
J. Fluid Mech. (2013), vol. 734, R4, doi:10.1017/jfm.2013.504

The two classes of primary modal instability
in laminar separation bubbles
Daniel Rodríguez1,2,†, Elmer M. Gennaro2 and Matthew P. Juniper3

1School of Aeronautics, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3,
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The self-excited global instability mechanisms existing in flat-plate laminar separation
bubbles are studied here, in order to shed light on the causes of unsteadiness and three-
dimensionality of unforced, nominally two-dimensional separated flows. The presence
of two known linear global mechanisms, namely an oscillator behaviour driven by
local regions of absolute inflectional instability and a centrifugal instability giving rise
to a steady three-dimensionalization of the bubble, is studied in a series of model
separation bubbles. These results indicate that absolute instability, and consequently a
global oscillator behaviour, does not exist for two-dimensional bubbles with a peak
reversed-flow velocity below 12 % of the free-stream velocity. However, the three-
dimensional instability becomes active for recirculation levels as low as urev ≈ 7 %.
These findings suggest a route to the three-dimensionality and unsteadiness observed
in experiments and simulations substantially different from that usually found in the
literature of laminar separation bubbles, in which two-dimensional vortex shedding is
followed by three-dimensionalization.

Key words: absolute/convective instability, boundary layer instability, boundary layer
separation

1. Introduction

Flow separation is invariably associated with adverse effects on the performance
of lifting surfaces, which has motivated research efforts spanning more than half
a century. However, despite continuous research, many questions concerning the
appearance, structure and behaviour of separation bubbles remain open. Some of these
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questions are related to the laminar separation bubble (LSB) formed on the leading
edge of thin aerofoils as the angle of attack is increased at near-stall conditions. These
bubbles are classified as short or long according to their extent over the streamwise
direction and have distinctly different impacts on the aerodynamic properties of the
aerofoil (Gault 1949; McCullough & Gault 1951). The process through which a short
bubble suddenly fails to reattach and becomes a long bubble after a small variation
in angle of attack or Reynolds number is referred to as bursting. Its physical causes
and the determination of an adequate criterion for predicting its occurrence are still
today an active topic of research (Gaster 1967; Pauley, Moin & Reynolds 1990; Diwan,
Chetan & Ramesh 2006; Marxen & Henningson 2011).

The usual picture of LSBs considers the inviscid instability of the separated shear
layer to lead to laminar–turbulent transition, and turbulent mixing to be ultimately
responsible for the reattachment of the flow. This picture suggests considering the
local properties of the boundary layer at separation as a criterion for bursting. Besides
bursting, the prediction of other characteristics of separated flow such as the onset
of unsteadiness or three-dimensionalization of nominally two-dimensional LSBs has
been attempted following this vein. The presence and dominance of Kelvin–Helmholtz
(K–H) instability acting on the shear layer has been confirmed in a multitude of
experimental (Dovgal, Kozlov & Michalke 1994) and numerical (Gruber, Bestek &
Fasel 1987; Rist & Maucher 1994; Marxen, Lang & Rist 2012) investigations. External
instability waves reaching the separated region experience a growth of several orders
of magnitude, eventually leading to nonlinear effects and vortex shedding unless
the initial amplitudes are very small. This description of LSBs as amplifiers of
external perturbations does not suffice, however, to explain the onset of unsteadiness
observed in direct numerical simulations (DNS) of unperturbed separated flow, nor
the occurrence of flapping (Zaman, McKinzie & Rumsey 1989). Absolute/convective
instability analysis (Huerre & Monkewitz 1990) suggests that, besides the amplifier
character of the bubbles, they can also act as oscillators when a spatial region of
the underlying base state sustains instability waves that propagate upstream. A global
oscillator instability mechanism would exist in this case, intrinsic to the bubble and
independent of external excitations, that ultimately would result in vortex shedding.
Some theoretical studies were conducted in the past addressing this possibility (Allen
& Riley 1995; Hammond & Redekopp 1998), and some researchers (e.g. Pauley et al.
1990) even suggested bursting to be directly related to the onset of absolute instability,
but there is no general consensus on this point (Diwan & Ramesh 2009; Marxen &
Henningson 2011).

