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We use Bayesian inference, accelerated by adjoint methods, to construct a quantitatively7
accurate model of the thermoacoustic behaviour of a conical flame in a duct. We first perform8
a series of automated experiments on a ducted flame rig. Next, we propose several candidate9
models of the rig’s components and assimilate data into each model to find the most probable10
parameters for that model. We rank the candidate models based on their marginal likelihood11
(evidence) and select the most likely model for each component. We begin this process by12
rigorously characterizing the acoustics of the cold rig. When the flame is introduced, we13
propose several candidate models for the fluctuating heat release rate. We find that the most14
likely flame model considers velocity perturbations in both the burner feed tube and the15
outer duct, even though studies in the literature typically neglect either one of these. Using16
the most likely model, we infer the flame transfer functions for 24 flames and quantify their17
uncertainties. We do this with the flames in-situ, using only pressure measurements. We18
find that the inferred flame transfer functions render the model quantitatively accurate, and,19
where comparable, are broadly consistent with direct measurements from several studies in20
the literature.21

Key words:22

1. Introduction23

Thermoacoustic instabilities are a persistent challenge in the design of combustion systems,24
particularly modern low-emission gas turbine combustors. They arise from a positive25
feedback loop between acoustic waves and heat release fluctuations (Culick 2006). The26
acoustic waves perturb the flame, generating heat release fluctuations. If the heat release27
fluctuations are sufficiently in phase with the acoustic pressure, they add energy to the28
acoustic field and the amplitude of oscillations grows.29
Thermoacoustic instabilities are difficult to predict because they are extremely sensitive30

to small changes in a system’s design or operating conditions (Juniper & Sujith 2018).31
From a designer’s perspective, this can be beneficial because small design changes can be32
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used to stabilize a design. The challenge lies, however, in identifying the appropriate changes33
(Mongia et al. 2003). The sensitivity of thermoacoustic behaviourmakes it difficult to develop34
quantitatively accurate models, because the model predictions are sensitive to small changes35
in the values of unknown model parameters. This has been a persistent challenge, because36
models could be carefully tuned to match experimental data at one operating condition, but37
fail to match the data at nearby operating conditions (Matveev 2003).38
The modeller can, however, exploit this extreme sensitivity if a data-driven modelling39

approach is taken. This is because the sensitivity makes the uncertain model parameters40
easy to observe from experimental data. With carefully planned experiments, it is possible41
to (i) infer the unknown parameters of a physics-based model, (ii) rank several candidate42
models and select the best one (Juniper & Yoko 2022) and (iii) determine whether more data43
are required, and identify which experiments to perform to collect that data (Yoko & Juniper44
2023).45
Using this approach we have previously constructed a model of a hot wire Rijke tube that is46

quantitatively accurate over awide operating range (Juniper&Yoko 2022), despite containing47
fewparameters.A subsequent study on the same systemappliedBayesian experimental design48
to identify the most informative experiments, allowing us to infer the model parameters using49
fewer experimental observations (Yoko & Juniper 2023). In this paper we apply this data-50
driven modelling framework to thermoacoustic oscillations of a ducted conical flame.51
The fluctuating heat release rate of a flame is typically modelled as a response to a velocity52

perturbation at some reference location near the base of the flame. A commonly used model53
is the flame transfer function:54

F =
𝑄 ′/�̄�
𝑢′/�̄� (1.1)55

where F is the (frequency dependent) flame transfer function, 𝑄 is the heat release rate, and56
𝑢 is the velocity at a reference location near the base of the flame. The fluctuating quantities57
are denoted as ★′ and mean quantities are denoted as ★̄.58
The flame transfer function has been shown to change sensitively with changes in operating59

condition (Gatti et al. 2018; Nygård &Worth 2021), changes to the confinement of the flame60
(Cuquel et al. 2013b; Tay-Wo-Chong & Polifke 2013) and when the flame is combined with61
other flames (Durox et al. 2009; Æsøy et al. 2022). It is therefore beneficial to determine the62
flame transfer function with the flame in-situ.63
The flame transfer function is typically obtained from direct experimental measurements.64

These measurements require (i) a means of measuring acoustic velocity at the reference65
location near the base of the flame, and (ii) a means of measuring the heat release rate66
fluctuations. The velocity is typically measured using a hot wire anemometer (Kornilov et al.67
2007; Mejia et al. 2016; Gatti et al. 2018) or via optical methods (Ducruix et al. 2000;68
Birbaud et al. 2006; Cuquel et al. 2013a). The heat release rate fluctuations are typically69
measured by optical methods (Ducruix et al. 2000; Birbaud et al. 2006; Kornilov et al.70
2007; Cuquel et al. 2013a; Mejia et al. 2016; Gatti et al. 2018). None of these measurement71
techniques are suitable for in-situmeasurements in a practical combustor, because they either72
rely on delicate instruments being mounted in a harsh operating environment, or on optical73
access which is typically limited or unavailable in a practical combustor. By contrast, it is74
relatively easy to measure the acoustic pressure fluctuations in a practical combustor. It is75
therefore valuable to be able to infer the fluctuating heat release rate parameters from pressure76
measurements alone.77
Recent work in the Rolls-Royce SCARLET thermoacoustic test rig has demonstrated78

a method for obtaining the flame transfer function directly from pressure measurements79
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(Treleaven et al. 2021; Fischer & Lahiri 2021) using the two-source method (Munjal &80
Doige 1990; Paschereit et al. 1999). This method uses acoustic pressure measurements from81
multiple microphones, collected from four experiments. In the first two experiments, the82
cold rig is forced harmonically at various frequencies from the upstream end and then the83
downstream end. In the next two experiments the flame is ignited, and the rig is again forced84
at the same frequencies from the upstream end and then the downstream end. The resulting85
data is then post-processed to extract (i) the characteristics of the cold rig, and (ii) the flame86
transfer function. This demonstrates a method for obtaining flame transfer functions from87
pressure measurements, but does not yet quantify the uncertainty in the measurements or the88
inferred quantities.89
Tomeasure the growth rate indirectly, Noiray (2017) and Noiray &Denisov (2017) applied90

system identification to infer the parameters of a stochastic differential equation describing91
the amplitude of thermoacoustic oscillations. This approach can infer linear growth rates92
from limit cycle data, which are simpler to collect than forced data. However, the inference93
framework used does not consider the uncertainty in the inferred quantities. Furthermore, this94
method gives the growth rate of oscillations, rather than model the thermoacoustic system95
itself.96
A few recent studies have applied data-driven methods to infer the parameters of a97

fluctuating heat release rate model from pressure time series data (Ghani et al. 2020; Gant98
et al. 2022; Ghani & Albayrak 2023). In the work of Ghani et al. (2020) and Ghani &99
Albayrak (2023), a non-probabilistic approach is used to infer the parameters. The authors100
use an optimization algorithm to minimize the discrepancy between the model and data,101
although they do not consider the uncertainties, or the resulting uncertainties in the inferred102
parameters. In the work of Gant et al. (2022), a frequentist approach is used to infer the103
fluctuating heat release rate from pressure time series data. In the frequentist framework, the104
authors are able to quantify the uncertainty in the inferred parameters. They cannot, however,105
exploit prior knowledge or evaluate the marginal likelihood in order to compare candidate106
models. Gant et al. (2022) demonstrate their method on synthetic data generated by their107
model.While this is a powerful tool for evaluating and demonstrating an inference framework,108
it does not allow the researcher to evaluate how the method handles a systematic mismatch109
between the model and the data, which is always present when assimilating experimental110
data into a model.111
In this paper, we apply adjoint-accelerated Bayesian inference to infer the flame transfer112

functions of a series of conical flames from pressure observations. We use Bayesian model113
comparison to choose the best model for the fluctuating heat release rate from a set of114
candidate models. We then infer the most probable flame transfer function for each flame,115
and rigorously quantify the uncertainties in each of the flame transfer functions. In its116
broader forms, Bayesian inference has been applied in astronomy and astrophysics (Jenkins117
& Peacock 2011; Thrane & Talbot 2019; Antoniadis et al. 2023; Agazie et al. 2023), biology118
(Huelsenbeck et al. 2001; Wilkinson 2007; Chowdhary et al. 2009), economics (Harvey &119
Zhou 1990; Flury & Shephard 2011; Lux 2023), geophysics and meteorology (Epstein 2016;120
Wang et al. 2019; Nabney et al. 2000; Isaac et al. 2015), and engineering, where it has121
predominantly been applied in structural mechanics (Karandikar et al. 2012; Rappel et al.122
2020; Ni et al. 2022).123
By comparison, engineers working in fluid dynamics have made little use of the Bayesian124

framework. In their review of machine learning in fluid dynamics, Brunton et al. (2020) argue125
that, for fluid mechanics problems, Bayesian inference may be superior to other machine126
learning techniques because of its robustness, but that it is hampered by the cost of the127
thousands of model evaluations required to compute the posterior distribution. While this128
is true of typical sampling methods, such as Markov chain Monte Carlo (MCMC), it is129
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Figure 1: Diagram of the experimental rig.

