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In this theoretical study, a linear spatio-temporal analysis is performed on unconfined
and confined inviscid jet/wake flows with surface tension in order to determine
convective/absolute instability criteria. There is a single mode that is due to surface
tension and many modes that are due to the jet/wake column. In the unconfined
case, the full impulse response is considered in the entire outer flow. On the one
hand, the surface tension mode propagates slowly in the cross-stream direction but
dominates at the front and back of the wavepacket. On the other hand, the jet/wake
column modes propagate more quickly in the cross-stream direction and therefore
define the boundaries of the central region of the wavepacket. The flow is particularly
unstable when these modes interact. For unconfined flows, it is found that at low
and intermediate surface tensions the flow can be more absolutely unstable than that
without surface tension but at high surface tensions the flow is stabilized. The effect of
confinement has previously been studied but not with the inclusion of surface tension.
Confinement and surface tension combined cause the transition from convective to
absolute instability to occur even with significant coflow. This effect is examined over
an infinite domain of density ratios and confinement.

1. Introduction
This paper describes the combined effect of surface tension and confinement on

the stability of incompressible planar jets and wakes. These flows consist of a central
sheet of one fluid sandwiched between two identical sheets of another fluid. These
sheets are confined between two flat plates, as shown in figure 1, and there is a finite
surface tension between the two fluids. In a jet flow, the inner fluid moves faster than
the outer fluid. In a wake flow, the outer fluid moves faster than the inner fluid.

Several factors can affect the stability of jets and wakes. The most important are:
the shear number Λ, which is based on the bulk velocities in the inner and outer
flows and describes the amount of shear and the type of flow (jet or wake, coflow
or counterflow); the shear layer velocity profile, which to a great extent can be
described by the ratio of the shear layer thickness to the jet/wake width; the density
ratio between the inner and the outer flows; the Reynolds number; the confinement
parameter h, if the outer flow is confined within a duct, and the Weber number
(non-dimensional surface tension) if the inner and outer flows are immiscible.

This paper is one of the series whose aim is to analyse theoretically the effect of
each parameter and understand physically how they act and interact. In each paper,
only a few parameters are examined simultaneously so that the problems remain

† Email address for correspondence: mpj1001@eng.cam.ac.uk



72 S. J. Rees and M. P. Juniper

(i = 1)

z

x Varicose

Sinuous

h2

2h2

h2 U2

U1

U2 ρ2

ρ1

ρ2

σ

σ

σ

σ

(i = 2)

(i = 3)

Figure 1. The model consists of three flows. When unconfined, the outer flows have infinite
extent in the cross-stream direction. When confined, they are sandwiched between two flat
plates. Each fluid has a constant density and a uniform velocity. There is a restoring force at
the interface due to surface tension.

manageable. Juniper (2006) examines the effect of shear, confinement parameter and
density ratio on plug flow planar jets and wakes; Juniper (2007, 2008) include the
effect of shear layer thickness on planar and round jets and wakes; in a paper parallel
to this one, Rees & Juniper (in press) examine the effect of shear, Reynolds number
and shear layer thickness on confined planar jets and wakes. This paper examines
shear, non-dimensional surface tension, confinement parameter and density ratio.
Surface tension introduces a new length scale into the problem and it is particularly
interesting to see how this interacts with the thickness of the inner flow and, when
the flow is confined, the thickness of the outer flow.

The shear number is defined as Λ = (U1 −U2)/(U1 +U2), where U1 is the velocity of
the inner flow and U2 is the velocity of the outer flow. It characterizes the magnitude
of the shear and the type of flow. A wake flow corresponds to Λ < 0 and a jet flow
corresponds to Λ > 0. Coflow corresponds to |Λ| < 1 and counterflow corresponds to
|Λ| > 1. The shear number has fairly straightforward effects: higher shear corresponds
to higher perturbation growth rates and counterflow is more absolutely unstable than
coflow (Yu & Monkewitz 1990).

Whether Λ is kept constant or treated as a parameter depends on the type of
stability analysis. Conventional stability analyses are performed by examining the
response at a point in space to an impulse at the same point in space (i.e. along
the ray x/t =0 and z/t = 0, where x is the streamwise coordinate and z is the cross-
stream coordinate). In such analyses, Λ is a crucial parameter for distinguishing
between absolute and convective instabilities. Recent stability analyses, however,
have examined the impulse response either along the streamwise coordinate (i.e. for
general x/t at z/t = 0) or along both the streamwise and cross-stream coordinates
simultaneously (i.e. for general x/t and z/t). Examples of the streamwise impulse
response can be found in Lesshafft & Huerre (2007) for hot round jets and Meliga,
Sipp & Chomaz (2008) for round wakes. Examples of the full impulse response can be
found in Healey (2007) for the rotating disk boundary layer, Juniper (2007) for planar
jets and wakes and Juniper (2008) for round jets and wakes. The impulse response
is calculated at one value of Λ and then absolute/convective instability is inferred
at other values of Λ by examining the response along rays x/t �= 0. In summary, in
the conventional analyses, one value of x/t is chosen and Λ is a parameter in the
problem, while in the full impulse response analyses, one value of Λ is chosen and
x/t is a parameter in the problem. In this paper, the conventional analysis is used
to map out regions of absolute instability in parameter space and the full impulse
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response analysis is used to explain the effects physically in terms of the interaction
between surface tension and jet/wake column modes.

In a single shear layer, the velocity profile can be described to a great extent just by
the shear layer thickness δ, which gives the cutoff wavelength below which perturba-
tions are stabilized. The exact shape of its velocity profile does not qualitatively change
its stability characteristics, whether viscous or inviscid (Esch 1957). In a temporal
stability analysis, for instance, this shape merely fine-tunes the cutoff wavelength.

The same is true for double shear layers. Jet/wake velocity profiles are characterized
by two parallel shear layers of equal and opposite vorticity. In a spatio-temporal
stability analysis, there is a single saddle point caused by the individual shear layers
(called ‘mode I’ in Jendoubi & Strykowski 1994, ‘s1’ in Juniper 2007 and ‘shear
layer mode’ in Lesshafft & Huerre 2007). There are also an infinite number of
saddle points caused by the interaction between the two shear layers (called ‘mode
II’ in Jendoubi & Strykowski 1994, ‘s2’ in Juniper 2007 and ‘jet column modes’ in
Lesshafft & Huerre 2007). The ratio of the shear layer thickness δ, to the shear layer
half-spacing h1, is a particularly important parameter because, in the wavenumber
plane, the s1 saddle sits near the kr -axis at kr ∼ 1/δ and the s2 saddle points sit near
the ki-axis at kr ∼ 1/h1. As this ratio decreases, the distance between the s1 and s2

saddle points increases. When the s1 saddle point is distant from the s2 saddle points,
the exact velocity profile in each shear layer has no effect on the s2 saddle points.
Physically, this is because the jet/wake column mode has a long wavelength, whose
eigenfunction extends far outside the shear layers and does not ‘see’ the exact velocity
profile in each shear layer (Yu & Monkewitz 1990). In conclusion, the exact velocity
profile in the shear layers does not qualitatively change a jet/wake flow’s stability
characteristics.

The density ratio between the inner and the outer flows has a strong effect on
the instability of jets and wakes, particularly on the transition between convective
and absolute instabilities. In a theoretical study on planar flows, Yu & Monkewitz
(1990) showed that high-density wakes and low-density jets are particularly absolutely
unstable. In experimental studies on low-density jets, the same result was found for
round jets (Sreenivasan, Raghu & Kyle 1989) and planar jets (Yu & Monkewitz 1993).
For a single shear layer with finite thickness, the full impulse response centres around
the ray with velocity x/t = (ρ1U1 + ρ2U2)/(ρ1 + ρ2) and therefore tends towards the
velocity of the denser fluid. This explains why high-density wakes and low-density
jets are particularly absolutely unstable: strong shear is generated by the light fluid,
which is fast, but the speed of the centre of the wavepacket is given by the dense
fluid, which is slow. More recently, Lesshafft & Huerre (2007) have shown that this
arises through the action of baroclinic torque. If this is removed via a body force then
the low-density jet, for instance, recovers the instability characteristics of a uniform
density jet.

Confining jets or wakes within a duct significantly alter their stability, and this effect
depends on the Reynolds number. The inviscid case has been examined theoretically
by Juniper (2006) for planar jets and wakes and by Juniper (2008) for round jets
and wakes. In these studies, the confinement parameter h, is defined as the width of
the outer fluid divided by the half-width of the inner fluid. These studies show that
confinement destabilizes uniform density wake flows around h ∼ 1 and uniform density
jet flows around h ∼ 2. The destabilizing effect is even stronger when confinement is
combined with a density ratio. This is exploited in the fuel injectors of rocket engines,
which are confined dense wakes, to create good mixing between the two reactants
(Juniper & Candel 2003).
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At low Reynolds number in unconfined shear flows, viscosity has a stabilizing effect.
This is shown by Esch (1957) for a single shear layer at Re � 1000 and by Monkewitz
(1988) and Yu & Monkewitz (1990) for unconfined wakes at Re � 100. It would be
useful to know the Reynolds number above which viscosity can be neglected. From
the single shear layer results of Esch (1957), this is around Re = 200. For the wake
flows of Monkewitz (1988) and Yu & Monkewitz (1990), the maximum Reynolds
number studied was Re = 100 and, although the results were close to the inviscid
results, they could not be said to be identical. For higher Reynolds numbers it is
necessary to look elsewhere. The studies most relevant to this paper, presented below,
are for confined viscous wakes.

