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Previous numerical simulations have shown that vortex breakdown starts with the for-
mation of a steady axisymmetric bubble and that an unsteady spiralling mode then
develops on top of this. We investigate this spiral mode with a linear global stability
analysis around the steady bubble and its wake. We obtain the linear direct and adjoint
global modes of the linearized Navier–Stokes equations and overlap these to obtain the
structural sensitivity of the spiral mode, which identifies the wavemaker region. We also
identify regions of absolute instability with a local stability analysis. At moderate swirls,
we find that the m = −1 azimuthal mode is the most unstable and that the wavemaker
regions of the m = −1 mode lie around the bubble, which is absolutely unstable. The
mode is most sensitive to feedback involving the radial and azimuthal components of
momentum in the region just upstream of the bubble. To a lesser extent, the mode is
also sensitive to feedback involving the axial component of momentum in regions of high
shear around the bubble. At an intermediate swirl, in which the bubble and wake have
similar absolute growth rates, other researchers have found that the wavemaker of the
nonlinear global mode lies in the wake. We agree with their analysis but find that the
regions around the bubble are more influential than the wake in determining the growth
rate and frequency of the linear global mode. The results from this paper provide the
first steps towards passive control strategies for spiral vortex breakdown.

1. Introduction

If a jet of fluid rotates with sufficient azimuthal velocity (swirl), a stagnation point
and a recirculation bubble form within it, around one or two jet diameters downstream
from the start of the jet. In this paper, the transition from the flow without a breakdown
bubble to the flow with a breakdown bubble is labelled axisymmetric vortex breakdown.
Furthermore, in some conditions the steady flow around this vortex breakdown bub-
ble is unstable to helical perturbations. In this paper, the development of these helical
perturbations on top of the vortex breakdown bubble is labelled spiral vortex breakdown.

Vortex breakdown was first observed in the flow over a gothic wing at high angles
of attack by Peckham & Atkinson (1957). The spiral mode was first identified by Lam-
bourne & Bryer (1961) in the flow over delta wings. Since then, several different forms
of vortex breakdown have been observed in a variety of experimental settings such as
tubes, nozzles and combustion chambers. Investigators often observed the axisymmetric
and spiral modes of breakdown to occur almost simultaneously. Some saw spiral break-
down before axisymmetric breakdown, while others saw axisymmetric breakdown before
spiral breakdown. This led to disagreements over the nature of vortex breakdown (see
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reviews by Hall 1972; Leibovich 1978; Escudier 1988; Lucca-Negro & O’Doherty 2001).

Two main explanations have been proposed for vortex breakdown: hydrodynamic in-
stability (Ludwieg 1960) and a supercritical to subcritical transition (Benjamin 1962).
Experimental evidence reviewed by Escudier (1988) indicates that the flow upstream of
the breakdown bubble is marginally stable or completely stable. Together with the fact
that the onset of vortex breakdown is sudden, this suggests that hydrodynamic insta-
bility is not responsible for causing axisymmetric vortex breakdown. Benjamin (1962)
compared vortex breakdown to the hydraulic jump seen in channel flows. He proposed
the idea of vortex breakdown being a transition from a super-critical flow configuration
to a sub-critical flow configuration and derived a criterion for vortex breakdown.

Numerical studies allow vortex breakdown to be studied in a more controlled manner.
Grabowski & Berger (1976) observed axisymmetric breakdown bubbles in their steady
incompressible simulations and tried, unsuccessfully, to apply Benjamin’s criticality cri-
terion to these flows. Over the next 20 years, increased computing power led to a large
number of numerical studies in which vortex breakdown was simulated in a variety of do-
mains (Spall & Snyder 1999). More recently, Ruith, Chen, Meiburg & Maxworthy (2003)
carried out both steady axisymmetric and unsteady three-dimensional direct numerical
simulations of vortex breakdown using the inlet flow profile defined by Grabowski &
Berger (1976), which is labelled the Grabowski profile. They used constant inlet con-
ditions and open lateral boundary conditions. They showed that Benjamin’s criticality
criterion works when applied locally to the flow profiles upstream of breakdown. Follow-
ing this, Vyazmina, Nichols, Chomaz & Schmid (2009) studied the bifurcation sequence
of axisymmetric vortex breakdown using the Grabowski inlet profile. Apart from noting
that axisymmetric vortex breakdown is a robust transition phenomenon from one steady
state to another, we do not investigate it further here.

Ruith et al. (2003) considered the local absolute/convective stability (Huerre & Monke-
witz 1990) of the flow field created by the axisymmetric vortex breakdown. By comparing
the flow profiles to those of a Batchelor vortex, they concluded that spiral breakdown is
caused by a sufficiently large pocket of absolute instability in the wake of the axisym-
metric breakdown bubble. They also obtained eigenfunctions corresponding to a helical
(with azimuthal wavenumber m = −1) and double helical breakdown mode (m = −2).
The minus sign indicates that the spiral winds in the opposite direction to the swirl.

Gallaire, Ruith, Meiburg, Chomaz & Huerre (2006) performed a local stability analysis
of the flow fields obtained by Ruith et al. (2003) using linear direct numerical simulations
(lDNS). For a particular swirl parameter, they found two regions of absolute instability,
one centred on the bubble and one centred on the wake that develops behind it. By
using the frequency selection criterion of Pier, Huerre & Chomaz (2001) and by compar-
ing the spatial growth rate obtained from the local analysis with amplitudes extracted
from Ruith’s DNS results, they interpreted spiral vortex breakdown as a nonlinear global
mode that arises from the region of absolute instability in the wake of the bubble. Meliga
& Gallaire (2011) performed a linear global stability analysis around the vortex break-
down bubble and its wake. They confirmed that spiral vortex breakdown is caused by an
unstable eigenmode. The growth rate and frequency from their global stability analysis
agreed well with the growth rate seen in Ruith’s DNS. Recently, these researchers have
extended their analysis to consider weakly nonlinear mechanisms that are responsible for
competition between the helical and double helical breakdown modes in the Grabowski
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family of flows (Meliga, Gallaire & Chomaz 2012).

In this paper, we investigate spiral vortex breakdown in laminar, incompressible flows
by performing linear global stability analyses around the vortex breakdown bubble and
its wake. In contrast to Meliga & Gallaire (2011) and Meliga et al. (2012), our aim is to
determine the regions that are most influential in causing spiral breakdown as observed
in the simulations of Ruith et al. (2003) and to identify the physical mechanisms that
are responsible for causing it.

