. (7a) into Eq. (7b) to give
A(s) = C(sI � A)�1B, where s is the Laplace
variable.
2.6. Combustion–acoustic coupling

The flame model (1) and the acoustic Eq. (4)
use different non-dimensionalizations. Therefore
one unit of combustion time, tc, is not the same
as one unit of acoustic time, ta. An important
parameter is their ratio, tc/ta = ML/H. (Recall
that H is the half-width of the flame and L is
the length of the duct.) ML/H is therefore
important because varying it it controls the
timescales of the flame dynamics with respect
to the acoustic dynamics. (This was previously
recognized in [6].) In this study we set ML/
H = 1, which means that combustion time and
acoustic time are the same, tc = ta. This is sensi-
ble for a low Mach number (M� 1) and a
compact flame (L/H� 1).
3. Matrix-free continuation of limit cycles

3.1. Method

This section describes the numerical method
we use to find limit cycles. Ref. [20] contains a
complete description. Continuation analysis
examines nonlinear systems with evolution

@xðtÞ
@t
¼ f ðxðtÞ; kÞ; xðtÞ 2 RN ; k 2 R; ð8Þ

where x is the system state with dimension N and
k are parameters. The state contains all the vari-
ables required to define the system. For the
Burke–Schumann model, x ¼ ½g; _g; Z�, where g
and _g are the amplitudes of the acoustic modes
and Z is the mixture fraction values on the Cheby-
shev grid.

Shooting methods are the most efficient way to
find limit cycles of large systems. The shooting
method used in this paper iterates to find a state
on the limit cycle, x(0), and the period of the limit
cycle, T. The magnitude of the residual vector,
r = x(0) � x(T) (Fig. 3), is reduced to a predefined
tolerance by a two-step iteration process. First, we
consider the evolution of the system when started
from small perturbations around our current
guess [x,T]. We generate a (N + 1) � (N + 1)
Jacobian matrix [21], which relates a general small
change in [x(0), T] to the resulting change in
[x(T),T]. The spatial part of the Jacobian is
defined as o(xi(0) � xi(T))/oxj(0). The jth column
of the Jacobian matrix is formed by perturbing
xj(0), then time-marching forward and seeing the
resultant change in x(T). To fill the matrix, we
thus require N time-marches. Second, we solve a
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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linear equation with the Jacobian matrix to find
the [Dx,DT] that we should add to our current
guess, [x,T], in order to improve the guess. If
the magnitude of the residual is still too large,
we repeat the first step from the improved guess.

For large systems, it is impractical to form and
store the Jacobian matrix. It is better to use
matrix-free iterative methods, which inexactly
solve the linear equations using only a few time-
marches, without forming the Jacobian matrix.
In this paper, we use the GMRES method [22].
Like many combustion, acoustic, and fluid
mechanical systems, our thermoacoustic system
is dissipative, which means that only a few bulk
fluid motions are influential in the long time limit.
Consequently, in each limit cycle, there are far
fewer influential degrees of freedom than there
are variables. GMRES inexactly solves the linear
equations by implicitly using these influential bulk
motions, while ignoring features that are quickly
dissipated. Importantly, although the [Dx,DT]
steps are calculated by an inexact method which
uses only the influential bulk motions of the sys-
tem, the limit cycle found by the iterative process
uses the full system and is therefore exact. The
stability of a converged limit cycle is defined by
its Floquet multipliers, which are the eigenvalues
of the matrix oxi(T)/oxj(0). The eigenvalues are
calculated using the matrix-free Krylov–Schur
algorithm [20].

3.2. Results

Figure 4 shows the limit cycle amplitudes as
two parameters are varied: Peclet number, which
changes the ratio of advection to diffusion in the
flame, and bT, which controls the extent to which
unsteady combustion perturbs the acoustics (Eq.
(7a)). The parameters that are held fixed are
Zst = 0.8, c1 = 0.0247, c2 = 0.018, a = 0.35,
xf = 0.25, ML/H = 1. There are 20 acoustic
modes and Z is solved on a 31 � 17 Chebyshev
grid. Each limit cycle is calculated to a tolerance
of kx(0) � x(T)k < 10�8.

The Hopf bifurcation marks the boundary
between linearly stable and linearly unstable oper-
ating conditions. The limit cycles form a surface
which has both subcritical bifurcations for
50 < Pe < 70 (Fig. 4(a)) and supercritical bifurca-
tions for Pe < 50, Pe > 70 (Fig. 4(c)). Where there
th et a
is a subcritical bifurcation, there is a stable limit
cycle at higher velocity amplitudes. However, this
stable limit cycle has velocity amplitudes >2 and is
not shown in the figure. The bistable operating
conditions are those at which the system is linearly
stable but can be triggered to a high amplitude
limit cycle.