At high Reynolds number, confinement destabilizes jets and wakes. As well as
the theoretical studies already mentioned, this is seen particularly clearly in the
experimental study of Richter & Naudascher (1976), who examined the fluctuating
forces on a confined circular cylinder at 104 <Re < 106. The fluctuating cross-stream
force, which arises from sinuous vortex shedding, increased markedly as the flow was
confined, becoming eight times greater than the unconfined case when the cylinder’s
diameter was half the distance between the plates (h = 1, β =0.5). The same effect was
observed by Kim, Yang & Senda (2004) in their numerical study of a confined square
cylinder at Re = 3000 and one value of confinement, h = 4. The fluctuating cross-
stream force was 1.79 times greater in their confined case than in the corresponding
unconfined case. Both studies suggest that the confined wake has a stronger global
mode and stronger absolute instability than the unconfined wake.

At low Reynolds number in confined shear flows, it is important to consider how
the Reynolds number is defined. The length scale is either the width of the jet/wake
or the width of the duct. These two definitions are related by a factor h and, as h

is varied, it is impossible to keep both constant. For a given set of results, whether
confinement seems to have a stabilizing or a destabilizing effect depends on which
definition of Re is chosen. A good illustration of this is found in studies of the
critical Reynolds number for the onset of oscillations in the wake behind a confined
circular cylinder. If the Reynolds number is defined by the width of the object,
as in the experimental study of Shair et al. (1963) for 4 <h< 19, then the critical
Reynolds number is found to increase as the flow becomes more confined and hence
confinement seems to stabilize the flow. If, however, the Reynolds number is defined
by the width of the duct, as in the numerical study of Chen, Pritchard & Tavener
(1995) for 0.43 <h< 9, then the critical Reynolds number is found to decrease as
the flow becomes more confined and hence confinement seems to destabilize the flow.
These results are, of course, consistent with each other. The key point for this paper
is that viscosity is clearly having an effect at these Reynolds numbers, which were
50 <Re < 150. Similar results at 62 <Re < 300 can be found in Turki, Abbasi &
Nasrallah (2003), for a confined square cylinder at 3< h < 7 and De & Dalal (2007)
for a confined triangular cylinder at 2 <h< 11.

At intermediate Reynolds numbers, a similar example can be found in the numerical
results of Davis, Moore & Purtell (1983) for the fluctuating lift coefficient on a square
cylinder in a duct at h = 3 and h = 5. If the Reynolds number is based on the width
of the square then, at given Reynolds number, the r.m.s. cross-stream fluctuations
decrease as the flow becomes more confined, hence confinement seems to stabilize the
flow. If, however, the results are re-scaled so that the Reynolds number is based on the
width of the duct then, at given Reynolds number, the r.m.s. cross-stream fluctuations
increase as the flow becomes more confined, hence confinement seems to destabilize
the flow. Above a Reynolds number of Re ≈ 750, however, Davis et al. (1983) find
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that confinement is destabilizing, regardless of how the Reynolds number is defined.
The key point for this paper is that, above a Reynolds number of approximately 750,
viscous effects can be neglected in confined wakes. The effect of viscosity on confined
jets and wakes is the subject of a paper parallel to this one (Rees & Juniper in
press), which shows that the stability of a confined viscous jet/wake becomes almost
identical to that of the corresponding inviscid jet/wake when Re > 1000.

Surface tension, at first glance, seems to act similarly to the finite shear layer
thickness described earlier: it stabilizes high wavenumbers and, in a temporal analysis,
this seems to be all that it does (Rayleigh 1894). A spatio-temporal stability analysis,
however, reveals more interesting behaviour. As for the finite shear layer thickness,
there is a single saddle point caused by the surface tension (called ‘s1’ in Juniper
2006). This s1 saddle, however, is more unstable than the shear layer s1 saddle
described earlier. In particular, it can be absolutely unstable even in quite strong
coflow. Physically, this is because surface tension acts similarly to an elastic sheet
between the flows and, like an elastic sheet, provides a mechanism for perturbations
to propagate upstream. As for the jets and wakes described earlier, there are also an
infinite number of saddle points (called ‘s2’ in Juniper 2006) caused by the interaction
between the two shear layers. When the flow is confined, a further set of s2 saddles
is introduced, caused by the interaction between the shear layers and their images.
At intermediate and strong surface tensions, the s1 saddle moves towards these s2

saddles, creating combined saddle points that are particularly unstable. This causes
the interesting interaction between length scales that was alluded to earlier in § 1 and
that is examined in this paper.

In a single study it would be impractical to examine every parameter that affects
the stability of jets and wakes. With a reduced parameter set, however, it is important
to check the applicability of the model, which is quite easy for this study. Viscosity
is neglected, which means that the results will be accurate for Re > 103, reasonably
accurate for 102 < Re < 103 and inaccurate for Re < 102. Plug flow velocity profiles
are assumed, which remove the stabilizing effect of finite thickness shear layers. If,
therefore, the wavelength of an instability that is predicted by this model is less than
O(δ), where δ is the shear layer thickness that would be expected in reality, then the
instability would actually be stabilized by the finite thickness shear layer. The surface
tension saddle, which has a smaller wavelength than the jet/wake column saddle, sits
at k∗ ≈ 2 (from figure 2). The smallest instabilities therefore have wavelength of order
πLref , where Lref ≡ σ/(ρref U

2
ref ) and these must be greater than O(δ) for the model to

be valid.
For instance, a laboratory experiment has been designed by this group to look at

the effect of confinement on jets and wakes. Confinement is expected only to affect
long wavelength perturbations, of the order of the width of the streams. Surface
tension has been proposed as a mechanism that could attenuate short wavelength
instabilities without greatly affecting long wavelengths and also keep the two fluids
separate. The experiment has the following characteristics: σ ∼ 0.025 Nm−1 (silicone
oil/water), Uav ∼ 0.1 m s−1, Uref ≡ �U/2 ∼ 0.05 m s−1, href ∼ 0.01 m, μ ∼ 10−3 kg m−1

s−1, ρ ∼ 103 kg m−3. In this situation, the Reynolds number is 103, which is high
enough for the viscosity to be neglected, and the smallest unstable wavelength is of
order πLref ≈ 0.03 m, which is larger than the shear layer thickness where the two
flows are first introduced. The model is therefore valid at the base of the flow, which
is where the absolutely unstable region is expected. In this situation, Σ , which is
defined in § 2, is of order 1. Larger variations of Σ can be achieved by varying Uref .
For instance, with Uref varying from 0.1 to 0.01 m s−1, Σ varies from 0.25 to 25. Even
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Figure 2. Contours of gi(k) at (x/t, z/t) = (0, 0) for varicose perturbations in a uniform
density unconfined jet flow with surface tension. The saddle points are solutions with ∂g/∂k = 0
and represent modes with zero group velocity. The integration path is shown as a solid white
line. Saddle s1 represents the surface-tension-driven instability of the single shear layer. Saddles
s2a, s2b, . . . represent interactions between the shear layers. As Σ decreases, more of the s2

saddles lie on the integration path until, at very low Σ , they all lie close to the ki-axis. Contours
of gi for the single shear layer are shown for comparison.

larger variations can be achieved with different apparatus. For instance, with href

varying from 0.0025 to 0.25 m, Σ varies from 0.01 to 100. Some of these situations
have low Froude number, which means that gravity, which has been neglected in this
paper, would need to be included. Nevertheless, the results in this paper demonstrate
that surface tension will be quite influential in the proposed laboratory experiment.

A more practical application is fuel injection. In the fuel injectors of a typical aircraft
engine, a thin planar film of kerosene is injected between two faster streams of air.
In this situation, σ ∼ 0.025 Nm−1, Uref ∼ 10 m s−1, href ∼ 0.001 m, μ ∼ 10−3 kgm−1 s−1,
ρref ∼ 103 kgm−3. Here, Re ∼ 104, which is high enough for the viscosity to be
neglected. The smallest unstable wavelength due to surface tension, however, would
be of order 10−6 m, which is much smaller than the shear layer thickness. One can
conclude that, in aircraft engines, the smallest wavelength of primary jet break up is
set by the shear layer thickness, not by the surface tension. This is also the case in
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rocket engines, where the surface tension is negligible because the pressure is above
the critical pressure of the reactants.

