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We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system:
a Rijke tube containing a hot wire. We calculate how the growth rate and frequency
of small oscillations about a base state are affected either by a generic passive control
element in the system (the structural sensitivity analysis) or by a generic change to
its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity
by calculating the effect of a second hot wire with a small heat-release parameter.
In a single calculation, this shows how the second hot wire changes the growth rate
and frequency of the small oscillations, as a function of its position in the tube.
We then examine the components of the structural sensitivity in order to determine
the passive control mechanism that has the strongest influence on the growth rate.
We find that a force applied to the acoustic momentum equation in the opposite
direction to the instantaneous velocity is the most stabilizing feedback mechanism.
We also find that its effect is maximized when it is placed at the downstream
end of the tube. This feedback mechanism could be supplied, for example, by an
adiabatic mesh. We illustrate the base-state sensitivity by calculating the effects of
small variations in the damping factor, the heat-release time-delay coefficient, the heat-
release parameter, and the hot-wire location. The successful application of sensitivity
analysis to thermo-acoustics opens up new possibilities for the passive control of
thermo-acoustic oscillations by providing gradient information that can be combined
with constrained optimization algorithms in order to reduce linear growth rates.
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1. Introduction
In a thermo-acoustic system, heat-release oscillations couple with acoustic-pressure

oscillations. If the heat release is sufficiently in phase with the pressure, these
oscillations grow, sometimes with catastrophic consequences. Using adjoint sensitivity
analysis, we identify the most influential components of a thermo-acoustic system
and quantify their influence on the frequency and growth rate of oscillations. This
technique shows how a thermo-acoustic system should be changed in order to extend
its linearly stable region.
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Adjoint sensitivity analysis of incompressible flows was proposed by Hill (1992)
and developed further by Giannetti & Luchini (2007) in order to reveal the region
of the flow that causes a von Kármán vortex street behind a cylinder. They used
adjoint methods to calculate the effect that a small control cylinder has on the growth
rate of oscillations, as a function of the control cylinder’s position downstream of the
main cylinder. This control cylinder induces a force in the opposite direction to the
velocity field. Giannetti & Luchini (2007) and Giannetti, Camarri & Luchini (2010)
considered this feedback only on the perturbed fields but Marquet, Sipp & Jacquin
(2008) extended this analysis to consider the cylinder’s effect on the base flow as
well. Sipp et al. (2010) provide a comprehensive review of sensitivity analysis for
incompressible fluids and Chandler et al. (2012) extend this analysis to low-Mach-
number flows in order to model variable-density fluids and flames.

The aim of this paper is to extend adjoint sensitivity analysis to a thermo-acoustic
system, which has not been attempted before. We investigate the thermo-acoustic
system described by Balasubramanian & Sujith (2008a) and Juniper (2011). This is an
open-ended tube, through which air passes, and which contains a hot wire at a given
axial location. One-dimensional acoustic standing waves in the tube modulate the air
velocity at the wire, which in turn modulates the heat transfer from the wire to the
air, which is modelled with a modified form of King’s law (Heckl 1990; Matveev
2003). This heat transfer occurs at the wire’s location but is not instantaneous. The
time taken for the heat to diffuse to the bulk fluid is modelled as a time delay between
the velocity fluctuations and the heat-release fluctuations.

The analysis consists of three main steps. First, we study the system as an
eigenvalue problem in the complex frequency domain. Secondly, we derive two
sets of adjoint equations from the linearized governing equations. Thirdly, we use
the adjoint equations to perform both a structural sensitivity analysis and a base-
state sensitivity analysis. The structural sensitivity analysis quantifies the effect that
feedback mechanisms have on the frequency and growth rate of oscillations. This
analysis relies on studying the effect of a perturbation to the governing equations,
which is known as a structural perturbation. There are several components of the
feedback and, in this paper, we calculate all of them. We then illustrate the structural
sensitivity by considering the effect of feedback from a second hot wire. The base-
state sensitivity analysis quantifies the effect of a change in the constant coefficients
of the governing equations. It does not involve a feedback mechanism. The base
state in this thermo-acoustic model is represented by four parameters: the damping
factor, ζ ; the heat-release time-delay coefficient, τ ; the heat-release parameter, β, and
the hot-wire location, xh. This shows us how to change these parameters in order to
stabilize the system most. In addition, we can also calculate the location of the first
hot wire that makes the system most sensitive to base-state modifications. In the final
section we apply this analysis to the passive control of an unstable nonlinear system.

2. Thermo-acoustic model
The thermo-acoustic system examined in this paper is a horizontal Rijke tube

containing a hot wire. It is governed by the following nonlinear time-delayed
equations:

∂u

∂t
+ ∂p

∂x
= 0, (2.1)

∂p

∂t
+ ∂u

∂x
+ ζp− q̇= 0, (2.2)
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q̇= 2√
3
β

(∣∣∣∣13 + u(t − τ)
∣∣∣∣1/2 − (1

3

)1/2
)
δ(x− xh), (2.3)

where u, p and q̇ are the non-dimensional velocity, pressure, and heat-release rate,
respectively. The hot wire is placed at x = xh, which is modelled by the Dirac delta
(generalized) function δ(x − xh). The system has four control parameters: ζ , which
is the damping; β, which encapsulates all relevant information about the hot wire,
base velocity, and ambient conditions; τ , which is the time delay; and xh, which
is the position of the hot wire. The values of β, τ and xh are given in the figure
captions along with the damping constants c1 and c2. In § 3 we will explain how ζ

is related to c1 and c2. Equations (2.1)–(2.2) are derived from the Navier–Stokes and
energy equations by assuming first-order acoustics, as explained in Culick (1971). The
heat-release rate in (2.3) is modelled with a modified form of King’s law (Heckl 1990;
Matveev 2003). Note that throughout this paper we define the heat-release parameter
β to be

