
J. Fluid Mech. (2013), vol. 735, R5, doi:10.1017/jfm.2013.533

Phase trapping and slipping in a forced
hydrodynamically self-excited jet
Larry K. B. Li† and Matthew P. Juniper

Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

(Received 29 July 2013; revised 9 September 2013; accepted 3 October 2013)

In a recent study on a coupled laser system, Thévenin et al. (Phys. Rev. Lett.,
vol. 107, 2011, 104101) reported the first experimental evidence of phase trapping,
a partially synchronous state characterized by frequency locking without phase locking.
To determine whether this state can arise in a hydrodynamic system, we reanalyse the
data from our recent experiment on a periodically forced self-excited low-density jet
(J. Fluid Mech., vol. 726, 2013, pp. 624–655). We find that this jet exhibits the full
range of phase dynamics predicted by model oscillators with weak nonlinearity. These
dynamics include (i) phase trapping between phase drifting and phase locking when
the jet is forced far from its natural frequency and (ii) phase slipping during phase
drifting when it is forced close to its natural frequency. This raises the possibility
that similar phase dynamics can be found in other similarly self-excited flows. It
also strengthens the validity of using low-dimensional nonlinear dynamical systems
based on a universal amplitude equation to model such flows, many of which are of
industrial importance.
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1. Introduction

When a self-excited oscillator is periodically forced at a frequency different from
its natural frequency, it can respond by adjusting its oscillation frequency towards that
of the forcing. This adjustment process is known as synchronization and was first
discovered by Huygens (1673) in coupled pendulum clocks. Since then, it has been
identified in a variety of natural systems (e.g. flashing fireflies, circadian rhythms, and
clapping spectators) and has been used in the operation of artificial systems (e.g. triode
circuits, electromagnetic lasers, and cardiac pacemakers).

Weakly nonlinear analysis of model oscillators shows that several different stable
states are possible. Some of these states, such as phase drifting and phase locking,
have been observed in experiments on a variety of systems. One particular state,
however, known as phase trapping, has only recently been observed in an experiment,
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which was on a coupled laser system (Thévenin et al. 2011). In this paper, we report
phase trapping for a forced self-excited hydrodynamic system, a forced low-density
jet. Before presenting our experimental setup (§ 2) and results (§ 3), we will review
the features of model oscillators (§ 1.1) and discuss their relevance to hydrodynamic
oscillators (§ 1.2).

1.1. Synchronization in model oscillators
For forced synchronization, one of the simplest phenomenological models is the forced
van der Pol (1927) (VDP) oscillator:

z̈− ε(1− z2)ż+ ω2
0z= B sin(ωf t), (1.1)

where the feedback parameter, ε, controls the degree of both linear self-excitation
(power supply) and nonlinear self-limitation (power dissipation). The undamped
(ε = 0) natural frequency is set by ω0, and the damped (ε > 0) natural frequency
is denoted by ωn.

In the limit of weak nonlinearity (0 < ε � 1), the approximate solutions to (1.1)
can be found analytically through the Krylov–Bogoliubov method of averaging. For
this paper, we focus only on the key results, which are valid for the entire class of
low-dimensional dynamical models derived from the universal amplitude equation (i.e.
the normal form) for a periodically forced self-excited system near its supercritical
Hopf point (for details, see § 7.2 of Pikovsky et al. 2003). In figure 1, we sketch
the synchronization diagram for such a model oscillator. There are four main states:
A,B,C, and D. The dynamical transitions between them are described in the figure
caption, and their individual characteristics are listed in table 1.

All four states arise from synchronization, but only two (C,D) are fully synchronous
in that both their phase and frequency are locked into the forcing. This means that
they exhibit both (i) phase locking, a condition for which the difference between the
instantaneous phase of the forced oscillator and that of its forcing, Ψ (t)≡ ψu(t)−ψf (t),
is constant in time; and (ii) frequency locking, a condition for which the time-averaged
frequency of the forced oscillator is equal to that of its forcing: 〈Ψ̇ (t)〉 = 0. In
keeping with the literature, we refer to states C and D as phase locking, even though
they involve both phase locking and frequency locking. For regular systems, this
terminology is acceptable because phase locking requires frequency locking, although
frequency locking does not require phase locking. Situated between one of the fully
synchronous states (D) and the asynchronous state (A) is a partially synchronous
state (B) in which frequency locking occurs without phase locking. In other words,
〈Ψ̇ (t)〉 = 0 and Ψ (t) neither remains constant nor increases or decreases unboundedly.
Instead Ψ (t) oscillates boundedly around a fixed value as though it is trapped, which
is why this state (B) is often called phase trapping (Aronson, Ermentrout & Kopell
1990).

