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Many experimental studies have demonstrated that ducted premixed flames exhibit
stable limit cycles in some regions of parameter space. Recent experiments have
also shown that these (period-1) limit cycles subsequently bifurcate to period-2n,
quasiperiodic, multiperiodic or chaotic behaviour. These secondary bifurcations cannot
be found computationally using most existing frequency domain methods, because
these methods assume that the velocity and pressure signals are harmonic. In an
earlier study we have shown that matrix-free continuation methods can efficiently
calculate the limit cycles of large thermoacoustic systems. This paper demonstrates
that these continuation methods can also efficiently calculate the bifurcations from
the limit cycles. Furthermore, once these bifurcations are found, it is then possible
to isolate the coupled flame–acoustic motion that causes the qualitative change in
behaviour. This information is vital for techniques that use selective damping to move
bifurcations to more favourable locations in the parameter space. The matrix-free
methods are demonstrated on a model of a ducted axisymmetric premixed flame,
using a kinematic G-equation solver. The methods find limit cycles and period-2 limit
cycles, and fold, period-doubling and Neimark–Sacker bifurcations as a function of
the location of the flame in the duct, and the aspect ratio of the steady flame.
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1. Introduction

Thermoacoustic systems containing premixed flames have been shown to exhibit
periodic, period-2, quasiperiodic and chaotic behaviour in both experiments (Gotoda &
Ueda 2002; Gotoda et al. 2009; Kabiraj et al. 2012a; Kabiraj, Sujith & Wahi 2012b)
and numerical simulations (Kashinath, Hemchandra & Juniper 2012; Kashinath &
Juniper 2012; Kashinath, Waugh & Juniper 2013b). The type of nonlinear behaviour
observed in the long time limit (the attractor) is often very sensitive to the parameters
of the system and the oscillation’s initial amplitude and form. For example, there
can be a sudden change in the system’s behaviour (i) when a parameter is varied,
which indicates a bifurcation of the system in parameter space, or (ii) when the
initial amplitude passes some threshold, which indicates mode switching within a
multistable region of parameter space (Kashinath et al. 2013b).
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In the frequency domain, Noiray et al. (2008) used the flame describing function
(FDF) approach (Dowling 1999) to estimate the location of Hopf bifurcations
and fold bifurcations and to explain the mode switching that they had observed
experimentally. The FDF approach assumes that the acoustic velocity and pressure
signals are harmonic. This is a severe limitation in thermoacoustic systems because
it precludes all nonlinear behaviour apart from fixed points and period-1 oscillations.
The next-simplest forms of nonlinear behaviour, period-doubling and quasiperiodicity,
which start at period-doubling and Neimark–Sacker bifurcations, respectively, would
require knowledge of the flame’s response to a forcing signal composed of two
harmonic oscillations. The FDF would then need to be a function of four variables
(the frequency and amplitude of each harmonic signal) and would be extremely
expensive to obtain. Experiments in this direction show that it is possible to obtain
the flame’s response to forcing at two commensurate frequencies (Balachandran,
Dowling & Mastorakos 2008) and two non-commensurate frequencies (Moeck &
Paschereit 2012). However, these studies convincingly show that this response is not
the sum of the responses at each individual frequency, demonstrating that there is no
short cut, i.e. the FDF would need to be found as a function of all four variables.
More complex nonlinear behaviour, such as multiperiodic (frequency locked) and
chaotic behaviour, would require the FDF as a function of multiple frequencies and
amplitudes and would therefore be impossibly expensive to obtain. Nevertheless,
all of the types of nonlinear behaviour described above are frequently observed in
experiments and simulations, highlighting the need for an alternative to the FDF
approach.

In the time domain, there are two broad approaches: (i) energy balance techniques,
and (ii) autonomous dynamical system techniques. Energy balance techniques examine
the growth of acoustic energy around a cycle. Heckl has recently used Green’s
functions to transfer an approximation of experimental FDF data into the time domain,
in the form of an amplitude-dependent time delay and gain (Heckl 2013a,b). Whilst
this approach can be used to examine the energy balance of a single frequency at a
set amplitude, it cannot be used to examine the temporal evolution of the system. This
is because amplitude-dependent coefficients cannot be used with a Green’s function
framework because the evolution relies on linear superposition. Furthermore, because
both Heckl’s method and the CIRCE method of Kashinath et al. (2012) assume a
harmonic form for the acoustic perturbations, they suffer from the same limitations
described in the previous paragraph for frequency domain methods. Alternative
methods have been used to transfer FDF data into the time domain, by using impulse
responses derived theoretically from the G-equation (Blumenthal et al. 2013) or from
system identification of CFD data (Selimefendigil, Sujith & Polifke 2011). Whilst
these impulse responses can provide insight into competing flame processes, such as
convection and restoration, they can only be used for linear analysis.

Autonomous dynamical system techniques describe the system using a state vector
that evolves in time according to a set of nonlinear equations. These techniques do not
make any a priori assumptions about the form of the acoustic velocity and pressure
signals that arise from the model and can therefore display all types of nonlinear
behaviour. For example, Kashinath et al. (2013b) used time-domain simulations to
find the regions of parameter space at which a model of a ducted premixed flame
exhibited period-1, period-2n, multiperiodic, quasiperiodic and chaotic behaviour. They
also examined the corresponding attractors in phase space and revealed the role that
unstable attractors play in mode switching.

Time domain simulations have several limitations, however, when they are used to
identify attractors in phase space. First, they are computationally expensive because
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typically they must calculate several hundred cycles in order for the system to
converge to an attractor to some tolerance. Second, they can converge only to stable
attractors, although they sometimes remain sufficiently close to an unstable attractor
for this attractor to be estimated. Third, it is difficult to show which aspects of
the thermoacoustic system are responsible for the qualitative changes in nonlinear
behaviour observed at bifurcations, because it often requires prohibitive numbers of
long timemarches to converge to a bifurcation with sufficient accuracy. It should be
noted that if the bifurcation can be found to sufficient accuracy, however, then the
Floquet multipliers and modes can be estimated by timemarching from an unstable
limit cycle that is very close to the bifurcation, taking a snapshot of the state vector
every period of the limit cycle for several periods, then applying dynamic mode
decomposition to the snapshots (Schmid 2010). Some iteration or interpolation will
be required to ensure the snapshots are taken at exact multiples of the limit cycle
period, or the accuracy of the Floquet multipliers will be limited by the size of the
time step.

