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Abstract

Ensembles of geophysical models improve prediction accuracy and express un-
certainties. We develop a novel data-driven ensembling strategy for combining
geophysical models using Bayesian Neural Networks, which infers spatiotem-
porally varying model weights and bias, while accounting for heteroscedastic
uncertainties in the observations. This produces more accurate and uncertainty-
aware predictions without sacrificing interpretability. Applied to the prediction
of total column ozone from an ensemble of 15 chemistry-climate models, we
find that the Bayesian neural network ensemble (BayNNE) outperforms existing
methods for ensembling physical models, achieving a 49.4% reduction in RMSE
for temporal extrapolation, and a 67.4% reduction in RMSE for polar data voids,
compared to a weighted mean. Uncertainty is also well-characterized, with 91.9%
of the data points in our extrapolation validation dataset lying within 2 standard
deviations and 98.9% within 3 standard deviations.

1 Introduction

Climate models are the primary tool for predicting the evolution of Earth’s uncertain climate and
their output informs international policy [16]. Based on multi-scale physical and chemical processes
they allow us to simulate conditions outside of the observational record, both spatially and tempo-
rally. Coordinated experiments with an ensemble of multiple models [11, 37] are typically used to
increase the accuracy of prediction and to quantify predictive uncertainty, with studies often reporting
predictions based on the ensemble average and uncertainty from the ensemble spread.

Such approaches assume that each separate climate model within the ensemble is independent and
able to simulate the Earth system with equal skill, neither of which are true [12, 19]. Climate
model skill is established through comparisons against a wide variety of remotely-sensed or in situ
observations. Weighted measures of skill from these comparisons provide a more sophisticated
method of combining an ensemble compared to simple averaging, and these weighted means are used
to constrain ensemble predictions for single or multiple variables of interest [3, 20]. However, there
are limitations of these approaches: they assume that historic climate model skills and behaviours can
be translated to a future prediction; they rely on observations with the same spatiotemporal coverage
as the models and cannot learn model weights for regions where data is sparse; they generally, do not
account for the varying quality of observations upon which ensembles are weighted; and they do not
account for spatially-varying skill in individual models.

⇤The first two authors contributed equally to this work. The order is arbitrary and determined by a coin flip.
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Exploiting machine learning methods to analyse and process ensembles of climate models is an
emerging area of research. Given the complexity and scale of the data involved, neural networks
have obvious benefits. Key examples include emulating climate model ensembles [18], thus saving
on high computational costs; identifying regional patterns of climate change [4]; and examining
and quantifying differences between models’ underlying representations of atmospheric physics
and chemistry [30]. The comprehensive review of Reichstein et al. [35] provides further examples
of how earth system science can – and has – benefited from neural networks and deep learning.
Beyond deep learning, causal inference has provided a new way to analyse the skill of climate model
ensembles [31], and newly proposed ensembling methods have improved climate model predictions
[2, 26, 27, 40].

In this paper, we address the limitations of current ensembling methods and develop a method which
provides more accurate and uncertainty aware predictions. Our approach combines geophysical
models within a Bayesian ensembling framework, which assigns spatiotemporally varying weights
to models and accounts for heteroscedastic aleatoric uncertainty in observational data, as well as
epistemic uncertainty where data is unavailable. By fusing models, which codify our best physical
knowledge, with observations, we can better interpolate and extrapolate geophysical data. This
provides more accurate future predictions as well as spatiotemporally continuous and observationally
constrained historic states. A key strength of our approach is the data model’s interpretability,
extending its use beyond its predictive capabilities to bring insight and understanding to the climate
models.

The code and pretrained models accompanying this paper are hosted in a Github repository
https://github.com/Ushnish-Sengupta/Model-Ensembler. The dataset of total column
ozone observations [6] and chemistry-climate model predictions from 1980 to 2010 [28] are pro-
cessed, combined and made available as a resource (https://osf.io/ynax2/download) for future
studies in geophysical model ensembling.