√
3/2 times the heat-release parameter β defined in Juniper (2011). The

heat-release term (2.3) is linearized around a fixed point of the system, where |u| � 1.
In addition, (2.3) is also linearized in time, assuming that the time-delay coefficient is

sufficiently small compared with the period of the highest Galerkin mode (§ 3):

q̇= β
(

u− τ ∂u

∂t

)
δ(x− xh). (2.4)

By substituting (2.1) into (2.4), we obtain an equivalent expression for the linearized
heat-release law:

q̇= β
(

u+ τ ∂p

∂x

)
δ(x− xh). (2.5)

It is important to anticipate that, although (2.4) is physically equivalent to (2.5), the
systems of the linearized governing equations (2.1), (2.2), (2.4) and (2.1), (2.2), (2.5)
will produce two different sets of adjoint equations (§ 4).

3. Numerical discretization
The partial differential equations (2.1), (2.2), (2.4), which govern the thermo-

acoustic system, are discretized into a set of ordinary differential equations by
choosing an orthogonal basis that matches the boundary conditions. This procedure
is also known as the Galerkin method. The variables are expressed as:

u(x, t)=
N∑

j=1

ηj(t) cos(jπx), p(x, t)=−
N∑

j=1

(
η̇j(t)

jπ

)
sin(jπx). (3.1)

The state of the system is given by the amplitudes of the Galerkin modes that
represent velocity, ηj, and those that represent pressure, η̇j/jπ. The state vector of
the discretized system is the column vector χ ≡ (u, p)T, where u ≡ (η1, . . . , ηN)

T

and p ≡ (η̇1/π, . . . , η̇N/Nπ)
T. The discretized problem can be represented in matrix

notation:

dχ

dt
= Γχ , (3.2)

where Γ is the 2N × 2N direct matrix and χ is the 2N × 1 state vector. The basis
functions, cos(jπx) and sin(jπx), are the eigenfunctions of the undamped acoustic
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system without the heater. The direct matrix Γ is given in appendix A in (A 2). Note
that, when the system has N Galerkin modes, it has 2N degrees of freedom.

The linearized equations in § 2 are valid for small |uh| and τ � Tj, where Tj = 2/j
is the period of the jth Galerkin mode, as explained in Juniper (2011). The results are
presented here for a system with 10 Galerkin modes (as for system C in Juniper 2011).
We checked modal convergence by considering more Galerkin modes and found that
10 modes provide an accurate representation of the system, as discussed in § 7.3.

At the ends of the tube, p and ∂u/∂x are both set to zero, which means that
the system cannot dissipate acoustic energy by doing work on the surroundings.
Dissipation and end losses are modelled by the damping parameter for each mode
ζj = c1j2 + c2

√
j, where c1 and c2 are constants. Oscillations of higher Galerkin modes

decay very rapidly if no mechanism drives them. This damping model was used
in Balasubramanian & Sujith (2008b) and was based on correlations developed by
Matveev (2003) from models in Landau & Lifshitz (1959).

4. Adjoint operator
In this section the adjoint operator is defined. This definition is an extension over

the time domain of the definition given by Dennery & Krzywicki (1996). Let L be
a partial differential operator of order M acting on the function q(x1, x2, . . . , xK, t),
where K is the space dimension, such that Lq(x1, x2, . . . , xK, t) = 0. We refer to the
operator L as the direct operator and the function q as the direct variable. The adjoint
operator L+ and adjoint variable q+ are defined via the generalized Green’s identity:∫ T

0

∫
V

q̄+Lq− q
(
L+q+

)
dV dt =

∫ T

0

∫
S

K∑
i=1

[
∂

∂xi
Qi

(
q, q̄+

)]
ni dS dt + · · ·

· · · +
∫

V
Qi(q, q̄+)|T0 dV, (4.1)

where i = 1, 2, . . . ,K and Qi(q, q̄+) are functions which depend bilinearly on q, q̄+

and their first M − 1 derivatives. The complex-conjugate operation is labelled by an
overline. The domain V is enclosed by the surface S, for which ni are the projections
on the coordinate axis of the unit vector in the direction of the outward normal to
the surface dS. The time interval is T . The adjoint boundary conditions and initial
conditions on the function q+ are defined as those that make the right-hand side of
(4.1) vanish identically on S, t = 0 and t = T .

The adjoint equations can either be derived from the continuous direct equations and
then discretized (CA, discretization of the continuous adjoint) or be derived directly
from the discretized direct equations (DA, discrete adjoint). For the CA method
(§§ 6.1 and 6.2), the adjoint equations are derived by integrating the continuous
direct equations by parts and then applying Green’s identity (4.1). They are then
discretized with the Galerkin method (3.1). The appendices of Juniper (2011) show
the intermediate steps. Two different sets of adjoint equations are derived here, shown
in table 1. The first set, CA1, is obtained from (2.1), (2.2), (2.4) and produces
the discretized adjoint matrix (A 3). The second set, CA2, is obtained from (2.1),
(2.2), (2.5) and produces the discretized adjoint matrix (A 4). The difference arises
merely because the governing equations are arranged differently. It has no physical
significance. For the DA method (§ 6.3) the adjoint is simply the negative Hermitian of
the direct matrix: Φ =−ΓH .
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FIGURE 1. The discrepancy between the DA and the CA discretizations, for the two different
formulations of the CA equations, CA1 and CA2. In both figures, N = 10, xh = 0.25, and
β = 0.5. (a) c1 = 0.01, c2 = 0.004 and (b) c2 = 0, τ = 0.01.