These three limitations can be overcome by combining time domain simulations
with continuation analysis. This allows fixed points, limit cycles and bifurcations
to be tracked as the system parameters are varied. Continuation analysis converges
much faster to limit cycles (period-1, period-2, etc.) than time domain simulations
alone. It can also converge to stable and unstable limit cycles and, by calculating the
Floquet multipliers of these limit cycles, can reveal the type of bifurcation that occurs
when a limit cycle changes from stable to unstable. The eigenvectors corresponding
to (i) eigenvalues around fixed points or (ii) Floquet multipliers around limit cycles
reveal the coupled flame–acoustic motion that causes the change in behaviour. These
eigenvectors can then be used to identify the optimal passive control mechanisms to
delay or even prevent these bifurcations from occurring (Magri & Juniper 2013) and
hold great promise for the passive control of thermoacoustic systems.

In a previous paper, we showed that matrix-free continuation methods can efficiently
find limit cycles of a relatively large thermoacoustic system (Waugh, Illingworth &
Juniper 2013). The model used in that paper, which was of a ducted diffusion flame,
was only weakly nonlinear and therefore did not display period-2n or quasiperiodic
behaviour. In this paper, we demonstrate matrix-free continuation methods on a
model of a ducted axisymmetric premixed flame using a kinematic G-equation solver.
This flame model has strongly nonlinear behaviour because it can form cusps and
pinched-off pockets. We find period-1 and period-2 limit cycles, as well as fold,
period-doubling and Neimark–Sacker bifurcations. We find these as functions of two
system parameters: the location of the flame in the duct and the aspect ratio of the
steady flame. The matrix-free continuation methods and the underlying numerical
techniques are described fully in Waugh et al. (2013). Their application to the ducted
premixed flame model is described fully in Waugh (2013).

This paper has three aims: (i) to demonstrate that continuation algorithms can
efficiently find the limit cycles and bifurcations of a thermoacoustic system containing
a premixed flame model; (ii) to identify the types of bifurcation by examining the
Floquet multipliers of the limit cycles; (iii) to identify the coupled flame–acoustic
motion that is responsible for the qualitative change in behaviour at each bifurcation
by analysing the eigenvectors associated with the unstable Floquet multipliers.
Whilst the results compare qualitatively well with experimental data, no quantitative
comparisons are made, because the model used is too simplistic, particularly in its
treatment of the acoustics. These limitations are due to the model, however, and not
the analysis techniques that are the focus of this paper.
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The paper is organised as follows. Section 2 describes the thermoacoustic model,
which is of a ducted premixed flame. Section 3 describes the continuation methods
used to find the limit cycles. These sections summarise previous papers and further
details can be found in Waugh (2013) and Waugh et al. (2013). Section 4 then
describes the specific numerics required to adapt the coupled G-equation model for
use with the continuation methods. Section 5 then presents the limit cycles of the
ducted premixed flame model, their subsequent bifurcations and the causes of those
bifurcations. The paper then concludes.

2. Model description
The ducted premixed flame model used in this paper consists of a one-dimensional

acoustic duct coupled to an axisymmetric flame domain, as shown in figure 1. In
the acoustic domain, the velocity, u, and pressure, p, are discretised using a Galerkin
modal expansion:

u(x, t)=
N∑

j=1

ηj(t) cos( jπx), p(x, t)=−
N∑

j=1

(
ηj(t)
jπ

)
sin( jπx). (2.1a,b)

Using the non-dimensionalisations u= ũ/ũ0, p= p̃/γMp̃0, x= x̃/L̃0, t= t̃c̃0/L̃0, the non-
dimensional momentum and energy equations for the acoustic velocity and pressure
are

∂u
∂t
+ ∂p
∂x
= 0 (2.2)

∂p
∂t
+ ∂u
∂ x̃
+ ζp− βTQ̇δ

(
x− xf

)= 0 (2.3)

where

βT = (γ − 1) ˜̇Q0α

γ p̃0ũ0
and Q̇=

˜̇Q
˜̇Q0

(2.4a,b)

where ζ is a modal damping coefficient, which when discretised is ζj = c1j2 + c2
√

j,
where j is the mode number of the Galerkin expansion, and c1 and c2 are constants.
Additional definitions are the ratio between the burner width and duct width, α, the
heat release, Q̇, the Dirac delta function, δ(x), the ratio of specific heats, γ , and a
subscript of 0 for a mean quantity. This model of the acoustic duct is the same as
that used by Balasubramanian & Sujith (2008) and Juniper (2011).

In the flame domain, the premixed flame propagates in a direction that is normal
to the local flame surface. We use the G-equation method, in which the flame surface
is defined as the zero contour of a scalar field and the flame normals are defined by
the local gradient of the scalar field (Dowling 1999; Schuller, Durox & Candel 2003;
Hemchandra, Preetham & Lieuwen 2007). This kinematic G-equation is solved on an
imposed velocity field, using a level set method. This allows pinch-off and multivalued
(highly wrinkled) flame shapes. We also use a rotating boundary condition at the base
of the flame (Waugh 2013), which allows movement of the flame anchoring point and
flashback, both of which generate these wrinkles. The evolution in time of the G-field
is given by

∂G
∂t
+U · ∇G− sL |∇G| = 0 (2.5)
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FIGURE 1. (Colour online) Schematic of the one-dimensional acoustic duct (a) and the
axisymmetric flame domain (b). The flame domain contains a G-field that is a signed
distance function from the flame surface (wavy black line) in a thin band around the flame.
The flame domain is labelled as FD in the acoustic duct, and is rotated 90◦ anticlockwise
in the bottom frame.

where sL is the flame speed and U is the velocity vector in the flame field. The flame
speed in this paper depends on the local curvature and, for a conical flame of aspect
ratio β, is given by

sL = u0√
1+ β2

(1+Mκκaxi) (2.6)

where Mκ is a non-dimensionalised Markstein length and κaxi is the signed
axisymmetric curvature (Hemchandra, Shreekrishna & Lieuwen 2010). Curvature
is a second-order quantity, which means that a significant drop in timestep is required
in order to ensure that the CFL condition is met. Strain effects are not included in
the flame speed because this is not appropriate with the current velocity model (the
velocity model has uniform velocity gradient in the y direction).

When the equivalence ratio is uniform and the domain is axisymmetric, the heat
release rate is

Q̇axi = ρsL0 (φ) hR (φ)

∫
D

2πr (1+Mκκaxi) |∇G| δ(G) dr dz. (2.7)
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The G-equation is simulated using a modified version of the LSGEN2D code
developed by Hemchandra (2009), who used it to analyse the response of premixed
flames to acoustic forcing (Hemchandra et al. 2007) and to equivalence ratio
fluctuations (Hemchandra et al. 2010). The code uses a local level-set method, a
fifth-order weighted essentially non-oscillatory (WENO) procedure to take derivatives
(Jiang & Peng 2000), and, in this study, the HCR-2 method of Hartmann, Meinke &
Schröder (2010) to reinitialise the G-field.