2 Methods

2.1 Problem formulation

We assume that observations y(x, t) can be modelled as a sum of n physical model predictions
Mi(x, t) weighted by their respective weights ↵i(x, t), a bias term �(x, t) and a heteroscedastic
aleatoric noise term �(x, t).

y(x, t) =
nX

i=1

↵i(x, t)Mi(x, t) + �(x, t) + �(x, t) (1)

Model weights form a partition of unity, i.e., ↵i(x, t) > 0 and
Pn

i=1 ↵i(x, t) = 1 8 x, t. The weights,
bias and noise are modelled as probabilistic functions by specifying distributions over the parameters
of a neural network. The basic architecture of a neural network embodying these assumptions is
shown in Figure 1. The physical model weights are represented by the output of a softmax layer
which enforces the partition of unity constraints and the weighting of model predictions is performed
by a subsequent dot product layer. We choose tanh activations for the hidden layer because its mean
output is zero-centered, simplifying our prior design. The extrapolation behaviour of a Bayesian
Neural Network with tanh activations outside the training set is also predictably flat, which means the
predicted model bias and aleatoric noise does not assume unrealistic values even when we extrapolate.

2.2 Prior design

The computational expense of Bayesian inference is only justified if we are able to encode our
domain knowledge into the prior. This can be a challenge since our function space intuitions about
the modelled quantity require translation to distributions over parameter values or architecture
choices. Input warping is an essential first step if we want to restrict our prior function space to
physically realistic functions [33]. While only three numbers – latitude, longitude and time – suffice
to uniquely identify a datapoint, using these directly as inputs would be problematic because the
physical model weights, biases and noise generated by such a prior network would be discontinuous
across the 180th meridian and would not respect seasonality. In our case study, locations are
represented by their Euclidean coordinates (u, v, w) and the time variable is warped onto the 3D helix
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Figure 1: Architecture of the neural network where shading depicts external inputs or data.

(cos(2⇡t/T ), sin(2⇡t/T ), t), where T = 1 year. This transformation of the time variable makes our
prior network generate weights and biases with both a strong annual periodicity and a slow variation
over the years (Figure 2a), consistent with our expectations. The input variables also need appropriate
scaling to ensure that our neural network outputs have the desired characteristic lengthscale. Model
skills and biases are likely to vary over the typical lengthscales spanned by climatic or geographic
regions that and the scaling of the spatial coordinates should be such that this is reflected in the prior.
Scaling is also important for temporal input variables and it can be used to magnify or suppress
seasonal or yearly variations. Figure 2c demonstrates the effect of three different scaling choices
for the w coordinate, [�0.1, 0.1], [�1, 1] and [�4, 4] on randomly drawn samples from the prior:
increasing the scale factor favours functions with larger high frequency components.

Another key component of a well-formulated prior is the variance of the pre-softmax layer. Since
our physical models are competitive, a priori we should assume that any model combination should
be possible at any point in time and space and the ↵i-s generated by the prior network should be
distributed approximately uniformly in the physical model weight simplex. We should therefore
choose a prior variance for the incoming connections to the pre-softmax layer such that the variance
of the untrained layer outputs is close to 1.0. Figure 2b shows random samples of ↵i at an arbitrary
point from an untrained neural network with 3 models. It helps us visualize how a small pre-softmax
layer standard deviation (0.1) constrains the prior ↵i to lie close to the naive multi-model mean,
whereas a standard deviation that is too large (4.0) pushes all the prior probability mass towards the
corners of the simplex.

Similarly, the prior variances of incoming connections to the model bias term should be scaled to
restrict the bias term to zero prior mean and a small variance. While the model bias is necessitated
by the fact that certain regions can be modelled poorly by all the physical models, we would prefer
to have our combination of physical models do the bulk of the modelling. The prior variances of
connections to the heteroscedastic noise term should likewise be scaled. However, unlike the bias
term whose distribution should be zero-centered, the noise should have a positive mean added to it
that is informed by our knowledge of the average quality of our observations.

Finally, the number of units in the hidden layer(s) should increase commensurately with the size and
resolution of our dataset. Overparameterization leads to desirable Gaussian process-like behaviour
[23] whereas an underparametrized Bayesian neural network, unable to produce the intricate functions
demanded by a large dataset, will have its posterior collapse to a single point and lose all epistemic
uncertainty outside of the training dataset. Judicious use of prior predictive checks in conjugation with
domain knowledge can thus circumvent the need for expensive hyperparameter tuning or hyperpriors
entirely for our simple network and create a well-informed prior.