For this purpose, we use the linear direct and adjoint global modes to obtain the
structural sensitivity of the flow (Hill 1992; Giannetti & Luchini 2007). This provides
a two-dimensional map of the wavemaker region of the flow, showing the regions of the
flow in which force-momentum feedback has most influence on the frequency and growth
rate of the mode. We also perform a local stability analysis, which allows us to work
out which regions of the flow are absolutely unstable and extract local spatial growth
rates of perturbations, given the frequency of the global mode. This is a useful diagnostic
tool, particularly in identifying the wavefront of the nonlinear global mode. We compare
our results with those of Ruith et al. (2003) and Gallaire et al. (2006) and, although we
agree with Gallaire et al. (2006) that the nonlinear behaviour is governed by the wake,
we discover that the linear behaviour is governed by the bubble for moderate swirls.

This study is at Re = 200 and the primary motivation is scientific. There are im-
portant industrial motivations, however. Vortex breakdown occurs in wingtip vortices
behind aircraft, in vacuum cleaners, and in gas turbine combustion chambers. In the
case of combustion chambers, hydrodynamic instabilities in the flow can lock into acous-
tic resonances within the combustion chamber, causing high amplitude thermoacoustic
instabilities, which can be catastropic. This fundamental study of spiral vortex break-
down will reveal the regions of the flow that are responsible for these hydrodynamic
instabilities and could help designers to control them, either actively or passively.

2. Methodology

First we calculate a steady base flow using the nonlinear Navier–Stokes equations.
Then we consider infinitesimal perturbations to this base flow and use a global stability
analysis to calculate the direct linear global modes that would grow or decay on this base
flow. We also calculate the corresponding adjoint global modes, which can be overlapped
with the direct global modes in order to reveal the wavemaker region of the flow. Finally,
we perform a local stability analysis on the base flow. The two-dimensional global modes
have already been calculated with the global analysis so we use the local analysis as a
diagnostic tool, rather than as a predictive tool. This reveals the regions of the flow that
are absolutely unstable and adds physical insight to the results of the global analysis.

2.1. The domain and the governing equations

We study the motion of a viscous fluid in a cylindrical domain with length Xmax and
radius Rmax, using cylindrical coordinates (x, r, θ). The flow has density ρ, pressure p,
temperature T , and velocity u = (ux, ur, uθ)

T . The inlet boundary, at x = 0, is la-
belled Ωin. The outlet boundary, at x = Xmax, is labelled Ωout. The lateral boundary,
at r = Rmax, is labelled Ωlat.
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Non-dimensional variable Definition

Length x ≡ x∗

R

Velocity u ≡ u
∗

U1

Temperature T ≡
T∗

−T0

T1−T0

Pressure, p p ≡ p∗

ρ1RgT1

Density ρ ≡ ρ∗

ρ1

Time t ≡ t∗U1

R

Non-dimensional parameter Definition

Mach number Ma ≡ U1

γRgT1

Density ratio S1 ≡ ρ1

ρ1
= 1

Reynolds number Re ≡
ρ1U1R

µ

Prandtl number Pr ≡
µcp

λ

Richardson number Ri ≡ gR

U2

1

Table 1. Non-dimensional variables and parameters defined in terms of dimensional variables
(starred), physical constants (where Rg is the gas constant, cp is the specific heat capacity at
constant pressure, γ is the ratio of specific heats, µ is the dynamic viscosity, λ is the thermal
conductivity, and g is the acceleration due to gravity) and the entry conditions (§3.1).

We use a low Mach number (LMN) formulation of the Navier–Stokes equations be-
cause the code has already been validated (Nichols, Schmid & Riley 2007; Chandler,
Juniper, Nichols & Schmid 2012) and because we will consider flows with non-uniform
temperature and composition next. In this paper, the density is uniform and the incom-
pressible Navier–Stokes equations could have been used. In non-dimensional form, the
LMN equations are

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1a)

∂(ρu)

∂t
= −∇p + ∇ · (

1

S1Re
τ − ρuu) + Ri(1 − ρ)ĝ, (2.1b)

ρ(
∂T

∂t
+ u · ∇T ) =

1

S1RePr
∇2T, (2.1c)

ρ [(S1 − 1)T + 1] = 1, (2.1d)

where τ =
[

∇u + (∇u)T
]

− 2

3
(∇ · u)I is the viscous stress tensor. The other non-

dimensional variables and parameters are defined in table 1. The species equation has the
same form as the temperature equation but is not used here and is omitted for brevity.
In the uniform density case, ρ = 1, T = 0 and S1 = 1 and the equations above reduce to
the incompressible Navier–Stokes equations.

2.2. The direct and adjoint perturbation equations

We obtain a steady solution to (2.1) using the procedure described in §3.1, and it is
labelled ū, ρ̄ etc. The evolution of small perturbations, which are labelled u′, ρ′ etc., on
top of the base flow is governed by the linearized equations of motion:

∂ρ′

∂t
= −∇ · m′, (2.2a)

∂m′

∂t
= −∇p −∇ · (ρ̄ūu′ + ρ̄u′ū + ρ′ūū) +

1

S1Re
∇ · τ ′ + Riρ′ĝ, (2.2b)

ρ̄
∂T ′

∂t
= −m′ · ∇T̄ − ρ̄ū · ∇T ′ +

1

S1RePr
∇2T ′, (2.2c)
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ρ′

ρ̄
= −

(S1 − 1)T ′

((S1 − 1)T̄ + 1
, (2.2d)

where m′ ≡ ρ̄u′ +ρ′ū is the linearized momentum and τ ′ =
[

∇u′ + (∇u′)T
]

− 2

3
(∇·u′)I

is the linearized viscous stress tensor. This set of equations can be represented as

dq

dt
= Lq, (2.3)

where q ≡ (m′

x, m′

r, m′

θ, T ′, p′)
T

is the state vector and L represents the Navier–Stokes
equations linearized about the base flow. The density ρ′ is not included in the state vector
because it can derived from the temperature T ′ by using (2.2d).

These linear perturbations can be decomposed into Fourier modes in time and the
azimuthal direction:

q(x, r, θ, t) = q̂(x, r)eimθ+λt, (2.4)

where m is the azimuthal wavenumber and λ ≡ σ + iω contains the growth rate, σ, and
frequency, ω. We study the linear dynamics of the flow by analyzing the eigenvalues of
L. These are obtained by solving the matrix eigenvalue problem

λq̂ = Lmq̂, (2.5)

where Lm is the linear operator for the azimuthal wavenumber m (Appendix A.1). Each
of these eigenvalues has a corresponding two-dimensional eigenfunction, q̂(x, r). We label
each eigenvalue/eigenfunction pair a direct global mode. If σ > 0, the mode is linearly
globally unstable. In this linear analysis, the flow tends to the form of the global mode
with highest σ in the long-time limit and therefore this mode determines the system’s
overall stability.

We now define an inner product over a volume, V ,

〈a,b〉 =
1

V

∫

V

aHb dV, (2.6)

where aH denotes the Hermitian (i.e. complex conjugate transpose) of a. The linear
operator, Lm, has a corresponding adjoint operator L+

m, which is defined in terms of an
inner product:

〈q̂+,Lmq̂〉 ≡ 〈L+
mq̂+, q̂〉. (2.7)

This definition is valid for any pair of vectors, but it is convenient to express (2.7) in
terms of the direct state vector, q̂, and the adjoint state vector, q̂+.