not true of the inference framework we demonstrate in this paper. This framework reduces130
the required model evaluations, making Bayesian inference feasible for computationally131
expensive models (Isaac et al. 2015; Kontogiannis et al. 2022).132

2. Experimental configuration133

The experimental setup is a laminar premixed conical flame inserted into a vertical duct,134
illustrated in figure 1. The lower end of the duct is fixed to a plenum chamber, through which135
co-flow air is supplied. The upper end is open to the atmosphere.136
The duct is a 0.8 m long section of quartz tube with an internal diameter of 75 mm.137

The duct joins the plenum via a machined flange. The flange provides an airtight seal and138
an acoustic termination without any internal steps. Eight holes have been drilled along the139
length of the duct to allow for instrument access to the internal flow.140
The plenum is a fibreboard box with dimensions 1m × 0.6m × 0.6m. The interior is lined141

with acoustic treatment to damp acoustic oscillations. Air is fed into the plenum via a mass142
flow controller to provide a constant flow of cool air through the duct. This keeps the duct143
and instrumentation at an acceptable temperature, and flushes the combustion products out144
of the rig.145
The burner is a 0.85 m long section of brass tubing with an internal diameter of 14 mm.146

The outlet of the burner is fitted with a nozzle that is chosen such that the system can become147
thermoacoustically unstable. At the injection plane, the nozzle diameter is 9.35 mm. The148
burner is fuelled by a mixture of methane and ethylene. This mixture allows a wide range of149
thermoacoustic behaviour to be explored by altering the shape of the flame by changing the150
unstretched flame speed. The premixed air and fuel are supplied to the base of the burner via151
a set of mass flow controllers. The base of the burner is fitted with a choke-plate to decouple152
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the supply lines from the acoustic fluctuations in the rig. Like the duct, the burner tube has153
eight ports for instrument access to the internal flow.154

The burner is mounted to an electrically-driven traverse so that the vertical position of the155
burner inside the duct can be controlled. We are therefore able to explore changes in (i) flame156
position, (ii) flame shape (through changes in fuel composition) and (iii) mean heat release157
rate (through total fuel flow rate and fuel composition).158

The rig is instrumented with eight probe microphones, which provide point measurements159
of the acoustic pressure. Seven of the probe microphones are fitted through the ports in the160
duct, with the probes placed near the innerwall. The eighthmicrophone is fitted through a port161
near the base of the burner. We also collect data from 24 fast response thermocouples. Eight162
K-type thermocouples are installed within the plenum to monitor the ambient conditions,163
another eight are inserted through ports in the duct to monitor the internal gas temperature,164
and the final eight are bonded to the duct’s outer wall to monitor the duct temperature. The165
data acquisition and control of the rig has been automated so that we can cheaply collect a166
large amount of data.167

When the system is linearly stable, a loudspeaker mounted within the plenum is used to168
force the system harmonically near its fundamental frequency. The forcing is sustained for six169
seconds and then terminated, following which the oscillations decay to zero. We record data170
during a 15 second window beginning with the onset of forcing. When the system exhibits171
self-excited oscillations, we stabilize the system using active feedback control with a phase-172
shift amplifier. We begin recording data while the stabilization is active, then deactivate the173
stabilization and allow the oscillations to grow to a limit cycle. Each experiment is repeated174
75 times so that we can estimate the random uncertainty in the experimental data. We also175
considered the uncertainty due to the precision of the measurement chain, but found this to176
be negligible compared to the random uncertainty.177

We process the raw pressure signals to extract (i) the growth or decay rate, (ii) the natural178
frequency and (iii) the Fourier-decomposed pressure of seven of the microphones, which179
we measure relative to the eighth (reference) microphone. This forms our experimental180
observations for inference, which we collectively refer to as the observation vector, z. The181
observed variables are all complex numbers, but are stored in real-imaginary form such that182
the observation vector is a real vector.183

We investigate 24 different flames, which are selected to explore a wide range of184
thermoacoustic behaviour. We parameterize the flames based on (i) the convective time185
delay, 𝜏𝑐 = 𝐿 𝑓 /�̄�, which is the time taken for a perturbation travelling at the bulk velocity,186
�̄�, to travel along the length of the flame, 𝐿 𝑓 , and (ii) the mean heat release rate of the inner187

cone, �̄�.188

We split the 24 flames into six groups of four flames, and select the composition of189
each flame such that the convective time delay is constant within each group and the mean190
heat release rate varies. The convective time delays range from 9.5 ms to 17 ms in 1.5 ms191
increments, and the mean heat release rates range from 375W to 600W in 50W increments.192
These flames produce thermoacoustic behaviour ranging from strongly damped, to neutral,193
to strongly driven.194

We calculate the flow rates required to achieve the desired convective time delays and heat195
release rates using Cantera (Goodwin et al. 2022) and a simple linear model for a steady196
conical flame. The linear model over-predicts the flame lengths, and therefore the convective197
time delays, because it neglects the effect of curvature on the laminar flame speed. We198
therefore verify the actual convective time delays experimentally by measuring the length of199
the steady flames from flame images. The flame properties are summarized in table 1, and200
the flames are illustrated in figure 2.201
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Group Air CH4 C2H4 𝜙 �̄� 𝐿 𝑓 pred. 𝐿 𝑓 meas. 𝜏𝑐 pred. 𝜏𝑐 meas. �̄�
[-] [ln/min] [ln/min] [ln/min] [-] [m/s] [mm] [mm] [ms] [ms] [W]

1 6.049 0.325 0.325 1.28 1.75 17.4 16.6 9.9 9.5 374.9
2 6.147 0.348 0.348 1.35 1.79 20.5 20.0 11.5 11.2 374.9
3 6.219 0.364 0.364 1.40 1.82 23.6 23.1 13.0 12.7 374.9
4 6.283 0.379 0.379 1.44 1.84 26.9 26.4 14.6 14.3 374.9
5 6.338 0.391 0.391 1.47 1.86 30.1 28.9 16.2 15.5 374.9
6 6.384 0.401 0.401 1.50 1.88 33.0 32.1 17.5 17.1 374.9

1 7.246 0.387 0.387 1.27 2.10 20.8 19.8 9.9 9.4 450.0
2 7.369 0.416 0.416 1.34 2.15 24.6 23.8 11.5 11.1 449.9
3 7.459 0.436 0.436 1.39 2.18 28.4 27.4 13.0 12.6 449.9
4 7.537 0.454 0.454 1.43 2.21 32.2 30.9 14.6 14.0 449.9
5 7.603 0.468 0.468 1.47 2.24 36.1 34.2 16.2 15.3 449.9
6 7.659 0.481 0.481 1.50 2.26 39.6 37.2 17.6 16.5 449.9

1 8.444 0.449 0.449 1.27 2.45 24.2 23.1 9.9 9.4 525.0
2 8.594 0.484 0.484 1.34 2.51 28.7 27.6 11.5 11.0 524.9
3 8.699 0.508 0.508 1.39 2.55 33.1 31.7 13.0 12.4 524.9
4 8.790 0.529 0.529 1.43 2.58 37.6 36.4 14.6 14.1 524.9
5 8.868 0.546 0.546 1.47 2.61 42.2 39.2 16.2 15.0 524.8
6 8.934 0.561 0.561 1.49 2.64 46.3 43.0 17.6 16.3 524.9

1 9.644 0.512 0.512 1.26 2.80 27.7 25.9 9.9 9.3 600.0
2 9.818 0.553 0.553 1.34 2.86 32.8 30.1 11.5 10.5 599.9
3 9.939 0.580 0.580 1.39 2.91 37.9 34.8 13.0 12.0 599.9
4 10.045 0.604 0.604 1.43 2.95 43.0 39.9 14.6 13.5 599.9
5 10.134 0.624 0.624 1.47 2.99 48.2 43.6 16.2 14.6 599.8
6 10.209 0.641 0.641 1.49 3.01 52.9 47.2 17.6 15.6 599.8

Table 1: Summary of the properties of the 24 flames studied. We show the average
measured flow rates of air, methane (CH4) and ethylene (C2H4), the equivalence ratio (𝜙),
the bulk velocity in the burner tube (�̄�), the predicted and measured flame lengths (𝐿 𝑓 ),
the predicted and measured convective time delays (𝜏𝑐), and the inner cone mean heat

release rate (�̄�).