CA1 CA2

∂u+

∂t
+ ∂p+

∂x
+β

(
p+ + τ ∂p+

∂t

)
δ(x− xh)= 0

∂u+

∂t
+ ∂p+

∂x
+ βp+δ(x− xh)= 0

∂u+

∂x
+ ∂p+

∂t
− ζp= 0

∂u+

∂x
+ ∂p+

∂t
− ζp− βτ ∂[p

+δ(x− xh)]
∂x

= 0

TABLE 1. The two different sets of continuous adjoint equations.

The DA method has the same truncation errors as the discretized direct system,
while methods CA1 and CA2 have different truncation errors. The effect of these
truncation errors is quantified in figure 1, which compares the discrepancy between
CA1 and DA with the discrepancy between CA2 and DA. Method CA1 has generally a
greater discrepancy than CA2, as shown in figure 1. This discrepancy is a function of
the time delay, τ, and the damping coefficients, c1 and c2. Regardless of the value of
the damping, the discrepancy is zero when τ = 0. This can be inferred by examining
the mathematical structure of the matrices given in (A 2), (A 3) and (A 4). If τ= 0 then
Φ =−ΓH regardless of the formulation used.

These adjoint equations govern the evolution of the adjoint variables, which can
be regarded as Lagrange multipliers from a constrained optimization perspective
(Belegundu & Arora 1985). Therefore, u+ is the Lagrange multiplier of the acoustic
momentum equation (2.1). Physically, it reveals the spatial distribution of the system’s
sensitivity to a force. Likewise, p+ is the Lagrange multiplier of the pressure equation
(2.2) and (2.4) as well as (2.2) and (2.5). Physically, it reveals the spatial distribution
of the system’s sensitivity to heat injection.

5. Modal analysis: the eigenvalue problem
So far we have considered the thermo-acoustic system in the (x, t) domain. In modal

analysis, we consider it in the (x, σ ) domain using the transformations

u(x, t)= û(x, σ )eσ t, u+(x, t)= û+(x, σ )e−σ̄ t, (5.1)

p(x, t)= p̂(x, σ )eσ t, p+(x, t)= p̂+(x, σ )e−σ̄ t, (5.2)

where the symbol ˆ denotes an eigenfunction. The behaviour of the system in the
long time limit is dominated by the eigenfunction whose eigenvalue has the highest
growth rate. The complex-conjugate adjoint eigenfunctions of velocity and pressure are
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FIGURE 2. The direct eigenfunctions as a function of the heat-release parameter, β, for
N = 10, xh = 0.25, τ = 0.01, c1 = 0.01 and c2 = 0.004. The relevant eigenvalues are: σ =
−0.0070+3.1416i, for β = 0; σ =−0.0056+3.1848i, for β = 0.1; σ =+0.00023+3.3570i,
for β = 0.5. Note that (a) and (d) have very small vertical scales.

labelled ˆ̄u and ˆ̄p, respectively. With the definition of the Green’s identity (4.1), the
adjoint eigenvalues, −σ̄ , are the negatives of the complex conjugates of the direct
eigenvalues, σ . This satisfies the bi-orthogonality condition between the direct and
adjoint eigenfunctions (Salwen & Grosch 1981). The system is studied in the complex
frequency domain by substituting the relations (5.1) and (5.2) into the direct (2.1),
(2.2), (2.4) and into the adjoint equations given in table 1.

Figure 2 shows the direct eigenfunctions and figure 3 the DA adjoint eigenfunctions
as β increases from 0 to 0.5. When β = 0, the eigenfunctions are the natural acoustic
modes of the duct but, as β increases, the eigenfunctions become distorted by the heat
release at the wire. This has important consequences for the structural sensitivity, as
will be shown in § 7.

Figure 4 shows the direct and adjoint eigenfunctions, found using the DA, CA1, and
CA2 methods, at β = 0.5. This is the value of β used for the sensitivity analyses. The
discrepancies in Im(u+) and Re(p+) cause the differences in sensitivities seen in §§ 7.1
and 7.4.

6. Calculation of the structural and base-state sensitivities
6.1. Structural sensitivity via the CA method

The thermo-acoustic system described in § 2 has been linearized about a base state.
Following Giannetti & Luchini (2007), we perturb the linearized operator, L, by
adding to it some general function of the perturbation state variables, û and p̂. In
this section, we assume that this feedback does not affect the base state. We also
assume that the structural perturbation is small enough for the new thermo-acoustic
configuration to be

σnew = σ + δσ, p̂new = p̂+ δp̂, ûnew = û+ δû, (6.1)

where δσ = εσ , δp̂ = εp̂, δû = εû with |ε| � 1, and where terms of order ε2 are
sufficiently small to be neglected.



Sensitivity analysis of a thermo-acoustic system via adjoint equations 189

 

0 1.00.80.60.40.2

0.80.60.40.2
x

0 1.0

0 1.00.80.60.40.2

0.80.60.40.2
x

0 1.0

(a)

(c) (d )

0

0

–0.02

(b)

0.5

–1

1

–0.04

0.02

0

5

–5

1.0

(× 10–3)

FIGURE 3. The adjoint eigenfunctions as a function of the heat-release parameter, β, for
N = 10, xh = 0.25, τ = 0.01, c1 = 0.01 and c2 = 0.004. Note that (b) and (c) have very small
vertical scales.
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FIGURE 4. The adjoint eigenfunctions found using the DA, CA1, and CA2 methods. The
parameters are N = 10, xh = 0.25, τ = 0.01, β = 0.5, c1 = 0.01 and c2 = 0.004. Note that (b)
and (c) have very small vertical scales.