The adjoint operator is derived from the direct governing equations by integration by
parts. Chandler et al. (2012) found that the direct equations need to be rearranged into a
suitable form before deriving the adjoint equations. This is necessary so that the two sets
of equations can be solved using a similar algorithm, which reduces numerical errors that
arise when solving the adjoint equations. The following set of adjoint LMN equations
were found to be the most similar to the direct LMN equations

∂m+

i

∂xi

= 0 (2.8a)

−
∂m+

i

∂t
=

m̄j

ρ̄

(

∂m+

i

∂xj

+
∂m+

j

∂xi

)

+
1

ρ̄

∂p+

∂xi

+
1

S1Reρ̄

(

∂2m+

i

∂x2
j

+
1

3

∂2m+

j

∂xj∂xi

)
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−
T +

ρ̄

∂T̄

∂xi

(2.8b)

−
∂T +

∂t
= m̄i

∂

∂xi

(

T +

ρ̄
+ (S1 − 1)p+

)

+
1

S1RePr

∂2

∂x2
i

(

T +

ρ̄
+ (S1 − 1)p+

)

− (S1 − 1)ρ+ (2.8c)

ρ+ = −m̄im̄j

∂m+

i

∂xj

− Riρ̄2m+

i gi −
m̄i

S1Re

(

∂2m+

i

∂x2
j

+
1

3

∂2m+

j

∂xj∂xi

)

(2.8d)

These can be written in the same form as for the direct equations:

−
dq+

dt
= L+q+ (2.9a)

q+(x, r, θ, t) = q̂+(x, r)eimθ−λ∗t (2.9b)

λ∗q̂+ = L̃+
mq̂+ (2.9c)

where λ∗ ≡ σ − iω is the complex conjugate of the corresponding direct eigenvalue. The
adjoint global modes are then given by the solution of the eigenvalue problem in (2.9c)
(see Appendix A.2).

2.3. The structural sensitivity

The structural sensitivity, as developed by Hill (1992) and Giannetti & Luchini (2007), is
given by the dyadic product of the direct and adjoint momentum vectors, Sij = m̂i(m̂

+

j )∗.
The components of this complex-valued 3×3 tensor show how feedback between the com-
ponents of the linearized momentum vector affects the growth rate and frequency of the
global mode. Giannetti & Luchini (2007) used the Frobenius norm of the sensitivity ten-
sor to identify where a modification in the linearized equations produces the greatest drift
of the eigenvalue and thereby reveal the region of the flow that acts as the wavemaker.
In our case, this is equivalent to evaluating the expression

|∇Gλ|max =
‖(m̂+)H‖‖m̂‖

〈m̂+, m̂〉
, (2.10)

where ‖m̂‖ and ‖m̂+‖ represent the l2-norm of the direct and adjoint global momentum
vectors at each point in space. (Chandler et al. 2012).

2.4. The local stability analysis

The local analysis is performed using the technique described in Juniper, Tammisola &
Lundell (2011). As for the global analysis, the velocity and pressure fields are decomposed
into a steady base flow and a small perturbation. For the local analysis, we assume that
the flow exhibits two well-separated length scales: an instability wavelength, λl, and a
length scale that characterizes the stream-wise non-uniformity of the base flow, Ll. The
ratio λl/Ll, which must be small for a local analysis to be rigorously valid, is labelled
ǫ. In the flows examined in this paper, ǫ is small in the downstream region but large in
the upstream region. This means that the local analysis becomes invalid in the upstream
region, and we find that it cannot predict the global mode frequency and shape, as
described in Juniper et al. (2011). Hence, we only use it to obtain the absolute growth
rate at each streamwise location.
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3. Numerical implementation

3.1. Base flow

The nonlinear governing equations (2.1) are solved by direct numerical simulation (DNS)
with a modification of the code developed by Nichols et al. (2007). The equations are
discretized on a collocated grid with Sx and Sr points in the axial and radial directions.
Sixth-order compact finite difference schemes are used to calculate spatial derivatives in
the axial and radial directions. A spectral decomposition is used in the azimuthal direc-
tion. The co-ordinate singularity at r = 0 (the centreline) is treated using an asymp-
totic method proposed by Constantinescu & Lele (2002). The equations are solved us-
ing an explicit pressure projection method and time-stepping is implemented through
a fourth-order Runge-Kutta scheme. The coupling between the pressure and the mo-
mentum boundary conditions, however, restricts the code to being first order accurate
in time. Full details of the code and the nonlinear solution algorithm can be found in
Nichols et al. (2007).

On Ωin, we impose the density and velocity profiles used by Grabowski & Berger (1976)
and subsequently by Ruith et al. (2003). This Grabowski profile has uniform density, ρ1,
uniform temperature, T1, and uniform axial velocity, U1, beyond a characteristic radius
R. Using these quantities as reference scales (table 1), the non-dimensional base flow
inlet profile is

ρ̄(0, r) = 1, (3.1a)

T̄ (0, r) = 0, (3.1b)

ūx(0, 0 ≤ r ≤ 1) = α + (1 − α)
(

6 − 8r + 3r2
)

r2, (3.1c)

ūx(0, r > 1) = 1, (3.1d)

ūr(0, r) = 0, (3.1e)

ūθ(0, 0 ≤ r ≤ 1) = r
(

2 − r2
)

Sw, (3.1f)

ūθ(0, r > 1) = Sw/r, (3.1g)

where Sw is a non-dimensional swirl parameter and α is a non-dimensional co-flow pa-
rameter. In this study, which is at Re = 200, we keep α = 1, which corresponds to a
uniform axial velocity. In the past, the use of constant inlet conditions for simulating
vortex breakdown has been criticised. However, Ruith et al. (2003) showed that this is a
safe assumption as long as the inlet is super-critical, which is true for all the inlet profiles
that we consider.

On the lateral and outlet boundaries, we impose boundary conditions that model
flow into a semi-infinite domain in the downstream and radial directions. For the mo-
mentum, we set a traction-free boundary condition on Ωlat (τ · n̂ = 0 where n̂ is the
unit vector normal to the boundary) and a convective boundary condition on Ωout

(∂m/∂t + Uc · ∂m/∂x = 0 with Uc set to the maximum outlet axial velocity). For the
temperature, we use a homogeneous dirichlet condition (T = 0) on all boundaries. For
the pressure, we set p = 0 on Ωlat and ∂p/∂x = 0 on Ωin and Ωout.