3. Physics-based model of a ducted flame202

We assimilate the data into a travelling-wave network model, modified from a previous study203
(Juniper & Yoko 2022) to handle multiple coupled acoustic networks. The model predicts204
the growth rate, 𝑠𝑟 , angular frequency, 𝑠𝑖 , and acoustic pressure, 𝑃, which we collectively205
refer to as the prediction vector, s. The model is shown schematically in figure 3.206
The model contains several parameters, the values of which we do not know a-priori.207

These parameters arise from the modelling of (i) the reflection/transmission of acoustic208
energy at the ends of the duct and at the base of the burner, (ii) the visco-thermal damping209
in the boundary layer on the duct and burner walls, and (iii) the fluctuating heat release of210
the flame.211
We model item (i) using complex reflection coefficients which we label 𝑅𝑢 , 𝑅𝑑 and 𝑅𝑏 for212

the upstream and downstream ends of the duct, and the base of the burner respectively. Items213
(ii) and (iii) are modelled using local linear feedback from acoustic pressure or velocity into214
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visco-thermal damping, and F , the transfer function from velocity perturbations to heat

release rate fluctuations.

the energy or momentum equations (Chu 1965; Juniper 2018), which we label 𝑘𝑒𝑢 , 𝑘𝑒𝑝, 𝑘𝑚𝑢 ,215
and 𝑘𝑚𝑝.216
The linear feedback coefficients can either be inferred directly, or calculated using217

analytical models. For example, models have been proposed for the reflection coefficient218
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at the open end of a flanged (Norris & Sheng 1989; Zorumski 1973) and unflanged (Levine219
& Schwinger 1948; Selamet et al. 2001) circular duct, and for the visco-thermal damping in220
the boundary layer of an oscillating flow (Rayleigh 1896; Tijdeman 1974). Each candidate221
sub-model has its own set of unknown model parameters, which we infer from data. For222
example, we introduce the visco-thermal damping strength, [, which acts as a correction223
factor for the visco-thermal damping model. We collectively refer to the unknown parameters224
as the vector a. As with the observation vector, the parameter vector is a real vector, and225
complex parameters are stored in real-imaginary form.226

4. Bayesian data assimilation227

Each candidate model,H𝑖 , with its set of parameters, a, makes predictions, s, which we test228
against the experimental observations, z. To identify the best model and its parameters, we229
perform two stages of Bayesian inference, following the framework proposed by MacKay230
(2003). The two stages are parameter inference and model selection.231

4.1. Parameter inference232

At the first stage of inference we assume that the candidate model,H𝑖 , is structurally correct,233
and we use data to infer its most probable parameters, aMP, which are often referred to as234
the maximum a-posteriori (MAP) parameters. This assumption will rarely be correct, so we235
will revisit it later. We encode our level of uncertainty in the parameter values through a236
probability distribution, which we denote 𝑝(•). Using any prior knowledge we have about the237
unknown parameters (which may be none at all), we propose a prior probability distribution238
over the parameter values, 𝑝(a|H𝑖). We then assimilate the data, z, by performing a Bayesian239
update on the parameter values:240

𝑃(a|z,H𝑖) =
𝑃(z|a,H𝑖)𝑃(a|H𝑖)

𝑃(z|H𝑖)
(4.1)241

The quantity on the left-hand side of equation (4.1) is the posterior probability of the242
parameters, given the data. It is generally computationally intractable to calculate the243
full posterior, because it requires integration over parameter space. The integral typically244
cannot be evaluated analytically, and requires thousands of model evaluations to compute245
numerically. At the parameter inference stage, however, we are only interested in finding246
the most probable parameters, which are those that maximize the posterior. We therefore247
use an optimization algorithm to find the peak of the posterior without evaluating the248
full distribution. This process is made computationally efficient by (i) assuming that the249
experimental uncertainty is Gaussian distributed, and (ii) choosing the prior parameter250
distribution to be Gaussian. Assumption (i) is reasonable for well-designed experiments in251
which the uncertainty is dominated by random error, which is typically Gaussian distributed.252
For assumption (ii) we note that the choice of prior is often the prerogative of the researcher,253
and we are free to exploit the mathematical convenience offered by the Gaussian distribution.254
The correlations between model parameters are rarely known a-priori, so an independent255
Gaussian distribution is often used for the prior, as is done in this paper.256
When finding the most probable parameters, we neglect the denominator of the right-hand257

side of equation (4.1), because it does not depend on the parameters. It is then convenient to258
define a cost function, J , as the negative log of the numerator of equation (4.1), which we259
minimize:260
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Figure 4: Illustration of parameter inference on a simple univariate system. (a) the
marginal probability distributions of the prior and data, 𝑝(𝑎) and 𝑝(𝑧), as well as their
joint distribution, 𝑝(𝑎, 𝑧) are plotted on axes of parameter value, 𝑎, vs observation

outcome, 𝑧. (b) the model,H , imposes a functional relationship between the parameters,
𝑎, and the predictions, 𝑠. Marginalizing along the model predictions yields the true
posterior, 𝑝(𝑎 |𝑧). This cannot be done for computationally expensive models with even
moderately large parameter spaces. (c) instead of evaluating the full posterior, we use
gradient-based optimization to find its peak. This yields the most probable parameters,

𝑎MP.

J =
1
2
(s(a) − z)𝑇 C−1

𝑒𝑒 (s(a) − z)

+ 1
2
(a − ap)𝑇 C−1

𝑎𝑎 (a − ap) + 𝐾
(4.2)262

263

where s and z are column vectors of the model predictions and experimental observations264
respectively, C𝑒𝑒 is the covariance matrix describing the uncertainty in the experimental265
data, a and ap are column vectors of the current and prior parameter values respectively,C𝑎𝑎266
is the covariance matrix describing the uncertainty in the prior, and 𝐾 is a constant from the267
Gaussian pre-exponential factors, which has no impact on aMP. We see from equation (4.2)268
that assuming Gaussian distributions for the data and prior reduces the task of parameter269
inference to a quadratic optimization problem. We solve this optimization problem using270
gradient-based optimization with gradient information provided using adjoint methods.271
The parameter inference process is illustrated in figure 4 for a simple system with a single272

unknown parameter, 𝑎, and a single observable variable, 𝑧. In (a) we show the marginal273
probability distributions of the prior, 𝑝(𝑎) and the data, 𝑝(𝑧). The prior and data are274
independent, so we construct the joint distribution, 𝑝(𝑎, 𝑧) by multiplying the two marginals.275
In (b), we overlay the model predictions, 𝑠, for various values of 𝑎. Marginalizing along the276
model predictions yields the true posterior, 𝑝(𝑎 |𝑧). This is possible for a cheap model with277
a single parameter, but exact marginalization quickly becomes intractable as the number of278
parameters increases. In (c) we plot the cost function, J , which is the negative log of the279
unnormalized posterior. We show the three steps of gradient-based optimization that were280
required to find the local minimum, which corresponds to the most probable parameters,281
𝑎MP.282
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In the Bayesian framework, all assumptions and subjective decisions are made before283
assimilating the data. These subjective decisions are (i) setting the prior parameter expected284
values, ap, (ii) setting the prior parameter covariance, C𝑎𝑎, and (iii) setting the uncertainty285
in the experimental data, C𝑒𝑒. The prior parameter expected values, ap, can be based on286
experience, the results of previous observations, information gained from the literature, or287
approximate calculations. We then use the prior parameter covariance, C𝑎𝑎, to quantify our288
confidence in the chosen prior values. To set the data covariance, C𝑒𝑒, we begin by assuming289
that the model is correct and that the data contains no systematic error. If these assumptions290
are correct, the model will be able to fit the data if the correct model parameters are found.291
In this case, we would quantify the total covariance, C𝑒𝑒, as the random and calibration error292
of the experiments. This assumption is rarely valid, so in Section 4.2 we introduce a method293
for estimating systematic and structural uncertainty in the experiments and model as the data294
is assimilated.295

4.2. Uncertainty quantification296

Uncertainty quantification can be split into two steps: (i) quantifying the parametric un-297
certainty and propagating it to the model prediction uncertainty, and (ii) estimating the298
systematic and structural uncertainty in the experiments and model predictions. We will deal299
with these separately.300

Parametric uncertainty301

Once we have found the most probable parameter values by minimizing J in equation (4.2),302
we estimate the uncertainty in these parameter values using Laplace’s method (Jeffreys 1973;303
MacKay 2003; Juniper & Yoko 2022). This method approximates the posterior probability304
distribution as a Gaussian whose inverse-covariance is the Hessian of the cost function:305