2.3 Approximate inference using randomized MAP sampling

Inference is complicated by the size of a typical geospatial dataset for example, the ozone column
dataset used as our case study contains over 2 million datapoints. This rules out more expensive
gold-standard inference techniques such as Markov Chain Monte Carlo [29] or Hamiltonian Monte
Carlo [7]. Mean-field variational inference [5] or Monte Carlo dropout [14], while scalable, are also
inappropriate because one of the objectives of ensembling models is to fill-in missing data and it has
been demonstrated [13] that these techniques are excessively overconfident between well-seperated
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Figure 2: Visualizing the prior. a) shows how the warping of the time coordinate enforces desired
quasiperiodicity in the physical model weights generated by the prior. Different coloured lines depict
the model weights for four samples from the untrained prior and grey dashed lines split the plot into
12 month intervals. b) shows the effect of pre-softmax layer output variance on the prior distribution
of physical model weights in the 2-simplex at a particular point in time and space, using 1000 samples
from the neural network prior with 3 physical models. c) shows the impact of scaling spatial input on
the lengthscales of physical model weights produced by the neural network prior.

clusters of training data. Here, we have chosen a state-of-the-art approximate inference technique:
approximately Bayesian ensembling using randomized maximum a posteriori (MAP) sampling
[34]. Ensembling had already been shown [21] to be empirically effective at providing calibrated
estimates of uncertainty for neural networks and the randomized MAP sampling approach grounds
this in Bayesian theory. For the j-th neural network ensemble member, we draw a sample from the
prior distribution over parameters (assumed multivariate normal) ✓anc,j ⇠ N (µprior,⌃prior) and
compute the MAP estimate corresponding to a prior re-centered at ✓anc,j .

✓MAP,j = argmax✓j
log(PD(D|✓j))�

1

2
k⌃�1/2

prior(✓j � ✓anc,j)k22 (2)

If we now consider a dataset of ND observations {yi,xi, ti} and specify the data likelihood PD(D|✓j)
for our regression task by assuming heteroscedastic Gaussian noise �(x, t), we may equivalently
minimize the following loss function for the j-th neural network

Lossj =
NDX

i=1

(yi � ŷj(xi, ti))2

�2
j (xi, ti)

+
NDX

i=1

log(�2
j (xi, ti)) + k⌃�1/2

prior(✓j � ✓anc,j)k22 (3)

The prediction of a trained ensemble with ne neural networks is therefore a mixture of ne

Gaussians, each centered at ŷj(xi, ti) with a variance of �2
j (xi, ti). For computational conve-

nience, we approximate this mixture as a single Gaussian with mean 1
ne

P
j ŷj and variance
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1
ne

P
j �

2
j + 1

ne

P
j ŷ

2
j � ( 1

ne

P
j ŷj)

2, following similar treatment in [21]. This also allows us
to decompose the total predictive uncertainty into an aleatoric component (first term) and an epistemic
component (second and third terms).

To disambiguate any reference to ensembling or ensembles in this paper, we refer to the combination
of geophysical models as the "physical model ensemble" and to the set of neural networks used for
approximate inference as the "neural network ensemble".

An outline of the algorithm used to train our BayNNE is provided below.

Algorithm 1: Algorithm for initialising and training the BayNNE
Input :Training dataset of ND observations and physical model predictions corresponding to

locations and times {xi, ti}, physical model predictions for NT locations and times
with missing observations {xk, tk}

Output :Mean and variance predicted by metamodel for {xk, tk}
1 Transform latitude, longitude and time of each datapoint to 6-dimensional space-time input

(cos(lati) sin(loni), cos(lati) cos(loni), sin(lati), cos(2⇡ti/T ), sin(2⇡ti/T ), ti).
2 Rescale each column of space-time inputs to the range [�a, a]. Use larger scales a for input

variables on which we expect model weights/ bias to have stronger dependence.
3 Set prior variances of the fully connected layer weights to li/ninput, where ninput is the number

of nodes in the previous layer.
4 Tune li by performing prior pushforward checks – the output of each fully connected layer

should have mean ⇠ 0 and variance ⇠ 1.0, except those that feed the bias and noise terms,
whose output variance should be small.