The direct eigenfunctions can be arranged as a column vector [û p̂]T. In general, a
structural perturbation to the thermo-acoustic operator can be represented by a 2 × 2
tensor, δH, which acts on [û p̂]T. Each component δHij of this structural perturbation
tensor quantifies the effect of a feedback mechanism between the jth eigenfunction and
the ith direct governing equation.

We obtain the eigenvalue drift, δσ , caused by the structural perturbation, δH, by
applying the Green’s identity (4.1) to the perturbed direct and adjoint equations, in
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Method CA1 CA2

δσ =

∫
L
[ ˆ̄u+ ˆ̄p+]δH [û p̂]T dx∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx+ βτ ûh ˆ̄p+h

∫
L
[ ˆ̄u+ ˆ̄p+]δH [û p̂]T dx∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx

TABLE 2. The eigenvalue drift caused by a generic structural perturbation, which is
represented by the generic tensor δH. The two methods, CA1 and CA2, are derived from
two equivalent versions of the governing equations, § 4. L is the dimensionless tube length.

Method CA1 CA2

δH =
[

0 0
δβc(1− στc)δ(x− xc) 0

] [
0 0

δβcδ(x− xc) δβcτcδ(x− xc)
∂

∂x

]

TABLE 3. The tensor representing a structural perturbation caused by a second hot wire.
Two representations are obtained, depending on whether the heat-release rate is expressed
following the CA1 or CA2 method.

Method CA1 CA2

δσ

δβc
=

ˆ̄p+c ûc (1− στc)∫
L
(û ˆ̄u+ + p̂ ˆ̄p+) dx+ βτ ûh ˆ̄p+h

ˆ̄p+c
(

ûc + τc
∂ p̂c

∂x

)
∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx

TABLE 4. The change in the eigenvalue due to the presence of the control wire with a
small heat-release parameter δβc, derived via the CA1 and CA2 approaches.

a manner similar to Giannetti & Luchini (2007). Table 2 describes the effect of a
generic perturbation δH. The great advantage of this approach is that, once the direct
and adjoint eigenfunctions have been calculated, all linear feedback mechanisms can
be examined at little extra cost.

We will illustrate the process for the specific case where the feedback mechanism
is a second hot wire, called the control wire, whose parameters are denoted with the
subscript c. The structural perturbation caused by the control wire is represented by
the tensor in table 3. The component δH21 represents a feedback mechanism that is
proportional to the velocity perturbation and that perturbs the pressure equation. The
component δH22 represents a feedback mechanism that is proportional to the pressure
perturbation and that also perturbs the pressure equation. The change in the eigenvalue
caused by the presence of the control hot wire with a small heat-release parameter δβc

is given in table 4 for both CA methods. The results will be described in § 7.2.

6.2. Base-state sensitivity via the CA method
Using adjoint techniques, a single calculation can reveal how the growth rate
and frequency of the system is altered by any small variation of the base-state
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Method CA1 CA2

δσ

δβ
=

ˆ̄p+h ûh (1− στ)∫
L
(û ˆ̄u+ + p̂ ˆ̄p+) dx+ βτ ûh ˆ̄p+h

ˆ̄p+h
(

ûh + τ ∂ p̂h

∂x

)
∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx

δσ

δτ
= −βσ ˆ̄p+h ûh∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx+ βτ ûh ˆ̄p+h

β ˆ̄p+h
∂ p̂h

∂x∫
L
(û ˆ̄u+ + p̂ ˆ̄p+) dx

δσ

δζ
=

−
∫

L
p̂ ˆ̄p+dx∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx+ βτ ûh ˆ̄p+h

−
∫

L
p̂ ˆ̄p+dx∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx

TABLE 5. The change in the eigenvalue due to small changes in the base-state coefficients,
derived via the CA1 and CA2 methods.

parameters δβ, δζ , δτ , and δxh. This is known as the base-state sensitivity. In this
section, we calculate the base-state sensitivities to β, τ , and ζ as functions of the
hot-wire position, xh. By applying a methodology similar to that presented in § 6.1, we
obtain the base-state sensitivities shown in table 5. The results will be described in
§ 7.4.

6.3. Both sensitivities via the DA method
Both sensitivities can be calculated directly from the discretized governing equations
(the DA method). There are four stages to this method: (i) calculate the perturbation
matrix δP using (A 5), imposing an arbitrarily small perturbation on the base-state
parameter; (ii) calculate the eigenvectors of the matrices Γ and −ΓH; (iii) apply (6.2)
below to find the eigenvalue drift; (iv) divide the eigenvalue drift by the perturbation
used in stage 1 in order to obtain the sensitivity coefficient. The eigenvalue drift due to
a perturbation of the discretized direct system (similar to Giannetti & Luchini 2007) is
given by

δσ =
ˆ̄ξ ·
(
δPχ̂

)
ˆ̄ξ · χ̂

, (6.2)

where the matrix δP represents a small perturbation to the direct system, whose matrix
is Γ . Here, the symbol ˆ represents an eigenvector. The column vector ξ̂ is the
eigenvector of the adjoint matrix Φ = −ΓH . The perturbation matrix δP is given in
(A 5). It can represent either a structural perturbation or a base-state perturbation.