1.2. Synchronization in hydrodynamic oscillators
According to Pikovsky et al. (2003), the four synchronization states that arise in
model oscillators (§ 1.1) should be universal to all periodically forced self-excited
systems with a single weakly nonlinear oscillatory mode. To date, however, only
partial evidence of such universality has been demonstrated in hydrodynamic systems.
Phase locking (C,D) and phase drifting (A) have both been observed in a variety of
open self-excited flows: cylinder wakes (Provansal, Mathis & Boyer 1987; Karniadakis
& Triantafyllou 1989), capillary jets (Olinger 1992), low-density jets (Sreenivasan,
Raghu & Kyle 1989; Hallberg & Strykowski 2008), low-density and equidensity
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FIGURE 1. Synchronization diagram for a periodically forced self-excited model oscillator with
weak nonlinearity, such as the forced VDP oscillator with small ε (1.1). This diagram is adapted
from figure 7.6 of Pikovsky, Rosenblum & Kurths (2003) and figures 3.5–3.9 of Balanov et al.
(2009). It is centred on the 1:1 Arnol’d tongue, and its parameter space is defined by the
normalized forcing frequency (ωf /ωn) and the forcing amplitude (B). The characteristics of
the four synchronization states (A,B,C,D) are listed in table 1. Regions of phase trapping
(B) are shown in grey shading. The solid lines denote saddle-node (blue-sky) bifurcations, and
the dashed lines denote torus-death (inverse Neimark–Sacker) bifurcations. The horizontal axis
(B = 0) coincides with torus-birth (Neimark–Sacker) bifurcations. In the two boxed regions,
complex bifurcations occur, which are not illustrated here but are discussed by Holmes & Rand
(1978).

State Name Ψ (t) Zu(t) Global
attractor

Macro.
dynamics

A Phase drifting Increases or decreases Modulated Torus Quasiperiodic
B Phase trappinga Oscillates boundedly Modulated Torus Quasiperiodic
C Phase lockingb Constant Constant Limit cyclec Periodic
D Phase lockingb Constant Constant Limit cycle Periodic

TABLE 1. Characteristics of the four synchronization states shown in figure 1 in terms
of (i) the difference in instantaneous phase between the forced oscillator and its forcing,
Ψ (t) ≡ ψu(t) − ψf (t); (ii) the instantaneous amplitude of the forced oscillator, Zu(t); (iii)
the global attractor in state space; and (iv) the macroscopic dynamics. States B,C, and D
are all frequency-locked, i.e. 〈Ψ̇ (t)〉 = 0, but only states C and D are also phase-locked, i.e.
Ψ (t) = constant. a This is also known as imperfect phase locking (Penelet & Biwa 2013).
b This is also known as perfect synchronization (Penelet & Biwa 2013) or simply lock-in.
c This limit cycle differs from the one for state D in that it exists on the surface of a
resonant torus (see figure 3.11 of Balanov et al. 2009).

cross-flowing jets (Davitian et al. 2010; Getsinger, Hendrickson & Karagozian 2012),
and jet diffusion flames (Li & Juniper 2013b). Phase trapping (B), by contrast, has
never been observed in any type of flow. Experimental evidence for this intermediate
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state has only been reported twice before: first by Thévenin et al. (2011) for a
coupled laser system and then by Penelet & Biwa (2013) for a forced thermoacoustic
system. According to Thévenin et al. (2011), this may be because differentiating
between phase trapping and standard frequency locking requires delicate control of the
experimental conditions.

In this paper, we report on the phase dynamics of a forced self-excited
hydrodynamic system, a forced low-density jet. We consider this particular system
because we recently showed that its dynamical transitions and bifurcations can be
accurately reproduced with a forced VDP oscillator (Li & Juniper 2013a, referred
to as LJ 2013). In that study, however, we did not investigate the phase dynamics
and therefore could not differentiate between phase drifting (A) and phase trapping
(B) – although, through the Poincaré map, we could detect phase locking (C,D). By
reanalysing our data with the Hilbert transform, we find phase trapping in a region
of parameter space that is consistent with analytical predictions from model oscillators
(§ 1.1). We also find phase slipping, a subtle feature of phase drifting that is similarly
predicted by model oscillators and is characterized by a nonlinear evolution of Ψ (t).