5 Initialize ne neural networks by drawing samples from the prior over parameters.
6 for j  1 to ne do
7 Draw a random sample ✓anc,j from the prior over parameters.
8 Anchor the loss function of j-th neural network to ✓anc,j , so that

Lossj =
PND

i=1
(yi�ŷj(xi,ti))

2

�2
j (xi,ti)

+
PND

i=1 log(�2
j (xi, ti)) + k⌃�1/2

prior(✓j � ✓anc,j)k22.
9 Train with ADAM until convergence.

10 end
11 for k  0 to NT do
12 µpred,k = 1

ne

P
j ŷj(xk, tk)

13 �pred,k = 1
ne

P
j �

2
j (xk, tk) +

1
ne

P
j ŷ

2
j (xk, tk)� ( 1

ne

P
j ŷj(xk, tk))2

14 end
15 Compute negative log-likelihood of predictions on test data. If NLL not converged, return to step

5 and train more neural networks.
16 return µpred, �pred

3 Experiments

3.1 Synthetic data

To validate the Bayesian neural network ensembler (BayNNE), we create a toy problem where
the ground truth is known. The "monthly observations" are generated by the function 0.5

�
lat
90

�2
+

0.25 sin
�
2⇡ lon

180

�
� 0.2 cos

�
⇡mon

12

�
(lat, lon and mon are latitude, longitude, and month num-

ber respectively) with varying levels of added Gaussian noise in different regions to simulate
heteroscedasticity– the noise standard deviation is 0.01 in the northern region (north of 30�N),
0.02 in the tropics (between 30�S and 30�N) and 0.03 in the southern region (south of 30�S). The
four "physical models" replicate the observations but only in distinct geographical regions: model 1
is correct in the northern region where it has a bias of +0.03 w.r.t. the observations, models 2 and
3 are correct and unbiased in the equatorial region and model 4 is correct in the south with a bias
of �0.03. In regions where the models are not designed to be skilful, they output random noise.
Model predictions and observations are shown in Figure 3. The synthetic observations span 20 years,
and we train the BayNNE on 85% of the data from the first 10 years. The last 10 years are left for
out-of-sample validation.
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Results of a BayNNE with 50 neural network ensemble members with 1 hidden layer of 100 nodes
trained on this synthetic dataset are shown in Figure 3. We observe that it has successfully recovered
the expected physical model weights: models only have weights in the regions where they are skilful
and where multiple models are equally skilful (models 2 and 3 in the equatorial region), they are
assigned equal weights on average. We also find that the magnitudes of the recovered model biases
and aleatoric noise match their engineered values. The uncertainty quantification is excellent out
of sample with 68.2, 95.4 and 99.7 percent of points lying within 1, 2 and 3 standard deviations
respectively. The overall predictive skill is consistent across the training, testing and out of sample
datasets, with near-optimal RMSEs of 0.022, close to the average noise in our observations. This
test validates the ability of the BayNNE to successfully capture model skill, bias and aleatoric noise,
demonstrating competence in accurate ensembling.

Figure 3: Summary of the toy problem results, showing the synthetic observations and model
predictions for a single month 5 years out of sample. These are shown alongside the model weights
recovered by the BayNNE for each model, the model bias, and aleatoric noise.

3.2 Total column ozone dataset

For a more compelling case study with real-world implications, we consider the problem of predicting
monthly averaged total column ozone, which is the integrated amount of ozone from the surface to
the atmosphere’s boundary with space. Total column ozone provides a good estimate of stratospheric
ozone and its variability, as approximately 90% of ozone resides in the stratosphere. Studying and
predicting ozone concentrations is an important scientific endeavour, particularly for monitoring the
impacts of the Montreal protocol which was designed to protect the ozone layer from anthropogenic
emissions [39]. This sustained interest has produced a good coverage of observational records and
models suited to simulating ozone, both of which we use.

3.2.1 Description of dataset

We use total column ozone output from 15 chemistry-climate models within the Chemistry-Climate
Modelling Initiative (CCMI)[28]. This ensemble of process models simulates the changing climate,
the chemical composition of the atmosphere, and couplings within the chemistry-climate system.
We use the hindcast simulation (1980–2010) from CCMI where the models have been nudged [32]
so that they replicate the observed meteorology of the past. This simulation represents the models’
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best attempt at recreating the chemical composition for this 30-year period, making it a suitable
comparison to observations.