A simple velocity model is applied to the flame domain. Experiments on premixed
flames have shown that acoustic perturbations cause waves to advect down the flame
(Birbaud, Durox & Candel 2006). These waves typically advect more slowly than
the mean flow. In this paper, acoustic perturbations start at the burner lip and are
propagated downstream with the one-dimensional advection equation (Hemchandra
et al. 2007; Preetham 2007; Kashinath et al. 2012). The velocity field is therefore
the time history of the acoustic perturbation at the burner lip, i.e. the further a point
is from the burner lip, the earlier the acoustic disturbance at that point was generated.
These perturbations travel at a speed of u0/K, where K is between 1.0 and 1.5
(Kashinath, Hemchandra & Juniper 2013a). In numerical studies, the value of K has
been shown to have a strong influence on the nonlinear behaviour of premixed flames
(Kashinath et al. 2012). In particular, subcritical Hopf bifurcations are more prevalent
at high values of K, and this leads to more parameter regions that are bistable. The
transverse velocity is calculated from the continuity equation applied to the unburnt
mixture within the flame.

In summary, this velocity model uses a relatively simple formulation but produces
similar flame shapes to those seen in experiments at lower amplitudes, such as
those of Birbaud et al. (2006) which reach amplitudes of uf = 0.2. Experimental
flame images are not available for direct comparison at the higher fluctuation
amplitudes shown by the results, but previous studies suggest that the G-equation can
produce comparable results at higher amplitudes. In particular, Dowling (1999) found
self-excited oscillations beyond uf = 1.0 and her results compared satisfactorily with
those of Bloxsidge, Dowling & Langhorne (1988), and Shin, Plaks & Lieuwen (2011)
compared experimental bluff body results satisfactorily against G-equation simulations
for similar amplitudes as this paper. The combination of the simple velocity model
with a G-equation method causes some non-physical behaviour, however, such as that
the mean heat release rate decreases as the forcing amplitude increases, which is a
common feature of this type of method (Oberlack & Cheviakov 2010). The acoustic
model contains some simplifications: there is no temperature jump in the duct, the
flame is acoustically compact and the acoustic damping model is based on simple
coefficients at particular frequencies. With these simplifications, the model shows the
same qualitative behaviour as comparable experiments (Kabiraj et al. 2012b), but we
do not suggest that it is suitable for quantitative comparisons.

3. Matrix-free continuation methods for finding limit cycles
A brief summary of the matrix-free continuation methods used to find limit cycles

is given in this section. Complete details are given in Waugh (2013).
Continuation methods examine nonlinear systems whose evolution is governed by

dx(t)
dt
= F(x(t), λ), x(t) ∈RN (3.1)

where x is the current state of the system, λ are parameters and N is the number of
variables in the state vector. The governing equations are in most cases derived from
the discretisation of a PDE.
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FIGURE 2. Standard shooting method to find a limit cycle (grey loop). Given a current
guess for a state on a limit cycle, x(0), we timemarch forward T time units to x(T), where
T is our guess for the period. We then iterate our starting guess, x(0), to minimise the
length of the residual vector, x(0)− x(T) (dashed arrow).

Limit cycles satisfy

x(0)= x(T),
{

T ∈R+|T 6= 0
}
, (3.2)

where T is the period of the cycle. Further constraints are required if the model
contains an explicit time delay, which are described in Waugh (2013). Note that the
model described in § 2 implicitly contains a time delay (between velocity perturbations
and subsequent heat release), however, because the velocity field includes convection.

A shooting method is used in this paper to iterate towards a limit cycle. The
shooting method finds, by iteration, a state on the limit cycle and the period of the
limit cycle. The current guess for a state on the limit cycle, x(0), is iterated in order
to satisfy the condition for a limit cycle, which is that x(0) = x(T), where x(T) is
found with a timemarching process. Numerically, the iteration process is stopped
when a specific level of convergence is reached, ‖x(T)− x(0)‖< ε, {ε ∈R+|ε 6= 0

}
,

where ε is small.
The magnitude of the residual vector, r = x(0) − x(T) (figure 2), is reduced to a

predefined tolerance by a two-step iteration process. First, we consider the evolution
of the system when started from small perturbations around the current guess [x(0),T].
We generate a (N+1)× (N+1) Jacobian matrix, which relates a general small change
in [x(0), T] to the resulting change in [x(0)− x(T), θ ], where θ is a phase condition
described later. Second, we solve a linear equation with the Jacobian matrix to find
the [1x, 1T] that we should add to our current guess, [x(0), T], in order to move
closer to the limit cycle. If the magnitude of the residual is still too large, we repeat
the first step from the improved guess.

Equation (3.3) shows the linear equation for the nth iteration, where i and j are the
row and column indices of the matrix (Roose et al. 1995). It has the standard form
for multidimensional Newton iteration, J1x=−r:

(N+1)×(N+1) I −M

c

b

d


(N+1)×1 1x

1T

=−
(N+1)×1(x(0)− x(T))n

θ n

 (3.3)

N×N
Mi,j = ∂xi(T)

∂xj(0)
,

N×1
bi =−∂xi(T)

∂T
,

1×N
cj = ∂θ

∂xj(0)
,

1×1
d = ∂θ

∂T
(3.4a−d)

x(0)n+1 = x(0)n +1x, Tn+1 = Tn +1T. (3.5a,b)
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There is an infinite number of points on a limit cycle that satisfy r= 0, however, so
a condition is required to fix the phase of the limit cycle (θ) and therefore provide
a unique solution state. In this paper, the phase condition is, arbitrarily, that the
instantaneous amplitude in the first acoustic mode is zero, η1 = 0.

In (3.3), the characteristics of the system are contained in the monodromy matrix
M , which relates a change in x(0) to a change in x(T). The eigenvalues of the
monodromy matrix are called Floquet multipliers. In a dissipative system, such as
in thermoacoustics, most of the Floquet multipliers are clustered near zero. These
correspond to quickly dissipated motions, because a change in x(0) causes very
little change in x(T). The remaining few Floquet multipliers are not clustered near
zero. These correspond to the bulk motions of the system, because a change in x(0)
causes a significant change in x(T). These bulk motions govern the flame–acoustic
interaction.

The jth column of the Jacobian matrix can be numerically found in two ways: either
by perturbing xj(0) and then timemarching forward and measuring the resultant change
in x(T), or by timemarching the first variational equations (tangent linear equations).
The latter approach is used in the Navier–Stokes continuation of Sanchez (Sánchez
et al. 2004; Sánchez & Net 2010). To fill the Jacobian matrix for each linear equation,
N timemarches are therefore required. For large thermoacoustic systems, with O(103)

variables, it is impractical to form the Jacobian matrices because the computational
expense of timemarching is too high.