In this paper, § 2 describes the model and the derivation of the dispersion relations
for both varicose and sinuous perturbations. Section 3 describes the theory behind
the two procedures used in this study and describes the implementation of the full
impulse response procedure in detail. Section 4 examines the unconfined single shear
layer analytically and explores the situations where this is relevant to jets and wakes.
Section 5 examines the effect of density ratio, shear and surface tension on unconfined
flows over a wide range of density ratios and surface tension. Finally, § 6 examines
the effect of confinement and shear over a wide range of density ratios and surface
tensions, which are chosen to encompass a wide range of regimes.

2. Derivation of the dispersion relations
The model (figure 1) consists of three uniform inviscid, irrotational and

incompressible flows. The inner flow has density ρ1, velocity U1 and thickness 2h1 in
the z-direction. The outer flows both have density ρ2 and velocity U2. If the outer
flow is unconfined, it extends to infinity in the z-direction. If confined, it has thickness
h2 in the z-direction. All flows have infinite extent in the x-direction and are uniform
in the y-direction, which is orthogonal to both x and z.

Following Drazin & Reid (1981, § 21), streamfunction perturbations of the form
ψi(x, z, t) =ϕi(z; ξ )ei(kx−ωt) are defined in each flow such that ui = ∂ψi/∂z and
wi = −∂ψi/∂x. Satisfying the equation of motion constrains the profile in the z-

direction by the differential equation, ∂2ϕi/∂z2 − ξ 2
±ϕi = 0, where ξ± ≡ ±

√
k2. In the

confined case the dispersion relation and boundary conditions are invariant under
the transformation ξ+ ↔ ξ− and it is sufficient to take ξ = k (Healey 2006).

The streamfunction profiles in the z-direction for the confined flow are

ϕ1 = A1 cosh ξ (z − h1 − h2) + B1 sinh ξ (z − h1 − h2), (2.1)

ϕ2 = A2 cosh ξz + B2 sinh ξz, (2.2)

ϕ3 = A3 cosh ξ (z + h1 + h2) + B3 sinh ξ (z + h1 + h2). (2.3)

Flow 3 does not need to be considered further because perturbations can be decom-
posed into varicose disturbances (where A2 = 0) and sinuous disturbances (where
B2 = 0). Imposing the boundary conditions at the wall, z =h1 + h2, yields A1 = 0.

At z =h1 the kinematic and dynamic matching conditions between the flows are

�[ϕi/(Ui − ω/k)]+− = 0, (2.4)

�[ρi(Ui − ω/k)ϕ′
i]

+
− = �p, (2.5)

where �p is the jump in pressure across the interface as a result of surface tension.
On linearizing, this is given by �p = −σ∂2ζ/∂x2, where ζ (x, t) is the deviation of the
interface away from z = h1.

Eliminating Ai and Bi yields the dispersion relation D(k, ω) = 0, from which the
stability of the flow can be determined. For a given set of parameters, this dispersion
relation is satisfied by eigenvalues (k, ω) with associated eigenfunctions ϕ(z; ξ ). In
dimensional terms, the varicose and sinuous dispersion relations for the model in
figure 1 are, respectively,

D = ρ1(U1 − ω/k)2 coth(ξh1) + ρ2(U2 − ω/k)2 coth(ξh2) − σξ = 0, (2.6)

D = ρ1(U1 − ω/k)2 tanh(ξh1) + ρ2(U2 − ω/k)2 coth(ξh2) − σξ = 0. (2.7)
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The non-dimensional framework used here is slightly different from that in Juniper
(2006). It has the following reference scales for velocity and density:

Uref ≡ (U1 − U2)/2, (2.8)

ρref ≡ (ρ1 + ρ2)/2. (2.9)

The reference scale for length can either be based on surface tension or on the distance
between the shear layers

Lref ≡ σ/(ρref U
2
ref ), (2.10)

href ≡ (1/h1 + 1/h2)
−1. (2.11)

In this paper, Lref is used as the reference length so that a single framework can be
used for a single shear layer, for unconfined jets/wakes and for confined jets/wakes.
The dimensionless variables are

ω∗ ≡ ωLref /Uref , (2.12)

k∗ ≡ kLref , (2.13)

ξ ∗ ≡ ξLref . (2.14)

The dimensionless parameters are the shear ratio, the density measure, the confinement
and the non-dimensional surface tension, which can also be thought of as the inverse
of a shear layer separation parameter

Λ ≡ (U1 − U2)/(U1 + U2), (2.15)

S ≡ (ρ1 − ρ2)/(ρ1 + ρ2), (2.16)

h ≡ (h2 − h1)/(h2 + h1), (2.17)

Σ ≡ σ/(href ρref U
2
ref ) ≡ Lref /href . (2.18)

For weak surface tensions, Lref and Σ become very small, which can also be thought
of as the shear layers becoming very far apart. It is important to note that, in this
paper, the shear layers always have non-zero surface tension. This means that they
always behave differently from shear layers with no surface tension, even if the surface
tension is vanishingly small or, equivalently, if the walls are very far apart. To some
extent this is an artefact of the model, as discussed in § 1: in physical situations with
small surface tension, Lref may be smaller than the shear layer thickness, so that the
model becomes invalid.

In non-dimensional terms, the varicose and sinuous dispersion relations become

D = (1 + S)(1/Λ + 1 − ω∗/k∗)2 coth(2ξ ∗/Σ(1 + h))

+ (1 − S)(1/Λ − 1 − ω∗/k∗)2 coth(2ξ ∗/Σ(1 − h)) − ξ ∗ = 0, (2.19)

D = (1 + S)(1/Λ + 1 − ω∗/k∗)2 tanh(2ξ ∗/Σ(1 + h))

+ (1 − S)(1/Λ − 1 − ω∗/k∗)2 coth(2ξ ∗/Σ(1 − h)) − ξ ∗ = 0. (2.20)

The non-dimensional framework is used in most of this paper and the asterisks
are dropped. Sometimes the dimensional framework is used when drawing physical
conclusions. It will be stated explicitly when this is the case to avoid any ambiguity.

The stability of the flow is determined by two modes: one where each shear layer
acts individually and one where the shear layers interact. Each shear layer can interact
with the other shear layer, which is at distance 2h1 and with its image shear layer,
which is at distance 2h2. The characteristic length scale of the interacting mode is the
smaller of h1 and h2. The parameter Σ and the non-dimensional framework described
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above have been constructed to reflect the fact that the behaviour is dominated by
the denser fluid, identified by ρref , the smaller length scale, identified by href , and
by the relative (rather than absolute) velocity, identified by Uref . The strength of the
surface tension effect is determined by σ , which acts on a length scale Lref .

Juniper (2006) introduced surface tension in order to regularize this problem,
making it suitable for a Briggs–Bers analysis, but then tended σ to zero in order to
focus on the effect of confinement. When σ = 0 (2.6) and (2.7) have several symmetries
for both confined and unconfined flows. These symmetries are best understood by
considering the image system of the flow with interchanged velocities, densities and
length scales. When σ �= 0, however, nearly all of these symmetries are lost. The
only true symmetry that remains is for confined varicose motion, which is unchanged
under the transformation (Λ, S, h, Σ) ↔ (−Λ, −S, −h, Σ). Later it will be shown
that other symmetries can be found in the limit h ∼ −1.

3. Spatio-temporal stability analysis
In this paper, two procedures are used to analyse the stability of the flow. The first

procedure is a conventional spatio-temporal stability analysis in which the response
to an impulse is examined at the spatial point of the impulse. The system is absolutely
unstable if the response grows in time and is convectively unstable or stable if the
response decays in time. This procedure is used throughout the paper to determine
the boundaries between absolute and convective instabilities in various parameter
spaces. The second procedure is an examination of the full impulse response in the
outer flow, as in Healey (2006) and Juniper (2007). This helps to identify the factors
that govern the shape and stability of the wavepacket. This procedure is restricted to
unconfined flows but establishes the effects of density S, shear Λ and surface tension
Σ before introducing confinement.

3.1. Evaluation of the impulse response

In an adaptation of Huerre (2000), the full perturbation streamfunction in each fluid
(i = 1, 2, 3) is given by the double Fourier integral of the normal modes, each of
which is multiplied by its mode shape ϕi(z, ξ )

ψi(x, z, t) =
1

(2π)2

∫
Fk

∫
Lω

ψ̂i(k, ω)ϕi(z; ξ )ei(kx−ωt) dω dk. (3.1)

The mode shape is determined by the Rayleigh equation

∂2ϕi

∂z2
+ ξ 2ϕi = 0, (3.2)

which, for unconfined flows, yields solutions proportional to exp(±ξz) in the upper
and lower z-domains, respectively. These can be incorporated into the exponential to
give exp(i(kx ∓ iξz − ωt)), as in Healey (2006).