The observations we use are the NIWA-BS total column ozone record [6] which is a dataset con-
structed from satellites and ground-based observations. Coverage is limited by satellite availability
and the method of observation, which for some instruments requires daylight. For this reason, a large
proportion of missing observations are over polar regions during winter months, an area of interest as
this covers the formation of the ozone hole.

3.2.2 Constructing the validation set

Significant spatial and temporal correlations present in geospatial data mean that a randomised
train-test split will not adequately validate the skill of the BayNNE. Instead, we withold a set of data
for validation which mimics the spatial structure and the temporal occurrence of the data missing
from the observations. This is a more rigorous test of the intended application of the BayNNE. To
test interpolation, we consider 2 forms of data voids in the observations: data missing from tropical
regions (often gaps between satellite tracks) and small irregular missing features. Using historic
satellite data, we create synthetic patterns resembling those usually associated with missing data
due to incomplete satellite coverage, sometimes covering the majority of the tropics. The total data
withheld for the purposes of interpolation validation is 24 months of the entire region 30�S to 30�N,
48 months of synthetic data voids due to incomplete satellite coverage and an additional 500 randomly
distributed small scale features (up to 15� ⇥ 15�). We test temporal extrapolation by withholding the
last 3 years of data, and spatial extrapolation by withholding data from polar regions. The latter is
either an area extending from a latitude of either 60� or 70� to the pole, which replicates the inability
of some instruments to measure ozone at high latitudes during wintertime [17]. In total, 24 months of
polar cap data for both the north pole and south pole is used for the purpose of validation. Overall, the
BayNNE is trained on 77% (1.8 million datapoints), tested on 4% (85,000 datapoints) and validated
on 19% (440,000 datapoints) of the available data.

3.2.3 Results

The BayNNE used to ensemble the 15 chemistry-climate models for predicting total column ozone
comprises of 65 neural network ensemble members, each containing a single hidden layer with 500
nodes. Comparisons between BayNNE and commonly used ensembling and interpolation methods
are shown in Table 1. Interpolation in non-polar regions, including predominantly large gaps in the
tropics from incomplete satellite coverage, is compared against bilinear interpolation [1, 25], and
spatiotemporal kriging[38, 41] using a stochastic variational Gaussian process [8] on 3 year sections
of observational data. Spatial and temporal extrapolation skill (root mean squared error) is compared
to a uniformly globally weighted multi-model mean [9, 22] and 2 weighted means where weights
per model are found from the ability of a model to replicate observations in the training set [20, 36].
The reader is referred to the supplementary information file for more details on prior design for the
BayNNE, training and baseline comparisons.

The BayNNE predictions are significantly better than the baselines in nearly all subsets of the valida-
tion dataset (Table 1). Particular improvement over existing methods is seen for ozone predictions
over the southern polar cap and for future predictions. Chemistry-climate models are typically less
good at simulating ozone over the south pole compared to the north pole due to cold biases [10]
and discrepancies in simulating the polar vortex [15, 24]. However, by spatiotemporally identifying
skilful models, BayNNE is better at predicting southern polar ozone than other ensembling standards
in the modelling community. Skill in temporally extrapolating is also much improved, meaning that
using BayNNE may provide more accurate future predictions, which is extremely desirable.

Interpretability, a key benefit of using this technique, is highlighted in Figure 4, allowing for identifi-
cation of seasons and regions in which particular models contribute more to the ensemble prediction.
For example, we identify the three chemistry-climate models with the largest contributions to the
ensemble prediction: IPSL, MRI and UMUKCA. IPSL contributes highly, particularly in far northern
regions but also globally, and UMUKCA is the most dominant model in the tropics. Also of note
(not shown), is the CCSRNIES model, whose weight for the southern pole in austral winter is
approximately half, overwhelmingly making it the dominant model for predicting the build-up period
before the springtime Antarctic ozone hole.
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Figure 4: Physical model weights and uncertainties recovered by BayNNE when predicting total
column ozone. a) shows the average weight per chemistry-climate model globally and for three
regions of interest. b) depicts the spatially averaged model weight for the same three models. Vertical
dashed lines show the beginning of the year. c) shows the temporally averaged model weight for
the three highest weighted models. d) shows the predicted average aleatoric uncertainty and two
temporal snapshots of epistemic uncertainty: in sample (with red hatching depicting areas with
available training data), and out of sample. DU is a Dobson unit; a measure of the amount of a trace
gas in a vertical column.