The view of separated flow instability as a phenomenon associated with weakly
non-parallel inflectional profiles led to the use of locally parallel linear stability for
the study of instability waves. While this approach has been shown to be adequate
even for realistic, non-parallel LSBs (Rist & Maucher 2002; Diwan & Ramesh 2012),
it precludes the discovery and characterization of other mechanisms of instability.
Marxen et al. (2012) survey the different local linear mechanisms, illustrating the
ability of LSBs to amplify a wide range of externally imposed disturbances, but no
new intrinsic mechanism was discovered that explains the onset of unsteadiness or
three-dimensionality in unforced bubbles.

On the other hand, in the last decade there has been increased activity in
global (or BiGlobal) instability analysis without resorting to locally parallel flow
approximations, following the advances in computational capabilities necessary to
support the associated numerical work (Theofilis 2003, 2011). Following this approach,
the stability of a two-dimensional base state is studied by means of partial-derivative-
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based eigenvalue problems. This analysis encompasses (as shown by e.g. Juniper,
Tammisola & Lundell 2011) but is not restricted to wave-like disturbances, and
three-dimensional modal perturbations of arbitrary shape are considered, thus enabling
the discovery of global mechanisms different from the K–H instability. Worthy of
mention is the work of Dallmann & Schewe (1987), in which they postulate the
existence of a global mechanism acting on nominally two-dimensional separation
bubbles that would cause a three-dimensionalization of the flow, eventually leading
to unsteadiness. They regret the absence, at that time, of an analysis methodology
able to address this kind of instability. It was not until the work of Theofilis,
Hein & Dallmann (2000) that the required global stability analysis was applied to
a separation bubble on a flat plate, demonstrating the existence of the self-excited
three-dimensional instability mode. Similar results have been reported for geometries
comprising two-dimensional recirculation regions (Barkley, Gomes & Henderson 2002;
Gallaire, Marquillie & Ehrenstein 2007; Marquet et al. 2008; Kitsios et al. 2009),
and the global eigenmode was shown to be connected to a centrifugal instability.
Studies of the topological changes caused by the three-dimensional instability both on
flat-plate LSBs (Rodrı́guez & Theofilis 2010b) and on a stalled NACA 0015 aerofoil
(Rodrı́guez & Theofilis 2010a) (representative of a trailing-edge bubble) related these
three-dimensional global instability modes to the cellular separation patterns, or ‘stall
cells’, that have been observed experimentally at high Reynolds numbers (cf. Yon &
Katz 1998 and references therein).

A question that remains open is the ability to predict the onset of global instability
(either the global oscillator or the centrifugal instability) in separated flow on the
basis of base or mean flow measurements and a simple criterion. In this respect,
the ratio between the peak value of the reversed flow and the free-stream velocity
urev = u∗rev/U

∗
∞ (the non-dimensionalization used is described in § 2) was proposed to

define the onset of absolute instability in the shear-layer profile (Huerre & Monkewitz
1985). Analyses of shear-layer profiles in the presence of a wall (Allen & Riley
1995; Hammond & Redekopp 1998; Rist & Maucher 2002; Diwan 2009), a geometry
representative of LSBs, agree on a value urev ≈ 17–25 % for the onset of absolute
instability, in line with results from DNS (Alam & Sandham 2000; Fasel & Postl
2004). Conversely, unsteadiness and vortex shedding have been reported consistently in
unforced three-dimensional simulations in which the peak reversed flow of the mean
flow was as low as urev ≈ 7–10 %. Scenarios of global instability have been postulated
(Dallmann & Schewe 1987; Watmuff 1999; Theofilis et al. 2000; Gaster 2004) to
explain the origin of unsteadiness, but the unequivocal identification of such global
instability mechanisms and the associated criteria is still lacking.