If the forcing is an impulse that excites all modes equally at (x, t) = (0, 0) then the
full forcing can also be expressed as the double Fourier integral of the normal modes
multiplied by their mode shapes ϕi(z, ξ )

Si(x, z, t) =
1

(2π)2

∫
Fk

∫
Lω

Ŝi(k, ω)ϕi(z; ξ )ei(kx−ωt) dω dk. (3.3)
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By substituting for k and ω, the dispersion relation D(k, ω) can be associated with
the partial differential equation

D

(
−i

∂

∂x
, i

∂

∂t

)
ψi(x, z, t) = Si(x, z, t). (3.4)

Substituting (3.1) and (3.3) into (3.4) gives the following governing equation in spectral
space:

ψ̂(k, ω)D(k, ω) = Ŝ(k, ω). (3.5)

The impulse response can then be calculated by choosing Ŝ(k, ω) = 1 and substituting
(3.5) back into (3.1).

The integration over ω is evaluated using the residue theorem and retains non-zero
contributions only from those modes that satisfy the dispersion relation D(k, ω) = 0.
For each value of k there exist two values of ω that satisfy D(k, ω) = 0 so the solution
is formed from integrals over the two different branches of ω(k). These two branches
share the symmetry that Re{k+, ω+} ↔ Re{k−, ω−}, which results in the two integrals
yielding identical contributions. This makes it sufficient to consider integrating over
only one of the branches

ψ(x, z, t) = − i

2π

∫
Fk

1

∂D/∂ω[k, ω(k)]
e−igtdk where g ≡ w(k) − kx/t − iξz/t. (3.6)

In a conventional spatio-temporal stability analysis, g is investigated as the
parameters vary, keeping (x/t, z/t) = (0, 0). In an analysis of the full impulse response,
g is investigated as (x/t, z/t) varies, keeping the parameters constant. The evaluation
of g is identical in both methods. In this paper, the second procedure is described in
more detail.

Given (x/t, z/t), the dominant contribution to integral (3.6) in the long-time limit
comes from saddle points of the function g(k; x/t, z/t). At these saddle points, where
∂g/∂k = 0, the group velocity, ∂ω/∂k is equal to x/t + iz/t . In other words, dominant
contributions come from disturbances that travel with the same group velocity as the
observer.

This restricts the investigation to following the dominant saddle point in the k-plane
as (x/t, z/t) varies. The dominant saddle point has the largest growth rate gi , on the
integration path. When a saddle point moves off the integration path, it no longer
influences the integral at long times because its associated disturbances disperse. In
the framework of a classic Briggs–Bers analysis (Briggs 1964), a saddle point moving
off the integration path is equivalent to its transforming from a valid k+/k− pinch
point to an invalid k−/k− pinch point.

3.2. The positions of branch points and saddle points in the k-plane

Both types of spatio-temporal stability analyses reduce to following saddle points in
the k-plane. At this point it is worth discussing the positions of these saddle points.

The non-dimensional dispersion relation for an unconfined single shear layer with
surface tension is

(1 + S)(1/Λ + 1 − ω/k)2 + (1 − S)(1/Λ − 1 − ω/k)2 − ξ = 0. (3.7)

When a second shear layer is introduced, the first term gains a factor of either
coth(2k/Σ(1 + h)), for varicose interactions, or tanh(2k/Σ(1 + h)), for sinuous
interactions. Hence the first term represents the interaction of one shear layer with
the other. Both coth(2k/Σ(1 + h)) and tanh(2k/Σ(1 + h)) give rise to a set of
poles along the ki-axis where their values become infinite. Thus, poles occur where
2k/Σ(1 + h) = nπ (varicose) or (n + 1/2)π (sinuous), where n is an integer.
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Figure 3. The full impulse response in the outer fluid for varicose perturbations of an
unconfined double shear layer with (1/Λ, S,Σ) = (1.5,−0.2,0.001) shown as lines of constant
growth rate gi . The surface tension mode dominates at the front and back of the wavepacket
and the jet/wake column mode (shaded), which propagates faster in the cross-stream direction,
defines the boundary of the centre of the wavepacket. Dotted lines correspond to saddles that
have moved off the integration path. The dominant saddle on the edge of the wavepacket is
shown as a thick line.

When this pair of shear layers is confined, the second term gains an extra factor
of coth(2k/Σ(1 − h)), whether the two shear layers are interacting in a varicose or
in a sinuous manner. This term scales with the outer flow width and represents the
interaction of a shear layer with its image, which is always varicose. The additional
coth(2k/Σ(1−h)) term also gives rise to a further set of poles along the ki-axis where its
value becomes infinite. Thus, poles occur where 2k/Σ(1−h) = nπ, where n is an integer.

The last term in the dispersion relation relates to the pressure jump due to the
surface tension and represents the instability of each individual shear layer due to
surface tension. It remains the same when a second shear layer is introduced and
when the flow is confined. This term gives rise to a pair of branch points on the
kr -axis. One branch point is located at infinity and the other on the positive kr -axis
at distance 2(1 − S2) from the origin, for low Σ . The location at high Σ is given by
the right-hand side of (6.3).

The arrangement of poles leads to a cascade of saddle points just off the ki-axis,
as noted by Juniper (2006) for confined jets and wakes, and Healey (2007) for the
confined rotating disk boundary layer. These saddle points represent modes that
arise from interactions of the shear layers with each other and with their images
(s2a, s2b, . . .), and are referred to as jet/wake column modes. Their position is dictated
by the parameters h and Σ , which cause them to shift up and inwards towards the
origin or down and outwards away from the origin. Another saddle point (s1) arises
near the surface tension branch point. This saddle point represents the surface-tension-
driven single shear layer instability and is referred to as the surface tension saddle.

Initially, the integration path in (3.6) is placed along the kr -axis. The method
of steepest descent is used to approximate the integral in the long-time limit. This
involves deforming the integration path over valid k+/k− saddle points, always along
contours of gr = const . The integration path passes over several saddle points down
the ki-axis, picking up contributions from jet/wake column modes. From one saddle
point to the next the path descends into deep wells, where gi takes very low values.
At these points the path jumps onto the gr -contour that passes over the next saddle
point. The path continues like this until a gr contour is taken that passes out over the
s1 saddle point picking up the contribution from the surface tension mode, as shown
in figure 2.

3.3. The full impulse response

The impulse response is visualized by plotting contours of the growth rate gi in the
(x/t, z/t)-plane (figure 3). The zero-growth rate contour, on which gi = 0, marks the
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outline of the unstable wavepacket in the (x/t, z/t)-plane. Within the wavepacket the
impulse response grows exponentially whereas outside it decays exponentially. The
growth rate at the origin determines the nature of instability. If the origin is contained
within the wavepacket then the flow is absolutely unstable. If it is not contained within
the wavepacket then the flow is convectively unstable. Finally, if there is no growing
wavepacket then the flow is stable. The procedure used to produce these wavepacket
visualizations is outlined below.

For an initial value of (x/t, z/t), plots of gi are calculated in k-space, as shown
in figure 2. The dominant saddle point is identified visually and the saddle point is
followed as x/t and z/t vary until gi reaches the value of the contour that is to be
traced. Then the saddle is followed as x/t and z/t vary while keeping gi constant.
During this process, saddle points can move off the integration path. These transition
points are identified afterwards by plotting gi in k-space around these points along
the contour. They are shown in figure 3 by the transition from a solid line (where the
saddle is on the integration path) to a dashed line (where it is not).

Different saddle points can dominate in different regions of the wavepacket. During
transition between these regions, a second subdominant saddle point moves onto the
integration path and then becomes the dominant saddle point. Figure 3 shows an
absolutely unstable wavepacket taken for values (Λ, S, Σ) = (1.5, −0.2, 0.001). The
surface tension saddle point dominates the front and back of the wavepacket with
short wavelength disturbances. It also dominates in the interior of the wavepacket
at slightly longer wavelengths and with large growth rates. The principal jet/wake
column mode saddle point represents long wavelength disturbances with low growth
rates. These travel with faster transverse velocities than those of the surface tension
mode and hence define the central boundary of the wavepacket.

4. Analytic solutions for an unconfined single shear layer
In the first half of this section, an unconfined single shear layer with surface

tension is studied analytically. When a second shear layer is introduced or the
flow is confined, closed-form solutions in k cannot be derived and it is impossible
to determine analytical criteria for absolute instability. In the second half of this
section, however, the results for the unconfined single shear layer are shown to be
relevant for confined jets and wakes in ways that depend on whether Σ � 1, Σ ∼ 1 or
Σ  1.

4.1. Analysis of the unconfined single shear layer

In its dimensional form the dispersion relation for the unconfined single shear layer
is

D = ρ1(U1 − ω/k)2 + ρ2(U2 − ω/k)2 − σξ = 0. (4.1)

This has been included as a reference to help introduce the physical concept of
apparent density later on in this section. This is algebraic in ω, k and can be solved
for ω analytically. In its dimensionless form, the dispersion relation is given by (3.7).