Figure 4d shows how the BayNNE successfully handles uncertainty. Epistemic uncertainty is
increased for regions lacking observations and temporally out of sample. This is highly desirable
behaviour as we do not want an ensembling method to be overly confident beyond data it has seen. To
quantify success at handling uncertainty we compare the number of predictions which lie within 1,2
and 3 standard deviations of the truth, which ideally should be 68.3%, 95.5% and 99.7% respectively.
These values are: 61%, 92% and 99% for temporal extrapolation; 62%, 94% and 99% for the south
pole; and 56%, 87% and 97% for the north pole. The negative log likelihoods for these three regions
are �2.56, �2.19 and �2.33.
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Table 1: Area weighted root mean squared errors of predictions in Dobson units using various
methods. NP and SP represent missing north polar and southern polar cap data respectively. For
interpolation ‘Tropics’ covers a block of missing data 30�S to 30�N, ‘Satellite voids’ represents the
incomplete satellite coverage in the tropics, and small features are up to 15� ⇥ 15�.

Extrapolation Interpolation
Temporal SP NP Tropics Satellite voids Small features

Multi model mean 15.7 30.5 8.8 9.8 9.2 16.4
Weighted mean 8.7 22.1 12.3 8.2 8.5 10.2
Spatially weighted mean 9.8 19.6 6.6 5.5 5.2 10.0
Spatiotemporal kriging* – – – 7.0 2.2 3.4
Bilinear interpolation* – – – 31.2 1.7 3.4
BayNNE 4.4 6.6 4.7 2.7 2.1 3.2

* Used for interpolation only

4 Conclusions

We have presented Bayesian neural network ensembling (BayNNE), a principled approach to geophys-
ical model ensembling, which learns spatiotemporally varying model weights and bias based upon
the physical models’ ability to replicate observations. This uncertainty-aware approach incorporates
a heteroscedastic aleatoric uncertainty, which accounts for the varying quality of observational data
and other sources of irreducible uncertainties. Additionally, the epistemic uncertainties inherent
in a Bayesian framework prevent overconfident extrapolation when BayNNE is not constrained by
observations.

We have validated BayNNE on a synthetic dataset where we demonstrated its ability to recover
the correct model weights, biases and noise. We then applied it to the more challenging problem
of ensembling 15 chemistry-climate models to predict total column ozone. BayNNE predictions
were significantly more accurate than current ensembling techniques, both temporally out-of-sample
and for infilling historic observations. As a result, we have produced an accurate and complete
gridded reconstruction of total column ozone for the period 1980–2010, which offers new insights,
particularly for the ozone hole. Interpretability is maintained and model weights/ biases offer an
understanding of localised model performance, allowing diagnosis by modellers. Considering that
most physical model ensemble weighting techniques do not vary weights in space and time and do
not take account of uncertainties in the observations used to create model weights, this ensembling
technique represents a significant improvement.

Accurately ensembling geophysical models (e.g. climate models) improves the predictive capability
of the ensemble, allows for better investigation of historic conditions through the imputation of
discontinuous observations and in the case of climate models, is vital for investigating the evolution
of the climate. Moreover, quantifying the certainty of predictions is fundamental for constraining
future change and describing our confidence in the predictions. Future work should not only look
at applying this tool to other climate modelling problems but also to problems in other disciplines,
such as hydrology, where competing model predictions need to be similarly combined in light
of observational evidence. We note that the nudged chemistry-climate models in our case study
have their behaviour partially constrained by observed meteorology, whereas free running models
predicting the future cannot have this constraint. A proper treatment of the chaos-induced uncertainty
in free running models would be worth investigating for use in forecasting using ensembles. Finally,
it would also be interesting to consider physical model weights as a function of model variables (e.g.
ozone-temperature gradient) that causally impact model skill, instead of proxies like location and
time, as this may improve forecast accuracy.
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Broader Impact

We created an ensembling technique which takes into account the limitations of observations and
models. This method is applicable to many geophysical models (e.g. hydrological, regional climate
and chemistry-climate models) though nuances in each field and model ensemble mean the BayNNE
should not be blindly used.