The steady axisymmetric base flow, satisfying equations (2.1) in the limit ∂/∂t → 0, is
obtained by marching the equations forward in time, while constraining the flow variables
to be axisymmetric at each timestep. This works because the base flow is stable to
axisymmetric perturbations.
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3.2. Global stability analysis

We solve the discretized version of the eigenvalue problems (2.5) and (2.9c) using ARPACK,
a software library that implements the implicitly restarted Arnoldi algorithm (IRAM)
(Lehoucq, Sorensen & Yang 1998) in order to obtain the eigenvalues and eigenfunctions
of a standard eigenvalue problem. We obtain the matrix-vector products required by
ARPACK using a timestepping approach. Following Heaton, Nichols & Schmid (2009),
we use complex versions of the linear direct and adjoint codes developed by Chandler
et al. (2012). Complex numbers are required in order to handle the imaginary compo-
nents that arise when non-zero azimuthal modes of swirling flows are considered.

For the direct global mode, we use a homogeneous Dirichlet condition on Ωin and Ωlat

and a convective boundary condition on Ωout for the momentum and temperature. The
boundary conditions for the adjoint have to be chosen such that the boundary terms
arising from the derivation of the adjoint equations (2.8) are zero. It is sufficient to use
homogeneous Dirichlet boundary conditions for the adjoint momentum and temperature
on all boundaries. The boundary conditions for the pressure in the linear direct and
adjoint codes are identical to those for the base flow. In this paper, we normalize the
direct and adjoint global modes so that 〈m̂, m̂〉 = 〈m̂+, m̂+〉 = 1.

3.3. Local stability analysis

The numerical procedure is identical to that in Juniper et al. (2011). At each streamwise
location, the governing equations arising from §2.4 are discretized on a Chebyshev-spaced
grid in the r-direction. This produces a generalized matrix eigenvalue problem, which
represents the dispersion relation for this slice of the flow. In this paper, 48 Chebyshev-
spaced points are used between the centreline and top wall, which is sufficient that the
eigenvalues change by ∼ 10−4 when the resolution is increased. We calculate the complex
absolute frequency, ω0, as a function of streamwise distance, x, by finding saddle points
in the complex k-plane and then checking that they are valid pinch points, as defined by
Briggs-Bers. The procedure is described in detail in Juniper et al. (2011).

4. Results

In this section, we begin by establishing the accuracy and reliability of our numerical
procedures for a case with swirl parameter Sw = 1.0 at Re = 200 by comparing our
results with those from previous studies. We then present the direct and adjoint eigen-
modes at the point where the flow is just globally unstable and map out the regions that
are most sensitive to external forcing and internal feedback. We use the structural sensi-
tivity tensor to identify the physical mechanisms that determine the global behaviour of
the flow. Finally, we return to consider the case with Sw = 1.0 in light of the previous
sensitivity analysis.

4.1. Validation

Figure 1 shows the steady base flow at Sw = 1.0. There is an axisymmetric breakdown
bubble around x = 2, which creates a wake downstream. The streamline pattern and the
size and location of the bubble match that obtained in previous axisymmetric simulations
(Grabowski & Berger 1976; Ruith et al. 2003; Meliga & Gallaire 2011). For this reference
case, we calculate the base flow and linear global stability on three different meshes in
order to assess the reliability and convergence of the results. The linear global stabil-
ity analysis predicts one unstable eigenmode for m = −1 and no unstable eigenmodes
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Figure 1. Non-dimensional base flow for Sw = 1.0, calculated with mesh M1. The streamlines
represent the axial and radial velocities. The shading (colour online) represents the azimuthal
velocity.

Xmax Rmax Sx Sr Growth rate σ Frequency ω
M1 20.0 8.0 513 127 0.035214 1.165476
M2 20.0 8.0 257 127 0.035177 1.165453
M3 25.4 10.4 257 127 0.034348 1.162470
Nonlinear DNS (Ruith et al. 2003) 20.0 10.0 193 61 0.0359 1.18
Local nonlinear analysis (Gallaire et al. 2006) - - - - - 1.22
Linear global stability (Meliga & Gallaire 2011) 40.0 6.0 - - 0.0335 1.17

Table 2. Domain size (Xmax, Rmax) and number of gridpoints (Sx, Sr) of the three meshes
(M1 − M3) used in this study, and those used by Ruith et al. (2003) and Gallaire et al. (2006).
Growth rate, σ, and frequency, ω, of the unstable mode in each study.

for m 6= −1. Table 2 compares the unstable global mode frequency obtained using these
meshes with results from Ruith et al. (2003), Gallaire et al. (2006) and Meliga & Gallaire
(2011). The eigenvalue depends very weakly on the grid resolution and spatial domain
size and we conclude that mesh M1 is sufficient for this study.

Ruith et al. (2003) performed fully three-dimensional nonlinear DNS. They perturbed
the axisymmetric steady state solution with white noise and then extracted the linear
growth rate and frequency from the initial rate of increase of the kinetic energy per
unit mass. Our eigenvalue is within 1.3% of theirs. Gallaire et al. (2006) carried out
a local stability analysis on the same axisymmetric steady state solution and used the
frequency selection criterion of Pier et al. (2001) to predict the frequency of the nonlinear
global mode. This is not expected to be exactly the same as the linear global mode but,
nonetheless, is also close to our calculations. Meliga & Gallaire (2011) used a finite-
element solver to obtain the base flow and global mode in a domain that was twice as
long (axially) as that used in this study and by Ruith et al. (2003). As the domain length
increases, the convective non-normality of the linearized N–S operator also increases.
This makes the eigenvalues more sensitive to perturbations and this could be the reason
for the slight discrepancy between our results and theirs.

Table 3 compares the linear growth rates obtained from mesh M1 with those in Table
1 of Meliga & Gallaire (2011) and those in figure 28 of Ruith et al. (2003), for three
swirls and two azimuthal wavenumbers, m. As discussed earlier, the difference between
Meliga’s growth rates and ours can be attributed to the difference in domain lengths.
Ruith et al.’s extraction of the linear growth rate from the rate of growth of white noise
works well near the point of linear stability, which is at Sw = 0.915, because only the
m = −1 mode is unstable and this mode grows relatively slowly. It becomes less accu-
rate as the swirl increases, however, because the m = −2 mode also becomes unstable.
The evolution therefore depends on how the initial white noise projects onto each of the
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Swirl 1.0 1.2 1.2 1.3 1.3
m -1 -1 -2 -1 -2
σ from M1 0.0352 0.114 0.0249 0.123 0.0693
σ from Ruith et al. 0.0359 0.106 0.0331 0.110 0.0674
σ from Meliga & Gallaire 0.0335 0.118 0.0264 0.125 0.0729

Table 3. Comparison of most unstable linear growth rates from a global stability analysis with
growth rates observed in 3D DNS. The growth rates have been obtained from figure 28 of Ruith
et al. (2003) and Table 1 of Meliga & Gallaire (2011) .