Saddle points satisfy the equation ∂ω/∂k = 0, which is equivalent to the statement
∂D/∂k = 0 as long as ∂D/∂ω �= 0 because dD/dk = ∂D/∂k + (∂ω/∂k)∂D/∂ω =0.
Hence saddle points of the unconfined single shear layer with surface tension also
satisfy

k
∂D

∂k
= 2(1 + S)(1/Λ + 1 − ω/k)(ω/k) + 2(1 − S)(1/Λ − 1 − ω/k)(ω/k) − ξ = 0. (4.2)
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The mass flux M and momentum flux J are defined as M ≡ (1/2)(ρ1U1 + ρ2U2)/
(ρref Uref ) = 1/Λ + S, and J ≡ (1/2)(ρ1U

2
1 + ρ2U

2
2 )/(ρref U

2
ref ) = 1/Λ2 + 2S/Λ + 1. When

the real part of k is positive, which can be confirmed a posteriori, ξ = k and (3.7) and
(4.2) then simplify to quadratics in ω/k, which is given the symbol c

2c2 − 4Mc + 2J − k = 0, (4.3)

4c2 − 4Mc + k = 0. (4.4)

Conducting a temporal stability analysis on (4.3) gives

c = M ±
(

1

2
k − J − M2

)1/2

(4.5)

= 1/Λ + S ±
(

1

2
k − (1 − S2)

)1/2

. (4.6)

Hence unstable wavenumbers exist for 0< k < 2(1 − S2). This indicates that at large
density differences, for which S is close to ±1, the unstable modes of the flow
are restricted to smaller wavenumbers than at small density differences, for which
S is close to 0. Transforming to a dimensional framework, this range of unstable
wavenumbers scales with σ −1 because k is non-dimensionalized with respect to Lref .

In the spatio-temporal stability analysis, the position of the saddle point can be
found by solving (4.3) and (4.4) for c, k and ω. This gives

c = 2
3
(1 ± Q1/2)M, (4.7)

k = 8
9
(1 − 2Q ∓ Q1/2)M2, (4.8)

ω = 16
27

(1 − 3Q ∓ 2Q3/2)M3, (4.9)

where Q ≡ 1−3J/4M2. When Q > 0, c, k and ω are all real and so the saddle point is
located on the kr -axis with ωi = 0. When Q < 0, the saddle point is located off the kr -
axis with ωi > 0. Therefore the transition between convective and absolute instabilities
occurs when Q = 0 corresponding to 3J = 4M2. Noting that J = M2 − S2 +1, this can
be re-arranged as

1
3
M2 + S2 = 1, (4.10)

which is an ellipse in (M, S)-space. Equation (4.10) can also be written as

1
3
(1/Λ + S)2 + S2 = 1, (4.11)

which is an ellipse in (1/Λ, S)-space.

4.2. Relevance of the stability of an unconfined single shear layer

When Σ � 1, the s2 saddles in figure 2 shrink towards the ki-axis. The integration
path passes over the s1 saddle and over the uppermost s2 saddles (those that lie
between ki =0 and the value of ki where the integration path intersects the ki-axis).
The impulse response is therefore a superposition of a short wavelength rapidly
growing surface tension mode (s1), for which the shear layers act independently, and
a long wavelength slowly growing jet/wake column modes (s2), for which the shear
layers interact with each other. As Σ → 0, the growth rates of the jet/wake column
modes (s2) tend to zero and the behaviour of the model tends towards that of the
surface tension mode of the independent shear layers (s1). In other words, the stability
behaviour becomes that of the unconfined single shear layer in § 4.1. This is also seen
in the form of the dispersion relation: as Σ → 0, both coth (2ξ ∗/Σ(1 ± h)) and



84 S. J. Rees and M. P. Juniper

tanh (2ξ ∗/Σ(1 + h)) tend to 1, away from the ki-axis where the surface tension saddle
is located. This means that both (2.19) and (2.20) tend towards the dispersion relation
for the unconfined single shear layer (3.7) away from the ki-axis. It is important to
note that the third term on the left-hand side of (3.7) represents the surface tension.
It does not disappear because Σ , although small, is not equal to zero. This is quite
different from the case with Σ = 0, which was examined by Yu & Monkewitz (1990).
In this situation, there is no surface tension saddle (s1) and only the jet/wake column
modes (s2) contribute. The Σ � 1 case is useful as a bound for the case where Σ ∼ 1.

When Σ ∼ 1, the shear layers interact with each other and with the walls. In
this regime the concept of apparent densities is useful. For varicose perturbations,
the following apparent densities are introduced: �1 = ρ1 coth(2ξ/Σ(1 + h)) and �2 =
ρ2 coth (2ξ/Σ(1 − h)). For sinuous perturbations they are: �1 = ρ1 tanh (2ξ/Σ(1 + h))
and �2 = ρ2 coth (2ξ/Σ(1 − h)). Substituting into (2.6) and (2.7), respectively, reduces
both equations to

D = �1(U1 − ω/k)2 + �2(U2 − ω/k)2 − σξ = 0, (4.12)

which is identical to the dimensional single shear layer in (4.1). The new densities
depend on the variable k but behave like the single shear layer if the arguments of
the hyperbolic functions are large. Using the analytic solution in k for the single shear
layer as a first-order approximation, predictions can be made as to when interactions
between the shear layers and the walls will start to affect the absolute/convective
transition boundary. The hyperbolic functions begin to vary away from 1 when their
arguments are O(1). This occurs when |h| ∼ 16M2/(9Σ)−1. This concept of apparent
density is returned to in § § 5 and 6.

When Σ  1, the dispersion relations recover a form similar to the unconfined
single shear layer, which can also be solved analytically. This is covered in § 6.1.

5. Effect of density measure, shear and surface tension on unconfined jets and
wakes

In this section, the effect of density measure S, shear Λ and surface tension Σ

are examined on unconfined jets and wakes. A conventional spatio-temporal stability
analysis is performed in the first half of the section. This shows how the regions
of absolute instability in parameter space change as these parameters vary. These
changes are then explained in the second half of the section by performing a full
impulse response analysis.

5.1. Conventional spatio-temporal analysis

The varicose and sinuous dispersion relations for an unconfined double shear layer
flow are found by allowing h to tend to 1 in (2.19) and (2.20), respectively, to give

(1 + S)(1/Λ + 1 − ω/k)2 coth (ξ/Σ) + (1 − S)(1/Λ − 1 − ω/k)2 − ξ = 0, (5.1)

(1 + S)(1/Λ + 1 − ω/k)2 tanh (ξ/Σ) + (1 − S)(1/Λ − 1 − ω/k)2 − ξ = 0. (5.2)

Note that in the limit h → 1, the length scale href → h1 and the jet/wake column
modes arising from coth(ξ/Σ) and tanh(ξ/Σ) scale with the thickness of the inner
flow, as expected.

Figure 4 shows the convective/absolute transition boundaries for varicose (a,c,e)
and sinuous (b,d,f ) perturbations of an unconfined shear flow. The region that is
absolutely unstable to the s2 saddle points when Σ = 0 was calculated in Juniper
(2006) and is shaded dark grey. This is the same as that calculated by Yu &
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Figure 4. Regions of absolute instability for (a,c,e) varicose and (b,d,f ) sinuous perturbations
of an unconfined jet/wake flow at discrete values of surface tension Σ . In (a) and (b), these
regions are shown in the (1/Λ, ρ1/ρ2)-plane and can be compared directly with Juniper (2006).
(c) and (d ) show the same data in the (1/Λ, S)-plane and (e) and (f ) show the same data in
the (M,S)-plane. The absolutely unstable region of the single shear layer with surface tension
is shown in light grey. The absolutely unstable region of the double shear layer without surface
tension is shown in dark grey. The most notable effect of surface tension is to increase the
absolute instability of low density varicose jets/wakes.
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Monkewitz (1990) but extends to higher |S|. Furthermore, the horizontal axis is
1/Λ rather than Λ, so that the absolutely unstable region is simply connected. The
absolutely unstable region for the single shear layer with Σ �= 0 was calculated in § 4.1
and is shaded light grey. In figure 4, the same data are presented in three different
ways: firstly in the (1/Λ, ρ1/ρ2)-plane, which can be compared directly with Juniper
(2006); secondly in the (1/Λ, S)-plane, which is the format preferred in this paper;
thirdly in the (M, S)-plane, which shows that the absolutely unstable region is an
ellipse centred on the zero net mass flux line.

At low surface tensions, the wavelength of the most unstable mode is very small
compared with the distance between the shear layers and therefore the shear layers
do not interact. The instability is dominated by the individual shear layers, which is
evident from the fact that, for both varicose and sinuous perturbations at Σ = 0.1,
the absolutely unstable region is nearly identical to that of the single shear layer.