7. Results and physical interpretation
7.1. Comparing the three methods of calculating the structural sensitivity

Figure 5(a,b) shows the real and imaginary components of δσ/δβc as a function of the
control wire position, xc, via the DA, CA1 and CA2 methods. In this case the main
hot wire is placed at x = 0.25 so that most of the perturbation energy is in the first
acoustic mode (Matveev 2003). Figure 6(a,b) is the same as figure 5(a,b) but the main
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FIGURE 5. (a,b) Sensitivity of the growth rate, Re(δσ/δβc), and of the angular frequency,
Im(δσ/δβc), when a control wire is placed at position xc. This is calculated exactly, via
finite difference, and via the DA, CA1 and CA2 methods. (The DA method gives the same
result as the finite-difference method to machine precision.) (c,d) The Rayleigh index for a
control wire placed at xc. The parameters are N = 10, β = 0.5, c1 = 0.01, c2 = 0.004 and
τ = τc = 0.01. The main hot wire is at xh = 0.25 so that the first acoustic mode is excited.

hot wire is now placed at x = 0.625 so that most of the perturbation energy is in the
second acoustic mode (Matveev 2003). These results can be compared with the exact
solution, which is obtained by finite difference. This is the difference between the
dominant eigenvalues of the perturbed direct matrix, Γ + δP, and the original direct
matrix, Γ , divided by the (finite) arbitrarily small perturbation. The perturbation matrix
δP is given in (A 5).

As expected, the DA method matches the finite difference method exactly. The CA
methods both contain some error, due to the truncation errors in the discretization. The
CA2 method is usually more accurate than the CA1 method. For this thermo-acoustic
system, however, the DA method turns out to be the most accurate and easy to
implement.

The real component of the structural sensitivity gives the change in the growth rate
that is caused by the control wire. The imaginary component gives the change in the
frequency. The physical reason for these changes is given in § 7.2. The control wire
has a much stronger effect on the frequency than on the growth rate, for reasons given
in § 7.3.

7.2. Comparing the structural sensitivity with the Rayleigh Index
It has long been known (Rayleigh 1878) that if pressure and heat-release fluctuations
are in phase, then acoustic vibrations are encouraged. More precisely, the Rayleigh
Criterion states that the energy of the acoustic field grows over one cycle of oscillation
if
∮

T

∫
D

pq̇ dD dt exceeds the damping, where D is the flow domain and T is the
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FIGURE 6. (a,b) Sensitivity of the growth rate, Re(δσ/δβc), and of the angular frequency,
Im(δσ/δβc), when a control wire is placed at position xc. This is calculated exactly, via
finite difference, and via the DA, CA1 and CA2 methods. (The DA method gives the same
result as the finite-difference method to machine precision.) (c,d) The Rayleigh index for a
control wire placed at xc. The parameters are N = 10, β = 0.5, c1 = 0.01, c2 = 0.004 and
τ = τc = 0.01. The main hot wire is at xh = 0.625 so that the second acoustic mode is excited.

period. It is particularly informative to plot the spatial distribution of∮
T
pq̇ dt (7.1)

which is known as the Rayleigh Index. This reveals the regions of the flow
that contribute most to the Rayleigh Criterion and therefore gives insight into the
physical mechanisms that alter the amplitude of the oscillation. To examine the effect
of the control wire, we substitute the approximate expressions p = p̂ exp(σit) and
q̇ = ˆ̇q exp(σit) (found from (2.4) or (2.5)) into (7.1) and integrate over a period 2π/σi,
where σi = Im(σ ). (The approximation arises because the growth rate over the cycle
has been ignored.) The real part of the Rayleigh Index gives the change in the growth
rate and the imaginary part gives the change in the frequency (figures 5c,d), 6c,d). As
expected, the sign of the Rayleigh index matches that of the structural sensitivity (the
position at which it is zero matches within 1 %) and the shape is similar. The Rayleigh
Index physically explains the effect of adding the control hot wire to the Rijke tube.

First, we refer to figure 5 where the main hot wire is at xh = 0.25 and most of
the perturbation energy is contained in the first mode. For x = 0–0.56, the pressure
and heat-release eigenfunctions are sufficiently in phase that the contribution to growth
over a cycle is positive. For x = 0.56–1, they are out of phase so their contribution
to growth over a cycle is negative. For this case, the location where the presence
of a second hot wire is most effective at reducing the growth rate is xc ≈ 0.8. It is
interesting to note that this system becomes more unstable when the control wire is
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Method CA1 CA2

S = δσ
δC
= [ˆ̄u+ ˆ̄p+]T⊗[û p̂]T∫

L
(û ˆ̄u+ + p̂ ˆ̄p+) dx+ βτ ûh ˆ̄p+h

[ ˆ̄u+ ˆ̄p+]T⊗[û p̂]T∫
L
(û ˆ̄u+ + p̂ ˆ̄p+) dx

TABLE 6. Structural sensitivity tensor for a general feedback mechanism δC.

placed at 0.5< xc < 0.56. This is in the second half of the tube and, in the absence of
the first hot wire, a control wire placed here would be stabilizing. The reason for this
is that the main hot wire, at xh, causes the eigenfunctions to distort from the acoustic
modes of the duct. In particular, the features of the û and p̂ eigenfunctions (figure 2)
shift down the duct, to higher values of x. This shifts downstream the region in which
the control wire is destabilizing.