Matrix-free methods are those that solve the linear equation, J1x = −r, without
ever requiring the matrix J to be explicitly defined. These methods are iterative and
only require calculation of matrix–vector products, i.e. Jv, where v is an arbitrary
vector. This differs from many conventional methods of solving linear equations,
where the matrix J is defined and then decomposed. In this paper, the matrix-free
generalised minimal residual method (GMRES) (Saad & Schultz 1986) is used to
solve the linear equations. GMRES has been used recently by several authors for
matrix-free continuation and it shows promise as a method of analysing complex fluid
systems (Salinger et al. 2002; Sánchez, Marques & Lopez 2002; Sánchez et al. 2004;
Viswanath 2007; Sánchez & Net 2010; Erdogan et al. 2011; Chandler & Kerswell
2013).

Matrix-free methods require accurate evaluations of general matrix–vector products
(Jv). In the case of the Jacobian matrix, the matrix–vector product can be
approximated by finite differences because the Jacobian matrix is formed of partial
derivatives (Georg 2001). In this section, a mapping operator, A, which represents the
time marching process, is defined as x(T)=A (x(0)). The spatial part of the Jacobian
matrix is defined in (3.3), and can be written as

J ij = ∂ (xi(0)− xi(T))
∂xj(0)

. (3.6)

The matrix–vector product for an arbitrary vector v can therefore be approximated by
(3.7), where δ is small:

Jv = v − A(x(0)+ δv)− A(x(0))
δ

+O(δ). (3.7)
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4. Adaptation for matrix-free continuation methods
To perform continuation methods, a suitable state vector must be defined. The state

vector is a snapshot of the system at an instant in time. For continuation methods,
the state vector must obey three principles. First, the state vector must contain all of
the information required to describe the system at that instant in time. It should be
possible to restart the simulation exactly from the state vector alone; time traces of any
variable or derived quantity should show no sign of a restart having occurred. Second,
the state vector should contain no information that is not required to describe the
state of the system: each variable in the state vector must contain some independent
information. Otherwise, if a dependent quantity is included in the state vector, then the
state vector may become inconsistent when perturbed by the continuation algorithm.
Third, the state vector must have a suitable form for perturbation. This last principle
is subtle and often problem specific.

To make the state vector suitable for perturbation, it is important to weight the
variables such that a fixed size perturbation to any variable affects the system’s
behaviour to a similar degree. This means that the Jacobian matrix will be better
conditioned, and therefore easier to solve with iterative methods, and also means that
a 2-norm of the state vector is appropriate to indicate convergence. For example, a
perturbation of size 10−2 on a pressure value of 105 Pa would have almost no effect
on the system’s behaviour, but the same perturbation on a mixture fraction value
might have a significant effect on system behaviour: in this case the pressure value
should be scaled down. Note that the rationale behind the scaling is not to simply
non-dimensionalise perturbations by a mean quantity, although this often has a similar
effect.

Further consideration is required if finite difference matrix–vector products are used.
Finite difference matrix–vector products for limit cycles were defined in (3.7) to be
Jv=v− (A(x(0)+ δv)−A(x(0)))/δ+O(δ). The accuracy of the matrix–vector product
is therefore dependent on both the size of the perturbation, δ, and the level of noise
in the timemarching process. The value of δ should be small for an accurate matrix–
vector product (to be approximately linear), but must also be large enough that the
effect of the perturbation is not lost in the timemarching noise. A noisy timemarching
process therefore means that a larger value of δ must be used, which in the case of
the premixed flame model, limits which discretisations can be used to define the flame
shape. This is discussed further in the next subsection.

4.1. Discretisation of the flame shape
In the premixed flame model of this paper, the state vector must include the state
of the acoustic field, the state of the velocity field and the state of the G-field.
In the previous section, it was established that variables that do not contain any
independent information should not be included in the state vector, because it leads
to inconsistencies when the state vector is perturbed. The G-field is a good example
of this. The G-field is described entirely by the location of the flame surface because
the signed distance function is a one-to-one mapping: each flame shape defines a
unique G-field, and each G-field defines a unique flame shape.

It would be inappropriate to include the entire G-field in the state vector because
when the state vector is perturbed the G-field will no longer be a signed distance
function. This is because each value of G in the two-dimensional field is not
independent, it is defined by the location of the flame surface, and therefore it
cannot be varied independently.
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The only information in the G-field is the shape of the flame surface. The state
vector must therefore include a discretised version of this flame shape. The flame
shape is a two-dimensional curve, which may have multiple cusps, and may have
multiple separate sections (during pinch-off). The discretisation used to describe
the flame shape must satisfy four conditions. First, the discretisation must define a
unique two-dimensional shape to a suitable level of accuracy. Second, the size of the
discretisation must not change when the flame surface is perturbed slightly, because
the state vector must not change size during the solution of each linear equation (3.3).
Third, the discretisation must be suitable for comparing two flame shapes; as much
as is possible, the discretisation should allow easy comparison between the same
parts of a curve. This is not the case with arclength based discretisations (see later
in this section). Fourth, the flame shape must remain smooth when a small but finite
perturbation is added to the discretisation to take a matrix–vector product; during
evaluation of the matrix–vector product, the perturbation of size δ should not cause
the flame shape to form loops or subgrid size ripples.

Several approaches have been considered for discretising the flame shape, which
can be divided roughly into arclength-based approaches and fixed location-based
approaches. A few of these approaches are discussed in this subsection and
evaluated against the four criteria in the previous paragraph. The discretisations
are generally inappropriate during pinch-off or flashback, but that does not mean that
the continuation methods cannot find limit cycles that contain pinch-off/flashback.
Pinch-off and flashback generally occur for only a fraction of the limit cycle, so
a limit cycle can be found if the phase of the cycle is fixed such that there is no
pinch-off or flashback in the starting state, x(0). This is because the continuation
methods see the timemarching process as a black box that maps an input state, x(0),
to an output state, x(T), and therefore if the pinch-off phenomena is within a single
timemarch then it cannot affect the continuation methods.

Arclength-based approaches discretise the flame shape by storing quantities as a
function of cumulative arclength, s. Because the length of the flame will change but
the size of the discretisation must remain constant, it is better to store quantities in
terms of normalised arclength, ŝ = s/sTOTAL, and to store the total arclength, sTOTAL,
separately. One arclength approach would be to define two functions, x = f1(ŝ) and
y = f2(ŝ). Another arclength approach would be to define the curvature of the flame
shape, κ = f (ŝ), and the angle of the flame shape at the burner lip, φ0. By integrating
the curvature function twice, it is possible to recreate the two-dimensional flame
shape (Miller 2009). Arclength-based approaches have the significant advantage that
functions of arclength are always single valued. Arclength-based approaches have
two main disadvantages, however: first, the process of calculating arclength (and
curvature) generates errors which affect matrix–vector product accuracy; and second,
it is not easy to compare the same parts of a curve when using normalised arclength.
This latter disadvantage is important with iterative methods. For example, imagine
comparing two flame shapes that are identical near the burner but different near
the centreline. Even where the flames are identical, the values of the discretisation
are different, because the length of the two flames is different and therefore the
discretisation points have moved along the flame surface. This makes it harder for
the iterative algorithms to reduce the residual between two flame shapes, because
they cannot operate solely on a small section of the flame; to reduce the difference
between flame shapes over a small section of the flame requires all of the values in
the discretisation to be changed.