For varicose perturbations, increasing Σ causes the absolutely unstable region to
shift to lower density measures, S. For sinuous perturbations, increasing Σ causes
absolutely unstable regions to shift to higher density measures, S.

The point at which surface tension starts to affect the stability of the jet/wake
column mode can be predicted analytically. When Σ � 1, the jet/wake column mode
(s2) saddles are bunched close to the ki-axis, far away from the dominant surface
tension (s1) saddle in figure 2(c). Increasing Σ causes the jet/wake column mode
saddles to move towards the surface tension saddle and interact with it. Using the
analytic expression for the position of the surface tension saddle point discussed in
§ 4, this predicts that the interaction will start when Σ ∼ 8M2/9. This can be seen in
figures 4(e) and 4(f ). For Σ = 1 around S ∼ 0 the transition boundaries match those
of the single shear layer. Here M ≈ ±1.5 and so 8M2/9 > 1, i.e. there is no interaction.
Around S ∼ ±1, however, the transition boundaries deviate from those of the single
shear layer. Here M ≈ ±1 and so 8M2/9 < 1, i.e. there is interaction. Similarly, for
Σ = 10 there is even greater interaction but for Σ = 0.1 there is very little.

5.2. Full impulse response analysis

The features of figure 4 can be explained by examining the full impulse response
in the outer fluid (figure 3). Changing Λ simply shifts the wavepacket left or right
but changing S and Σ changes the shape of wavepacket both qualitatively and
quantitatively.

5.2.1. Effect of density measure S

Here, the effect of density measure S, is investigated by considering the full impulse
response of a varicose jet whose inner flow velocity is five times that of the outer flow
(1/Λ = 1.5). The full impulse responses (figure 5) are plotted at very low surface tension
(Σ = 0.001). At these values of Σ there is no interaction between the jet/wake column
mode (s2) saddle and the surface tension (s1) saddle. The individual contribution of
each saddle to the full impulse response can easily be distinguished. For example in
figure 5(a), the outer boundary of the impulse response is determined by the jet/wake
column mode (the spiral-shaped line) and the surface tension response is contained
completely inside this (at the foot of the dotted lines).

The jet/wake column mode (s2) responses are the same as those plotted by Juniper
(2006) with Σ =0 so this section focuses on the behaviour of the surface tension (s1)
responses. The front and back of the surface tension response are the points along
the x/t-axis where the growth rate due to this saddle equals 0. At these points the
surface tension saddle (s1) lies on the branch cut along the kr -axis (figure 2). At the
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Figure 5. Plots of the full impulse response at 1/Λ= 1.5 for varicose perturbations of an
unconfined flow at density measures between S = −0.998 and 0.998. The wavepacket has
contributions from the surface tension mode (s1) and the jet/wake column mode (s2). At this
value of shear Λ, the jet/wake column modes are always convectively unstable. However, in
(c), (d ) and (e) the flow is made absolutely unstable by the surface tension mode. At extreme
density measures the contribution from surface tension is concentrated in the x/t-axis around
the velocity of the denser flow and propagates slowly in the z-direction. At moderate density
measures it is spread in the x/t-axis between the two mean flow velocities and propagates
more quickly in the z-direction. The shape of the impulse response in (h) and (i ) is similar to
that found in (g).

front, the saddle tends onto the axis from above, and at the back, from below. The
centre of the surface tension response is the point in the (x/t, z/t)-plane that has the
largest growth rate, gi . For varicose perturbations, this point lies on z/t = 0 at

x/t =
ρ1 coth(kh1)U1 + ρ2U2

ρ1 coth(kh1) + ρ2

U−1
ref =

�1U1 + �2U2

�1 + �2

U−1
ref . (5.3)

For sinuous perturbations, coth(kh1) is replaced by tanh(kh1). At the centre of the
wavepacket, the surface tension saddle crosses the kr -axis between the origin and the
surface tension branch point. Here, kr is a minimum and the growth rate, which is
a maximum, is given by gi = ωi − krx/t . This corresponds to the disturbance with
the longest wavelength and it travels solely in the x-direction. When Σ � 1, which
corresponds to krh1  1, both coth(kh1) and tanh(kh1) are approximately 1 and the
position of the centre of the wavepacket simplifies to

x/t =
ρ1U1 + ρ2U2

ρ1 + ρ2

U−1
ref ≡ 1 + SΛ ≡ M. (5.4)

For example, at S = −0.998 (5.4) predicts that the centre of the surface tension res-
ponse is at x/t = 0.33. For S = 0.998, it predicts that it is at x/t = 1.67. This expression
agrees very well with figure 5 in which the impulse response is plotted at 1/Λ = 1.5.

The apparent density can be used to explain why, for varicose perturbations,
the region of absolute instability in figure 4 shifts to lower S as the surface tension
increases. When krh1 � 1, �1 >ρ1 and the instability is similar to that of the unconfined
single shear layer with a density ratio of (�1 − �2)/(�1 + �2), which is greater than
S. As Σ increases, krh1 decreases further and the apparent density of the inner
flow �1 increases further. Hence unconfined varicose perturbations correspond to the
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unconfined single shear layer instability with a higher density measure and this effect
increases as the surface tension increases. An equivalent argument explains why, for
sinuous perturbations, the region of absolute instability in figure 4 shifts to higher S

as the surface tension increases.
The centre of the wavepacket is defined as the point on the x/t-axis where the

growth rate is a maximum, which is the centre of the surface tension response.
At extreme density ratios (S < −0.9 and S > 0.9), the centre of the wavepacket
becomes highly concentrated around the velocity of the denser fluid. This can be
seen in figures 5(a), 5(b), 5(h) and 5(i ), which are calculated at density ratios of
S = −0.998, −0.9, 0.9, 0.998, respectively. At S = −0.998 the wavepacket is centred
around x/t = 0.33, while at S = 0.998 the wavepacket is centred around x/t =1.67.
In this regime the denser fluid completely dictates the velocity of the wavepacket.
The flow can only become absolutely unstable if the denser fluid is nearly stationary.
This explains the convergence of absolutely unstable regions about 1/Λ = 1 and −1
in figure 4(a–d ), at low Σ and extreme density ratios.

At moderate density ratios (−0.9 <S < 0.9), the wavepacket is influenced by both
fluids. The denser fluid still has the greatest influence over the shape and position of
the wavepacket. However, the wavepacket is broader in the x/t-direction and extends
further in the z/t-direction than at extreme density ratios. It is centred according to
expression (5.4). If the denser fluid has a higher velocity than the less dense fluid then
the front of the wavepacket changes little under density variations. If the denser fluid
has a lower velocity than the less dense fluid then the back changes little. At uniform
density (S =0) both flows share equal influence and the wavepacket is broadest in
the x/t-direction. Consequently, the regions of absolute instability are broadest in the
moderate density ratio range.

5.2.2. Effect of surface tension Σ

Two points in figure 4, A and B, are examined as the surface tension is increased.
Point A is for varicose perturbations at (1/Λ, S) = (2.5, −0.5). The full impulse
response is plotted for these parameter values as Σ is increased in figure 6(a).

At zero surface tension (figure 6a (i)) the only contribution to the impulse response
is from the jet/wake column mode (s2). At small surface tensions (figure 6a (ii,iii)) the
impulse response also has contributions from the surface tension mode (s1) but these
saddles do not interact. At these surface tensions, long wavelength oscillations due to
the jet/wake column mode propagate away from the shear layer relatively quickly but
are not absolutely unstable. Short wavelength oscillations due to the surface tension
mode extend at the front and the back of the wavepacket. They propagate away from
the shear layer relatively slowly but can be absolutely unstable at these parameter
values. Low surface tension always enlarges the region of absolute instability in the
(1/Λ, S)-plane.

At intermediate surface tensions (figure 6a (iv,v)) only one saddle point lies on the
integration path throughout most of the wavepacket. This saddle can appear to be
either the surface tension saddle or the jet/wake column saddle, depending on the
route taken through parameter space as the surface tension is increased. It is more
accurate to call this the combined saddle because it represents interaction of the two
modes. The back of the wavepacket has the characteristics of the surface tension
mode but the centre and front have characteristics of the jet/wake column mode.

At very high surface tensions (figure 6a (vi)) only one saddle point contributes to
the impulse response. Its growth rate decreases as Σ increases until the flow becomes
completely stable.
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Figure 6. Plots of the impulse response in the outer fluid for (a) point A in figure 4,
which is a varicose jet at (1/Λ, S) = (2.5,−0.5) and (b) point B, which is a sinuous wake at
(1/Λ, S) = (−1.1,0.75), for a range of surface tensions, Σ . Initially, both flows become more
unstable as the surface tension increases. At high surface tension, however, they both are
stabilized.