The limit cycles describe the behaviour of the
fully coupled system, and are calculated by con-
tinuation analysis quite cheaply: the Hopf bifurca-
tion line takes roughly 500 s and the surface of
limit cycles takes 61 CPU hours. The surface is
composed of 70 slices and roughly 2500 converged
limit cycles, requiring an average of 52 minutes
per slice, and 90 seconds per limit cycle. The com-
putation can be easily parallelized because the sur-
face is composed of separate two-dimensional
slices.

The relative computational expense of the
FDF and of a continuation analysis depends on
the stability information that is required. If the
flame operating condition is fixed and the acoustic
operating condition is varied, then only one FDF
evaluation is required, and the FDF does not fare
too badly in a comparison (in this case 52 CPU
minutes for one slice of the continuation surface,
versus 17 CPU hours for one FDF evaluation).
If both the flame and the acoustic operating con-
ditions are varied, however, then the FDF must be
re-evaluated at each of the flame’s operating
conditions, and this is expensive. The major
advantage of the continuation method over the
FDF is that its computational cost does not
depend on the type of system parameter that
one varies. This means that it can calculate the
stability limits when both the flame and the
acoustic operating conditions are varied, and does
so with a modest expense. Returning to Fig. 4, the
Peclet number determines the flame operating
condition, while Tref determines the acoustic oper-
ating condition. This means that a separate FDF
evaluation is required for each constant-Peclet
number slice. One FDF evaluation requires
approximately 17 CPU hours, so the FDF would
require approximately 1120 CPU hours to pro-
duce Fig. 4. This is more than an order of magni-
tude greater than that required by continuation.
4. A flame describing function approach

In this section we investigate the Burke–Schu-
mann flame’s nonlinear dynamics using the flame
describing function (FDF) technique. In a linear
setting, one can characterize a flame’s response
to forcing by measuring its gain and phase over
a range of forcing frequencies (its transfer func-
tion). Such a characterization is useful but it can-
not predict the flame’s — and therefore the
coupled system’s — nonlinear dynamics, such as
limit cycle amplitudes and frequencies.
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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Fig. 4. Continuation results for limit cycle amplitudes. The thick dark line is the Hopf bifurcation, which is the same as
the linear stability limit. The linearly unstable region is shaded dark gray and the bistable region is shaded light gray (the
bistable region is the vertical shadow of the subcritical bifurcation). Limit cycles are shown as dark dots on a surface
interpolated between neighbouring slices. The surface exhibits both subcritical bifurcations (a) and supercritical
bifurcations (c), where stable limit cycles are shown with a solid line and unstable limit cycles with a dashed line. The
bifurcation diagrams at Pe = 60 and Pe = 35 will be compared with predictions given by the FDF in Section 4.
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One way to address this is to use a describing
function approach. In this setting, the flame’s
response to harmonic forcing is characterized over
different forcing frequencies and, crucially, over
different forcing amplitudes. The key assumption
is that for a given forcing frequency, the flame
responds predominantly at that frequency, and
any higher harmonics in the flame’s response are
neglected.

The describing function was first employed by
Dowling in her numerical studies [4,9], using
which limit cycle amplitudes were well-predicted.
The approach was then employed experimentally
by Noiray et al. [10], who measured the describing
function for a burner with multiple anchored
flames, and who successfully predicted both
supercritical and subcritical bifurcations using a
dispersion relation for the acoustics. Durox et al.
[23] obtained the FDF for four different flame
geometries: a single conical flame; a V flame; an
M flame, and a collection of conical flames, while
Palies et al. [24] obtained the FDF of a premixed
swirling flame. More recently, Boudy et al. [25]
have used an FDF approach to investigate nonlin-
ear triggering and mode switching.
1 This has been verified by computing the FDF for a
forcing amplitude of 0.01. The differences in gain and in
phase are always less than 0.06%, which is true for both
Peclet numbers. Therefore the 0.1 amplitude data can be
treated as the linear forcing limit.
4.1. The Burke–Schumann model’s FDF

The Burke–Schumann model’s FDF has
been determined by forcing it harmonically at
Please cite this article in press as: S.J. Illingworth et a
10.1016/j.proci.2012.06.017
frequencies between 0.025 and 2.000, in incre-
ments of 0.025, and at forcing amplitudes between
0.1 and 1.0, in increments of 0.1. We denote the
resulting flame describing function F(ix, juj),
whose gain and phase is plotted in Fig. 5 for Pec-
let numbers of 35 and 60. These Peclet numbers
correspond to the subcritical and supercritical
slices in Fig. 4. For clarity, only data for the small-
est forcing amplitude, F(ix, 0.1), and the largest
forcing amplitude, F(ix, 1.0) are shown.