CMP𝑎𝑎
−1 ≈ 𝜕2J

𝜕𝑎𝑖𝜕𝑎 𝑗

= C−1
𝑎𝑎 + J𝑇 C−1

𝑒𝑒J + (s(a) − z)𝑇 C−1
𝑒𝑒H

(4.3)307

308

where J is the Jacobian matrix containing the parameter sensitivities of the model predic-309
tions, 𝜕𝑠𝑖/𝜕𝑎 𝑗 , and H is the rank three tensor containing the second order sensitivities,310

𝜕2𝑠𝑖/𝜕𝑎 𝑗𝜕𝑎𝑘 . We obtain J using first order adjoint methods, and H using second order311
adjoint methods.312
The accuracy of Laplace’s method depends on the functional dependence of the model on313

the parameters. This is shown graphically in figure 5, where we compare the uncertainty314
quantification process for three univariate systems. In (a), the model is linear in the315
parameters. Marginalizing a Gaussian joint distribution along any intersecting line produces316
a Gaussian posterior distribution, so Laplace’s method is exact. In (b), the model is weakly317
nonlinear in the parameters. The true posterior is skewed, but the Gaussian approximation318
is still reasonable. This panel also shows a geometric interpretation of Laplace’s method:319
the approximate posterior is given by linearizing the model around aMP, and marginalizing320
the joint distribution along the linearized model. In (c), the model is strongly nonlinear in321
the parameters, so the true posterior is multi-modal and the main peak is highly skewed.322
Laplace’s method underestimates the uncertainty in this case. Furthermore, the cost function323
has two local minima, but the parameter inference step will only find one peak, which will324
depend on the choice of initial condition for the optimization.325
This simple example seems to imply that Laplace’s method is only suitable for weakly326

nonlinear models. It has, however, only considered the case where a single data point is327

Rapids articles must not exceed this page length
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Figure 5: Illustration of uncertainty quantification for three univariate systems. (a) the
model is linear in the parameters, so the true posterior is Gaussian and Laplace’s method
is exact. (b) the model is weakly nonlinear in the parameters, the true posterior is slightly
skewed, but Laplace’s method yields a reasonable approximation. (c) the model is strongly

nonlinear in the parameters, the posterior is multi-modal and Laplace’s method
underestimates the uncertainty.

assimilated. If the model is structurally correct and the prior is regular, the true posterior328
often tends to a Gaussian distribution as the number of observations increases, even for329
models that are strongly nonlinear in the parameters (van der Vaart 1998, § 10.2). For a330
given model, the accuracy of Laplace’s method can be checked a-posteriori using a sampling331
method such as MCMC. Previous work has applied MCMC to thermoacoustic network332
models (Garita 2021) and more complex models in fluid mechanics (Petra et al. 2014), both333
of which showed the posteriors to be approximately Gaussian. If the true posterior is found334
to be poorly approximated by a Gaussian, the researcher can attempt to reduce the extent335
of the nonlinearity captured by the joint distribution by (i) shrinking the joint distribution336
by providing more precise prior information or more precise experimental data, or (ii) re-337
parameterizing the model to reduce the strength of the nonlinearity (MacKay 2003, Chapter338
27).339

Uncertainty propagation340

Toquantify the uncertainty in themodel predictions,we propagate the parameter uncertainties341
through themodel. This is done cheaply by linearizing themodel around aMP and propagating342
the uncertainties through the linear model. The uncertainty in the model predictions is given343
by:344

C𝑠𝑠 = J𝑇 C𝑎𝑎J (4.4)345

where C𝑠𝑠 is the covariance matrix describing the model prediction uncertainties. The346
marginal uncertainty in each of the model predictions is given by the square root of the347
diagonal elements of C𝑠𝑠, because the prediction uncertainties are Gaussian.348
This allows us to quantify the uncertainty in the model predictions due to the uncertainty349

in the parameters, but we have still been working under the assumption that the model is350
structurally correct. We now relax this assumption, and introduce a method for estimating351
the systematic and structural uncertainty in the experiments and model predictions.352
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Systematic uncertainty353

In most cases, experimental data will contain some systematic uncertainty, and models354
will contain some structural uncertainty. These uncertainty sources cannot be quantified355
a-priori, and are often referred to as “unknown unknowns”. We can, however, construct356
a total covariance matrix, C𝑡𝑡 , which encodes the total uncertainty due to (i) the known357
experimental uncertainty, (ii) the unknown systematic experimental uncertainty, and (iii) the358
unknown structural model uncertainty. We can then estimate this total covariance from the359
posterior discrepancy between the model and the data. This must be done simultaneously360
with parameter inference, because the posterior parameter distribution depends on the total361
uncertainty in the model and data. We therefore replace C𝑒𝑒 with C𝑡𝑡 in equation (4.2), and362
estimate the total uncertainty by simultaneously minimizing J with respect to a and C−1

𝑡𝑡 .363
Webegin by calculating the derivative ofJ with respect toC−1

𝑡𝑡 , assuming that the observed364
variables are uncorrelated, and keeping in mind that the normalizing constant, 𝐾 , depends365
on C𝑡𝑡 :366

J =
1
2
(s(a) − z)𝑇 C−1

𝑡𝑡 (s(a) − z) + log
(√︁

(2𝜋)𝑘 |C𝑡𝑡 |
)

+1
2
(a − ap)𝑇 C−1

𝑎𝑎 (a − ap) + log
(√︁

(2𝜋)𝑘 |C𝑎𝑎 |
) (4.5)367

𝜕J
𝜕C−1

𝑡𝑡

=
1
2
(s(a) − z) (s(a) − z)𝑇 ◦ I − 1

2
C𝑡𝑡 (4.6)368

where I is the identity matrix, and ◦ denotes the Hadamard product. For a given set of369
parameters, the most probable C𝑡𝑡 sets equation (4.6) to zero. This gives the estimate:370

C𝑡𝑡 = (s(a) − z) (s(a) − z)𝑇 ◦ I (4.7)371

which is the expected result that the total variance in the model and data is the square of the372
discrepancy between themodel predictions and the data. Althoughwe cannot directly identify373
the source of the unknown uncertainty because the experimental and model uncertainties374
cannot be disentangled, the inferred total uncertainty can assist the researcherwith identifying375
potential error sources. For example, if the unknown error in a single sensor is unexpectedly376
large, this could indicate a faulty sensor or bad installation. If the unknown error at a certain377
experimental operating condition is large, this could prompt the researcher to repeat that378
experiment. If the unknown error grows with one of the input variables, the researcher might379
investigate the model to see if any important physical phenomena may have been neglected.380

4.3. Model selection381

At the second stage of inference, we calculate the posterior probability of each model, given382
the data. This allows us to compare several candidate models quantitatively. We use Bayes’383
theorem applied to the models,H𝑖 , and data, z:384

𝑃(H𝑖 |z) ∝ 𝑃(z|H𝑖)𝑃(H𝑖) (4.8)385

The first factor on the right-hand side of equation (4.8) is the denominator of equation (4.1),386
which is referred to as the marginal likelihood or evidence. The second factor is the prior387
probability that we assign to each model. If we have no reason to prefer one model over388
another, we assign equal probabilities to all models and rank them according to their389
evidence. Themarginal likelihood is calculated by integrating the numerator of equation (4.1)390
over parameter space. When there are more than a few parameters, this is computationally391
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intractable unless the posterior distribution is Gaussian, in which case the evidence is cheaply392
approximated using Laplace’s method:393

𝑃(z|H𝑖) ≈ 𝑃(z|aMP,H𝑖) × 𝑃(aMP |H𝑖)
���𝐶MP𝑎𝑎

−1
���−1/2 (4.9)394

The marginal likelihood (ML) on the left-hand side is composed of two factors. The395
first factor on the right-hand side of equation (4.9), called the best fit likelihood (BFL), is a396
measure of howwell the model fits the data. The second factor, called the Occam factor (OF),397
penalizes the model based on its parametric complexity, where the complexity is measured398
by how precisely the parameter values must be tuned for the model to fit the data. The model399
with the largest evidence is the simplest model that is capable of describing the data, for400
given measurement error and given priors. This process therefore naturally enforces Occam’s401
razor to select the best model.402

5. Results403

The full set of unknown parameters cannot typically be assimilated in a single step because404
this problem is usually ill-posed. Instead, we perform the experiments and assimilate the405
parameters sequentially. We begin by characterizing the sources of acoustic damping in the406
cold rig. We then introduce the flame and perform experiments to infer the parameters of the407
fluctuating heat release rate models.408

