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Abstract. The parameters of a level-set flame model are inferred using
an ensemble of heteroscedastic Bayesian neural networks (BayNNEs).
The neural networks are trained on a library of 1.7 million observations
of 8500 simulations of the flame edge, obtained using the model with
known parameters. The ensemble produces samples from the posterior
probability distribution of the parameters, conditioned on the observa-
tions, as well as estimates of the uncertainties in the parameters. The
predicted parameters and uncertainties are compared to those inferred
using an ensemble Kalman filter. The expected parameter values inferred
with the BayNNE method, once trained, match those inferred with the
Kalman filter but require less than one millionth of the time and compu-
tational cost of the Kalman filter. This method enables a physics-based
model to be tuned from experimental images in real time.

Keywords: Bayesian inference · Deep learning · Thermoacoustics · Data
assimilation.

1 Introduction

1.1 Thermoacoustics

The prediction and control of thermoacoustic instability is a persistent chal-
lenge in jet and rocket engine design [1]. In gas turbines, the drive towards
lower NOx emissions has led to the use of lean premixed combustion, which
is particularly susceptible to thermoacoustic instabilities [2]. Thermoacoustic
instability is caused by the heat release rate and the pressure being in phase
during combustion [3]. Heat release rate fluctuations are caused by flame surface
area fluctuations, which in turn are caused by velocity perturbations and flame
dynamics [4–7]. Any physics-based model must therefore contain the flame’s re-
sponse to velocity perturbations. This response can be calculated using detailed
CFD simulations of the flame. However, these CFD simulations are expensive.
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In this paper we use data to tune the parameters of physics-based reduced-order
models, in order to reduce the cost while retaining as much accuracy as possible.

The simplest physics-based model sets the heat release rate fluctuation to
be a linear multiple of the velocity perturbation at the base of the flame some
time earlier. This delay models the time taken for perturbations to travel down
the flame. This is known as the n − τ model [8]. It is too simple for our pur-
poses because it cannot simulate the flame dynamics. In this paper we model the
flame as the zero contour of a continuous function that advects with the flow.
This is known as the G-equation model [9]. This allows the flame dynamics to
be simulated cheaply but the parameters of this model need to be assimilated
from experimental data in order to render the model quantitatively accurate.
The ensemble Kalman filter [10] (EnKF) has been used previously to assimilate
data into the G-equation model [11, 12]. The EnKF performs Bayesian inference
to infer the variables (the state and parameters) of the G-equation model by
statistically combining model forecasts with measurements of the variables. The
EnKF in principle can be used online: Bayesian inference is performed whenever
measurements become available. When used for data assimilation of our experi-
ments of a conical Bunsen flame, however, the computational requirements of the
EnKF render online Bayesian inference impossible: measurements are available
every O(10−3) seconds while forecasting between data assimilation steps takes
O(101) seconds. This study proposes an alternative method for practical online
assimilation of data into the G-equation model of the Bunsen flame.

1.2 Bayesian deep learning

Bayesian deep learning refers to the use of deep learning algorithms, such as
deep neural networks (NNs) and deep Gaussian processes (GPs), for Bayesian
inference [14, 15]. Bayesian NNs [16] replace the point estimates of each of the
weights and biases with Gaussian probability distributions, with means and vari-
ances learned during training. The outputs can then be inferred from the inputs
and the distribution of every weight and bias in the NN. Unfortunately, Bayesian
NNs of practical size are too expensive to train [17]. More recently, ensembles
of deep NNs have been used to perform approximate Bayesian inference [18–20],
with the approximation improving with increasing width of the NN’s hidden
layers. These Bayesian NN ensembles (BayNNEs) learn the mean and variance
of the posterior distribution of the outputs given the inputs. When multiple out-
puts are to be inferred, heteroscedastic BayNNEs learn the means and variances
of each output, without assuming a common variance for all outputs. This study
uses heteroscedastic BayNNEs to infer the parameters of the G-equation model
given experimental observations.