Let us first consider the FDF at the lowest
forcing amplitude, F(ix, 0.1), which we may
assume represents the flame’s linear frequency
response.1 The gain and phase plots for both Pec-
let numbers are similar to a first-order lag-type
system, whose frequency response is given by
a/(ix + a) for some constant a. The gain is unity
(0 dB) at low frequencies and decreases with
increasing frequency. The phase is 0� at zero fre-
quency, and approaches approximately �60� at
high frequencies. (This differs from the �90�
phase change seen at high frequencies for a pure
first-order lag system.)
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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Table 1
Maximum gain across all frequencies for the flame’s
second, third and fourth harmonics.

Pe 2nd harm. 3rd harm. 4th harm.

35.0 0.0528 0.0225 0.0083
60.0 0.0322 0.0179 0.0093
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2 Higher acoustic damping will give rise, in principle,
to smaller limit cycles. However, higher damping also
means that linear instability is less likely in the first
place. That is, damping must be smaller than driving for
the system to be linearly unstable, and they must become
equal in the limit cycle. The only way this can happen
(i.e. for their relative sizes to change) is via the nonlinear
dynamics of the flame, since the acoustics are linear.
Therefore since the changes in the flame’s dynamics with
forcing amplitude are so small, a reasonably-sized
positive growth rate gives rise to very large limit cycles,
and the only way a small limit cycle can exist is when the
growth rate in the linear limit is only just positive.
Let us now consider the largest forcing
amplitude case, F(ix, 1.0). Perhaps surprisingly,
the changes in gain and phase across the two
forcing amplitudes are very small. At Pe = 35,
for example, the maximum changes in gain
and phase across all frequencies are 0.014 and
4.9�. Although the current study is for a diffu-
sion flame, this behaviour is consistent with pre-
vious studies on premixed flames, where it has
been observed that a spatially constant velocity
field is an overly crude approximation [26],
and that it can give rise to flame dynamics that
are nearly linear with respect to forcing ampli-
tude [27]. It is likely that a convective velocity
model would give rise to richer nonlinear
behaviour.

A second characterization of the flame’s non-
linear behaviour is provided by the amplitude of
its higher harmonics. Defining a gain for the sec-
ond harmonic, for example, gives the flame’s gain
at frequency 2x when it is forced harmonically
with frequency x. This is done in Table 1, which
shows the maximum gains across all frequencies
for the second, third and fourth harmonics. Data
for the largest forcing amplitude of 1.0 have been
used, since this is where we expect higher harmon-
ics to be largest. The largest gain is seen in the sec-
ond harmonic, but even this is only around 5% of
the FDF’s maximum gain (which is unity, Fig. 5).
The gain is smaller still in the third and fourth
harmonics.

These small changes in dynamics with increas-
ing forcing amplitude help to explain the very
large limit cycles seen in Fig. 4. For a linearly
unstable system, a (stable) limit cycle will be
reached when the system’s nonlinear dynamics
are sufficiently different from the linear dynamics
to permit the limit cycle. Since linear acoustics
are assumed, the FDFs of Fig. 5 imply that if
the coupled system is linearly unstable, it will
th et a
remain unstable even for large-amplitude oscilla-
tions.2 The same argument holds when the cou-
pled system is linearly stable. We now consider
this point in more detail, drawing on the FDF
and Nyquist’s stability criterion to predict and
explain the behaviour seen at Peclet numbers of
35 and 60.
4.2. Predicting behaviour with the FDF

We now consider how the FDF can be used to
predict the bifurcation behaviour of the coupled
thermoacoustic system. To do so, one must model
the interaction of the nonlinear flame with the lin-
ear acoustics of Section 2.5. Noiray et al. [10]
achieve this by developing a dispersion relation
which, upon feeding in the FDF and solving, pro-
vides growth rates and eigenfrequencies over a
range of forcing amplitudes.

A different approach is taken in this paper.
Following Dowling [4,9], in the present quasi-lin-
ear setting, the eigenfrequencies of the coupled
system are those points in the complex s-plane
satisfying

1þ F ðs; jujÞAðsÞ ¼ 0: ð9Þ

(We have replaced ix with the Laplace variable s
here to allow complex frequencies, but we will
shortly revert back to s = ix.) A(s) is the acoustic
transfer function (see Section 2.5).