Secondly, we refer to figure 6 where the main hot wire is at xh = 0.625 and most
of the perturbation energy is contained in the second mode. For 0 < x < 0.23 and
0.47 < x < 0.77, the pressure and heat-release eigenfunctions are sufficiently in phase
that the contribution to growth over a cycle is positive; for 0.23 < x < 0.47 and
0.77 < x < 1, they are out of phase so their contribution to growth over a cycle is
negative. For this case, the location where the presence of a second hot wire is most
effective at reducing the growth rate is xc ≈ 0.36.

7.3. Using the structural sensitivity to find the most efficient feedback mechanisms
In passive control, an object that is placed at a point in the system causes feedback
at that point. Under these conditions, the structural sensitivity reveals the feedback
mechanism that is most effective at changing the frequency or growth rate of the
system.

In § 6.1, we defined the perturbation tensor, δH, to be an operator localized at the
control wire’s location. In this section we consider the case of a generic feedback
mechanism, represented by a localized perturbation in which δH is constant, following
Giannetti & Luchini (2007). For clarity, we re-label δH as δC for this case. The
structural sensitivity tensor S = δσ/δC is then given by the expression in table 6.

Its numerator is the dyadic product [ ˆ̄u+ ˆ̄p+]T⊗[û p̂]T. The four components of
S quantify how a feedback mechanism that is proportional to the state variables
affects the growth rate and frequency of the system. They are shown in figure 7
(real part) and figure 8 (imaginary part) as a function of x, which is the location
of the structural perturbation. The eigenfunctions are calculated with both 10 modes
(thick line) and 100 modes (thin line). With the latter discretization it is possible
to capture the eigenfunction discontinuity at the hot-wire location caused by the
impulsive heat release. Although a discretization with 100 modes does not meet
the physical constraint that τ � 2/N (§ 3), we can use it to examine the numerical
accuracy of the 10-mode discretization. At the hot-wire location, the 100-mode
discretization of Re(S12) and Im(S11) experiences the Gibbs phenomenon (Gibbs
1898) and therefore the solution is inaccurate. The Gibbs phenomenon remains as
the number of Galerkin modes increases. The 10-mode discretization is very accurate
except at the discontinuity at the hot-wire location.

When β → 0, the direct eigenfunctions are nearly the acoustic modes of the
system, as shown in figures 2 and 3. By inspection of these eigenfunctions, we
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see that S11 ≈ (cosπx)2, S12 ≈ −i(sinπx) × (cosπx), S21 ≈ i(sinπx) × (cosπx) and
S22 ≈ (sinπx)2, when β→ 0. The heat release from the main hot wire distorts these
eigenfunctions (figure 2) so the structural sensitivities are similarly distorted.
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First, we consider a feedback mechanism that is proportional to the velocity and
that forces the momentum equation (S11). For example, this could be caused by the
drag from a fine mesh placed in the flow. The system is most sensitive when this
feedback mechanism is placed at the entrance or exit of the duct. This is because: (i)
the velocity mode is maximal there; and (ii) the adjoint velocity, which is a measure of
the sensitivity of the momentum equation, is also maximal there, as shown in figure 4.
The Re(S11) component (figure 7) is positive for all values of x, which means that,
whatever value of x is chosen, the growth rate will decrease if the forcing is in the
opposite direction to the velocity, as it would be for a fine mesh placed in the flow.
This type of feedback greatly affects the growth rate (figure 7), which is the real
component of the sensitivity, but barely affects the frequency (figure 8), which is the
imaginary component. This behaviour is as expected for this type of feedback.

Secondly, we consider a feedback mechanism that is proportional to the pressure
and that forces the pressure equation (S22). This type of feedback is described in
Chu (1963) and is relevant to pressure-coupled heat release in solid rocket engines.
For this feedback, the system is most sensitive around the centre of the duct, with a
maximum at x ≈ 0.58. Again, this feedback greatly affects the growth rate (figure 7),
and it is positive for all values of x, but barely affects the frequency (figure 8). If the
heat release increases with the pressure, as it does for most chemical reactions, this
feedback mechanism is destabilizing.

Thirdly, we consider S12, which represents feedback from the pressure into the
momentum equation, and S21, which represents feedback from the velocity into the
pressure equation. These types of feedback barely affect the growth rate (figure 7) but
greatly affect the frequency (figure 8). The hot control wire considered in figure 5
causes this type of feedback (S21) if τ = 0. This analysis shows, therefore, that this
passive control device is quite ineffective at reducing the growth rate. This had been
shown already in figure 5, in which the hot wire is seen to affect the frequency
(imaginary component) much more than it affects the growth rate (real component).

By inspection of figure 7, we conclude that the passive device that is most effective
at reducing the growth rate should force the momentum equation in the opposite
direction to the velocity fluctuation and should be placed at the exit of the tube. A
damping device such as an adiabatic wire mesh would achieve this.

This paper is mainly relevant to passive control but it is worth briefly mentioning
active control. For active control, the sensor and actuator would typically be in
different places. For maximum observability, the sensor should be placed where the
relevant direct eigenfunction has its largest amplitude. For maximum controllability,
the actuator should be placed where the relevant adjoint eigenfunction has its largest
amplitude.

7.4. Base-state sensitivity results
Figure 9(a) shows how a small variation in the heat-release parameter, β, affects
the growth rate, Re(σ ), and the angular frequency, ω ≡ Im(σ ), for different hot-wire
positions, xh. Figure 9(b) shows how a small variation in the time-delay coefficient, τ ,
affects the same quantities. These are calculated via the DA, CA1, and CA2 methods
and the results are checked against the exact solution, which is obtained by finite
difference, as in § 6.1.