2 Methods

2.1 Bunsen flame experiment

Figure 1 shows the Bunsen experiment setup: a Bunsen burner is placed inside a
transparent duct and images of the flame are taken with a high-speed camera at
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fs = 2500 frames per second and a resolution of 1200× 800 pixels. The flame is
forced acoustically with a speaker from 250 Hz to 450 Hz. The gas composition
(methane, ethene and air) and flow rate are varied using mass flow controllers. By
varying the forcing frequency and amplitude and gas composition and flow rate,
flames with different aspect ratios, propagation speeds and degrees of cusping of
the flame edge are observed. In some cases, the flame edge cusping leads to pinch-
off at the flame tip. For each of the 270 different flame operating conditions, 500
images are taken.

The flame images are processed and the flame edge is extracted as a radial
location x, which is a singularly-valued function of the axial co-ordinate y: x =
f(y). First, the pixel intensities are thresholded and the flame location x for
every vertical co-ordinate y is found by weighted interpolation of the thresholded
pixels, where the weights are the pixel intensities. Next, splines with 28 knots
are used to smooth x(y). Each flame image is therefore converted into a 90× 1
vector of flame edge x locations x. The y co-ordinates are the same for all flames,
so are discarded. Observation vectors z are created by stacking 10 consecutive
x vectors. These observation vectors are the inputs to the neural networks. All
500 images of each Bunsen flame are processed in this way.

Fig. 1. Diagram of the Bunsen flame experiment setup: a Bunsen burner is placed inside
a tube and a high-speed camera takes images of the flame through a glass window. The
fuel composition (air, methane and ethene) and flow rate are controlled using mass flow
controllers (MFCs). The flame is forced acoustically using a loudspeaker.

2.2 Flame edge model

In this paper the flame edge is defined to be the G = 0 contour (or level-set) of a
scalar field G(x, y, t). Regions of negative and positive G correspond to unburnt
and burnt gases respectively (the magnitude of G has no physical significance).
The evolution of G is governed by:
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∂G

∂t
+ v · ∇G = sL|∇G|, (1)

where v is a prescribed velocity field and sL is the laminar flame speed: the
speed at which the flame edge propagates normal to itself into the reactants.
The flame speed sL is a function of the unstretched (adiabatic) flame speed s0L,
the flame curvature κ and the Markstein length L, and is insensitive to pressure
variations:

sL = s0L (1− Lκ) . (2)

The unstretched flame speed s0L depends only on the flame chemistry. The ve-
locity field v comprises a parabolic base flow profile V (x) and superimposed
continuity-obeying velocity perturbations u′(x, y, t) and v′(x, y, t):

v = (V (x) + v′) j + u′i, (3)
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where α determines the shape of the base flow profile (α = 0 is uniform flow,
α = 1 is Poiseuille flow), ε is the amplitude of the vertical velocity perturbation
with phase speed V/K, St = 2πfRβ/V is the Strouhal number with forcing
frequency f and flame radius R, and β is the aspect ratio of the unperturbed
flame. The parameters K, ε,L, α, St and β are tuned to fit an observed flame
shape. Figure 2 shows a diagram of the flame edge under the G-equation model.
This model allows cusps to form at the flame edge and pockets of unburnt
reactants to detach from the flame tip, as is observed in some experiments. It
has proven to be a versatile flame edge model in several previous studies, despite
having only a few parameters [21].