It is convenient to investigate the roots of Eq.
(9) by using its Nyquist curve. This involves plot-
ting F(s, juj)A(s) in the complex plane for real fre-
quencies, s = ix. Nyquist’s stability criterion says
that if the Nyquist curve of F(ix, juj)A(ix) encir-
cles the �1 point (the ‘critical point’), then the
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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coupled system will be unstable (i.e. positive
growth rate). If the Nyquist curve of
F(ix, juj)A(ix) does not encircle the �1 point, then
the coupled system will be stable (i.e. negative
growth rate).

The implications for our quasi-linear analysis
using the FDF are immediate. Since encirclement
of the �1 point corresponds to a positive growth
rate, and a lack of an encirclement corresponds
to a negative growth rate, a growth rate of zero
must result when the Nyquist curve of
F(ix, juj)A(ix) passes exactly through the �1
point.

This is demonstrated in Fig. 6. Let us first con-
sider Fig. 6(b), which represents the supercritical
bifurcation at Pe = 35. (The two plots are this
way round to be consistent with Fig. 4.) The
Nyquist curves of F(ix, juj)A(ix) are shown (for
positive frequencies only) for the smallest and
largest forcing amplitudes. The inset zooms in
around the �1 point. We see an encirclement of
the �1 point for the smaller forcing amplitude
of 0.1. At a forcing amplitude of 1.0, however, this
encirclement has been lost. We therefore expect a
linearly unstable system for small forcing ampli-
tudes, and a stable limit cycle which has an ampli-
tude of less than one.

Figure 6(a) performs the same analysis for the
subcritical slice (Pe = 60) of Fig. 4. In this case we
expect the FDF to reveal a linearly stable flame
which, for larger forcing amplitudes, becomes
nonlinearly unstable, and this is what we see in
Fig. 6(a). There are no encirclements of the critical
point for the smallest forcing amplitude, but the
critical point is encircled for the largest forcing
amplitude.

At this point, the FDF has predicted the super-
critical bifurcation at Pe = 35 and the subcritical
bifurcation at Pe = 60, but it has not predicted
the amplitudes of the limit cycles. To find the limit
cycle amplitudes we must do two things. First, for
th et al., Proc. Combust. Inst. (2012), http://dx.doi.org/
)

t

each forcing amplitude, find the point where the
Nyquist curve passes through the negative real
axis. Second, interpolate these values to find the
amplitude at which the Nyquist curve passes
exactly through the �1 point. The results of this
procedure are shown in Fig. 7, where the FDF’s
prediction of the limit cycle amplitude is com-
pared to that given by the continuation analysis.
Since the parameter bT only affects the acoustics
and does not affect the flame dynamics directly,
we can do this for a range of bT. (The comparison
is made only for limit cycle amplitudes between
0.1 and 1.0, since this is the range of amplitudes
over which FDF data are available.) We see excel-
lent agreement between the FDF results and the
continuation analysis. In addition, the same anal-
ysis has been performed at Peclet numbers of 10
and 80, for which the FDF performs equally well
in predicting the limit cycle amplitudes. This sug-
gests that the approximations made in forming the
FDF — namely, that higher harmonics of the
flame’s response may be neglected — are valid
for the Burke–Schumann model under investiga-
tion. An important question is whether the super-
critical and subcritical bifurcations are caused by
changes in gain or in phase of the Burke–Schu-
mann flame’s response. Figures 5 and 6 tell us that
it is a combination of the two. In Fig. 5 we see
that, for both Peclet numbers, there are changes
both in gain and in phase with forcing amplitude.
Relating this to the Nyquist curve in Fig. 6, a
change in gain will act to expand or shrink the
entire Nyquist curve, while a change in phase will
rotate it. Both of these effects influence whether
the critical point is encircled or not, and so both
affect the coupled thermoacoustic system’s bifur-
cation behaviour.

It would be interesting to also look at the effect
of the flame position and the mode-dependent
acoustic damping on the FDF’s level of success.
These two parameters would impact the validity
of the FDF by changing the relative sizes of the
different acoustic modes. It is likely that the
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FDF would still work well as these are varied for
the current Burke–Schumann model, since the
nonlinear harmonics generated by the flame are
so small, but this would nonetheless be an inter-
esting area for future work.
5. An explanation of the flame’s dynamics

The results of Sections 3 and 4 suggest that the
Burke–Schumann flame exhibits a near-linear
response for all forcing amplitudes. In this section
an explanation of this near-linear behaviour is
given in the time domain at a Peclet number of 35.