As shown in table 5, these curves depend on the shapes of the direct and adjoint
eigenfunctions. In turn, these eigenfunctions are distorted from the natural acoustic
modes of the duct by the heat release from the wire. (This distortion is shown in
figures 2 and 3 for xh = 0.25.) This accounts for the elaborate shapes of the base-state
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FIGURE 9. Sensitivity to base-state modifications of β (a), τ (b) and ζ (c). The mean values
are τ = 0.01, β = 0.5, c1 = 0.05 and c2 = 0.005. For the analysis of β and τ 10 Galerkin
modes are considered, whereas for ζ only the first mode is considered.

sensitivity curves. It is also worth commenting on their relative magnitudes: small
variations in β have a much greater effect on the frequency than on the growth rate,
while small variations in τ have a much greater effect on the growth rate than on the
frequency. This will always be the case when ωτ � 1, which is easy to justify by the
following argument. If p∼ sinωt at the hot wire, then u∼ cosωt and q̇∼ cosω(t − τ)
there. Using trigonometric relations, it is easy to show that

∮
pq̇ dt, which quantifies

how much β affects the growth rate, is proportional to sinωτ and that
∮

uq̇ dt, which
quantifies how much β affects the frequency, is proportional to cosωτ . Therefore, for
small ωτ , the change in the growth rate, Re(δσ/δβ), should be of order ωτ , while
the change in the frequency, Im(δσ/δβ), should be of order 1. Differentiating with
respect to τ at constant β, we find that the change in

∮
pq̇ dt due to a change in

τ is proportional to ω cosωτ . Similarly, the change in
∮

uq̇ dt due to a change in τ

is proportional to ω sinωτ . Therefore, for small ωτ , Re(δσ/δτ) should be of order
ω, while Im(δσ/δβ) should be of order ω2τ . These magnitudes closely match the
amplitudes in figure 9, for which ω ≈ π and τ = 0.01.

Figure 9(c) shows how the angular frequency changes with the damping factor ζ . A
small increase in ζ lowers the frequency of the linear oscillations. A small increase
of ζ is always stabilizing, i.e. the growth rate decreases, but does not depend on the
hot-wire position (figure not shown). In order to study the sensitivity to small changes
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of the damping, δζ , only one Galerkin mode has been considered. This is because ζ
is a function of the Galerkin mode, as explained in § 3. Therefore, with the damping
model and numerical discretization adopted, formulae in the bottom row of table 5 are
valid only for the first Galerkin mode.

As for the structural sensitivity, there is a discrepancy between the DA and CA
solutions, which arises from the different truncation errors in the discretizations. The
origin of this error can be inferred from the matrices in appendix A. The CA1

method provides an inaccurate Im(δσ/δτ ), as shown in figure 9(b). This is due to the
time-delay coefficient and this discrepancy vanishes as the time delay becomes much
smaller. In this case, we find that the maximal discrepancy between CA1 and the exact
solution is smaller than 10 % when τ < 0.001.

8. Passive control of an unstable system
In this section we demonstrate the suppression of thermo-acoustic oscillations using

a control wire placed at the optimal location, as predicted by the structural sensitivity
analysis. We use the parameters in figure 5, which shows that, in order to reduce
the growth rate most effectively, the control wire should be placed at xc = 0.8.
We integrate the nonlinear time-delayed governing equations given in appendix B,
(B 1)–(B 2), forward in time with a fourth-order Runge–Kutta algorithm and 20
Galerkin modes.

When the control wire is absent, the growth rate is σr = 0.00023 and the angular
frequency is σi = 3.3570. We set the heat-release parameter for the control wire
to be βc = β/10 = 0.05, which is small enough to fulfil the linear assumptions.
When the control wire is present, the growth rate is σr = −0.00058 and the
angular frequency is σi = 3.3354. The difference between these values matches
that predicted by the structural sensitivity analysis, for which δσ = βc × δσ/δβc ≈
0.05× (−0.01633− 0.4323i)=−0.00082− 0.02162i, at xc = 0.8.

Figure 10(a) shows the pressure at x = 0.25 as a function of time in the nonlinear
simulations. The control wire is introduced at t = 1000. The behaviour is as expected:
there is exponential growth until t = 1000 and exponential decay afterwards. In
figure 10(b–c) the fast Fourier transform (FFT) performed on the nonlinear time-
solution confirms the frequency shift predicted by the sensitivity analysis.

9. Conclusions
The main goal of this paper is to take a technique developed for the analysis of

hydrodynamic stability and adapt it to the analysis of thermo-acoustic stability. This
technique uses adjoint equations to calculate a system’s sensitivity to feedback or to
changes in the base state.

By arranging the linearized thermo-acoustic governing equations in two different
ways, we derive two different sets of adjoint equations, which we then discretize with
a Galerkin decomposition. This is known as the ‘continuous adjoint’ (CA) method
and the two sets of adjoint equations produce two different matrices, labelled CA1

and CA2. We also derive the adjoint equations directly from the discretized linearized
thermo-acoustic system. This is known as the ‘discrete adjoint’ (DA) method and it
produces another matrix, labelled DA. The DA matrix is the negative Hermitian of
the matrix representing the discretized governing equations. We calculate the direct
and adjoint eigenfunctions of the thermo-acoustic system using these direct and adjoint
matrices. We find that the DA method is more accurate and easier to implement than
either CA method for this thermo-acoustic model.
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FIGURE 10. Stabilization of the thermo-acoustic system via a second hot wire introduced
at t = 1000 and xc = 0.8. βc = β/10 = 0.05 and the remaining parameters are the same as
in figure 5. The time integration (a) is performed on the nonlinear time-delayed equations
discretized with 20 Galerkin modes. The solution is shown at x = 0.25. The amplitude of the
spectrum of the solution is shown in (b) for t < 1000 and (c) for t > 1000.