2.3 Forced cycle library

A library of flame edge locations is created with the flame edge model at known
parameter values K, ε,L, α, St, β and f/fs in the same format as the observation
vectors, z. The parameter values are sampled using quasi-Monte Carlo sampling
to ensure good coverage of the parameter space. The parameters are sampled
from the following ranges: 0.0 < K ≤ 1.5, 0.0 < ε ≤ 1.0, 0.02 ≤ L ≤ 0.08,
0.0 ≤ α ≤ 1.0, 2.0 ≤ β ≤ 10.0 and 0.08 ≤ f/fs ≤ 0.20. The values of St are cal-
culated by additionally sampling 0.002 ≤ R ≤ 0.004 m and 1 ≤ V ≤ 5 m/s and
calculating St = 2πfRβ/V . The parameters are sampled 8500 times, normalised
to between 0 and 1 and recorded in target vectors {t = [K, ε,L, α, St, β]}.
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Fig. 2. Left : An image of a Bunsen flame. Middle: In the G-equation model, the flame
edge is represented by the G = 0 contour (or level-set) of a continuous scalar field
G(x, y, t). Unburnt and burnt gases are regions where G < 0 and G > 0 respectively.
The flame edge travels normal to itself into the unburnt gases with speed sL. The flame
edge advects under the prescribed velocity field, which comprises continuity-obeying
velocity perturbations u′(x, y, t) and v′(x, y, t) superimposed onto a steady base flow
profile V (x). Right : A G field solution in LSGEN2D, a level-set solver. Blue and red
regions are unburnt and burnt gases respectively, and the thin white band represents
the flame edge.

For each of the 8500 parameter configurations, LSGEN2D [22] iterates the
G field (1) until the solution is periodic and then stores 200 snapshots from
one period of the forced cycle. For each snapshot the flame edge is found by
interpolating G to find the contour G = 0. The same procedure as for the
experimental images is then followed to find x = f(y). Observation vectors z
are created by stacking 10 consecutive x vectors. There are 200 observation
vectors created from every cycle, resulting in a library of 1.7× 106 observation-
target parameter pairs {(z, t)}. The neural networks are trained to recognise the
parameter values from the observation vectors, z.

2.4 Inference using heteroscedastic Bayesian Neural Network
ensembles

We assume that the posterior probability distribution of the parameters, given
the observations, can be modelled by a neural network, pθ(t|z), with its own
parameters θ. We assume that this posterior distribution has the form:

pθ(t|z) = N (µ(z),Σ(z)) , (7)

where Σ(z), the posterior covariance matrix of the parameters given the data,
is diagonal with σ2(z) on its diagonal. This enforces our assumption that the
parameters are mutually independent, given the observations z. We use an en-
semble of M = 20 neural networks. The architecture of each neural network is
shown in Figure 3. Each neural network comprises an input layer, four hidden
layers with ReLU activations and two output layers: one for the mean vector
µ(z) and one for the variance vector σ2(z). The output layer for the mean uses
a sigmoid activation to restrict outputs to the range (0, 1). The output layer
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for the variance uses an exponential activation to ensure positivity. Each neural
network in the ensemble is initialised with unique weights θj,anc sampled from a
Gaussian prior distribution N (0, 1

NH
) and biases bj,anc sampled from a uniform

prior distribution in the range [− 1√
NH

, 1√
NH

].

Fig. 3. Architecture of each neural network in the ensemble of 20. The input and
hidden layers have 900 nodes each, while each output layer has 6 nodes each. All layers
are fully connected (FC). Rectified Linear Unit (ReLU) activation functions are used
for the hidden layers and sigmoid and exponential (Exp) activation functions are used
for the mean and variance output layers respectively.

For a single observation z, the j-th neural network in the ensemble produces
a mean and variance estimate of the G-equation parameters:

µj(z),σ2
j (z). (8)

This is achieved by minimising the loss function Lj :

Lj = (µj(z)− t)
T
Σj (z)

−1
(µj(z)− t) + log (|Σj (z) |)

+ (θj − θanc,j)
T
Σ−1prior (θj − θanc,j) .

(9)

The first two terms of the loss function are the negative logarithm of the nor-
malised Gaussian likelihood function up to an additive constant. The third term
is a regularising term that penalises deviation from prior anchor values θanc,j .
The NNs produce samples from the posterior distribution. This is called ran-
domised maximum a-posteriori (MAP) sampling [18].