Growth rate σ Frequency ω Absolute discrepancy Relative discrepancy (%)
M1 0.037663 -1.165434 0.002449 0.210064
M2 0.037048 -1.165592 0.001876 0.160908
M3 0.038603 -1.161601 0.004343 0.373424

Table 4. The most unstable adjoint eigenvalue for m = −1 and the discrepancy with respect
to the complex conjugate of the direct eigenvalue, for meshes M1 − M3. The discrepancy is
abs(λadj − λ∗

dir) where λ ≡ σ + iω.

modes and it is harder to distinguish between the growth rates of each individual mode.
This could explain why Ruith et al.’s growth rates at Sw = 1.2 and Sw = 1.3 are slightly
different to ours. We conclude that the agreement is as good as can be expected.

In the absence of truncation errors, the adjoint eigenvalues would be the complex
conjugates of the direct eigenvalues. In this study, the adjoint equations are derived alge-
braically from the direct equations and then discretized, which means that the truncation
errors of the adjoint algorithm differ from those of the direct algorithm. We must check,
therefore, that the adjoint eigenvalues are close to the complex conjugate of the direct
eigenvalues. Table 4 shows the adjoint eigenvalues and the discrepancy with the direct
eigenvalues for the three meshes. This discrepancy is due to the first order time accuracy
of the numerical scheme and decreases as the timestep decreases (Chandler et al. 2012).
The discrepancy for mesh M1 is 0.2%, which is sufficiently small for us to be confident
that the adjoint eigenmodes are correct.

4.2. Formation of a recirculation bubble and the onset of instability

In this study, we increase the swirl from Sw = 0.8, which is stable and before the onset of
vortex breakdown. At Sw = 0.8944, a stagnation point forms on the centreline, which is
the first sign of an axisymmetric breakdown bubble; figure 2. This agrees with the results
of Ruith et al. (2003). The complex absolute growth rate, ω

0i, is obtained as a function
of streamwise distance, x, using the local analysis. This reveals that a region of absolute
instability (which also exists for lower values of swirl) is centred around the bubble. The
flow is globally stable, however, for all azimuthal wavenumbers, showing that this region
of absolute instability is not large enough or strong enough to cause a global instability.

As the swirl is increased, an unstable mode (σ > 0) first appears at Sw = 0.915 with
m = −1. Figure 3 shows the base flow at this swirl together with the absolute growth rate,
the unstable direct mode, the corresponding adjoint mode, and the structural sensitivity
map. For the direct and adjoint modes, the upper frame shows contours of the positive
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Figure 2. (a) Baseflow at Sw = 0.8944 and Re = 200, (b) axial velocity along the axis, r = 0,
(c) absolute growth rate of the dominant saddle point (solid line) and the next saddle point
(shown by a dashed line where it is a valid pinch point and by crosses where it is not).

Figure 3. (a) Base flow at Sw = 0.915 and Re = 200; (b) absolute growth rate for m = −1;
(c) azimuthal vorticity contours of the most unstable direct global mode (solid lines are positive
values and dotted lines are negative values); (d) kinetic energy of this direct global mode,
separated into the different velocity components; (e) azimuthal vorticity contours of the most
unstable adjoint global mode; (f) kinetic energy of this adjoint global mode, separated into the
different velocity components; (g) structural sensitivity map as defined by (2.10).

(solid) and negative (dotted) real parts of the azimuthal vorticity. (The imaginary parts
have a similar structure but are a quarter wavelength out of phase.) The lower frame

shows the kinetic energy, Ek(x) =
∫ Rmax

0
|u|2rdr as a function of streamwise distance, and

the contributions from the axial, radial, and azimuthal components. This is a convenient
measure of the amplitude of the global mode.
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Figure 4. (Colour online) The real part (growth rate) of the components of the sensitivity
tensor Sij = m̂i(m̂

+

j )∗ for the m = −1 mode at Sw = 0.915. The shading on all the plots scales

from -2256 (blue) to 2256 (red). The thick black line shows the breakdown bubble.

At Sw = 0.915, the region of absolute instability around the breakdown bubble is suf-
ficiently large to cause a global instability. The direct global mode starts to grow in the
bubble region and is amplified further in the wake region, reaching a maximum around
x = 12. It is worth noting that the wake region is convectively unstable, but not abso-
lutely unstable. The adjoint global mode represents the receptivity of the direct mode
to external forcing, or equivalently, the initial condition that most optimally excites the
direct mode (Chomaz 2005). It is localized between the inlet and the upstream edge of
the bubble. The spatial separation of the direct and adjoint global modes is characteristic
of flows with convective non-normality (Chomaz 2005). For both the direct and adjoint
global modes, the three velocity components have roughly the same order of magnitude,
indicating that component-wise non-normality is not influential. If it were influential, one
would expect different velocity components to dominate in the direct and adjoint global
modes. The structural sensitivity map shows that the wavemaker region, as defined in
(2.10), is located just upstream of the breakdown bubble, in the region of absolute in-
stability.

4.2.1. Mechanisms of instability

In order to understand the physical mechanism by which a small perturbation to the
linear operator affects the global mode, we consider the real and imaginary parts of the
nine components of the structural sensitivity tensor, shown in Figures 4 and 5. The nine
components quantify the sensitivity of the eigenvalue to changes in the feedback between
the three components of the perturbation momentum vector and the three components of
the linearized momentum equations. The real part describes the sensitivity of the growth
rate, while the imaginary part describes the sensitivity of the frequency. For example,



Structural sensitivity of spiral vortex breakdown 13

m
x
m

x
+

x

r

1 2 3
0

0.5

1

1.5

2

m
x
m

r
+

x

r

1 2 3
0

0.5

1

1.5

2

m
x
mθ

+

x

r

1 2 3
0

0.5

1

1.5

2

m
r
m

x
+

x

r

1 2 3
0

0.5

1

1.5

2

m
r
m

r
+

x

r

1 2 3
0

0.5

1

1.5

2

m
r
mθ

+

x

r

1 2 3
0

0.5

1

1.5

2

mθm
x
+

x

r

1 2 3
0

0.5

1

1.5

2

mθm
r
+

x

r

1 2 3
0

0.5

1

1.5

2

mθmθ
+

x

r

1 2 3
0

0.5

1

1.5

2

Figure 5. (Colour online) The imaginary part (frequency) of the components of the sensitivity
tensor Sij = m̂i(m̂

+

j )∗ for the m = −1 mode at Sw = 0.915. The shading on all the plots scales

from -2256 (blue) to 2256 (red). The thick black line shows the breakdown bubble.

the figure in the top right corner shows the effect of changing the amount of feedback
from the streamwise momentum (mx) to the azimuthal momentum equation (mθ).