2. Experimental setup

Our experimental setup consists of an inertial helium jet discharging into quiescent
ambient air from an axisymmetric convergent nozzle. This system is identical to
that of our recent study (LJ 2013, § 2.1). Its key feature is that it is purely
hydrodynamically self-excited, with an axisymmetric global instability in its potential
core (LJ 2013, figure 5), oscillating at a discrete natural frequency of fn = 983.0 Hz ±
0.15 % at 95 % confidence on the t-distribution. The primary flow parameters are the
density ratio between the jet and its surroundings, S ≡ ρj/ρ∞ = 0.14; the transverse
curvature, d/θ = 35.5, which is the ratio of the nozzle exit diameter to the initial
momentum thickness; and the Reynolds number, Re ≡ ρjUjd/µj = 1110, where Uj

is the time-averaged bulk velocity and µj is the dynamic viscosity of the jet fluid
(helium gas at 293 K and 1 atm). The secondary flow parameters are the Richardson
and Mach numbers, but these are both low (Ri ≡ gd(ρ∞ − ρj)/ρjU2

j = 7.4 × 10−4 and
M ≡ Uj/c∞ = 6.5× 10−2), so buoyancy and compressibility effects are negligible.

To induce synchronization, we force the jet sinusoidally in time with a loudspeaker
mounted upstream. We do this over a range of frequencies (0.84 . ff /fn . 1.16) so
as to explore all four states predicted by model oscillators (§ 1.1). These frequencies
(823 6 ff 6 1143 Hz) are sufficiently far from the Helmholtz resonance frequency of
the nozzle plenum (380 Hz with helium) that the spectral response of the forcing
system, as measured by a condenser microphone at (x/d, r/d) = (1.5, 2.0) ± 0.017,
is relatively flat. At each forcing frequency, ff , we incrementally increase the forcing
amplitude, A, until just beyond the onset of phase locking. We define A as the
peak-to-peak voltage into the loudspeaker, so that it is directly proportional to the
acoustic pressure amplitude, A = (2904.22 mVpp Pa−1)|p′f |, where the constant of
proportionality is valid to within ±5.8 % over the ff range of this study. (This equation
is also valid for LJ 2013, although it was not shown there.)

To measure the jet response, we use a hot-wire anemometer positioned in the
wavemaker region – on the jet centreline, 1.5d downstream of the nozzle exit:
(x/d, r/d)= (1.5, 0)±0.017. Before a test run, we calibrate the hot wire in helium to a
nominal uncertainty of ±1.7 % at 95 % confidence on the normal distribution. At each
forcing condition, we digitize the output voltage at 16 384 Hz for 16 s on a 16 bit data
converter, producing a time series of the local streamwise velocity fluctuation, u′(t).
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We then post-process the data by computing the complex analytic signal via the
Hilbert transform:

ζu(t)= u′(t)+ iu′H(t)= Zu(t)eiψu(t), (2.1)

where u′H(t) is the Hilbert transform of the jet signal u′(t), and Zu(t) and ψu(t) are its
instantaneous amplitude and instantaneous phase, respectively. By applying the same
transform to the forcing signal, we obtain its instantaneous phase, ψf (t), which we
subtract from ψu(t) to get the phase difference: Ψ (t) ≡ ψu(t) − ψf (t). We use Ψ (t)
and Zu(t) as our primary indicators of the phase dynamics and amplitude dynamics,
respectively. We use the time rate of change of ψu(t), or ψ̇u(t), as our indicator of the
instantaneous jet frequency, making it an amplitude-weighted average of the different
frequencies (i.e. f ∗n , ff , and their linear combinations) that coexist in the signal.