Positive impacts include more accurate and better constrained predictions from model ensembles.
This could shift the standard of how model ensembling is performed, leading to this method (or
derivatives) influencing scientific understanding and downstream policy decisions. The greater
understanding offered by combing models and observations in this way, has the potential to open
up sparse historic observational records, through fusion with geophysical models. This would, for
example, allow for greater understanding of historic climate states.

The response to climate change is influenced by predictions formed from models ensembles, and
though accurate and appropriately certain ensembling could result in more definitive and correctly
concentrated mitigation efforts, highly certain but wrong predictions could lead to an incorrect pooling
of resources and result in negative socio-economic impacts. For these reasons we must be mindful
about dangers of extrapolating and unknown errors in observational datasets which incorrectly bias
results.
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A Construction of ozone baselines

We remind the reader that all of these baselines use the same data for training, testing and validation
as the Bayesian neural network ensemble. This validation tests the ability of the ensembling methods
to interpolate and extrapolate, particularly over regions of interest and sparse data.

A.1 Multi-model mean

This is the uniform weighting of all the 15 chemistry-climate models. The prediction is therefore,

yMMM(x, t) =
1

15

15X

i=1

Mi(x, t) (1)

where yMMM(x, t) is the multi-model mean prediction and Mi(x, t) is the i-th individual model
prediction.
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A.2 Weighted mean

Here the ensemble mean is constructed from model projections weighted by their skill (in replicating
observations) and their independence. This is based on work from Knutti et al. [2], Sanderson et al.
[3].For an ensemble of N models, the weight for model i (wi) is given by

wi = exp

✓
� D2

i

ni�2
D

◆
/

0

@1 +
NX

j 6=i

exp

 
�

S2
ij

ni�2
S

!1

A , (2)

where D2
i is the squared difference between a model and observation averaged over all space and

time, S2
ij is the squared difference between models averaged over all space and time, ni is the size

of data used in constructing the weight, and �D and �S are constants which allow tuning of the
weighting. The weights wi are normalise to sum to 1. The weighted prediction is therefore

yWM(x, t) =
NX

i=1

wiMi(x, t). (3)

Values of �D and �S were found by minimising the difference between the weighted prediction and
the observations over the training data.

A.3 Spatially weighted mean

The ensemble is constructed much the same as the weighted mean presented above, except that model
weights vary in space. The weights are calculated

wi(x, t) = exp

✓
� Di(x, t)2

ni(x, t)�2
D

◆
/

0

@1 +
NX

j 6=i

exp

✓
� Sij(x, t)2

ni(x, t)�2
S

◆1

A , (4)

and are used to generate the prediction,

ySWM(x, t) =
NX

i=1

wi(x, t)Mi(x, t). (5)

A.4 Spatiotemporal kriging

We performed spatiotemporal kriging using an implementation of a stochastic variational Gaussian
process (SVGP) from GPFlow [1]. Due to the size of the training data (1.8 million data points) we
used a SVGP on 3 year sections of observational data with 5000 inducing points per section. The
kernel we used was the product of a Matern3/2 kernel acting over latitude and time, and periodic
Matern3/2 kernel acting over longitude. We used an Adam optimiser implemented in tensorflow to
train the SVGP.

A.5 Bilinear interpolation

Bilinear interpolation over the training data was performed using the SciPy function grid-
data: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
griddata.html.

B Hyperparameter details

The pretrained model weights and the code to run the BayNNE for both the syn-
thetic and ozone experiments can be found here: https://anonymous.4open.science/r/
6bf08e5a-c909-45a3-be63-aa0f5ba187df/. Table 1 shows the hyperparameters chosen in
the running of the BayNNE for both experiments.

The heteroscedastic loss function is prone to episodes of catastrophic forgetting. To avoid these, we
use large batch sizes, small learning rates and a large number of epochs so that each neural network
ensemble member may be stably trained till convergence.

2
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Table 1: Hyperparameter values and priors for BayNNE.