For a single observation vector z, the prediction from the ensemble of neu-
ral networks is therefore a distribution of M Gaussians, each centred at their
respective means µj(z). Following similar treatment in [23], this distribution
is then approximated by a single multivariate Gaussian posterior distribution
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p(t|z) ≈ N (µ(z),Σ(z)) with mean and variance:

µ(z) =
Σjµj(z)

M
, Σ(z) = diag
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)
, (10)
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2
j (z)

M
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j (z)

M
−
(
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M

)2
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This is repeated for every observation vector z. The posterior distribution p(t|zi)
with the smallest total variance σ2

i,tot = ||σ2(zi)||1 is chosen as the best guess
to the true posterior. The M parameter samples from the chosen posterior are
used for re-simulation, which allows us to check the predicted flame shapes and
to calculate the normalised area variation over one cycle.

2.5 Inference using the ensemble Kalman filter

The Kalman filter iteratively performs Bayesian inference to find the probability
distribution of the state of a system given noisy observations of the system and
an imperfect model of the system dynamics. In this study, the state comprises
the location of the flame edge and the parameters K and ε. These parameters are
assumed to be independent given the observations of the flame edge and constant
for each of the Bunsen flame experiments. The flame edge is modelled using the
G-equation (1). The ensemble Kalman filter [10] (EnKF) evolves an ensemble of
simulations forward in time. The covariance matrix of these ensembles is assumed
to approximate the covariance matrix of the state evolved over the same period
of time. The EnKF is more practical when the state contains many variables
and the evolution is nonlinear. In this study, the state contains O(102) variables
and the governing equation (1) is nonlinear.

The parameters L, α, β and St are calculated by solving the G-equation (1)
when steady and do not need to be inferred with the EnKF. This reduces the
cost of the EnKF but increases the number of steps compared with the BayNNE
method. The forcing frequency f is manually set when running the Bunsen
flame experiments. The unperturbed laminar flame speed s0L is calculated using
Cantera1 and knowledge of the methane and ethene flow rates. V is calculated
from s0L and β: V = s0L

√
β2 − 1. The Strouhal number can then be calculated:

St = 2πfβL/V . Ref. [12] contains details about the implementation of the EnKF.
An ensemble size of 32 is used in this study. A multiplicative inflation factor

of 1% is chosen to mitigate the underestimation of the error covariances due
to the finite ensemble size [24]. Once the EnKF has converged, the parameters
K and ε calculated by each ensemble member are recorded. These are samples
from the posterior distribution of the parameters given all the flame x-location
vectors: p(K, ε|x1,x2, . . . ,xN ). This differs from the BayNNE, which was given
x-location vectors in groups of 10.

1 Cantera is a suite of tools for problems involving chemical kinetics, thermodynamics,
and transport processes [13].
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3 Results and Discussion

The ensemble of 20 Bayesian neural networks is trained on the forced cycle li-
brary for 5000 epochs, with a 80 : 20 train-test split and an Adam optimiser with
learning rate 10−3. Training takes approximately 12 hours per neural network
on an NVIDIA P100 GPU. The ensemble is then evaluated on the observations
of every Bunsen flame and the estimate of the parameters with the lowest total
uncertainty is selected for re-simulation. The evaluation takes O(10−3) seconds
on an Intel Core i7 processor on a laptop.

For each Bunsen flame test case, the ensemble Kalman filter technique re-
quires an hour to calculate estimates of L, α, St and β on an Intel Core i7 pro-
cessor on a laptop, followed by 2 hours of data assimilation on a pair of Intel
Xeon Skylake 6142 processors2 to produce estimates of K and ε.

Figures 4 and 5 show the results of inference on two different Bunsen flames.
Both techniques produce good parameter estimates, in that the predicted flame
shapes are in good agreement with the experiments. Furthermore, the BayNNE
predicts normalised area variation curves at least as accurate as those predicted
by the EnKF. However, the EnKF’s predictions of K and ε are more confi-
dent than the BayNNE’s predictions of all 6 parameters. The difference be-
tween the predicted uncertainties of the EnKF and BayNNE can be explained
by the difference between the posterior distributions calculated by both tech-
niques. The EnKF calculates p(K, ε|x1,x2, . . . ,x500): the probability distribu-
tion of the parameters K and ε given the location vectors x from all 500 images.
For the BayNNE technique, the posterior p(t|zi) = p(t|xi,xi+1, . . . ,xi+9) with
the smallest total variance is chosen. This is the probability distribution of the
parameters t given only 10 image location vectors, as opposed to the 500 used
by the EnKF. Therefore, it is expected that the BayNNE technique produces
more uncertain parameter estimates.