The present study revisits the global instability of nominally two-dimensional LSBs
on a flat-plate with the aim of ascertaining which of the two potentially self-excited
mechanisms described above is dominant and serves as the triggering mechanism
towards three-dimensional unsteady states in the absence of external disturbances.
Section 2 describes a non-similar formulation of the boundary-layer equations that
is employed in order to generate a set of base LSBs. In choosing the current
formulation, the possibility of the appearance of bubble shedding as the peak reversed
flow increases is circumvented in the computation of the base flow and may be
subsequently recovered as a global instability of the flow. Section 3 studies the
global oscillator behaviour by means of a locally parallel analysis analogous to that
of Hammond & Redekopp (1998), while § 4 is devoted to the three-dimensional
centrifugal instability. The conclusions and implications of the results are discussed
in § 5.
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2. Base flow construction

A non-similar inverse formulation of the boundary-layer equations on a flat plate
is used to obtain the base flows. The computed base separation bubbles are two-
dimensional and steady by construction, and consequently the three-dimensionalization
and/or occurrence of vortex shedding, in the cases in which they appear, is recovered
as instabilities of this base flow.

2.1. Inverse formulation of the non-similar boundary-layer problem
The physical dimensional streamwise x∗ and wall-normal y∗ coordinates, an arbitrary
characteristic length in the streamwise direction L∗, the boundary-layer edge velocity
U∗e , and the kinematic viscosity ν∗ are used to define the non-dimensional boundary-
layer variables ξ = x∗/L∗ and η = y∗

√
U∗∞/ ν∗x∗ and a transformed stream function

f (ξ, η)= Ψ/√U∗eν∗x∗. (2.1)

On introducing these variables into the streamwise momentum equation, an equation
for the transformed stream function f (ξ, η) is obtained. In order to recover separated
states, the Reyhner and Flügge–Lotz (FLARE) approximation (Cebeci & Cousteix
2005) is invoked, which neglects the streamwise convective term when reversed flow
exists. The boundary-layer equation is written as

fηηη + m+ 1
2

f fηη + m
(
1− f 2

η

)= ξ (θ fη fξη + fηη fξ
)
, (2.2)

where subscripts imply partial differentiation, and m = (ξ/U∗e )(dU∗e/dξ) is the
deceleration parameter, which depends on ξ . The FLARE approximation appears in
this equation as the function θ , which takes value unity when fη > 0 and vanishes if
fη < 0. This problem is solved subject to the boundary conditions

f (ξ, 0)= 0, fη(ξ, 0)= 0 and fη(ξ, η→∞)→ 1. (2.3)

To avoid Goldstein’s singularity, which would appear at the separation point if
an m(ξ) distribution were imposed, the displacement thickness measured in the
transformed variable η is imposed here as an asymptotic boundary condition:

f (ξ, η→∞)→ 1− δ̄(ξ ). (2.4)

The solution algorithm iterates on each ξ profile until a converged solution profile
f (ξ, η) and m(ξ) is obtained. Further details on the solution procedure can be found in
Rodrı́guez & Theofilis (2010b).

2.2. The boundary-layer-based LSB model base flows
The two-dimensional LSB base states are constructed using the calculated transformed
stream function f (ξ, η). The streamwise and wall-normal dimensional velocity
components are obtained using the transformation:

u∗ = U∗e fη, v∗ = 1
2

√
U∗eν
ξ

[
f (m+ 1)+ 2ξ fξ + ηfη(m− 1)

]
. (2.5)

In what follows, lengths are scaled using the dimensional displacement thickness at
the inflow boundary, δ∗in, and velocities are scaled with the inflow far-field velocity,
U∗∞. The non-dimensional spatial variables are denoted by x and y and the base flow
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FIGURE 1. Laminar separation bubble models corresponding to cases S, M and L. (a)
Transformed displacement thickness distribution δ̄. (b) Extent of the reversed flow region as
a function of δ̄max. Thick lines denote separation and reattachment lines and thin lines denote the
location of the peak negative wall shear τmin.

dimensionless velocities by ū and v̄. The chosen reference displacement thickness δ∗in
corresponds to Rein = 450, and the respective inflow coordinate is x = 152. The same
non-dimensionalization is used in the stability analyses in §§ 3 and 4.