The simplest fixed location approach would be to evaluate the curve as a function
y= f (x), by storing y values of the flame surface at fixed x locations. This is simple
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FIGURE 3. (Colour online) Discretisation method based on polar coordinates. A reference
point, p, is placed at the centre point level with the burner lip. The flame shape is
described by the radius from the reference point, rp = f (θp), with a Chebyshev spacing
in θp.

but does not allow the function f to be multivalued, and therefore cannot discretise
cusps. This discretisation has been used before in flame-tracking models for linear
stability analysis of premixed flames (Ducruix, Durox & Candel 2000; Schuller et al.
2003), where amplitudes are small and sharp cusps do not occur.

A fixed location approach based on polar coordinates is chosen to generate the
results in this paper. The discretisation is shown schematically in figure 3. A reference
point (P) is placed at the centreline at the level of the burner lip. The flame shape
is then defined in polar coordinates from this point, with Chebyshev spacing in
θp between 0 and π/2, to form a function rp = f (θp). The subscript p is used to
denote that this is the radius from the reference point, not the radius from the burner
centreline. The Chebyshev discretisation ensures high accuracy and a smooth function
over θp. The discretisation is not perfect: it will fail if cusps are sharp and near
the centreline, because rp will no longer be a single-valued function of θp. The
discretisation also clusters points near the start and end of the curve, which may lead
to subgrid size ripples when a large number of points is used.

It should be noted that the shape of the bifurcation diagrams found by the
continuation methods is set by the model and its discretisation, not the θp discretisa-
tion. The mesh and form of the θp discretisation control whether it is possible for
the continuation methods to converge. If the size of the θp discretisation is too large
then the smallest gap between points is much smaller than a cell, which artificially
introduces numerical ripples onto the fitted flame surface. This results in divergence
or extremely poor convergence. If the size of the θp discretisation is too small then
the largest gap between points is many cells across, which cannot capture the flame
shape accurately. This generally results in divergence or poor convergence, but it
is possible that the continuation could converge to a false solution where the flame
shape at x(0) and x(T) match at the points stored in θp, but is wildly different in
between them. Because the flame shapes in this paper are relatively smooth, however,
this situation is only possible when the θp discretisation seriously under-resolves
the flame shape. Nevertheless, several limit cycles were examined to check that the
convergence was valid. At the convergence level of ‖x(0)− x(T)‖< 5× 10−4 that is
used in the results section, the flame shapes were nowhere more than a tenth of a
grid cell different between the start and end of a limit cycle.
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FIGURE 4. (Colour online) Schematic of the interface between the GMRES solver and the
LSGEN2D G-equation code. The GMRES solver gives a new state vector, x(0), which
contains values for: the polar coordinate discretisation of the flame shape, the acoustic
Galerkin modes, [η(0); η̇(0)], the vertical velocity field, v(0), the current guess for the
period, T , and a continuation parameter, λ, if arclength continuation is used. To form the
input file for LSGEN2D, the G-contours must be created from the flame shape, and fixed
parameters must be added. The LSGEN2D code then timemarches for T time units. The
zero contour of the G-field at time T must then be discretised to form the state vector
x(T). The residual vector is then created and fed back into GMRES.

For the parameter regions studied in this paper and the choice of phase condition,
this discretisation was able to capture the flame shapes without failing.

Figure 4 shows a summary of the discretisation process, and shows how the
GMRES solver of the continuation methods interacts with the LSGEN2D G-equation
solver. The LSGEN2D timemarching routine is written in C, but the continuation
routines and interface routines are written in MATLAB. The continuation routines
and interface routines require negligible computational time compared with the
timemarching routine.

5. Results

The first aim of this paper is to demonstrate that these matrix-free continuation
methods can efficiently find the limit cycles and bifurcations of this thermoacoustic
system. To do this, we have created a bifurcation diagram in which two parameters
are varied: the flame location in the duct, xf , and the aspect ratio of the flame, β =√
(u0/sL)2 − 1. The constant parameters are φ = 1.0, α = 0.7, K = 1.5, Mκ = 0.04,

L0 = 1, ρ0 = 1.16 kg m−3, p0 = 105 Pa, γ = 1.4, c1 = 0.012 and c2 = 0.024.
The G-field is discretised on a 401× 401 grid with spacing 0.005 and local level set

regions 12 grid cells wide. A timestep of 1.5× 10−4 is used with 14 reinitialisation
steps per timestep, with reinitialisation Courant number of 0.5. The Chebyshev polar
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FIGURE 5. (Colour online) Bifurcation surface of period-1 limit cycles as two parameters
are varied: the flame location in the duct, xf , and the flame aspect ratio, β. The bifurcation
surface is composed of over 600 limit cycles, each converged to ‖x(0) − x(T)‖ < 5 ×
10−4. In the three-dimensional plots, the vertical axis is the maximum acoustic velocity
at the flame. The surface has regions with unstable limit cycles (dashed grey lines) and
regions with stable limit cycles (solid black lines), whose boundaries are defined by the
locations of the period-doubling bifurcation (red line) and the Neimark–Sacker bifurcation
(cyan line). In (a) we show the surface from above and in (b) and (c) we show the same
three-dimensional surface from two different views.

coordinate discretisation of the flame surface has 150 points. A total of 20 Galerkin
modes are used for the acoustics.

5.1. Bifurcation surfaces
Figure 5 shows the bifurcation surface of period-1 limit cycles, whose frequencies
are close to that of the fundamental acoustic mode, measured in terms of the peak uf
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FIGURE 6. (Colour online) Bifurcation surface of period-2 limit cycles as two parameters
are varied: the flame location in the duct, xf , and the flame aspect ratio, β. The surface
is composed of over 1200 limit cycles, each converged to ‖x(0)− x(T)‖< 5× 10−4. The
surface has regions with unstable limit cycles (dashed blue lines and grey shading) and
regions with stable limit cycles (solid blue lines), whose boundaries are defined by the
locations of the fold bifurcation (green line) and the period-doubling bifurcation (red line),
which is the same as that in figure 5. The unstable limit cycle surface is not shown in
(a), but (b) and (c) show the stable and unstable limit cycle surfaces from two different
views.

during each limit cycle. The surface has regions with unstable limit cycles (dashed
grey lines) and regions with stable limit cycles (solid black lines), whose boundaries
are defined by the locations of the period-doubling bifurcation (red line) and the
Neimark–Sacker bifurcation (cyan line). The surface is shown only for realistic flame
aspect ratios in the region 2< β < 6, and when the flame is in the first half of the
acoustic duct, xf < 0.5.
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FIGURE 7. (Colour online) Two-dimensional slice of the combined period-1 and period-2
bifurcation surfaces, taken at β = 4. The vertical axis plots the peaks and troughs of the
velocity time series: period-1 peaks and troughs are shown in black, period-2 peaks are
shown in red and period-2 troughs in blue. Solid lines represent stable limit cycles and
dashed lines represent unstable limit cycles. The period-doubling bifurcation is shown as
red dots and the fold bifurcations are shown as green dots.