This raises the question as to whether it is possible to increase the certainty
of the parameters by providing the BayNNE with more data. It is not possible to
infer a posterior p(t|z1, z2, . . . , zN ) from the individual posteriors p(t|zi) with-
out knowledge of the dependence between any two observations, p(zi|zj). Two
observation vectors are not independent, because the information gained from
a first observation restricts the expected subsequent observations to a likely set
of forced cycle states. One solution is to increase the number of location vectors
x in each observation vector, which increases the computational cost of training
the neural networks. Another solution is a recurrent neural network, which can
have variable length sequences of data as inputs. Future work will focus on the
development of a Bayesian recurrent neural network solution to this problem.

To summarise, once the BayNNE has been trained on the forced cycle library
it can be used to reliably infer all 6 parameters of the flame edge model based
on 10 consecutive snapshots of the Bunsen flame experiments. If more snapshots
are provided, this method finds the sequence of 10 snapshots that minimises

2 The EnKF is fully parallelised: the processors have 32 cores in total, one for each
member in the ensemble.
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the uncertainty in the parameters. This differs from the EnKF which requires
hours to infer the parameters of each Bunsen flame. The BayNNE technique
therefore provides similarly accurate parameter estimates at a fraction of the
computational cost.

Fig. 4. Results of inference on a flame with flow rates of ethene 0.20 NL/min, methane
0.40 NL/min, air 4.50 NL/min and forcing frequency 450 Hz. Top row: Bunsen flame
whose parameters are to be estimated. Second row: the detected flame edge. Third row:
re-simulated flames using EnKF estimated parameters. Fourth row: re-simulated flames
using BayNNE estimated parameters. Bottom: normalised surface area variations over
one period.
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Fig. 5. Results of inference on a flame with flow rates of ethene 0.40 NL/min, methane
0.20 NL/min, air 6.00 NL/min and forcing frequency 425 Hz. Top row: Bunsen flame
whose parameters are to be estimated. Second row: the detected flame edge. Third row:
re-simulated flames using EnKF estimated parameters. Fourth row: re-simulated flames
using BayNNE estimated parameters. Bottom: normalised surface area variations over
one period.
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4 Conclusions

This study proposes a method to assimilate data from a Bunsen flame experi-
ment into a kinematic model of a flame edge. The model parameters and their
uncertainties are inferred using heteroscedastic Bayesian neural network ensem-
bles. The neural networks are trained on a library of synthetic flame edge obser-
vations created using a level-set solver, LSGEN2D. Once trained, the Bayesian
neural network ensemble accurately predicts the parameters and uncertainties
from 10 consecutive images of the Bunsen flame. If more images are provided,
this method selects the 10 consecutive images that give the smallest uncertainty
in the parameters. This method is more than 6 orders of magnitude faster than
the ensemble Kalman filter, which produces the same expected values of the pa-
rameters but lower variances. The Bayesian neural network ensemble also infers
parameters of the model which cannot be inferred with the ensemble Kalman
filter. Future work will focus on improving the parameter and uncertainty esti-
mates by using more flame image data without necessarily increasing the size of
the neural networks.
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A Supplementary material: Hyperparameter settings

Table 1. Hyperparameter settings.

Hyperparameter Value

Training
Train-test split 80:20
Batch size 2048
Epochs 5000
Optimiser Adam
Learning rate 10−3

Architecture
Input units 900
Hidden layers 4
Units per hidden layer 900
Output layers 2
Units per output layer 6
Ensemble size 20