An analytical displacement thickness distribution analogous to that prescribed by
Carter (1975) is used for (2.4), in which δ̄(x) starts at the Blasius value (δ̄B = 1.72078)
at the inflow boundary, is increased within a finite x-range until a maximum thickness
δ̄max is attained, is then decreased until the Blasius solution is again recovered and is
maintained constant until the outflow. The δ̄(x) distribution is symmetric over xδ, the
location of δ̄max, and the coordinates defining the start and end of the displacement
thickness increase are respectively denoted as x1 and x2 (xδ = (x1 + x2)/2). Figure 1(a)
shows the δ̄ distributions; the analytical definition of this function, which can be found
in Rodrı́guez & Theofilis (2010b), is completely determined by x1, x2 and δ̄max.

A series of base flows is computed. The coordinate x1 = 210 is kept fixed and
three different streamwise extents are considered: x2 = 264, 290 and 320. For each
extent, the value of δ̄max is varied from 3 to 10. In what follows the different
base flows are designated by a letter corresponding to the deceleration extent: S
for short, M for medium and L for long bubbles. Figures 1 and 2 summarize the
characteristic parameters for the series of base flows considered. Figure 1(b) shows
the location of the separation and reattachment points for each model bubble, as well
as the location of the peak negative wall shear τ = fηη. In the cases where δ̄max is
low, the wall shear distribution in the separated region is nearly symmetric, and the
recirculation centre within the bubble is close to the centre of the deceleration region.
As δ̄max is increased the peak wall shear is increased and displaced downstream, and
therefore the recirculation centre moves downstream resulting in an asymmetric bubble.
Figure 2(a,b) shows the peak values of the negative wall shear and the reversed flow,
scaled with the inflow free-stream velocity urev = u∗rev/U

∗
∞. It is noted that, using this

formulation, the peak reversed flow cannot exceed urev ≈ 13 %. This is because the
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FIGURE 2. (a) Peak negative wall shear τmin and (b) reversed flow urev %, as a function of δ̄max.

peak reversed flow in Falkner–Skan profiles, which are asymptotic solutions of the
present formulation, approximately matches this value (Schlichting 1979).

The present approach has been shown to recover realistic LSBs, in good agreement
with those obtained by direct numerical simulations, when a physically sensible
distribution of displacement thickness is imposed (Carter 1975; Rodrı́guez 2010).

3. Two-dimensional global oscillator

LSBs act as amplifiers of incoming disturbance waves, giving rise to amplifications
that are orders of magnitude larger than those associated with zero-pressure-gradient
or attached adverse-pressure-gradient boundary layers at the same Reynolds numbers.
However, because this local instability is convective, it does not suffice to explain the
onset of self-sustained oscillations of the bubble. In the case that the local analysis
predicts a sufficiently large region of absolute instability, a global mechanism can
exist leading to synchronized oscillations in the absence of external excitation. This
possibility has been suggested in the past (Pauley et al. 1990; Allen & Riley 1995;
Hammond & Redekopp 1998) to be responsible for the unsteadiness in separation
bubbles. This section studies whether this is the case for the present series of bubbles.

3.1. Locally parallel instability analysis
The local analysis methodology considered here is explained in detail in Monkewitz,
Huerre & Chomaz (1993) and Juniper et al. (2011). Only the main features are
reproduced here. The locally parallel analysis assumes that the characteristic lengths
of the instability waves and base flow in the streamwise direction are well-separated.
This assumption leads to a succession of one-dimensional eigenvalue problems (EVPs)
of the Orr–Sommerfeld class for the local instability of each slice X. The governing
equations for a three-dimensional perturbation can be transformed, using Squire’s
transformation, into the governing equations for a two-dimensional perturbation at a
lower Reynolds number. If the action of viscosity is purely stabilizing then it follows
that, for a given Reynolds number, the three-dimensional wave is more stable than the
two-dimensional wave. This is true for spatial, temporal, and spatio-temporal analyses.
Consequently, only plane waves are considered in this analysis. The linearized
Navier–Stokes equations (LNSE) are written as three partial differential equations
(PDEs) in primitive variables, q̂ = (û, v̂, p̂)T, and Fourier modes are introduced along
the streamwise direction, leading to

q′(x, y, t)= q̂(y) exp[i(kx− ωt)]. (3.1)
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FIGURE 3. (a) Maximum absolute growth rate ω0,i and (b) corresponding streamwise
coordinate Xω0 , as a function of the peak reversed flow urev %. The thin lines in (b) denote
the location of the peak displacement thickness, δ̄max.