5.1. Characterization of the cold rig409

The model for the cold rig has nine unknown parameters. These are the real and imaginary410
parts of the complex reflection coefficients 𝑅𝑢 , 𝑅𝑑 and 𝑅𝑏, and the real-valued strength of411
the visco-thermal damping in the boundary layers on (i) the internal wall of the duct, [𝑑 ,412
(ii) the external wall of the burner, [𝑏𝑒, and (iii) the internal wall of the burner, [𝑏𝑖 . The413
parameters [★ are multiplicative factors applied to the analytical models for visco-thermal414
damping (Rayleigh 1896; Tijdeman 1974), which in turn calculate the local linear feedback415
coefficients 𝑘★★. If the analytical models are correct, then [★ = 1.416
We perform four sets of cold experiments, which we refer to as C1-C4. These experiments417

are illustrated in figure 6. In C1 we perform experiments on the empty duct to infer 𝑅𝑢 ,418
𝑅𝑑 and [𝑑 . During this inference step, it is necessary to assign a tight prior to at least one419
of the parameters, because inferring all five simultaneously with weak priors requires the420
pressure phase to be measured to a precision that is unachievable in our experiments. We421
can only repeatably calibrate the relative phase measurements to O(10−2) radians, which is422
the same order of magnitude as the range of pressure phase variation along the length of the423
duct. We estimate that the pressure phase would need to be measured to O(10−3) radians424
to achieve the signal-to-noise ratio required to infer all five parameters simultaneously with425
weak priors. In previous work we studied a duct with identical upstream and downstream426
terminations, allowing us to assume that 𝑅𝑢 = 𝑅𝑑 and infer 𝑅 and [ simultaneously with427
weak priors (Juniper & Yoko 2022). In that study we found that the available analytical428
models for the visco-thermal boundary conditions are accurate, so we have more confidence429
in the prior information for [𝑑 than for 𝑅𝑢 and 𝑅𝑑 . We therefore set the prior [𝑑 = 1 and430
assign a small uncertainty to this value. We supply prior information about 𝑅𝑢 and 𝑅𝑑 from431
analytical models for the reflection of acoustic energy at flanged (Norris & Sheng 1989) and432
unflanged (Levine & Schwinger 1948) terminations, and assign a large uncertainty to these433
priors because the models assume infinitely long ducts, infinitely thin walls, and infinite434
flanges, which are not representative of our rig.435
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Figure 6: Illustration of the four experiments we perform to infer the nine unknown
parameters. In C1 we test the empty tube to infer the upstream and downstream reflection
coefficients, 𝑅𝑢 and 𝑅𝑑 , and the visco-thermal dissipation strength in the boundary layer
on the duct wall, [𝑑 . In C2 we traverse a dummy burner through the duct to infer the
visco-thermal dissipation strength on the exterior wall of the burner, [𝑏𝑒. In C3 we
traverse the real burner through the duct with a brass plug in the base to infer the

visc-thermal dissipation strength on the interior wall of the burner, [𝑏𝑖 , and the reflection
coefficient at the base of the burner, 𝑅𝑏 . In C4 we traverse the real burner through the duct

with the choke plate installed and infer the choke plate reflection coefficient, 𝑅𝑏 .

Re(𝑅𝑢) Im(𝑅𝑢) Re(𝑅𝑑) Im(𝑅𝑑) Re(𝑅𝑏) Im(𝑅𝑏) [𝑑 [𝑏𝑒 [𝑏𝑖

Expected value -0.957 0.220 -0.969 0.190 1.0 0.0 1.0 1.0 1.0
Standard deviation 1.0 1.0 1.0 1.0 1.0 1.0 0.01 0.01 0.01

Table 2: Prior expected values and standard deviations for the nine unknown parameters
in the cold rig.

In C2 we traverse a dummy burner through the rig. The dummy burner is a solid rod with436
the same exterior dimensions as the burner. From this set of experiments we assimilate 𝑅𝑢 ,437
𝑅𝑑 , [𝑑 and [𝑏𝑒. We use the posterior values and uncertainties from C1 as the priors for438
𝑅𝑢 , 𝑅𝑑 and [𝑑 . We inflate the uncertainty in 𝑅𝑢 , because we expect the upstream reflection439
coefficient to change due to the obstruction of the dummy burner. Similarly to C1, we assign440
a prior of [𝑏𝑒 = 1 with small uncertainty.441
In C3 we traverse the actual burner through the rig, but with a rigid plug in the base. We442

now assimilate all six parameters, but with prior information for 𝑅𝑢 , 𝑅𝑑 , [𝑑 and [𝑏𝑒 provided443
by the posterior from C2. The prior for [𝑏𝑖 is set to 1, and 𝑅𝑏 is set to the theoretical value444
for a hard boundary. We once again place a low uncertainty on the value of [𝑏𝑖 .445
Finally, in C4we traverse the burner through the tubewith the choke plate in place, andwith446

sufficient mass flow for the choke plate to be choked. We again assimilate all six parameters,447
with prior information for 𝑅𝑢 , 𝑅𝑑 , [𝑑 , [𝑏𝑒 and [𝑏𝑖 provided by the posterior from C3. The448
prior for 𝑅𝑏 is set to the theoretical value for a choked boundary, with large uncertainty. The449
prior values and uncertainties for all nine parameters are summarized in table 2.450
The results of the characterization of the cold rig are shown in figure 7. The experimental451

observations are compared to (i) the prior model predictions and (ii) the posterior model452
predictions. The experimental observations and posterior model predictions are plotted453
with a confidence interval of three standard deviations. We see from the dashed lines that454
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Figure 7: Comparison of experimental measurements and model predictions of (a) growth
rate and (b) angular frequency plotted against burner exit location for the three sets of cold
characterization experiments. Experimental measurements are plotted (circles) with a
confidence bound of 3 standard deviations. Prior model predictions are plotted (dashed
lines) without confidence bounds. Model predictions after data assimilation are plotted

(solid lines) with a confidence bound of 3 standard deviations.

the prior models, which used parameter values calculated from analytical models in the455
literature, are qualitatively accurate but not quantitatively accurate. We see from the solid456
lines that the posterior models are quantitatively accurate with defined uncertainty bounds.457
The improvement in model accuracy achieved with Bayesian inference is crucial because it458
allows parameters of the reacting experiments to be inferred subsequently with quantified459
uncertainty.460
The prior and posterior joint distributions are shown graphically in figure 8. Each disc461

shows the joint distribution between a pair of parameters. The grey discs indicate the prior462
joint distributions, the orange discs indicate the joint distributions after assimilating the C1463
data, the dark blue discs indicate the joint distributions after assimilating the C2 data, the464
teal discs indicate the joint distributions after assimilating the C3 data, and the pink discs465
indicate the joint distributions after assimilating the C4 data.466
In general, we see that the discs shrink as data is assimilated, because the parameter467

uncertainty reduces. We also see that the discs move away from the prior expected value.468
Both of these show that information is gained when data is assimilated (MacKay 1992). The469
uncertainties in the [★ parameters do not, however, change considerably. This is because we470
had high confidence in the model and therefore set tight priors on [★.471
We also see from figure 8 that the posterior expected values for some parameters change472

as data from each subsequent experiment is assimilated. Most of these changes are small473
(<1%) and can be attributed to random error in the experiments, which were all performed474
on different days. Two changes, however, are clearly systematic. The first of these is the475
prediction of Im(𝑅𝑢) after C2-C4 are assimilated, which is 0.197, vs the C1 prediction of476
0.203. Recall that the C1 experiment was conducted on the empty duct, while C2-C4 had477
the burner in place. We therefore attribute this change to the disturbance of the burner on478
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Figure 8: Prior and posterior joint parameter probability distributions after assimilating
data from the C1-C4 experiments. Each set of axes shows the joint distribution between a
pair of parameters. The three rings represent one, two and three standard deviations,

centred around the expected value. The upper and lower triangles show both the prior and
posterior distributions, but the axis limits are scaled to the prior in the lower triangle and
the posterior in the upper triangle. The axes are labelled with the ± 2 standard deviation

bounds.

the upstream boundary, which causes a change in Im(𝑅𝑢). The second is the prediction of479
Im(𝑅𝑏) after C4 is assimilated, which is -0.241 vs the C3 prediction of +0.131. The C3480
experiment used a burner with a brass plug in the base, while the C4 experiment had the481
choke plate installed. We therefore expect to see a slight change in 𝑅𝑏 between these two482
experiments.483
Finally, we see that the uncertainties in some parameters become tightly correlated after484

assimilating the data, which is indicated by a disc stretched diagonally. When this occurs, the485
expected value and uncertainty in one parameter is set by the expected value of the other. This486
can be resolved by (i) adding stronger prior information for one parameter, if it is available,487
or (ii) devising additional experiments to introduce more information to help disentangle488
the parameters. The experiments C1 to C4 were devised using this process when previous489
experiments (not shown here) had not been able to disentangle the parameters sufficiently.490