Figure 6 shows the bifurcation surface of period-2 limit cycles, whose frequencies
are close to half that of the fundamental acoustic mode. The surface shows the
maximum velocity at the flame during the limit cycle. The surface has regions with
unstable limit cycles (dashed blue lines and grey shading) and regions with stable
limit cycles (solid blue lines), whose boundaries are defined by the locations of
the period-doubling bifurcation (red line) and the fold bifurcation (green line). The
period-doubling bifurcation is the same as that on the period-1 surface (figure 5).
The surface is shown for the same parameter range as figure 5. The fold bifurcation
exists at high β but its location is unresolved.

Figures 5 and 6 show only the amplitude of the velocity fluctuation during the
limit cycles. For the period-2 cycles, more information can be gained by plotting
both the peaks and the troughs of the time series during the limit cycle. This is how
the experimental results of Kabiraj et al. (2012b) and the computational results of
Kashinath et al. (2013b) are presented. Figure 7 shows a two-dimensional slice of the
combined period-1 and period-2 bifurcation surfaces, taken at β = 4, with the vertical
axis showing both the peaks and the troughs of the limit cycles.

The period-1 cycles (black) have only one peak and one trough and these are not
symmetric about zero. The period-2 peaks (red) and period-2 troughs (blue) form a
more elaborate shape. At some locations, the period-2 cycles have two peaks and two
troughs (0.15 < xf < 0.16, 0.17 < xf ), and at other locations the period two cycles
have only one peak and one trough (xf < 0.15, 0.16 < xf < 0.17). This difference
occurs because the period-2 cycles are composed of two frequencies, whose relative
magnitudes change along the period-2 branch (see the next section). As the period-2
branch approaches the period-doubling bifurcation, the two peaks and two troughs
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close together. The period-doubling bifurcation is subcritical; i.e. the period-2 cycles
emerging from it are unstable and overlap with the stable period-1 limit cycle. There
is therefore a region of bistability between 0.182< xf < 0.240, where four attractors
exist: a stable period-1 limit cycle, a stable period-2 limit cycle, an unstable period-2
limit cycle and an unstable fixed point.

It worth noting that there are only two fold bifurcations on figure 7. The four green
dots at xf = 0.240 are not four separate fold bifurcations. They are a single fold
bifurcation acting simultaneously on the four separate traces. The same is true of the
two green dots at xf = 0.06.

The period-2 peaks and troughs on figure 7 oscillate with a wavelength of 1xf =
0.1, which matches the wavelength of the highest Galerkin mode (20 modes were
considered here). These oscillations may be due to an insufficient number of modes
in the Galerkin discretisation, or they may due to the Gibbs phenomenon around the
flame, which is an inherent problem with the Galerkin discretisation (Sayadi et al.
2014). While this makes the amplitude of the limit cycles vary with the flame position,
it does not have any influence once the flame position is fixed and could not, for
instance, cause the system to trigger from one stable state to another. This is not
important for the aims of this paper but is an area to be improved in future studies.

5.2. Limit cycles
Once the limit cycles have been found by the continuation methods, the different types
of oscillation can be examined and compared. For example, at a flame position of
xf =0.195 and a flame aspect ratio of 4 (figure 7), there are three limit cycles: a stable
period-1 limit cycle, an unstable period-2 limit cycle and a stable period-2 limit cycle,
all of which have comparable velocity amplitudes at the flame.

Figure 8(a) shows snapshots of the flame during the stable period-1 limit
cycle. These flame shapes are qualitatively similar to those seen in experimental
axisymmetric flames (Birbaud et al. 2006). Figure 8(b) shows segments of the time
traces and spectra of the acoustic velocity, acoustic pressure and heat release at the
flame. The presence of higher harmonics in the spectra, as well as visual inspection
of the time traces, shows that none of these signals is harmonic and therefore that
an FDF approach would not capture this oscillation accurately.

Figure 9 shows the equivalent of figure 8 for the unstable period-2 limit cycle. On
the bifurcation diagram, this limit cycle is close to the period-doubling bifurcation and
there are clear similarities with the stable period-1 limit cycle. The black lines show
the flame shape during the first half of the cycle and the grey lines show the flame
shape during the second half of the cycle. Because this is a period-2 limit cycle, a
peak appears on the spectra at 0.9, which is half the frequency of the fundamental
acoustic mode. Again, this oscillation could not be captured with the FDF approach.

Figure 10 shows the equivalent of figures 8 and 9 for the stable period-2 limit
cycle. In the spectra, the peak at 0.9, which is half the fundamental frequency, has
largest magnitude. On the bifurcation diagram, this limit cycle is further from the
period-doubling bifurcation and, without the benefit of continuation analysis, it would
be difficult to tell that the cycle is part of the period-2 branch and not simply a limit
cycle with half the frequency of the fundamental acoustic mode.

The qualitative change in the form of the cycle along the period-2 branch can be
examined using phase portraits. Figure 11 shows the phase portraits of the period-2
cycles at different locations along the period-2 branch of figure 7, starting from
near the Hopf bifurcation (figure 11a) and moving along the branch towards the
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FIGURE 8. Snapshots of the flame surface (a) and time traces and spectra (b) for the
stable period-1 limit cycle at xf = 0.195, with steady-state flame aspect ratio of 4.

period-doubling bifurcation (figure 11r). Near the Hopf bifurcation, the cycle is
nearly harmonic with half the frequency of the fundamental mode of the tube. The
only indication that this is on the period-2 branch is that it has half the frequency of
the fundamental. As xf increases, the phase portraits smoothly develop the familiar
double-loop, which is characteristic of period doubling. At the bifurcation between
period-2 and period-1 limit cycles, the two loops coincide and merge into a single
loop. Again, none of this behaviour could be captured with a conventional FDF
analysis.