This converts the PDEs into ordinary differential equations, which are discretized using
Chebyshev polynomials in the y-direction, producing a generalized matrix EVP of the
form

A(k, q̄(X, y))q̂(y)= ωB(k, q̄(X, y))q̂(y). (3.2)

At each slice of the flow, pairs of (ω, k) are found that satisfy both (3.2) and the
additional criterion that dω/dk = 0. These pairs are labelled the absolute frequency and
absolute wavenumber, (ω0(X), k0(X)). The complex frequency of the linear oscillator
mode, ωg, is given by the saddle point of ω0(X) in the complex-X-plane. If there is
no absolute instability anywhere (i.e. ω0,i < 0 for every X) then the oscillator mode is
stable (ωg,i < 0) and therefore cannot cause self-sustained oscillations.

3.2. Results of locally parallel analysis
Figure 3(a,b) shows the maximum absolute growth rate ω0,i and the streamwise
location Xω0 where it is attained. The least stable region corresponds in all cases to
the vicinity of the maximum displacement thickness of the bubble, where the inflection
point is furthest from the wall. This finding is in line with the stability analyses of Rist
& Maucher (2002), and suggests that the peak displacement thickness δ̄max is the most
representative quantity in the local analysis. This contrasts with analyses of unbounded
mixing layers (Huerre & Monkewitz 1985) for which the peak reversed flow was
shown to govern the instability. In the present bubbles, the peak reversed flow occurs
downstream of the peak displacement thickness.

No regions of absolute instability were found for any of the model bubbles, and
consequently the oscillator mechanism cannot lead to unsteadiness in the absence of
external excitation. The trends observed in figure 3(a) suggest that a base bubble with
a peak reversed flow much larger than urev = 12 % would be required for the onset of
absolute instability.

4. Global centrifugal instability

Steady two-dimensional separation bubbles can become unstable to three-
dimensional perturbations if the recirculation is strong enough, in terms of peak
reversed flow or minimum wall shear. By means of the PDE-based global instability
analysis, this instability is recovered as a single discrete eigenmode. The existence of
this eigenmode and its perturbation structure have been documented for different flow
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FIGURE 4. Neutral curves (thick lines) for the steady three-dimensional global mode,
depending on the spanwise wavenumber β and the peak reversed flow urev %, for the three
deceleration lengths. The thin lines correspond to the most amplified spanwise wavenumber.

configurations featuring two-dimensional recirculation bubbles (Theofilis et al. 2000;
Barkley et al. 2002; Gallaire et al. 2007; Marquet et al. 2008; Kitsios et al. 2009).
This eigenmode corresponds to a centrifugal instability, which causes a steady three-
dimensionalization of the recirculation region. Due to the structural instability of the
two-dimensional base flow topology, the perturbed flow on account of the centrifugal
instability exhibits a different topological description regardless of the smallness of the
perturbation amplitude, as discussed by Rodrı́guez & Theofilis (2010b).

4.1. Global instability analysis
Following from the two-dimensionality of the base flow and using separation of
variables, modal linear perturbations can be written, without loss of generality, as

q′(x, y, z, t)= q̂(x, y) exp[i(βz− ωt)]. (4.1)

Here β is a wavenumber in the spanwise direction defining a periodicity length
λz = 2π/β. Introducing this decomposition into the LNSE, one arrives at a PDE-based
eigenvalue problem that, after discretization, takes the form

A(β, q̄)q̂(x, y)= ωBq̂(x, y). (4.2)

Stability analyses based on the solution of PDE-based EVPs are often limited by
the large size of the discretized matrices A and B. A shift-and-invert implementation
of the Arnoldi algorithm (Theofilis 2003, 2011) is used here to recover efficiently
a reduced window of the eigenspectrum. A novel algorithm that combines high-
order finite differences with sparse algebra (Amestoy et al. 2001) is employed,
drastically reducing the computational resources required by the spectral collocation
and distributed-memory dense algebra solutions employed in our previous studies
(Rodrı́guez & Theofilis 2009, 2010b; Juniper et al. 2011). The improved efficiency of
the new algorithm (Gennaro et al. 2013) enables the large parametric study presented
next.