3. Results and discussion

Figure 2 shows our experimental data from the jet: figure 2(a) shows its
synchronization diagram centred on the 1:1 Arnol’d tongue, with regions of phase
trapping in grey shading, and figures 2(b)–2(e) show time traces of Ψ (t) and u′(t)
for two different forcing frequencies, one close to the natural frequency and one far
from it. For ease of comparison, we let Ψ (t) take any value on the whole real number
line (i.e. we do not confine it to the range [0, 2π]) and reset Ψ (t = 0) to zero in
every case. This helps because, to identify the four synchronization states predicted by
model oscillators (§ 1.1), we need to consider only the temporal evolution of Ψ (t) and
not its absolute value. In figure 2(c,e) the oscillation envelope of u′(t) is Zu(t).

3.1. Jet response when ff is close to fn

We consider the two forcing frequencies in turn, starting with the one close to the
natural frequency (figure 2d,e): ff /fn = 1023 Hz/983 Hz≈ 1.04.

When forced at low amplitudes (300 6 A 6 500 mVpp), the jet responds by phase
drifting (A): Ψ (t) decreases unboundedly with time and Zu(t) becomes modulated at
the beat frequency, |ff − f ∗n |, where the asterisk on fn denotes its value as modified
by the forcing. This concurs with our recent study (LJ 2013), which showed that the
trajectory in state space is on the surface of a stable ergodic T2 quasiperiodic attractor
created by a torus-birth bifurcation. Here Ψ (t) decreases because the jet is forced
above its natural frequency (if ff /fn < 1, Ψ (t) increases). This decrease is not linear
in time: there are long periods in which Ψ (t) is nearly constant, interrupted by short
periods in which Ψ (t) changes rapidly by 2π. These short periods coincide with jumps
in Zu(t) and also occur at the beat frequency. This intermittent behaviour, known as
phase slipping (Pikovsky et al. 2003), is thought to be a universal feature of forced or
coupled self-excited systems but, in hydrodynamics, has only previously been observed
in the coupling between an elastically mounted rigid cylinder and its self-excited wake
(Khalak & Williamson 1999, figure 14). Physically, the occurrence of phase slipping
implies that the jet oscillates at almost the same frequency as the forcing signal for
a period of time, but then slows down and loses a full cycle over a shorter period of
time (if ff /fn < 1, it gains a full cycle). This process repeats to the limit of our finite
sampling duration, which contains ∼1.6 × 104 natural cycles of u′(t). It is an intrinsic
feature of the system, not an artefact of extrinsic noise. We conclude this because the
phase slips always occur unidirectionally and periodically, not randomly in direction or
time.
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FIGURE 2. Experimental data from the forced low-density jet: (a) its synchronization diagram centred on the 1:1 Arnol’d tongue, with regions of
phase trapping in grey shading; and (b–e) time traces of Ψ (t) and u′(t) for two different forcing frequencies, one close to the natural frequency
(d,e: ff /fn ≈ 1.04) and one far from it (b,c: ff /fn ≈ 1.12). In (a) the solid lines denote saddle-node bifurcations, the dashed lines denote torus-death
bifurcations, and the horizontal axis (A = 0) coincides with torus-birth bifurcations. In (b,d) Ψ (t = 0) is reset to zero in every case, which helps
when comparing its temporal evolution but means that its absolute value is arbitrary. In (c,e) the oscillation envelope of u′(t) is Zu(t).
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When forced at moderate amplitudes (600 6 A 6 650 mVpp), the jet continues to
respond by phase drifting (A) but with two differences. First, the time-averaged slope
of Ψ (t), or 〈Ψ̇ (t)〉, is pulled towards zero, indicating that the time-averaged frequency
of the jet is pulled towards that of the forcing: 〈ψ̇u(t)〉 → 〈ψ̇f (t)〉. This process is
known as frequency pulling (Gyergyek 1999) and can also be detected in the power
spectral density (LJ 2013, figures 6b and 8a: f ∗n → ff as A increases). Second, the
time interval between successive phase slips increases while the time duration of each
phase slip decreases. This occurs because the beat frequency, |ff − f ∗n |, which can
be approximated by |〈Ψ̇ (t)〉|/2π, decreases as f ∗n is pulled towards ff . For Zu(t), this
implies increases both in the time interval between successive amplitude jumps and
in the suddenness of each amplitude jump. Together, these observations show that,
as A increases, the jet spends progressively more time (∝ |ff − f ∗n |−1 ∴∝∼ |〈Ψ̇ (t)〉|