It can be seen that these sensitivities are in spatial quadrature: the imaginary compo-
nent is large where the real component is zero, and vice-versa. These oscillatory sensitivity
patterns are characteristic of convective flows and are caused by constructive or destruc-
tive interference (Tammisola 2012). The global mode arises due to contributions from
feedback throughout the wavemaker region. These contributions interact constructively
and destructively to give, in aggregate, a global mode frequency and growth rate. If the
feedback at one point in this wavemaker region changes, then the effect on the global
mode will depend on the amplitude and the phase of the feedback from this point, relative
to the aggregate feedback from the other points. The phase relationship of the feedback
varies in space, so the effect of a small change in the feedback at a point also varies in
space.

The phase information is interesting, but a clearer picture of the influences of feed-
back between the components is given by the absolute value of the structural sensitivity.
This is shown in figure 6. In order to understand the physical mechanisms that may be
responsible for causing the global instability, it is worth comparing this with the nine
components of the strain tensor of the base flow, ǫij = 1

2

[

∇ū + (∇ū)T
]

, which are shown
in figure 7. The three frames along the leading diagonal show the axial, radial and az-
imuthal strain, while the off-diagonal frames show the shear. We will start by considering
four features. Firstly, at the entry plane, there is strong shear in the r − θ component at
the edge of the vortex core. Secondly, just outside the edge of the bubble (at r = 0.5),
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Figure 6. (Colour online) The absolute value of the components of the sensitivity tensor
Sij = m̂i(m̂

+

j )∗ for the m = −1 mode of the flow at Sw = 0.915. The shading on all the

plots scales from 0 (grey) to 2317 (red). The thick black line shows the breakdown bubble.
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Figure 7. (Colour online) The components of the rate-of-strain tensor ǫij = 1

2

[

∇ū + (∇ū)T
]

for the base flow at Sw = 0.915. The shading on all the plots scales from -1.6 (blue) to 1.6 (red).
The thick black line shows the breakdown bubble.



Structural sensitivity of spiral vortex breakdown 15

(a) Counterflow wake (b) Solid body rotation

Figure 8. The absolute value of the components of the sensitivity tensor Sij = m̂i(m̂
+

j )∗ for

the m = −1 mode of (a) a parallel counterflow non-swirling wake, and (b) a vortex with solid
body rotation. The single figures on the left in each subfigure show (a) the axial velocity profile
of the wake base flow, and (b) the azimuthal velocity profile of the vortex base flow.

there is very strong shear in the x−r component and weak shear in the r−θ component.
Thirdly, the frames in the left column of figure 6, which correspond to the influences on
the axial momentum equation, have high amplitudes in the region in which there is strong
shear in the x− r component. Fourthly, the frames in the top row of figure 6 , which cor-
respond to the influence of the axial momentum, have moderate amplitudes in this region.

This can be compared with figure 8, which shows the nine components of the struc-
tural sensitivity tensor for the m = −1 mode in two parallel flows. The nine components
have the same meaning that they have for the two-dimensional case in figures 4, 5 and
6: they quantify the sensitivity of the eigenvalue to changes in the feedback between the
three components of the perturbation momentum vector and the three components of the
perturbation momentum equations. The only differences are that the flow is parallel and
that the perturbations are assumed to be of the form u exp(ikx) in the axial direction.
This gives the local structural sensitivity. If the flow were non-parallel, this would be a
cross-stream slice through the two-dimensional structural sensitivity.

The flow in figure 8(a) is a parallel non-swirling counterflow wake. This flow has uniform
velocity in the axial direction and zero velocity in the radial and azimuthal directions.
Therefore, all shear is concentrated in the x−r component and only the Kelvin-Helmholtz
(KH) mechanism is active. The frames in the left column of figure 8(a) have high am-
plitudes in the region in which there is strong shear in the x − r component and the
frames in the top row have moderate amplitudes in this region. It is also worth noting
that the r − r and r − θ components have low amplitudes. The centre-top frame of fig-
ure 7 shows that the x − r component of shear is strong just outside the recirculation
bubble (at r = 0.5). Figure 6 shows that the structural sensitivity is large in this region,
particularly in the left column and top row. The comparison with figure 8(a) leads us to
believe that the feedback in this region is caused by the KH mechanism.

The four bottom-right frames in figure 6 have high amplitudes around the upstream
stagnation point of the recirculation bubble. From figure 7, we notice that this does not
correspond to regions of large shear. Hence, this cannot be explained by a KH mecha-
nism. To explain this, we consider the nine components of the sensitivity tensor for the
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m = −1 mode in a flow with solid body rotation but no axial shear, shown in figure 8(b).
For this flow, the highest sensitivities are in the r− r, r− θ, θ− r and θ− θ components,
and they all have very similar magnitudes. This is typical of feedback that arises from
the conservation of angular momentum. Specific examples of such a mechanism include
the fictitious Coriolis force (Batchelor 1967, §7.6) and the generalized centrifugal insta-
bility mechanism proposed by Leibovich & Stewartson (1983), who derived a criterion
for the temporal instability of a parallel Batchelor vortex in the limit of large azimuthal
wavenumber, m, and large axial wavenumber, k. In these limits, the perturbation is only
affected by the local flow. The perturbations in this paper, however, are far from the large
m and k limit and are therefore not localized. Consequently, it is questionable whether
they can be identified with the generalized centrifugal instability. Even if we ignore these
concerns, we find, in this flow, that the criterion is only satisfied in regions of strong axial
flow, where the perturbations have large group velocity. When deriving global properties
from a local analysis, only the waves with zero group velocity contribute. On this basis,
it seems unlikely that the generalized centrifugal instability is responsible for the strong
feedback upstream of the breakdown bubble. We conclude simply that a mechanism in-
volving conservation of angular momentum is active in the region just upstream of the
breakdown bubble.

We can now explain why the adjoint global mode is large in the region upstream of the
recirculation bubble, near the centreline (figure 3e). Let us consider the effect of a small
open loop perturbation in this region. In this region, the axial vorticity of the base flow is
an order of magnitude larger than the radial and azimuthal vorticity of the base flow. The
perturbation vorticity is superposed on this. As a perturbation passes through this region,
the fluid is compressed in the axial direction and stretched in the radial and azimuthal di-
rections. By conservation of angular momentum, the vorticity in the radial and azimuthal
directions increases, while the vorticity in the axial direction decreases. This increases the
amplitude of the perturbation vorticity. The amplified perturbation then passes through
the ‘KH’ region, where it is amplified by the classic Kelvin-Helmholtz mechanism. This
description agrees with observations from experiments on vortex breakdown in swirling
jets by Oberleithner, Sieber, Nayeri, Paschereit, Petz, Hege, Noack & Wygnanski (2011).
These researchers found the wavemaker to be upstream of the breakdown bubble and
the surrounding flow field to behave as an amplifier of upstream disturbances.

In summary, the nine components of the structural sensitivity reveal that, at the point
of instability, two mechanisms are active in the wavemaker region of the global mode.
The first is due to conservation of angular momentum in regions of strong strain in the
flow, particularly upstream of the breakdown bubble. This mechanism is most sensitive to
feedback involving the radial and azimuthal components of the perturbation momentum.
The second is a classic KH mechanism in regions of strong shear. This mechanism is most
sensitive to feedback involving the axial component of the perturbation momentum. We
find that the first mechanism has more influence than the second on the growth rate and
frequency of spiral vortex breakdown.