5.3. Bifurcations
The second aim of this paper is to identify the types of bifurcation by examining the
Floquet multipliers of the limit cycles. The Floquet multipliers, which in general are
complex numbers, describe the stability of a limit cycle to infinitesimal perturbations.
On the one hand, if the magnitudes of all of the Floquet multipliers are less than 1
then all perturbations decay after one cycle and the limit cycle is stable. On the other
hand, if the magnitude of at least one Floquet multiplier is greater than 1, then the
limit cycle is unstable. The Floquet multipliers are usually represented in the complex
plane. In this representation, bifurcations from stable to unstable limit cycles occur
when a Floquet multiplier crosses the unit cycle. The location of the crossing point
in the complex plane determines the type of bifurcation. In this section, three types
of bifurcation are shown: fold bifurcations, period-doubling bifurcations and Neimark–
Sacker bifurcations. In all of the figures in this section, the four Floquet multipliers



18 I. C. Waugh, K. Kashinath and M. P. Juniper

0

−0.5

0

0.5

−80

−40

0

PSD

PSD

PSD

−0.5

0

0.5

−80

−40

0

0 1.2 2.4
0.87

1.02

Time
0 2 4 6 8 10

−100

−50

0

Frequency

FIGURE 9. Snapshots of the flame surface (a) and time traces and spectra (b) for the
unstable period-2 cycle at xf = 0.195, with steady state flame aspect ratio of 4. The time
scale is the same as figure 8.

with the largest magnitude are converged to 10−2 accuracy with the Arnoldi algorithm.
The Floquet multiplier at (+1, 0) is the trivial one that defines a limit cycle.

5.3.1. Fold bifurcation
A fold (LPC) bifurcation occurs when a Floquet multiplier crosses the unit circle

at (+1, 0). On the unstable side, infinitesimal perturbations in the direction of the
corresponding eigenfunction grow by a constant real factor each cycle. This means
that trajectories in phase space spiral away from the limit cycle in a fixed direction at
each point around the limit cycle. This continues until the trajectory reaches another
attractor. A fold bifurcation is observed on the period-2 branch of figure 7 at xf =
0.239. Figure 12 shows the Floquet multipliers of the period-2 cycles either side of the
fold bifurcation in figure 7. This clearly shows the Floquet multiplier crossing (+1, 0).
The fold bifurcation at xf = 0.239 and the subcritical period-doubling bifurcation at
xf = 0.182 together create a bistable region in which there is a stable period-1 limit
cycle and a stable period-2 limit cycle. Mode switching is therefore possible in this
parameter regime.

5.3.2. Neimark–Sacker bifurcation
A Neimark–Sacker (torus) bifurcation occurs when a complex conjugate pair of

Floquet multipliers crosses the unit circle at an angle that is not a simple fraction
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FIGURE 10. Snapshots of the flame surface (a) and time traces and spectra (b) for the
stable period-2 cycle at xf = 0.195, with steady-state flame aspect ratio of 4. The time
scale is the same as figure 8.

of 2/π. On the unstable side, perturbations in the direction of the corresponding
eigenfunction grow by a constant complex factor each cycle. This means that
trajectories in phase space spiral away from the limit cycle while also winding
around it. This continues until the trajectories reach another attractor, which for a
Neimark–Sacker bifurcation is a quasiperiodic attractor. This attractor is an ergodic
torus in phase space because the frequency of the motion around one axis of the
torus is incommensurate with the frequency of the motion around the other. Figure 13
shows the Floquet multipliers of limit cycles either side of the Neimark–Sacker
bifurcation. This clearly show the complex pair of Floquet multipliers crossing the
unit circle.

A Neimark–Sacker bifurcation can also be identified from the time series in
figure 14. This simulation starts from the unstable limit cycle just after the
Neimark–Sacker bifurcation. This unstable limit cycle has one frequency but the
perturbations that grow around it have another frequency. The ratio between these
two frequencies is given by the argument of the complex eigenvalue pair divided
by 2π. For the pair of Floquet multipliers in figure 13, the ratio between the two
frequencies is 10.57 (to two decimal places). This can be seen in the time series of
figure 14, in which the amplitude of the peaks oscillates with a period 10.57 times
that of the limit cycle. These perturbations grow exponentially before being attracted
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FIGURE 11. (Colour online) Phase portraits of the period-2 limit cycles at different
locations along the period-2 branch of figure 7. Near the Hopf bifurcation (a), the cycle
is nearly sinusoidal with a frequency of half the fundamental acoustic mode. The cycle
becomes less sinusoidal as xf increases (b–h), because the response at the fundamental
acoustic mode increases relative to the response at the half-frequency. As the cycle moves
closer to the period-doubling bifurcation (i–r) the phase portraits develop the familiar
double loop form of a period-2 cycle, because the response of the fundamental acoustic
mode is much greater than that of the half-frequency. The fold bifurcation occurs between
(o) and ( p); the period-2 cycles (a–o) are stable, the period-2 cycles (p–r) are unstable.
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FIGURE 12. (Colour online) Floquet multipliers either side of the fold bifurcation, at
(xf , max(uf )) values of (0.239, 0.224) (a) and (0.239, 0.244) (b) on figure 7. The fold
bifurcation is caused by the Floquet multiplier crossing (+1, 0). Only the four largest
magnitude Floquet multipliers are shown.

to a quasiperiodic attractor whose characteristic incommensurate frequencies are very
similar to those of the Niemark–Sacker bifurcation. It is worth noting that if the
ratio between the two frequencies is were rational, then the oscillation would be
multiperiodic rather than quasiperiodic.
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FIGURE 13. (Colour online) Floquet multipliers either side of the Neimark–Sacker
bifurcation on figure 5, at flame aspect ratio of 2.4 and xf values of 0.2 (a) and 0.175
(b). The Neimark–Sacker bifurcation is caused by the complex conjugate pair of Floquet
multipliers crossing the unit circle.
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FIGURE 14. (Colour online) Time series of the system growing exponentially away from
an unstable limit cycle just after a Neimark–Sacker bifurcation. The peaks oscillate at a
second frequency that is defined by the argument of the pair of Floquet multipliers that
cross the unit circle.

5.3.3. Period-doubling bifurcation
A period-doubling (flip) bifurcation occurs when a Floquet multiplier crosses the

unit circle at (−1, 0). On the unstable side, infinitesimal perturbations in the direction
of the corresponding eigenfunction grow by a constant real factor each cycle but flip
from one side to the other of the limit cycle. The bifurcation thereby creates a branch
of period-2 limit cycles when the period-1 limit cycle becomes unstable. Figure 15
shows the Floquet multipliers at limit cycles either side of the period-doubling
bifurcation in figure 7, which clearly show the Floquet multiplier crossing (−1, 0).

A period-doubling bifurcation can also be identified from the time series in
figure 16. This simulation starts from the unstable limit cycle just after the period
doubling bifurcation. The perturbation to the limit cycle grows exponentially, which
is seen most easily by the exponential growth of the amplitude difference between
adjacent peaks. In this case, the unstable limit cycle was converged to a high tolerance
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FIGURE 15. (Colour online) Floquet multipliers either side of the period-doubling
bifurcation, at xf values of 0.193 (a) and 0.175 (b). The period-doubling bifurcation is
caused by the Floquet multiplier crossing (−1, 0).
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FIGURE 16. (Colour online) Time series of the system growing exponentially away from
an unstable period-1 limit cycle just after a period-doubling bifurcation. The peaks form a
characteristic one-up, one-down pattern. The first and the last boxes have the same scale,
to show that the period-2 limit cycle has roughly twice the period of the unstable period-1
limit cycle.

and the unstable Floquet multiplier is only just outside the unit circle, so the system
requires several oscillations for the exponential growth to become visible.