−1
)

oscillating at ff and correspondingly less time phase slipping.
When forced above a critical amplitude (A > Aloc = 700 mVpp), the jet responds by

phase locking (C): both Ψ (t) and Zu(t) become constant with time, indicating that the
jet spends all of its time oscillating at ff . This concurs with our recent study (LJ 2013),
which showed that the trajectory in state space is an isolated closed orbit around a
periodic attractor created by a saddle-node bifurcation (A→ C). There are, however,
very weak oscillations in Ψ (t) occurring on the same (fast) time scale as u′(t). These
are present even before the onset of phase locking and arise because the jet does not
oscillate perfectly harmonically, whereas the forcing nearly does. Although not shown,
our measurements of the near-field pressure spectrum produced by the forcing (without
a jet flow) indicate negligible harmonic distortion: over 99.6 % of the total disturbance
power is contained within a narrow band around the fundamental, ff ± 0.025 %.

3.2. Jet response when ff is far from fn

Next we consider the forcing frequency that is far from the natural frequency
(figure 2b,c): ff /fn = 1103 Hz/983 Hz≈ 1.12.

When forced at low amplitudes (500 6 A 6 1100 mVpp), the jet responds by phase
drifting (A). This is similar to its behaviour when it is forced close to fn (§ 3.1) but
with two differences. First, 〈Ψ̇ (t)〉 is further from zero and does not vary appreciably
with A, which concurs with our observations that there is weaker frequency pulling
when ff is far from fn (LJ 2013, figures 8a and 11b: f ∗n remains unchanged from its
unforced value fn as A increases). Second, because Ψ (t) decreases so rapidly, phase
slipping is less noticeable, although modulations in Zu(t) at the beat frequency (|ff − f ∗n |
or approximately |ff − fn| ≈ 120 Hz) are still detectable.

When forced at moderate amplitudes (1300 6 A 6 1400 mVpp), the jet responds by
phase trapping (B): Ψ (t) oscillates periodically on the same (beating) time scale as
Zu(t) but neither increases nor decreases unboundedly. Instead it remains bounded
such that 〈Ψ̇ (t)〉 is exactly zero, indicating frequency locking without phase locking.
Physically, the jet maintains this partially synchronous state by periodically switching
between two types of oscillation. For a period of time, the jet oscillates more slowly
than the forcing signal (Ψ̇ (t) < 0), losing part of a cycle. Then, over a shorter period
of time, the jet speeds up to overtake the forcing (Ψ̇ (t) > 0), regaining the part
of the cycle that it previously lost. This process of slowing down and speeding up
(relative to ff ) repeats such that the oscillations in Ψ (t) cancel out over time, leading
to frequency locking: 〈Ψ̇ (t)〉 = 0. The continued modulation of Zu(t) is consistent with
our observations of a stable (but shrinking) ergodic T2 quasiperiodic attractor in state
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space (LJ 2013, figure 11c). The presence of phase trapping in this particular region of
parameter space is accurately predicted by model oscillators (§ 1.1).

When forced above a critical amplitude (A > Aloc = 1500 mVpp), the jet responds by
phase locking (D). This is similar to its behaviour when it is forced close to fn (§ 3.1)
except that this transition (B→ D) occurs via a torus-death bifurcation rather than
a saddle-node bifurcation (A→ C). Both of these bifurcations have been confirmed
by nonlinear time-series analysis (LJ 2013) and are accurately predicted by model
oscillators (§ 1.1).

3.3. Physical interpretation
By combining the findings in §§ 3.1 and 3.2 with those of our recent study (LJ
2013), we can form a more complete physical understanding of the way in which
synchronization occurs. When the time scales of the forced and natural modes are
similar (§ 3.1: ff close to fn), synchronization occurs via a gradual pulling of the jet
frequency towards the forcing frequency (figure 2d : 〈Ψ̇ (t)〉 gradually approaches zero
as A increases), resulting in an abrupt decrease in the amplitude of the natural mode
at the onset of phase locking (LJ 2013, figure 6b,c: the spectral power at f ∗n abruptly
vanishes when A reaches Aloc because this is when f ∗n is pulled exactly to ff ). When
the time scales of the forced and natural modes are not similar (§ 3.2: ff far from fn),
synchronization occurs via a gradual decrease in the amplitude of the natural mode
without a concurrent pulling of its frequency (LJ 2013, figure 9b), resulting in an
abrupt pulling of the jet frequency to the forcing frequency at the onset of phase
trapping (figure 2b). Together, these findings show that synchronization can occur via
two distinct pathways: (i) it occurs via a change in the phase (frequency) dynamics if
the temporal coupling between the forced and natural modes is strong (ff close to fn);
but (ii) it occurs via a change in the amplitude dynamics if this temporal coupling is
weak (ff far from fn).