4.3. Reference case, Sw = 1.0

4.3.1. Global stability analysis and structural sensitivity

We now consider the reference case of Sw = 1.0 in light of the sensitivity analysis at
Sw = 0.915. The main purpose of this section is to compare our linear global analysis
with the nonlinear local analysis of Gallaire et al. (2006) and the weakly nonlinear global
analysis of Meliga et al. (2012). Figure 9 presents the results of the stability analysis for
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Figure 9. As for figure 3 but for Sw = 1.0. Frame (c) can be compared directly with Fig.
29(b) of Ruith et al. (2003) (but note that the vertical axis has been stretched in their figure)

Figure 10. Local absolute growth rate, ω0,i, (thick line) as a function of streamwise distance
for the m = −1 azimuthal wavenumber and Sw = 1.0. The thick line represents ω0,i for the
dominant saddle point (s1). The subdominant saddle points are shown by a dashed line where
they are valid k+/k− pinch points and by crosses where they are not. The subdominant saddle
points are located in regions of the flow in which there are two solutions of linear instability from
the temporal analysis: the recirculation bubble (saddle s2a) and the wake (s2b). The streamwise
domain of this flow extends to x = 20 but is not shown in this figure.

Sw = 1.0 in the same format as figure 3. The global mode shapes and spatial wavelengths
agree very well with the DNS results in the linear regime shown in figure 29 of Ruith
et al. (2003).

In agreement with Gallaire et al. (2006), figure 9(b) shows that the flow at Sw = 1.0
has two finite regions of absolute instability: a small region corresponding to the recircu-
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Figure 11. (Colour online) The absolute value of the components of the sensitivity tensor
Sij = m̂i(m̂

+

j )∗ for the m = −1 mode at Sw = 1.0. The shading on all the plots scales from 0

(grey) to 1670 (red). The thick black line shows the breakdown bubble.

lation bubble and a large region corresponding to the wake. This is shown in more detail
in figure 10, where our results are compared with results from figure 5 of Gallaire et al.

(2006). Our results were obtained by locating saddle points of ω in the complex k-plane.
Gallaire et al.’s results were obtained by extracting ω

0i from linear DNS of locally-parallel
flows created from the actual flow at 15 streamwise locations. The results are in very good
agreement with each other, even capturing saddle switching around x = 1.

The structural sensitivity map in figure 9(g) shows that there is a region of high sensi-
tivity around the upstream end of the bubble, and regions of lower sensitivity downstream
in the wake. In order to understand how each of these regions affects the global mode,
we consider the components of the sensitivity tensor.

The real and imaginary parts (which are not shown here) are similar to figures 4 and
5 for Sw = 0.915 but show that the sensitive regions are not localised to just the bubble
or just the wake in any component of the sensitivity tensor. This is evident in figure 11,
which shows the absolute value of the sensitivity tensor at every point in the domain.
In every plot, the regions around the bubble have greater sensitivity than the regions in
the wake. Although both the bubble and the wake affect the instability, we deduce that
the bubble is more influential than the wake in affecting both the growth rate and the
frequency of the linear global mode.

4.3.2. Comparison with nonlinear behaviour

In contrast to the linear results, Gallaire et al. (2006) concluded that the nonlinear
global behaviour is governed by the wake and not by the bubble. They extracted the spa-
tial growth rate of perturbation kinetic energy from Ruith’s saturated nonlinear DNS.
They compared this with the spatial growth rates at the two points where the flow tran-
sitions from convective to absolute instability, in accordance with the nonlinear mode
selection criterion of Pier et al. (2001). The spatial growth rate at the leading edge of
the wake region matches that of the saddle point of the local analysis there. Our local
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analysis gives the same results as that of Gallaire et al. (2006).

In summary, as the results in Table 2 show, the frequency predicted by the nonlinear
local analysis in the wake is very close to the limit-cycle frequency measured in Ruith’s
DNS. The frequency predicted by our linear global analysis is also close to this limit-cycle
frequency. However, our sensitivity analysis finds that the bubble is more influential than
the wake in determining this frequency. We have not yet been able to find a convincing
explanation for this behaviour. One possibility is to consider the nonlinear modification
of the baseflow due to the direct global mode. This would be largest in the wake, close
to where the direct global mode reaches a maximum. In our flow, the linear wavemaker
region is quite far upstream of this location. For small steps beyond the bifurcation point
(at Sw = 0.915), we would expect the flow to be significantly modified in the wake
(Chomaz 2005), which Meliga et al. (2012) found to be the case.

5. Concluding remarks

In this paper, we have studied the linear global stability of the steady axisymmetric
vortex breakdown bubble observed in the simulations of Ruith et al. (2003). We have
confirmed that spiral vortex breakdown is caused by an unstable eigenmode of azimuthal
wavenumber m = −1. The adjoint of this direct global mode has also been calculated. By
overlapping the direct and the adjoint global modes, we have found the location of the
wavemaker, which can be interpreted as the region responsible for causing spiral vortex
breakdown (Giannetti & Luchini 2007). By considering the nine components of the struc-
tural sensitivity tensor, we have identified the physical mechansisms that are responsible
for causing spiral vortex breakdown. We have also used a local stability analysis to work
out the regions of absolute instability in the flow.

When the m = −1 mode first goes unstable, at Sw = 0.915, the wavemaker is lo-
cated just upstream of the breakdown bubble, which is the only region of the flow that
is absolutely unstable. The structural sensitivity tensor reveals that this mode is caused
by two physical mechanisms. The first mechanism is most sensitive to feedback between
the radial and azimuthal components of the perturbation momentum, corresponding to
the region of strong strain just upstream of the breakdown bubble. We interpret this
mechanism to be related to conservation of angular momentum. The second is the clas-
sic Kelvin-Helmholtz mechanism, which is most sensitive to feedback involving the axial
component of the perturbation momentum. This corresponds to the regions of strong
shear around the bubble.

We have also considered the case of Sw = 1.0, which has two regions of absolute in-
stability, one in the bubble and one in the wake. Our linear analysis has found that the
region around the bubble is more influential than the wake in determining the growth
rate and frequency. Previously, Gallaire et al. (2006) had found that the nonlinear fre-
quency for this case is determined by the wake and our local analysis agrees with theirs.
The frequencies from our analysis and Gallaire’s analysis are both close to the limit-cycle
frequency observed in Ruith et al.’s 3D DNS.