5.2. Comparison to sampling methods491

Before we move on to assimilating data from the hot experiments, we use the cold data to492
compare the computational cost of our framework to two samplingmethods. The first of these493
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Figure 9: Comparison of two sampling methods vs the proposed approximate inference
method. Each set of axes shows the posterior joint distribution between a pair of
parameters. The posteriors obtained through sampling methods are shown as binned
scatter plots. The posteriors obtained using the framework described in section 4 are
shown as rings of one, two and three standard deviations. The lower triangle compares
Markov chain Monte Carlo with a Metropolis-Hastings algorithm to our method, while
the upper triangle compares Hamiltonian Monte Carlo to our method. The axes are

labelled with the ± 2 standard deviation bounds.

is Markov chain Monte Carlo with the Metropolis-Hastings algorithm (Hastings 1970). This494
is a popular algorithm that draws samples of the posterior through a random-walk process.495
While this is simple to implement, it is typically inefficient at sampling the posterior, and496
many candidate samples are rejected, leading to unnecessary model evaluations. Given that497
we have the adjoints at our disposal, we also investigate the cost of Hamiltonian Monte498
Carlo (HMC) (Duane et al. 1987). This algorithm uses gradient information to propose more499
efficient candidate samples, reducing the number of rejected samples and therefore reducing500
the required model evaluations.501
For this demonstration, we only assimilate theC1 data, inwhichwe characterized the empty502

duct.We use the data to infer the five unknownmodel parameters using (i) our framework, (ii)503
MCMC with Metropolis-Hastings, and (iii) HMC. The posterior joint distributions obtained504
by the three methods are compared in figure 9. We see that the posteriors obtained through505
sampling are almost identical to those obtained using our approximate framework. The506
computational costs are, however, strikingly different. Our framework converged to the507
approximate posterior in 4.75 seconds, running on a single core on a laptop. Markov chain508
Monte Carlo with Metropolis-Hastings took 35 CPU hours running on a workstation, with509
eight chains running in parallel (4.4 wall clock hours). Hamiltonian Monte Carlo took 22510
CPU hours running on a workstation, with eight chains running in parallel (2.8 wall clock511
hours).512

5.3. Assimilating heat release rate models513

With the acoustic damping of the cold rig carefully characterized, we can now assimilate514
models for the fluctuating heat release rate of the flame, which drives or damps the acoustic515
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oscillations depending on its phase relative to the pressure (Rayleigh 1896). When the flame516
is introduced, the temperature of the rig increases and the gas properties change, causing517
some parameters to deviate from their cold values. The upstream reflection coefficient is not518
expected to change, because the upstream boundary remains at ambient temperature for all519
experiments. We therefore retain the value for 𝑅𝑢 that we inferred from the cold data. For the520
downstream reflection coefficient, we use the value of 𝑅𝑑 that we inferred from the cold data521
to calculate a correction factor to an analytical model for the reflection coefficient (Levine &522
Schwinger 1948). This allows us to use the corrected model to calculate 𝑅𝑑 for an arbitrary523
outlet temperature. The remaining cold parameters, [★, are multiplicative correction factors524
to an analytical model for visco-thermal dissipation, which takes viscosity and density as525
inputs. We therefore account for the temperature variation of visco-thermal dissipation by526
supplying temperature-varying gas properties to the analytical model, and we assume that527
the correction factors, [★, are not a function of temperature. When we assimilate the hot data,528
we neglect the remaining uncertainty in the cold parameters because it is small compared to529
the uncertainty in the heat release rate parameters.530
To generate a quantitatively accurate model of the thermoacoustic behaviour of the rig,531

we begin by carefully selecting a suitable model for the fluctuating heat release rate using532
experimental observations from three flames. We then infer the most probable parameters of533
the selected model using experimental observations from all 24 flames shown in figure 2.534

Selecting a model for the fluctuating heat release rate535

The fluctuating heat release rate is modelled as a feedback mechanism from the acoustic536
velocity into the energy equation, which we label 𝑘𝑒𝑢 𝑓

(Juniper 2018). We propose a model537
for 𝑘𝑒𝑢 𝑓

in the form of a typical flame transfer function:538

𝑘𝑒𝑢 𝑓
=
𝛾 − 1
𝛾

�̄�

𝑝�̄�𝐴
F , (5.1)539

F =
𝑄 ′/�̄�
𝑢′/�̄� (5.2)540

541

where 𝛾 is the ratio of specific heats, �̄� is the mean heat release rate of the flame, 𝑝 is the542
mean pressure at the injection plane, �̄� is the mean velocity at the injection plane, and 𝐴 is the543
cross-sectional area of the duct at the injection plane. F is the complex-valued flame transfer544
function, which relates fluctuations in velocity, 𝑢′, to fluctuations in heat release rate, 𝑄 ′.545
The fluctuations in velocity and heat release rate are normalized by the mean bulk values, �̄�546
and �̄�.547
We infer the most probable flame transfer function from experimental observations of the548

growth rate, frequency and Fourier-decomposed pressure.We begin by traversing three of the549
24 flames through the duct. For this initial study, we choose the three flames with the shortest550
convective time delay and lowest mean heat release rate. These flames remain linearly stable551
at all burner positions but present different thermoacoustic decay rates. We assume that the552
flame transfer function should not depend on the position of the burner in the duct so, for553
each flame, we seek a single flame transfer function that is valid for all burner positions.554
At any burner position, the flames are exposed to two distinct acoustic velocity perturba-555

tions: that from the acoustic field within the burner tube, and that from the acoustic field556
in the duct. We test two models from the literature and propose two new models. Model 1557
considers the blockage of the burner tube but neglects the acoustic field inside the burner558
tube and assumes that the flame reacts only to the velocity perturbation in the duct (Heckl &559
Howe 2007; Zhao 2012; Zhao & Chow 2013; Kopp-Vaughan et al. 2009). Model 2 includes560
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(a) (b)

(d)(c)

Figure 10: Four flame transfer function models for the ducted conical flame. (a) Model 1:
the flame reacts to the velocity perturbation in the duct alone. The acoustics in the burner
are not modelled. (b) Model 2: the flame reacts to the velocity perturbation in the burner
alone. (c) Model 3: the flame reacts to the velocity perturbations in both the duct and the
burner with different gains and phase delays. (d) Model 4: the flame reacts to the velocity
perturbations in both the duct and the burner with different gains, but the same phase

(time) delay.

both acoustic fields, but assumes that the flame reacts only to the velocity perturbation in561
the burner tube. This is based on studies that have measured flame transfer functions in562
unducted flames (Kornilov et al. 2007; Durox et al. 2009; Cuquel et al. 2011), and assumes563
that these results extrapolate to ducted flames. We propose models 3 and 4, which include564
both acoustic fields and assume that the flame reacts to both sources of velocity perturbation.565
In model 3 the flame reacts to both sources of velocity perturbation, with a different gain566
and a different phase delay for each source. In model 4 the flame reacts to both sources of567
velocity perturbation, with a different gain but the same phase delay for each source.568
The four models are shown graphically in figure 10. Models 1 and 2 have two real569

parameters: the gain and phase delay of the flame transfer function, F . Model 3 has four real570
parameters: the gain and phase delay of two flame transfer functions, F𝑏 and F𝑑 . Model 4571
has three real parameters: two gains, |F𝑏 | and |F𝑑 |, and a single phase delay, ∠F𝑏 = ∠F𝑑 . In572
models 3 and 4, the subscripts 𝑏 and 𝑑 refer to the burner and duct respectively.573
We assimilate the data into each model to find the most probable flame transfer functions.574

The posterior model predictions for all four models are compared against experimental575
observations in figure 11. We see from the results of model 1, shown in figure 11(a), that576
neglecting the acoustic field in the burner tube leads to a model that cannot fit the data. Most577
prominently, it is clear from figure 11(a.i) that a flame transfer function based on the duct578
velocity perturbations must predict zero thermoacoustic effect when the flame is placed at579
the duct’s velocity node, which is just downstream of 𝑥/𝐿 = 0.4. This effect is clearly not580
observed in the data, which shows a strong thermoacoustic effect when the burner is placed581
at the duct’s velocity node. Further, we see from figure 11(a.ii) that model 1 cannot predict582
the frequency correctly because the effect of the acoustic field in the burner tube has been583
neglected. The inferred total uncertainty, (C𝑡𝑡 )1/2, has been plotted as the data error bars,584
while the parametric uncertainty, (C𝑠𝑠)1/2, has been plotted as the model error bars. We see585
that the uncertainty is large for model 1 because of the structural error in the model.586
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Figure 11: Posterior model predictions and experimental measurements of (i) growth rate,
𝑠𝑟 , and (ii) angular frequency, 𝑠𝑖 , plotted against normalized burner position, 𝑥/𝐿 for
three different flames. Model predictions are plotted as solid lines with the shaded region
indicating the parametric uncertainty. Experimental measurements are plotted as circular
markers with error bars indicating the random and inferred systematic uncertainty. The
results for each of the three flames are shown in different colours, which correspond to the
colours in figure 2. The posterior model predictions of (a) model 1, (b) model 2, (c) model

3, and (d) model 4 are shown.