Two sensitivity analyses are carried out: one focuses on structural perturbations and
the other on base-state perturbations. In the structural sensitivity analysis, we calculate
the effect that a generic feedback mechanism has on the frequency and growth rate
of oscillations. We illustrate this by considering the influence of a second hot wire,
with a small heat-release parameter. We find that the second wire affects the frequency
much more than the growth rate and explain this physically by evaluating the Rayleigh
Index for the second hot wire. We then use the results of the structural sensitivity
to identify the feedback mechanism that is most effective at reducing the growth rate
of oscillations. We find that this mechanism should force the momentum equation in
the opposite direction to the velocity perturbation and that it should be placed at the
downstream end of the duct. An adiabatic fine mesh would achieve this. In the base-
state sensitivity analysis, we calculate the effect that a small variation in the base-flow
parameters has on the frequency and growth rate of oscillations. As expected, we
find that a small increase in the wire temperature affects the frequency more than the
growth rate and that a small increase in the time delay affects the growth rate more
than the frequency. Also as expected, we find that a small increase in the damping
always has a stabilizing effect. The novelty of this paper is in the technique. Each
sensitivity analysis was obtained extremely quickly with a single calculation. It was
then checked against the exact solution found by many finite-difference calculations.
The DA method matched the finite-difference method exactly, while there was some
discrepancy when using the CA1 and CA2 methods.

The successful application of sensitivity analysis to thermo-acoustics opens up
new possibilities for the passive control of thermo-acoustic oscillations. In a single
calculation, sensitivity analysis shows how the growth rate and frequency of small
oscillations about some base state are affected either by a passive control element in
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the system or by a change to its base state. This gradient information can be combined
with other constraints, such as that the total mean heat release be constant, to show
how an unstable thermo-acoustic system should be changed in order to make it stable.
In this paper, we have demonstrated this for a simple system with four elements to
the base state: the hot-wire position, its heat-release coefficient, its time delay and the
damping. In future work, we will examine more elaborate flame models and acoustic
networks. This will allow us to calculate the sensitivity to the flame shape and to the
characteristics of the acoustic network in which the flame sits.
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Appendix A. Discretized equations

It is useful to define the following matrices, which are expressed in matrix notation
(repeated indices are not to be summed):

Aij ≡ 0, Bij ≡ πδiji, Eij(c1, c2)≡−ζiδij,

Fij(βw, xw)≡−2βw sin(πixw) cos(πjxw),

Gij(βw, xw, τw)≡ 2iπτwβw sin(πixw) cos(πjxw),

Hij(βw, xw, τw, c1, c2)≡ 2βwτwζj cos(πixw) sin(πjxw),

Cij(βw, xw)≡−Bij + Fij, Dij(βw, xw, τw, c1, c2)≡ Eij + Gij,


(A 1)

where i, j= 1, 2, . . . ,N, N is the number of Galerkin modes, δij is the Kronecker delta
and w stands for wire. The direct matrix Γ is given by:

Γ =
[

A B

C(βh, xh) D(βh, xh, τh, c1, c2)

]
. (A 2)

The CA equations (table 1) are discretized using the Galerkin method as for the
direct modes, by means of the decomposition in (3.1). The discretization of the first
set of adjoint equation CA1 (table 1) gives rise to the following adjoint matrix:

Φ =
[
−GT(βh, xh, τh) B − F T(βh, xh)+ H(βh, xh, τh, c1, c2)

−B −E(c1, c2)

]
, (A 3)

while the second set CA2 (table 1) gives the following adjoint matrix:

Φ =
[

A B − F T(βh, xh)

−B −E(c1, c2)+ GT(βh, xh, τh)

]
. (A 4)

Note that Γ and Φ are 2N × 2N matrices. We indicated the main hot wire with
subscript h and the control hot wire with the subscript c. Finally, the perturbation
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matrix of the direct system is:

δP =

 [0]N×N [0]N×N

C(βh + δβh, xh)+ · · · D(βh + δβh, xh, τh + δτh, c1 + δc1, c2 + δc2)+ · · ·
· · · + C(δβc, xc) · · · + D(δβc, xc, δτc, c1, c2)

 .
(A 5)

On the one hand, we obtain the perturbation matrix caused by the presence of the
second hot wire by setting δβh = δτh = δc1 = δc2 = 0 and δβc > 0 and δτc > 0. On the
other hand, we obtain the perturbation matrix caused by (positive) base-state variations
by setting δβc = δτc = 0 and δβh > 0, δτh > 0, δc1 > 0 and δc2 > 0.

Appendix B. Nonlinear time-delayed equations for control
In this section we provide the nonlinear time-delayed equations of the thermo-

acoustic system with a control hot wire.
Referring to the time integration presented in § 8, when the second hot wire is off,

for t < 1000, then βc = 0; when the second wire is on, for t > 1000, then βc = β/10.

∂u

∂t
+ ∂p

∂x
= 0, (B 1)

∂p

∂t
+ ∂u

∂x
+ ζp− 2√

3
β

(∣∣∣∣13 + u(t − τ)
∣∣∣∣1/2 − (1

3

)1/2
)
δ(x− xh)+ · · ·

· · · − 2√
3
βc

(∣∣∣∣13 + u(t − τc)

∣∣∣∣1/2 − (1
3

)1/2
)
δ(x− xc)= 0. (B 2)
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