Point B is for sinuous perturbations at (1/Λ, S) = (−1.1, 0.75). At zero surface
tension, this flow is absolutely unstable. As the surface tension increases, the behaviour
is similar to that seen at point A. The behaviour at both points demonstrates that
surface tension has both a destabilizing and a stabilizing effect on jets and wakes.
At low and intermediate surface tensions, it destabilizes these flows. At high surface
tensions, it stabilizes them.

6. Effect of confinement on shear flows with surface tension
In this section, a conventional spatio-temporal analysis is used to determine the

regions of absolute instability as a function of shear and confinement (1/Λ, h) at seven
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values of density measure S, and four values of surface tension Σ . These values cover
the transition from the weak surface tension regime, where the single shear instability
dominates, to the strong surface tension regime, where there is strong interaction
between the boundaries and the shear layer. The results are shown in figures 7 and
8. In the first part of this section, the limit Σ → ∞ is studied analytically as a bound
for the Σ  1 results. In the second part, results are presented for general surface
tensions.

6.1. Strong surface tension limit

When Σ  1, surface tension forces are much more significant than inertial forces.
Short wavelength disturbances are strongly stabilized, so unstable modes have
wavelengths of order Lref , which are much larger than the width of either flow, of
order href . In this limit, the hyperbolic functions in the confined varicose and sinuous
dispersion relations (2.19) and (2.20) can be approximated by the leading-order term in
their Taylor expansions. This reduces the dispersion relations to algebraic expressions
in ω and k, which can be solved analytically.

As Σ → ∞, the function coth(2ξ/Σ(1 ± h)) tends to Σ(1 ± h)/2ξ . Consequently,
the varicose dispersion relation (2.19) reduces to

D =
Σ(1 + S)(1 + h)(1/Λ + 1 − ω/k)2

2ξ
+

Σ(1 − S)(1 − h)(1/Λ − 1 − ω/k)2

2ξ
− ξ = 0.

(6.1)

Physically, the first two terms in (6.1) give the pressure fluctuations in the inner
and outer flows while the last term gives the jump in pressure across the interface.
Both pressure fluctuations are O(Σ), which is important for two reasons. Firstly they
are large enough to overcome the strong surface tension at long wavelengths and
secondly they can compete equally with each other in order to sustain oscillations
to the interface. The dispersion relation retains the confined varicose symmetry
(Λ, S, h, Σ) ↔ (−Λ, −S, −h, Σ) and gains the symmetry (S, h) ↔ (h, S). In other
words, the density measure and the confinement are interchangeable. This allows the
confinement to be combined with the density measure using the concept of apparent
density introduced in § 4.2.

In order to formulate (6.1) in terms of apparent density, new reference scales are
introduced: h′

ref ≡ (h1h2)
1/2, which is the geometric average of the two cross-stream

length scales of the flows; L′
ref ≡ (σh′

ref /ρ
′
ref U

2
ref )

1/2, which is the geometric average of
h′

ref and the surface tension length scale; density, ρ ′
ref ≡ (ρ1/h1+ρ2/h2)h

′
ref /2, in which

the density is weighted by the thinness of each flow. The new dimensionless variables
are ω′ ≡ ωL′

ref /Uref , k′ ≡ kL′
ref and ξ ′ ≡ ξL′

ref . The new dimensionless parameter is
S ′ ≡ (S + h)/(1 + Sh) ≡ (ρ1/h1 − ρ2/h2)/(ρ1/h1 + ρ2/h2). Under these transformations
the varicose dispersion relation at large Σ (6.1) becomes

D = (1 + S ′)(1/Λ + 1 − ω′/k′)2 + (1 − S ′)(1/Λ − 1 − ω′/k′)2 − ξ ′2 = 0. (6.2)

Equation (6.2) is almost identical to the dispersion relation for an unconfined single
shear layer (4.12). The two expressions differ only by the last term: in the unconfined
case this term is ξ and in the large Σ case it is ξ ′2. Performing a temporal instability
analysis gives unstable wavelengths for 0<ξ ′2 < 2(1 − S ′2). Transforming back into
the original non-dimensional variables gives

0 < ξ <

√
(1 − S2)(1 − h2)

(1 − Sh)

(1 + Sh)2
Σ. (6.3)
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Figure 7. Convective/absolute instability transition boundaries for varicose perturbations of
a confined jet/wake shear flow as a function of shear Λ, density ratio S, confinement h and
surface tension Σ . The top left figure is the unconfined case for Σ = 0.1 (circle), 1 (dashed),
10 (dot-dashed), 1000 (solid). The remaining figures show (1/Λ, h)-plane at given density
measures. At every density ratio and surface tension, confinement causes absolute instability
to occur at lower shear than the unconfined case. The shaded regions are absolutely unstable
regions calculated analytically for the strong surface tension limit Σ  1.



92 S. J. Rees and M. P. Juniper

–3 –2 –1 0 1 2 3
–1.0

–0.5

0

0.5

1.0

–3

–3

–3

–2 –1 0 1 2 3
–1.0

–0.5

0

0.5

1.0

S

–3 –2 –1 0 1 2 3
–1.0

–0.5

0

0.5

1.0

h

–3 –2 –1 0 1 2 3
–1.0

–0.5

0

0

0

0.5

1.0

–2 –1 0 1 2 3
–1.0

–0.5

0.5

1.0

–2 –1 0 1 2 3
–1.0

–0.5

0.5

1.0

h

–3 –2 –1 0 1 2 3
–1.0

–0.5

0

0.5

1.0

h

h

h

h

h

S = –0.998

S = –0.9 S = –0.5

S = 0

S = 0.5

S = 0.9 S = 0.998

Λl/
–3 –2 –1 0 1 2 3

–1.0

–0.5

0

0.5

1.0

Λl/

Figure 8. Convective/absolute instability transition boundaries for sinuous perturbations of
a confined jet/wake shear flow as a function of shear Λ, density ratio S, confinement h and
surface tension Σ . The top left figure is the unconfined case for Σ = 0.1 (circle), 1 (dashed),
10 (dot-dashed), 1000 (solid). The remaining figures show (1/Λ, h)-plane at given density
measures. At every density ratio and surface tension, confinement causes absolute instability
to occur at lower shear than the unconfined case. The shaded regions are absolutely unstable
regions calculated analytically for the strong surface tension limit Σ  1.
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This indicates that the flow is stabilized whenever S or h equals ±1. Transforming
to a dimensional framework, this range of unstable wavenumbers scales with σ −1/2

because k is non-dimensionalized with respect to Lref . This result at high Σ differs
from that at low Σ , in which ξ scales with σ −1.

For the unconfined single shear layer, the denser flow has more influence than the
less dense flow on the velocity of the unstable wavepacket. The reference density
ρref = (ρ1 +ρ2)/2 was constructed accordingly to pick out the density of the dominant
fluid. When the surface tension is strong, unstable modes have wavelengths that are
much larger than the width of either flow, which means that both the confining wall
and the presence of the other shear layer are influential. In this case, the dominant
flow is determined by the denser of the two flows weighted by the inverse of its
width. The new reference density ρ ′

ref = (ρ1/h1 + ρ2/h2)h
′
ref /2 has been constructed

accordingly. As was seen in § 4.2, confining each flow has a strong effect on the
apparent density of that flow, with a corresponding effect on the instability. In the
large Σ regime, the dispersion relation yields a single saddle point in complex k-space
satisfying the equation

c = 3
4
(1 ± Q′1/2)M ′, (6.4)

where Q′ ≡ 1 − 8J ′/9M ′2 and J ′, M ′ are defined with the new reference density.
As before, the convective/absolute instability transition occurs when Q′ = 0, corres-
ponding to 8J ′ = 9M ′2. This gives a general absolute/convective transition criteria
involving shear, density measure and confinement: (1/Λ, S, h). Noting that J ′ =M ′2 −
S ′2 + 1, this can be re-arranged as

1
8
M ′2 + S ′2 = 1. (6.5)

This is an equation for an ellipse in (M ′, S ′)-space. By maximizing 1/Λ with respect to
S ′ it is found that the lowest shear at which absolute instability occurs is at 1/Λ = ±3,
corresponding to S ′ ≡ (S + h)/(1 + Sh) = ∓1/3. This gives a general relation between
S and h for the configuration that requires least shear to achieve absolute instability.
For jets, where 1/Λ is positive, S ′ is equal to −1/3 and for wakes, where 1/Λ is
negative, S ′ is equal to 1/3. Consequently, for a given density measure S, the optimal
values of confinement h are given by

h = −1 + 3S

3 + S
for jets (6.6)

h = +
1 − 3S

3 − S
for wakes (6.7)

Absolutely unstable regions predicted from (6.4) are shaded light grey in figure 7
at every value of the density measure. They show excellent agreement with the
numerical calculations at Σ = 1000 (the thick solid line). When S = 0 (figure 7e),
which corresponds to S ′ = h, (6.2) gives rise to an elliptic absolutely unstable region
in (1/Λ, h)-space in the same way as (4.1) gave rise to an elliptic region in (1/Λ, S)-
space. An identical absolutely unstable region exists in (1/Λ, S)-space when h = 0,
corresponding to S ′ = S by symmetry. Furthermore, whenever either S or h is equal to
±1, corresponding to S ′ = ±1, either the inner or outer pressure fluctuations vanish
and no absolutely unstable regions exist (in fact the flow is stable). This agrees with
the fact that the wavepacket is stabilized as Σ → ∞ in the unconfined case (h = 1).
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Figure 9. Image systems of confined varicose and sinuous flows under (a) weak confinement,
(b) normal confinement and (c) strong confinement. In (a) the lower shear layer in the actual
flow is most influenced by the other shear layer in the actual flow. In (b) the same shear
layer is equally influenced by both the other shear layer and its image on the wall. In (c)
the shear layer is most influenced by its image on the wall, which always interacts with it
in a varicose manner. Both varicose and sinuous perturbations in the strongly confined flow
in (c) are similar to varicose perturbations in the weakly confined flow in (a). This can be
visualized by interchanging the walls with the centrelines and the inner fluid with the outer
fluid corresponding to the transformation (Λ, S, h,Σ) ↔ (−Λ, −S, −h,Σ).