3.4. Low-dimensional modelling
Having examined the forced low-density jet, we now compare it to a forced low-
dimensional model so as to illustrate their similarities with a specific example. For this,
we use the forced VDP oscillator (1.1) because it is one of the simplest such models
with self-excited temporal solutions, a basic requirement for capturing the self-excited
temporal dynamics of the jet. We solve the model numerically using a multistep
variable-order algorithm (Shampine & Reichelt 1997). We do this for a feedback
parameter of ε = 0.2 because this value is sufficiently small for nonlinearity to be
weak, and it places the boundary between saddle-node and torus-death bifurcations (to
phase locking) at a forcing frequency that matches that found for the jet (figure 2a):
|1 − ff /fn| ≈ 0.07. We leave ω0 at 1 but explore a range of ωf and B in order
to replicate the experimental conditions. We then post-process the data in the same
way as we do the jet data, i.e. by using the Hilbert transform (2.1) to compute the
instantaneous amplitude and instantaneous phase.

We show our forced VDP simulations in figure 3, which is analogous to figure 2
(forced jet experiments). Comparing these, we find that nearly all of the jet’s phase
dynamics, including phase trapping and phase slipping, are accurately reproduced
by the forced VDP oscillator. The only feature not reproduced is the fast weak
oscillations in Ψ (t), which is because the VDP oscillator with ε = 0.2 oscillates more
harmonically than does the jet at this operating condition. Apart from this minor
discrepancy, the agreement in the phase dynamics is good. This shows that this forced
hydrodynamic jet system with infinite degrees of freedom can be modelled reasonably
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well as a forced nonlinear dynamical system with just three degrees of freedom. This
reaffirms the conclusions of our recent study (LJ 2013).

4. Conclusions

We have presented experimental evidence for a range of phase dynamics from a
periodically forced self-excited low-density jet, all of which are accurately predicted
by model oscillators with weak nonlinearity (§ 1.1). Among the phenomena observed,
two are particularly noteworthy. The first is phase trapping, a partially synchronous
state that is characterized by frequency locking without phase locking and is found
between phase drifting and phase locking when the jet is forced far from its natural
frequency (§ 3.2). The second is phase slipping, a subtle feature of phase drifting that
is characterized by a nonlinear evolution of the instantaneous phase difference and is
found when the jet is forced close to its natural frequency (§ 3.1). To our knowledge,
phase trapping has not been observed in a hydrodynamic system before, and phase
slipping has only been observed in one experiment on a coupled cylinder-wake system
(Khalak & Williamson 1999, figure 14). Both phenomena, however, are potentially
important in systems whose stability is determined by mechanisms of energy transfer
that depend sensitively on the phase relationship between two or more oscillators of
different natural frequencies. For example, these may include vortex-induced vibration
in bluff-body wakes and thermoacoustic instability in combustion devices, in which
heat-release oscillations caused by a thermoacoustic mechanism can synchronize with
those caused by a hydrodynamic mechanism (Chakravarthy et al. 2007). A promising
way to analyse such problems is to model the overall system as a set of coupled
low-dimensional oscillators (e.g. based on a VDP-type kernel), with at least one
representing the self-excited hydrodynamics (Monkewitz 1996; Meliga & Chomaz
2011). Hence, in experimentally demonstrating the existence of the full range of
phase dynamics in a real self-excited jet, we strengthen the validity of this modelling
approach. With further analysis, this should lead to a better understanding of the
physical processes operating in the jet, as well as to a more accurate theoretical
framework for designing and testing new control strategies. Finally, our results raise
the possibility that similar phase dynamics can be found in other similarly self-excited
flows, including some industrially relevant sprays (Mehdi-Nejad, Farhadi & Ashgriz
2005) and flames (Emerson et al. 2012).

Acknowledgements

We would like to thank the Bill & Melinda Gates Foundation, Trinity College
Cambridge and the European Research Council (Grant Number 259620) for their
financial support. We would also like to thank D. Durox from École Centrale de Paris
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