Synthetic experiment Ozone experiment

Spatial coord scaling 2 2
Temporal coord scaling (month of year) 1 2
Temporal coord scaling (total months) 1 1
Number of physical models 4 15
Number of neural network ensemble members 50 65
Bias mean. prior 0 0
Bias std. prior 0.01 0.03
Noise mean prior 0.02 0.015
Noise std. prior 0.004 0.003
Number of hidden layers 1 1
Number of hidden nodes 100 500
Optimiser Adam Adam
Batch Size 2000 25000
Learning rate 5⇥ 10�5 3⇥ 10�5

Number of epochs 6000 125000

The neural network ensemble for the 2 million datapoint ozone dataset were trained across a cluster
of 6 P100 GPUs. Each neural network needed 20 hours to be trained till convergence and the
entire ensemble needed 8 days of wall clock time (NOTE that with a small tweak in the code post
submission, the training time was reduced by an order of magnitude).

B.1 Neural network ensemble convergence

An important hyperparameter is the size of the neural network ensemble. We used 65 neural network
ensemble members for the total ozone predictions. Figure 1 demonstrates the convergence of
the ensemble as early as an ensemble size of 30. However, we ran a larger ensemble to ensure
convergence.

Figure 1: The distribution of negative log likelihood dependent on the (neural network) ensemble
size.

C Derivation of loss function

In the following, we derive the anchored ensembling loss function for the heteroscedastic case. For
the j-th neural network ensemble member in randomized MAP sampling, we compute the MAP
estimate corresponding to a recentered prior over parameters ✓anc,j , P (✓j) = N (✓anc,j ,⌃prior).
Here ✓anc,j is a sample from the original multivariate normal prior over parameters, i.e. ✓anc,j ⇠
N (µprior,⌃prior).
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✓MAP,j = argmax✓j
P (✓j |D)

= argmax✓j
PD(D|✓j)P (✓j) (Bayes’ Theorem)

= argmax✓j
log(PD(D|✓j)) + log(P (✓j)) (log strictly monotonic increasing)

= argmax✓j
log(PD(D|✓j))�

1

2
(✓j � ✓anc,j)

T⌃�1
prior(✓j � ✓anc,j) + const.

= argmax✓j
log(PD(D|✓j))�

1

2
k⌃�1/2

prior(✓j � ✓anc,j)k22 (diagonal prior covariance)

If we specify the data likelihood for our regression task assuming i.i.d. observations and additive
heteroscedastic Gaussian noise i.e., PD(D|✓j) =

QND

i=1 N (ŷj(xi, ti),�2
j (xi, ti)), we obtain

✓MAP,j = argmax✓j
� 1

2

NDX

i=1

(yi � ŷj(xi, ti))2

�2
j (xi, ti)

�
NDX

i=1

log(�j(xi, ti)) + const. � 1

2
k⌃�1/2

prior(✓j � ✓anc,j)k22

= argmin✓j

NDX

i=1

(yi � ŷj(xi, ti))2

�2
j (xi, ti)

+
NDX

i=1

log(�2
j (xi, ti)) + k⌃�1/2

prior(✓j � ✓anc,j)k22 (⇥ -2 throughout)

D Extra ozone experiment plots

In the main text we highlighted the models with the most interesting features and highest weights.
For completeness here, we include a wider range of plots looking at model weights and modelled
bias and uncertainties, for the ozone experiment.

D.1 Bias

Figures 2 and 3 show the modelled bias averaged in time and space respectively. Bias is seen to be
negative over polar regions especially the southern polar region and southern mid latitudes.

Figure 2: Temporally averaged modelled bias.

D.2 Epistemic uncertainty

Figures 4 and 5 show the epistemic uncertainty averaged in time and space respectively. Epistemic
uncertainty is highest at polar regions. Epistemic uncertainty increases for regions with sparse or no
data including 2007–2010 (used to validate extrapolation) and 1993–1997 where there is a greater
sparsity of data. This can be seen clearly in Figure 5.
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Figure 3: Spatially averaged modelled bias.

Figure 4: Temporally averaged epistemic uncertainty.

D.3 Average model weight

Figure 6 shows the average model weight for all 15 chemistry-climate models used in the ozone
experiment.
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Figure 5: Spatially averaged epistemic uncertainty and the number of training points per month.

Figure 6: Temporally averaged model weights for all 15 chemistry-climate models.
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