As Σ → ∞, the function tanh(2ξ/Σ(1 + h)) tends to 2ξ/Σ(1 + h). Consequently,
the large Σ sinuous dispersion relation (2.20) reduces to

D =
2ξ (1 + S)(1/Λ + 1 − ω/k)2

Σ(1 + h)
+

2ξ (1 − S)(1/Λ − 1 − ω/k)2

3Σ(1 − h)

+
Σ(1 − h)(1 − S)(1/Λ − 1 − ω/k)2

2ξ
− ξ = 0. (6.8)

In this limit the sinuous case still does not have any symmetries. This lack of symmetry
offers no easy reformulation to help simplify the dispersion relation and even though
analytic solutions can be derived, they are not informative. The large Σ sinuous
instability is best understood by interpreting the dispersion relation physically. The
pressure term in the inner flow is in general an O(Σ2) smaller than the pressure term
in the outer flow. It is not sufficiently large to overcome surface tension or compete
with the outer pressure in order to sustain oscillations at the interface. It is possible
to balance the pressures at the required O(Σ), but only in the neighbourhood
of 0 < 1 + h<Σ−2. As Σ is increased above 1, therefore, the regions of absolute
instability quickly become confined to a small sliver around h = −1 (figure 8).

6.2. General surface tension

The image system for varicose and sinuous perturbations at weak, normal and strong
confinement is shown in figure 9. In the varicose case, the dimensional parameter set
(U1, U2, ρ1, ρ2, h1, h2, σ ) is equivalent to (U2, U1, ρ2, ρ1, h2, h1, σ ). In non-dimensional
terms, this is equivalent to the transformation (Λ, S, h, Σ) ↔ (−Λ, −S, −h, Σ).
Similarly, the sinuous case with (Λ, S, h, Σ) and strong confinement (h ∼ −1) also
tends to the varicose case with (−Λ, −S, −h, Σ). This is because the coth(2k/(1 +
h)Σ) term in the varicose dispersion relation and the tanh(2k/(1 + h)Σ) term in
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the sinuous are both approximately 1 when their arguments are large. Hence the
symmetry (sin,Λ, S, h, Σ) ↔ (var,−Λ, −S, −h, Σ) can be expected to hold while
(16/9)M2/(1 + h)Σ  1, which upon rearranging gives 1 + h � (16/9)(1/Λ + S)2/Σ .
This restriction confines the varicose–sinuous symmetry to a region around h = −1,
the size of which decreases as Σ increases.

Using these symmetries, regions of absolute instability in the strongly confined limit
(h = −1) for both varicose and sinuous perturbations may be calculated from the
unconfined (h = 1) varicose results under the transformation (Λ, S) ↔ (−Λ, −S).

Figures 7 and 8 show regions of absolute instability as a function of confinement h

and shear Λ, at various density measures S and over a range of surface tensions Σ ,
for varicose and sinuous perturbations respectively.

In the unconfined varicose case (figure 7a), regions of absolute instability move
to lower density measures (S < 0) as Σ increases. In the confined varicose case,
for the special case of S = 0, regions of absolute instability obey the symmetry
(Λ, h) ↔ (−Λ, −h), which can be inferred from (2.6). The most important points,
however, are that, for h > 0, absolutely unstable regions are widest when S < 0 and
that, for h < 0, absolutely unstable regions are widest when S > 0. This becomes
increasingly prominent as the surface tension increases.

In the unconfined sinuous case (figure 8a), regions of absolute instability move
to higher density measures (S > 0) and eventually disappear as Σ increases. In the
confined sinuous case there are no longer any symmetries. The most important point
is that, for weak confinement (h > 0), surface tension reduces absolute instability quite
effectively but that, for strong confinement (h < 0), absolutely unstable regions persist
with significant coflow, particularly for confined dense wakes.

7. Conclusions
This work has examined the effect of surface tension on the convective/absolute

transition of confined and unconfined planar jets and wakes. Two different methods
were used. The first was a spatio-temporal analysis, which follows modes with zero
group velocity to determine convective/absolute transition boundaries over a range of
different parameters. The second was a full impulse response method, which produces
plots of the full impulse response at a given set of parameter values. Two modes
govern the flows’ behaviour: one in which the shear layers act independently, called
the surface tension mode, and one in which the shear layers act in tandem, called the
jet/wake column mode. The surface tension mode dominates the response at the front
and back of the wavepacket and the jet/wake mode grows fastest in the cross-stream
direction at the centre of the wavepacket (figure 3).

A single shear layer with surface tension was examined first because this provides
information on the shear layer mode without the possibility of interaction with the
jet/wake column mode. In (1/Λ, S)-space, the absolutely unstable region is an ellipse
that extends into significant regions of coflow. This differs from a single shear layer
without surface tension, which is absolutely unstable only in counterflow. The shear
layer with surface tension is most absolutely unstable when the density measure
S ≡ (ρ1 − ρ2)/(ρ1 + ρ2) is equal to 1/2, with the denser fluid moving more slowly than
the less dense fluid.

For unconfined jets and wakes, the surface tension mode does not interact
significantly with the primary jet/wake column mode when Σ < 8M2/9, where M

is the net mass flux, defined in § 4.1. At these low values of Σ , the surface tension
mode (light grey region in figure 4) is always more unstable than the jet/wake
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column mode (dark grey region). When Σ > 8M2/9, the surface tension mode and the
jet/wake column modes start to interact. Increasing the surface tension causes varicose
perturbations to be more unstable at S < 0 (light inner fluid) and more stable at S > 0
(dense inner fluid). The reverse is true for sinuous perturbations. At moderate values
of Σ , therefore, jets and wakes with surface tension are more unstable than equivalent
single shear layers with surface tension and much more unstable than equivalent jets
and wakes without surface tension. Nevertheless, increasing Σ ultimately stabilizes
all perturbations, whether sinuous or varicose.

For confined jets and wakes with Σ  1, the behaviour of varicose perturbations,
which are usually more unstable than sinuous perturbations, is symmetric under
the transformation (S, h) ↔ (h, S). In other words, the confinement behaves as if it
changes the density ratio between the fluids. This leads to the fact that, for uniform
density flows, the absolutely unstable region is an ellipse in (1/Λ, h)-space, which
extends to 1/Λ = ±3. For other density ratios, the flow is absolutely unstable when
8J ′ > 9M ′2, where J ′ and M ′ are defined in § 6.1. At high Σ , the varicose mode is very
unstable, particularly for weakly confined light jets/wakes (h > 0, S < 0) and strongly
confined dense jets/wakes (h < 0, S > 0).

For confined jets and wakes with Σ ∼ 1, the concept of apparent density can be
introduced. Confining the outer flow increases its apparent density. There are no
further simplifications to be made, however, and the absolutely unstable regions
must be read from figures 7 and 8. As for high surface tension, the varicose
mode is particularly unstable for weakly confined light jets/wakes (h > 0, S < 0) and
strongly confined dense jets/wakes (h < 0, S > 0). The sinuous mode is also unstable,
particularly for confined dense wakes.

This work has revealed that surface tension considerably alters the stability of
planar jets and wakes, whether unconfined or confined. While applying the results,
however, it is important to bear in mind that they were derived for plug flow velocity
profiles and inviscid fluids. The results will be inaccurate for Re < 102 but accurate for
Re > 103. Similarly, they will not be applicable when the actual shear layer thickness
exceeds the wavelength of the surface tension mode that is predicted by this model,
λ∼ πσ/(ρref U

2
ref ). Nevertheless, the results show that surface tension will have an

appreciable effect on a laboratory experiment that has been designed by this group,
for which Σ is in the range 0.25–25.
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