The sensitivity study of this paper provides useful information about the inherent
dynamics of the flow. Knowing which regions are responsible for causing spiral vortex
breakdown in swirling flows is the first step towards developing control strategies in
such flows. From an engineering point of view, the approach used here can be extended,
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following Marquet, Sipp & Jacquin (2008) and Meliga, Sipp & Chomaz (2010), to work
out the sensitivity of the eigenvalue to a steady force acting on the swirling base flow.
This will be more representative of the effect that a control device will have on the growth
rate and frequency of the unstable mode and will be the subject of another paper.

The authors would like to thank Christopher Heaton and Gary Chandler for help
with the numerical implementation, and the anonymous referees for their feedback. U.
A. Qadri is grateful to Trinity College, Cambridge for financial support. The numerical
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Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education
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Appendix. Equations in cylindrical co-ordinates, as used in code

This appendix contains the complex linearized direct and adjoint LMN equations that
are solved to obtain the global modes.

A.1. Linearized LMN equations representing equation 2.5

A.1.1. Momentum

Axial:

(σ + iω)m̂x = −
dp̂

dx
−
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∂2ûx

∂x2
+

∂2ûr
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(A 1a)

Radial:
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∂ûθ

∂r

)

−
7im

3r2
ûθ
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Azimuthal:

(σ + iω)m̂θ = −
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A.1.2. Energy
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∂T̄

∂x
+ m̂r

∂T̄

∂r

)

− ūx

∂T̂

∂x
− ūr

∂T̂

∂r
−

imûθ

r
T̂ . . .

. . . +
1

S1RePrρ̄

[

∂2T̂

∂x2
+

∂2T̂

∂r2
+

1

r

∂T̂

∂r
−

m2

r2
T̂

]

(A 4a)

A.1.3. State

ρ̂

ρ̄2
+ (S1 − 1)T̂ = 0 (A 5)

A.2. Adjoint LMN equations representing equation 2.9c

A.2.1. Momentum

Axial:

(σ − iω)m̂+
x =

1

ρ̄

(

2m̄x

∂m̂+
x

∂x
+ m̄r

(

∂m̂+
r

∂x
+

∂m̂+
x

∂r

)

+ m̄θ

(

∂m̂+

θ

∂x
+

im

r
m̂+

x

))

. . .

. . . +
1

S1Reρ̄

[

4

3

∂2m̂+
x

∂x2
+

∂2m̂+
x

∂r2
+

1

r

∂m̂+
x

∂r
−

m2

r2
m̂+

x . . .

. . . +
1

3

(

∂2m̂+
r

∂x∂r
+

1

r

∂m̂+
r

∂x
+

im

r

∂m̂θ

∂x

)]

−
T̂ +

ρ̄

∂T̄

∂x
+

1

ρ̄

∂p̂+

∂x
(A 6a)

Radial:

(σ − iω)m̂+
r =

1

ρ̄

(

m̄x

(

∂m̂+
r

∂x
+

∂m̂+
x

∂r

)

+ 2m̄r

∂m̂+
r

∂r
+ m̄θ

(

∂m̂+

θ

∂r
+

im

r
m̂+

r −
m̂+

θ

r

))

. . .

. . . +
1

S1Reρ̄

[

∂2m̂+
r

∂x2
−

m2

r2
m̂+

r +
4

3

(

∂2m̂+
r

∂r2
+

1

r

∂m̂+
r

∂r
−

m̂+
r

r2

)

. . .

. . . +
1

3

(

∂2m̂+
x

∂x∂r
+

im

r

∂m̂+

θ

∂r

)

−
7im

3r2
m̂+

θ

]

−
T̂ +

ρ̄

∂T̄

∂r
+

1

ρ̄

∂p̂+

∂r
(A 7a)

Azimuthal:

(σ − iω)m̂+

θ =
1

ρ̄

(

m̄x

(

∂m̂+

θ

∂x
+

im

r
m̂+

x

)

+ m̄r

(

∂m̂+

θ

∂r
+

im

r
m̂+

r −
m̂+

θ

r

)

. . .

. . . +
2m̄θ

r

(

imm̂+

θ + m̂+
r

)

)

+
1

S1Reρ̄

[

∂2m̂+

θ

∂x2
+

∂2m̂+

θ

∂r2
+

1

r

∂m̂+

θ

∂r
. . .

. . . −

(

1 +
4m2

3

)

m̂+

θ

r2
+

im

3r

(

∂m̂+
x

∂x
+

∂m̂+
r

∂r

)

+
7im

3r2
m̂+

r

]

+
im

rρ̄
p̂+(A 8a)
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A.2.2. Energy

Ĝ+ =
T̂ +

ρ̄
+ (S1 − 1)p̂+ (A 9a)

(σ − iω)T̂ + = m̄x

∂Ĝ+

∂x
+ m̄r

∂Ĝ+

∂r
+

im

r
m̄θĜ

+ . . .

. . . +
1

S1RePrρ̄

[

∂2Ĝ+

∂x2
+

∂2Ĝ+

∂r2
+

1

r

∂Ĝ+

∂r
−

m2

r2
Ĝ+

]

. . .

. . . −(S1 − 1)ρ̂+ (A 9b)

A.2.3. State

ρ̂+ = −m̄x

(

m̄x

∂m̂+
x

∂x
+ m̄r

∂m̂+
x

∂r
+

im

r
m̄θm̂

+
x

)

. . .

. . . −m̄r

(

m̄x

∂m̂+
r

∂x
+ m̄r

∂m̂+
r

∂r
−

1

r
m̄θm̂

+

θ +
im

r
m̄θm̂

+
r

)

. . .

. . . −m̄θ

(

m̄x

∂m̂+

θ

∂x
+ m̄r

∂m̂+

θ

∂r
+

1

r
m̄θm̂

+
r +

im

r
m̄θm̂

+

θ

)

. . .

. . . −
m̄x

S1Re

[

4

3

∂2m̂+
x

∂x2
+

∂2m̂+
x

∂r2
+

1

r

∂m̂+
x

∂r
−

m2

r2
m̂+

x . . .

. . . +
1

3

(

∂2m̂+
r

∂x∂r
+

1

r

∂m̂+
r

∂x
+

im

r

∂m̂θ

∂x

)]

. . .

. . . −
m̄r

S1Re

[

∂2m̂+
r

∂x2
−

m2

r2
m̂+

r +
4

3

(

∂2m̂+
r

∂r2
+

1

r

∂m̂+
r

∂r
−

m̂+
r

r2

)

. . .

. . . +
1

3

(

∂2m̂+
x

∂x∂r
+

im

r

∂m̂+

θ

∂r

)

−
7im

3r2
m̂+

θ

]

. . .

. . . −
m̄θ

S1Re

[

∂2m̂+

θ

∂x2
+

∂2m̂+

θ

∂r2
+

1

r

∂m̂+

θ

∂r
. . .

. . . −

(

1 +
4m2

3

)

m̂+

θ

r2
+

im

3r

(

∂m̂+
x

∂x
+

∂m̂+
r

∂r

)

+
7im

3r2
m̂+

r

]
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