We see from figure 11(b) that, while model 2 fits the data better than model 1, it suffers587
from a similar limitation. Model 2 must predict steadily decreasing thermoacoustic effect as588
the burner approaches the duct pressure nodes, which are near 𝑥/𝐿 = 0 and 1. The pressure589
fluctuations in the duct give rise to the acoustic field in the burner tube, so when the burner590
is placed at the duct pressure node, the acoustic field in the burner tube vanishes, along with591
the heat release rate fluctuations. This can be seen in figure 11(b.i) as the model predictions592
converge towards a common growth rate when the burner approaches either end of the duct.593
It is clear from the data, however, that the thermoacoustic effect does not vanish as the594
burner approaches the pressure node, as can be seen from the wide spread in growth rate595
measurements at 𝑥/𝐿 = 0.2. We notice from figure 11(b.ii) that including the burner tube596
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acoustic field in the model allows the model to make more accurate frequency predictions.597
Finally, while the inferred uncertainty is smaller than for model 1, it is still large because of598
the structural error in the model.599
Motivated by the shortcomings of models 1 and 2, we propose model 3 to allow the flame600

to react to both sources of velocity perturbation. We see from figure 11(c) that model 3 fits601
the data well for all three flames, at all burner positions, and that the inferred uncertainty is602
small. However, from the phenomenology of the problem we expect that each flame should603
react with a single characteristic time delay, regardless of the source of the perturbation.604
We therefore propose model 4 which enforces this constraint. We see from figure 11(d) that605
model 4 also fits the data well for all three flames, at all burner positions, and the inferred606
uncertainty remains small.607
While models 1 and 2 are easy to discard, it is more difficult to discriminate between608

models 3 and 4, so we use Bayesian model comparison to rank the models and identify609
the best one. The model ranking metrics are summarized in figure 12. Comparing the log-610
marginal likelihoods (log(ML)) of each of the models, we see that models 3 and 4 are611
substantially more probable than models 1 and 2, with model 4 being marginally more612
probable than model 3. This is consistent with our expectations based on the phenomenology613
of the problem. Models 1 and 2 are simple and therefore have smaller log-Occam factor614
penalties (log(OF)) but they fit the data poorly and are therefore penalized by small log-best615
fit likelihoods (log(BFL)). By comparison, models 3 and 4 fit the data well and therefore616
have large log-best fit likelihoods, which outweigh the penalty from increased complexity,617
seen as the more negative log-Occam factors. While model 3 fits the data slightly better than618
model 4, the additional complexity of model 3 is not justified by the improvement in fit, and619
so model 4 is the most probable model given our experimental data.620
Finally, in figure 13 we compare the inferred uncertainty to the known uncertainty, which621

was estimated based on the error sources that are quantifiable a-priori. We see that the622
inferred uncertainty in both growth rate and frequency for models 1 and 2 is significantly623
larger than the known uncertainty, indicating either systematic error in the experiments or624
structural error in the model. By comparison, the inferred uncertainty for models 3 and 4 is625
comparable to the known uncertainty. This suggests that the systematic error in models 1 and626
2 is due to structural error in the models, rather than systematic measurement error, because627
it has been eliminated in models 3 and 4.628

Inferring the parameters of the fluctuating heat release rate model629

We now apply the most probable model to all 24 flames. The flames are categorized into six630
groups of four flames, where the flames in each of the six groups have the same convective631
time delay but varying mean heat release rate. Each flame is traversed from 0.2 m to 0.35 m632
from the duct inlet, in 0.05 m increments. The experimental results are shown in figure 14,633
from which we see that the chosen flame parameterization has produced a convenient basis634
for exploring thermoacoustics in conical flames. Changing the convective time delay changes635
the thermoacoustic behaviour, while changing the power mainly changes the strength of the636
thermoacoustic effect. The data includes neutral flames (blue and orange), driving flames637
(teal, red and yellow) and damping flames (pink). This allows us to test our inference638
framework on a wide range of flame dynamics. We do not attempt to propose a general639
model for the behaviour of an arbitrary flame. This requires more detailed consideration of640
the flame dynamics and is out of scope of this paper (Giannotta et al. 2023).641
We infer the most probable parameters for the fluctuating heat release rate model that we642

selected using Bayesian model comparison. The posterior model predictions are compared643
with the experimental data for all 24 flames at 4 flame positions in figure 15. We see that644
the model predictions are within the experimental uncertainty bounds for all the flames at645
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Figure 12: Model ranking metrics for four candidate models. The best fit likelihood (BFL)
measures how well the model fits the data. The Occam factor (OF) penalizes the model
based on its parametric complexity. The marginal likelihood (ML) is the overall evidence
for a given model, and is the product of the BFL and the OF (i.e. log(ML) = log(BFL) +
log(OF)). The model with the largest marginal likelihood is the most likely model, given

the experimental data.
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Figure 13: Inferred uncertainties for each flame, modelled by each of the four candidate
models. (a) the uncertainty in the growth rate, 𝜎𝑠𝑟 and (b) the uncertainty in the

frequency, 𝜎𝑠𝑖 is shown in units of standard deviations. The dashed line represents the
known uncertainty, which is estimated based on the random error of the experiments.
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Figure 14: Experimental measurements of (a) growth rate, 𝑠𝑟 , and (b) angular frequency,
𝑠𝑖 , plotted against the flame convective time delay, 𝜏𝑐 and mean heat release rate, �̄�. The
experimental data points are shown with circular markers, with vertical lines representing
a confidence interval of 3 standard deviations. A thin connecting line has been added
between experimental data points as a visual aid. The results for each of the four burner
positions are shown, with darker shades representing lower burner positions and lighter
shades representing higher burner positions. The results are coloured according to the

flame groups, which correspond to the colours in figure 2.

all positions, except for the frequency prediction of the highest power flame in group 6 (see646
figure 15 (f.ii)). For this experiment the model over-predicts the frequency by 2.4 Hz, which647
is less than 1% of the measured value. We should expect increased error in the frequency648
predictions for longer flames, because the frequency predictions are sensitive to the sound649
speed field, which becomes poorly approximated in the 1D network model for longer flames.650
The results from figure 15 are repeated in figure 16, but are grouped according to flame651

power rather than convective time delay, and the axis scales have been matched between652
the plots. This makes the model fit less clear, but highlights some important physical trends.653
Firstly, the growth rate plots emphasize the fact that increasing the flame power while keeping654
the convective time delay constant strengthens the thermoacoustic effect. Secondly, it is clear655
that several flames display the same thermoacoustic behaviour, as seen by the overlapping656
growth rate measurements/predictions. We should therefore expect that these flames have657
similar flame transfer functions.658
We see from figures 15 and 16 that, although the model was selected based on the lowest659

power flames from groups 1-3, it remains accurate at higher powers and longer convective660
time delays once the correct model parameters are found. This demonstrates the power of a661
physics-based, data-driven modelling approach. Once the best model is selected, it can be662
applied to cases well outside the range of the data used to select the model. This is particularly663
useful for thermoacoustic systems because the model selection process can be carried out664
using data from low power experiments, which are cheaper and safer to conduct, and then665
applied to higher power cases using only a few experimental observations to find the most666
probable model parameters.667
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Figure 15: Posterior model predictions and experimental measurements of (i) growth rate,
𝑠𝑟 , and (ii) angular frequency, 𝑠𝑖 , plotted against normalized flame position, 𝑥/𝐿. The
model predictions are shown as solid lines with a shaded patch representing the
confidence bounds. The experimental results are shown with circular markers, with

vertical lines representing confidence bounds. Frames (a)-(f) show the results for each of
the six groups of flames that have the same convective time delay. The results for each of
the four flame powers are shown, with darker shades representing lower powers and lighter
shades representing higher powers. The results are coloured according to the flame

groups, which correspond to the colours in figure 2.
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Figure 16: Posterior model predictions and experimental measurements of (i) growth rate,
𝑠𝑟 , and (ii) angular frequency, 𝑠𝑖 , plotted against normalized flame position, 𝑥/𝐿. The
model predictions are shown as solid lines with a shaded patch representing the
confidence bounds. The experimental results are shown with circular markers, with

vertical lines representing confidence bounds. Frames (a)-(d) show the results for each of
the four flame powers. The results for each of the six convective time delays are shown

with different colours, corresponding to those in figure 2.