Figure 8(a) shows the flame’s response to a
harmonic forcing frequency of 0.25 for forcing
amplitudes of 0.1 and 1.5. (In the absence of
acoustic coupling.) A scaling factor of 0.1/1.5 is
applied to the larger forcing amplitude data to
allow a direct comparison in the same plot. The
forcing velocity, u, the perturbation in the flame
length from steady-state, denoted lf, and the per-
turbation in the heat release rate, q are plotted.
The response at the two forcing amplitudes is
remarkably similar for most of the cycle. The larg-
est differences occur when the flame is shortest.

The phase portrait for q and lf is given in
Fig. 8(b). For the smallest forcing amplitude, a
narrow ellipse is traced out, which suggests a
small phase difference between q and lf. For the
largest forcing amplitude, this ellipse is distorted,
but only during the part of the cycle where the
flame is shortest and therefore closest to the inlet.

Figure 8(c) shows snapshots of the two flame
shapes at the instances indicated in Fig. 8(a) and
(b) (without any scaling). The second and fourth
snapshots are the most important. The second
snapshot shows the two flames at their longest.
At this instant the two flames are self-similar since
their scaled lengths and scaled heat release pertur-
bations are almost identical (Fig. 8(a)). The fourth
snapshot shows the two flames at their shortest and
shows that the flame moves very close to the inlet
Please cite this article in press as: S.J. Illingworth et a
10.1016/j.proci.2012.06.017
for the higher forcing amplitude. Even though the
maximum velocity perturbation (u = 1.5) is larger
than the mean velocity (which is unity), the flame
cannot traverse the inlet because of the boundary
condition imposed there (see Section 2.1). It is
around this part of the cycle that the two flames’
behaviours differ most significantly (Fig. 8(a)).

Let us summarize this behaviour in two parts.
First, the perturbation in the flame length varies
almost linearly with the velocity amplitude: as
the forcing amplitude increases, the flame length
simply deviates proportionally from its steady-
state value. If the forcing amplitude is sufficient
to bring the flame tip close to the inlet, however,
then the inlet boundary condition brings the flame
to a halt, and the deviation in the flame length sat-
urates during the negative part of the cycle. Sec-
ond, there is a near-linear relationship between
the flame length and the heat release, which per-
sists at all forcing amplitudes, most clearly seen
in Fig. 8(b). This breaks down if the flame tip
approaches the inlet, and this appears to be the
main source of nonlinearity in the current
Burke–Schumann model.

It is clear that some aspects of the flame model
are too simple to capture nonlinear behaviour at
sensible forcing amplitudes. The flame responds
nearly linearly nearly all of the time, and any non-
linearity is seen when the flame is close to the inlet.
To address this, future work will look at the
impact of two mechanisms which the current
model does not include: a finite chemistry rate;
and a spatially-varying velocity field.
6. Conclusions

The nonlinear thermoacoustic behaviour of a
diffusion flame has been considered using two dif-
ferent approaches. The first, a continuation analy-
sis, allows limit cycle amplitudes and frequencies
to be rapidly found over a large parameter space,
and no approximations of the underlying model
l., Proc. Combust. Inst. (2012), http://dx.doi.org/
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are needed to use it. A physical interpretation of
the results is not possible with this approach, how-
ever. The second approach involves finding the
flame’s response to harmonic forcing over a range
of forcing frequencies and forcing amplitudes to
generate a flame describing function (FDF). This
is more time-consuming and is only valid for one
set of flame parameters, but a physical interpreta-
tion of the results follows quite naturally.

By combining these approaches, two matters
have been addressed. First, the FDF has been val-
idated by comparing its prediction of limit cycle
amplitudes to those given by the continuation anal-
ysis. The agreement is excellent. The FDF discards
higher harmonics of the flame response, retaining
only its response at the forcing frequency. There-
fore the FDF’s success suggests that, for this con-
figuration, changes in gain and phase at the
frequency of forcing dominates the Burke–Schu-
mann flame’s (mildly) nonlinear behaviour. Sec-
ond, combining the two techniques allows one to
rapidly sweep over many operating conditions
using the continuation analysis; and to explain that
behaviour at points of interest using the FDF.

The flame’s response to forcing is nearly
linear even for very large forcing amplitudes. An
investigation in the time domain reveals that the
(mild) nonlinearity in the flame response is mainly
caused by the inlet boundary condition during the
part of the cycle where the heat release rate (and
flame length) is near its minimum. It seems that
the current model is too simple to capture any other
nonlinear dynamics of the flame. Future work will
address this by considering the effects of a spatially-
varying velocity field, which is known to be impor-
tant in premixed flames [26], and which is likely to
give rise to richer nonlinear dynamics in the Burke–
Schumann flame. This will allow the application of
the techniques presented in this paper to a flame
model with a more realistic nonlinear response.
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