4.2. Results of the global analysis
The neutral curves corresponding to the centrifugal instability eigenmode for the three
deceleration lengths (S, M and L) are shown in figure 4, as a function of the spanwise
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wavenumber and the peak reversed flow. Consistent with results in the literature, the
eigenmode is unstable for a bounded range of β values, and attains the maximum
amplification for a finite spanwise wavenumber. Qualitatively identical behaviour is
found for the three streamwise extents, with the dominant β (shown by the thin lines)
decreasing as the deceleration length increases but being nearly independent of the
peak recirculation. The critical peak recirculation, i.e. the value of the reversed flow
for which the eigenmode becomes unstable, is well below urev = 10 % in all cases.

5. Conclusions

The linear global instability of a series of model LSBs has been analysed with the
aim of determining the possible routes to three-dimensionalization and unsteadiness
of nominally two-dimensional base states in the absence of external excitation. The
two main global mechanisms found in the literature have been addressed: a global
oscillator due to localized regions of absolute instability of K–H waves, and a
centrifugal instability leading to steady three-dimensionalization of the base LSB. The
main objective of the analyses is the determination of the primary instability, i.e.
which mechanism becomes active first as the strength of the recirculation region
increases. Both instabilities are of inviscid nature, and the Reynolds number is
expected to have a very limited effect as long as it is high enough. In line with other
studies in the literature, the peak reversed flow urev was used here as a measure of the
bubble strength, but it was found not to be the most representative parameter either
for the locally parallel analysis, for which the maximum displacement thickness was
found to be more adequate, or for the centrifugal instability for which a representative
parameter is still to be determined.

The present results show that the instability of planar waves is only convective
for the model LSBs considered, in line with the relatively low urev < 12 % compared
to the urev ≈ 20 % threshold values found in the literature for the onset of absolute
instability. On the other hand, the three-dimensional, centrifugal mechanism becomes
linearly unstable about urev ≈ 7 %, and the trends observed in the growth rates
(figure 3a) do not suggest that the oscillator mechanism would become unstable or
dominant if longer bubbles were considered, because it is governed by the velocity
profile at the location of the peak displacement thickness. The conclusion is that the
primary instability acting on flat-plate LSBs in the absence of external forcing gives
rise to a steady three-dimensionalization of the bubble rather than to two-dimensional
vortex shedding. Independent theoretical (Barkley et al. 2002; Gallaire et al. 2007;
Marquet et al. 2008) and experimental studies (Beaudoin et al. 2004; Passaggia,
Leweke & Ehrenstein 2012) for related separated flows show the same bifurcation
path. Secondary instabilities as a result of the topological changes resulting from
the temporal amplification of the centrifugal mode (Theofilis et al. 2000; Rodrı́guez
& Theofilis 2010b) are then a possible path to unsteadiness that is currently being
studied. The completion of this research is expected to explain the large disagreement
in the peak reversed flow required for the onset of unsteadiness in two-dimensional
(urev ≈ 20 %, e.g. Fasel & Postl 2004) and three-dimensional (urev 6 10 %, e.g. Alam &
Sandham 2000) unforced DNS.

Similarly, a complete understanding of the transition process initiated by the three-
dimensional instability on unforced bubbles may shed light on the physical origin
of bursting. Bursting is associated with experimental conditions in which external
disturbances, though with small initial amplitudes, are present and the amplifier
character of LSBs dominates. It is possible, however, that the spanwise modulation
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caused by the centrifugal instability of the mean separation bubble alters significantly
the manner in which the amplifier behaviour of the bubble is manifested, determining
the qualitative (short or long) character of the bubble.
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