We have shown that the inference process results in a quantitatively accurate model, but it668
is equally important that the inferred flame transfer functions are physically meaningful. We669
focus on F𝑏, the flame transfer function between heat release rate fluctuations and velocity670
perturbations in the burner tube, because this is most commonly discussed in the literature.671
In figure 17, we plot the inferred values for F𝑏 for all 24 flames on polar axes with confidence672
bounds of 2 standard deviations. First, we see that the flames are appropriately placed on the673
polar plot, with driving flames occupying the upper half-plane, damping flames the lower674
half-plane, and neutral flames near the 0◦-180◦ axis. Second, we see that the shorter flames675
(blue, cyan, orange) have less angular spread than the longer flames (pink, red, yellow). This676
is because the shorter flames had more consistent convective time delays, and therefore more677
consistent thermoacoustic phase delays.678
The polar plot also shows that the uncertainty in the inferred flame transfer functions679

depends on two factors: (i) the flame behaviour and (ii) the measurement uncertainty. We see680
in figure 17 that the neutral flames have large uncertainties. This is because the thermoacoustic681
effect is weak, and therefore difficult to observe from pressure measurements alone. By682
contrast, the driving flames have smaller uncertainties, because the thermoacoustic effect is683
strong and therefore easy to observe. The damping flames, however, have a large uncertainty,684
even though the thermoacoustic effect is strong. This is because the oscillations decay quickly,685
meaning that the decay rate and natural frequency must be measured from few oscillations.686
This increases the measurement uncertainty, and therefore the uncertainty in the inferred687
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Figure 17: Polar plot of the inferred flame transfer functions for internal perturbations for
all 24 flames. The gain is shown on the radial axis, and phase delay on the angular axis.
The shaded areas represent a confidence region of 2 standard deviations. The colours
correspond to those in figure 2, with darker shades representing lower flame powers and
lighter shades representing higher flame powers. The red-white-blue contour in the
background represents the effect of flame transfer function gain and phase on the

instability growth rate, where red represents positive growth rates, white represents no
growth and blue represents negative growth rates.

flame transfer functions. It is convenient that we have high certainty in the behaviour of688
driving flames, because these are typically of most interest to designers.689
Finally, we check the validity of the inferred flame transfer functions by comparing them690

to directly measured values. We did not directly measure the flame transfer function in691
our experiments, so instead we compare the inferred flame transfer functions to direct692
measurements from similar systems in the literature. No experimental studies in the literature693
have measured the response of a flame to forcing from outside the burner tube. We can694
therefore only compare the inferred flame transfer functions between heat release rate and695
velocity perturbations from within the burner tube to those from the literature. Cuquel et al.696
(2013b) have shown that for conical flames, flame confinement only affects the flame transfer697
function for confinement ratios (burner radius / duct radius) above 0.44. Our rig has a698
confinement ratio of 0.125, so we expect that we can compare the inferred flame transfer699
function for internal velocity perturbations to those directly measured on unconfined flames.700
The results of the comparison are plotted in figure 18. We show results from three701

experimental studies (Schuller et al. 2002; Kornilov 2006; Cuquel et al. 2013b) and one702
analytical model (Schuller et al. 2003). The experimental studies all considered unconfined,703
premixed, laminar, conical flames forced through the burner tube. The burner of Kornilov704
(2006) was similar to that in the current study, while the burners of Schuller et al. (2002)705
and Cuquel et al. (2013b) had a diameter of roughly double that in the current study. The706
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Figure 18: Comparison of the inferred flame transfer functions for internal perturbations
(colours) with direct measurements (lines with symbols) and an analytical model (line)
from the literature. The (a) gain, |F |, and (b) phase, ∠F of the flame transfer function is
plotted against the reduced frequency, 𝜔∗. The inferred flame transfer functions are shown

as ellipses indicating a confidence interval of 3 standard deviations, with colours
corresponding to those in figure 2. We compare the inferred flame transfer functions to
those produced by the model of Schuller et al. (2003) (solid line), the experiments of
Schuller et al. (2002) (circular markers), the experiments of Kornilov (2006) (diamond
markers), and the experiments of Cuquel et al. (2013b) (square markers). From (a) we see
good agreement for the inferred gain when the experiments had low systematic error. A
larger discrepancy is therefore expected for the pink and yellow flames because they
contained unquantified systematic error. From (b) we see that the direct phase

measurements (grey lines) do not agree with each other, even though those experiments
were similar to each other, indicating that the phase is highly sensitive to the experimental
configuration. The inferred phase measurements (colours) are similarly scattered.

analytical model of Schuller et al. (2003) was of an unconfined, premixed, laminar, conical707
flame of arbitrary diameter.708
We plot the gain and phase of the flame transfer function for internal perturbations, F𝑏,709

against reduced frequency, 𝜔∗, in figure 18. We use the following definition for reduced710
frequency: 𝜔∗ = 𝑠𝑖𝑅/(𝑆𝐿 [1 − (𝑆𝐿/�̄�)2]1/2), where 𝑠𝑖 is the frequency of oscillations, 𝑅 is711
the burner radius at the injection plane, 𝑆𝐿 is the unstretched laminar flame speed and �̄� is712
the bulk velocity in the burner tube.713
The flame transfer function gains are compared in figure 18(a). Considering only the714

experimental data taken from the literature, we note that despite the similarity of the715
experimental configurations, the measured flame transfer functions vary significantly. While716
the gainmeasurements agree fairly well at low reduced frequencies, there is significant spread717
in the measurements between reduced frequencies of about 7 and 20. Considering the spread718
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in the direct measurements, we see that the inferred gains agree reasonably well with the719
direct measurements for the blue, teal, orange and red flames. The inferred gains for the pink720
and yellow flames are slightly higher than the direct measurements. The pink flames were721
strongly damping which led to larger experimental error. The increased experimental error722
was estimated from the variance in 75 experimental observations, but this does not quantify723
the systematic error, and so the uncertainty is underpredicted. The yellow flames also have724
a component of unquantified systematic error, which is likely to come from the error in725
approximating the sound speed field in the 1D network model for these long flames. In the726
case of both the pink and yellow flames, the systematic error could be estimated if a suitable727
model for the variation of flame transfer function with flame properties were available.728
The flame transfer function phases are compared in figure 18(b). Considering the ex-729

perimental data first, we note that the phase measurements show almost no agreement at730
any of the reduced frequencies. We therefore cannot expect that the inferred phases should731
show any meaningful agreement with the direct measurements. The variability of the direct732
phase measurements is probably due to small differences in the experiments, such as the733
inlet velocity profile or the heat loss to the burner rim. This variability is particularly734
problematic due to the severe sensitivity of the model predictions to the phase delay (Juniper735
& Sujith 2018). It is therefore important that flame transfer functions are quantified through736
experiments that are representative of the planned operating condition, which motivates the737
approach of inferring flame transfer functions in-situ.738

6. Conclusion739

In this paper we apply an adjoint-accelerated Bayesian inference framework to the ther-740
moacoustic behaviour of a ducted conical flame. We perform automated experiments to741
collect the data, which we assimilate into physics-based models, finding the most probable742
model parameters given the data. If a model is sufficiently descriptive, this process results743
in a quantitatively accurate model with quantified uncertainty in the model parameters744
and predictions. If multiple models are proposed, the most probable model is identified745
using Bayesian model comparison. This adjoint-accelerated Bayesian inference framework746
is computationally cheap, and can be applied to a wide range of problems.747
We have inferred flame transfer functions in-situ from pressure measurements, without748

observing the flame. This is useful because industrial rigs do not have optical access. While749
some other studies have calculated flame transfer functions without optical access, none750
have assessed their uncertainties and therefore tend to be over-confident in their results.751
We have rigorously quantified the uncertainties in the inferred flame transfer functions and752
found, as expected, that the flame transfer functions are accurate if (i) the thermoacoustic753
effect is strong, and (ii) the measurement uncertainty is small. This will help to guide future754
experiments on industrial rigs.755
More generally, this inference process forces the user to adhere rigorously to the physics756

and the experimental data. This often reveals shortcomings in existing models. In the current757
study, for example, we found that the experimental data cannot be explained if the heat758
release rate depends only on velocity perturbations in one of the ducts, which is a common759
assumption in the literature. We found that the data contains strong evidence that the heat760
release rate depends instead on the velocity perturbations in both the duct and the burner tube.761
This conclusion emerges naturally from this inference process because it models the entire762
experiment simultaneously. Traditional methods, whichmodel components of the experiment763
independently, tend to miss these influential dependencies. Similarly, the ability to measure764
flame transfer functions in-situ is valuable because flame transfer functions usually change765
when a flame is placed inside a combustion chamber.766
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In future work we will apply adjoint-accelerated Bayesian inference to more complex767
flames and combustion chambers. We will also develop methods to reduce the uncertainty768
in the inferred flame transfer functions by providing additional information, such as visual769
information from the flame when it is available.770
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