Figure 7 shows that the period doubling bifurcation is subcritical. This means that
the exponential growth described above is towards a period-2 limit cycle that is itself
unstable. As a consequence, the system rapidly evolves to the stable period-2 limit
cycle, as can be seen in the mode switching stage of figure 16.

5.4. Eigenvectors of the Floquet multipliers
The third aim of this paper is to identify the coupled flame–acoustic motion that is
responsible for the qualitative change in behaviour at each bifurcation. We do this by
analysing the eigenvectors associated with the unstable Floquet multipliers, which we
call the Floquet mode. Here, we demonstrate this for the period-doubling bifurcation
in § 5.3.3.
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FIGURE 17. (Colour online) The Floquet mode of the Floquet multiplier that causes the
period-doubling bifurcation. The left-hand image shows the flame shape and streamlines
of the velocity field at a state on the limit cycle at the period-doubling bifurcation (flame
aspect ratio 4). At these limits on the vertical axis, the velocity field in the lower half
of the domain is repeated in the upper half of the domain. This is because the velocity
field is the history of the acoustic perturbation over the last two cycles; the last cycle
corresponds to the lower half of the domain and the second-last cycle corresponds to the
upper half of the domain. The left-hand image is copied in grey onto the right-hand image
and is superposed in red with the state when perturbed in the direction of the Floquet
mode that causes the period-doubling bifurcation. This reveals the coupled motion that is
responsible for the period-doubling bifurcation. This is: (i) a flapping motion of the flame
surface, in which the tip and base of the flame move outwards and the middle of the
flame moves inwards, coupled with (ii) a variation in the velocity field every other cycle
and (iii) a reduction in the acoustic pressure in the duct and an increase in the acoustic
velocity in the duct before the flame. The flame shape perturbation is scaled by a factor
of two for clarity.

At the period-doubling bifurcation, the Floquet mode that corresponds to the Floquet
multiplier at (−1, 0) shows which coupled motion of the system is responsible for the
bifurcation. This Floquet mode is shown schematically in figure 17. At the frequency
of the fundamental acoustic mode, the flame has two cusps on its surface. At half
of this frequency, there would be only one cusp. The Floquet mode therefore has a
one cusp shape, because the Floquet mode is the perturbation that grows at the half-
frequency. The Floquet mode is a coupled motion with: (i) a flapping motion of the
flame surface, in which the tip and base of the flame move outwards and the middle
of the flame moves inwards, coupled with (ii) a variation in the velocity field every
other cycle and (iii) a reduction in the acoustic pressure in the duct and an increase
in acoustic velocity in the duct upstream of the flame.
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It is common practice in thermoacoustics to use linear stability analysis about
a fixed point to isolate the frequencies and mode shapes that become unstable at a
bifurcation. It is directly analogous to isolate the Floquet multipliers and mode shapes
that become unstable at a bifurcation to a limit cycle, and they can therefore be
analysed with many of the same techniques. Floquet mode analysis at a bifurcation is
therefore useful for several reasons: first, it shows which second frequency becomes
part of the oscillation; second, it shows the mode shape of the instability that
grows around the limit cycle; third, passive or active control can then be used to
suppress this instability in order to move the bifurcation to a more favourable region
of parameter space. In the case of a fold bifurcation, the control techniques can
therefore shrink regions of bistability where the system is vulnerable to triggering.
Further, adjoint techniques can be used to determine the sensitivity of the Floquet
multiplier to various control inputs, and therefore to design control systems with
optimal controllability.

6. Conclusions

In this paper, matrix-free continuation techniques have been applied to a model of a
ducted premixed flame. The flame model uses the kinematic G-equation with a local
level set solver. The premixed flame model has many attributes of similar experimental
systems: the flame is axisymmetric, the flame speed depends on the flame curvature,
the flame has sharp cusps and the flame is capable of pinch-off, flashback and bulging
at the burner lip. A similar ducted premixed flame model has been shown previously
by Kashinath et al. (2013b) to exhibit limit cycle, period-2n, quasiperiodic and chaotic
behaviour, and to have many parameter regions that are multistable. These results
show qualitatively the same phenomena observed in experiments by Kabiraj et al.
(2012b).

Continuation techniques are used to efficiently find a surface of stable and unstable
limit cycles as two system parameters vary, which was the first aim of this paper.
These continuation methods can find unstable limit cycles easily, whereas many
other techniques cannot. This is important because the unstable limit cycles are
crucial for mode switching (Waugh & Juniper 2011; Kashinath et al. 2013b) and for
separating the basins of attraction of different attractors. The continuation methods
also explicitly find period-doubling and Neimark–Sacker bifurcations by examining the
Floquet multipliers of the limit cycles, which was the second aim. These bifurcations
and their Floquet multipliers cannot be found with describing function techniques,
because they involve the interaction of at least two frequencies, which are not known
a priori. A separate surface of period-2 limit cycles was found to emerge from a
subcritical period-doubling bifurcation. This is the first computational thermoacoustic
study in which period-doubling and Neimark–Sacker bifurcations have been found.
The Floquet modes are examined at the bifurcations in order to reveal the coupled
flame–acoustic motions that are responsible for the qualitative changes in behaviour,
which was the third aim.

The continuation methods shown here converge to each limit cycle by timemarching
for only a few cycles. The CPU time to create a bifurcation surface is therefore
determined by the time taken to timemarch each cycle. The G-equation solver is
computationally expensive compared with many simple thermoacoustic models, but
despite this, only around 14 000 CPU hours were required to generate the bifurcation
surfaces in this paper and to analyse the stability of the limit cycles. This is equivalent
to 80 CPU cores running for 1 week. Furthermore, because the surface is composed of
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several two-dimensional slices, the process of forming a surface is easily parallelisable.
For relatively little computational cost, therefore, these continuation methods can
characterise the nonlinear behaviour of coupled thermoacoustic systems over a wide
parameter range.

The G-equation solver used here is able to capture the dynamics of a premixed
flame under acoustic forcing. The continuation methods are then able to calculate limit
cycles and bifurcations when this flame model is coupled to an acoustic model. The
results from these continuation methods could be compared with experiments in one
of two ways: first, by comparing flame shapes and heat release responses; second, by
comparing the self-excited behaviour and the bifurcation diagrams. With improvements
to the velocity model and the acoustic model, the method described in this paper could
be an effective means of predicting and analysing the nonlinear behaviour seen in
experimental premixed flame systems.
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