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The ability of hydrodynamically self-excited jets to lock into strong external forcing
is well known. Their dynamics before lock-in and the specific bifurcations through
which they lock in, however, are less well known. In this experimental study, we
acoustically force a low-density jet around its natural global frequency. We examine
its response leading up to lock-in and compare this to that of a forced van der Pol
oscillator. We find that, when forced at increasing amplitudes, the jet undergoes a
sequence of two nonlinear transitions: (i) from periodicity to T2 quasiperiodicity via a
torus-birth bifurcation; and then (ii) from T2 quasiperiodicity to 1:1 lock-in via either
a saddle-node bifurcation with frequency pulling, if the forcing and natural frequencies
are close together, or a torus-death bifurcation without frequency pulling, but with a
gradual suppression of the natural mode, if the two frequencies are far apart. We also
find that the jet locks in most readily when forced close to its natural frequency, but
that the details contain two asymmetries: the jet (i) locks in more readily and (ii)
oscillates more strongly when it is forced below its natural frequency than when it is
forced above it. Except for the second asymmetry, all of these transitions, bifurcations
and dynamics are accurately reproduced by the forced van der Pol oscillator. This
shows that this complex (infinite-dimensional) forced self-excited jet can be modelled
reasonably well as a simple (three-dimensional) forced self-excited oscillator. This
result adds to the growing evidence that open self-excited flows behave essentially
like low-dimensional nonlinear dynamical systems. It also strengthens the universality
of such flows, raising the possibility that more of them, including some industrially
relevant flames, can be similarly modelled.

Key words: absolute/convective instability, flow control, nonlinear dynamical systems

1. Introduction
In open hydrodynamic systems, the presence of local absolute instability can

give rise to global self-excited oscillations at discrete natural frequencies. If these
oscillating systems are forced strongly at other frequencies, however, they can lock
into the forcing and oscillate at its frequency instead, leaving no sign of the original
natural mode in the power spectral density (PSD). This nonlinear adjustment process
is known as synchronization, and the resulting synchronous state is known as lock-in
(or phase locking; Balanov et al. 2009). Lock-in has been observed in various forced
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self-excited flows, such as cylinder wakes (Koopmann 1967; Stansby 1976; Provansal,
Mathis & Boyer 1987), capillary jets (Olinger 1992), low-density jets (Sreenivasan,
Raghu & Kyle 1989; Hallberg & Strykowski 2008), low-density and equidensity cross-
flowing jets (Davitian et al. 2010; Getsinger, Hendrickson & Karagozian 2012) and jet
diffusion flames (Li & Juniper 2013).

Self-excited flows were previously thought to be insensitive to external forcing
before lock-in (see the review by Huerre & Monkewitz 1990), but more recent
research has shown that they oscillate quasiperiodically instead. In power spectra,
quasiperiodicity can be identified by sharp peaks at linear combinations of the
forcing and natural frequencies (e.g. 2ff − fn), but only if these frequencies are
incommensurate and only if the forcing amplitude is insufficient to cause complete
lock-in. This coexistence of multiple spectral components implies that quasiperiodicity
is a superposition of multiple periodic motions, each at a slightly different fundamental
frequency. However, because the two main frequencies are incommensurate, the
system oscillates with a period of infinity and therefore never returns to exactly
the same state, although it can get arbitrarily close. In other words, a quasiperiodic
oscillation is recurrent but not repetitive.

Like lock-in, quasiperiodicity has been observed in various forced self-excited flows,
such as cylinder wakes (Van Atta & Gharib 1987; Karniadakis & Triantafyllou 1989),
capillary jets (Olinger 1992), low-density jets (Juniper, Li & Nichols 2009), low-
density and equidensity cross-flowing jets (Davitian et al. 2010; Getsinger et al. 2012)
and jet diffusion flames (Li & Juniper 2013). Among these, cylinder wakes have
received the most attention, forming the basis for much of the existing knowledge
on the nonlinear dynamics of forced hydrodynamic oscillators. In a typical study, a
supercritical wake is forced, either acoustically or mechanically, around its natural
frequency, and its response is examined: (i) when unforced, it oscillates periodically
in a limit cycle; (ii) when forced weakly, it oscillates quasiperiodically and, if the
forcing frequency is close to the natural frequency, the latter can shift towards the
former (Blevins 1985; Barbi et al. 1986); (iii) when forced strongly, it locks into
the forcing, but the minimum forcing amplitude required for this is not necessarily
symmetric about the natural frequency (Blevins 1985; Provansal et al. 1987). Although
these dynamics are well established in cylinder wakes, they are still being explored
in other self-excited flows. To date, several researchers have confirmed the universal
existence of quasiperiodicity and lock-in (Olinger 1993; Manneville 2010). However,
few have examined these nonlinear states in detail, particularly near their transition.
Hence, no one has identified the specific bifurcations through which hydrodynamic
oscillators lock into external forcing.

Lock-in is expected to occur via a sequence of bifurcations as the forcing amplitude
increases. This concept of transitioning between discrete nonlinear states has prompted
suggestions, notably from Huerre & Monkewitz (1990), that self-excited flows can be
adequately described with only a few degrees of freedom (DOFs) and can therefore
be modelled as low-dimensional dynamical systems. In cylinder wakes, for example,
Provansal et al. (1987) and Olinger (1993) showed that a forced Landau–Stuart model
can accurately reproduce many features of quasiperiodicity and lock-in, including the
latter’s occurrence above a critical forcing amplitude and a linear increase in this
amplitude with frequency detuning. However, when used to interpret experimental data,
this particular model has two limitations: (i) its bifurcations to lock-in have not been
rigourously analysed before, which means that, even if similarities arise, they cannot
be linked to any of the universal bifurcations found in simple dynamical systems; and
(ii) its validity is restricted to conditions for which the time scale of its oscillations
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is much smaller than the time scale of its amplitude growth, which means that the
model is valid only near the onset of global instability (i.e. near the supercritical
Hopf bifurcation to the initial limit cycle) because there the saturated amplitude is
still small and the waveform is still harmonic (i.e. weakly nonlinear). For the study
of supercritical flows that are not necessarily close to critical, a better approach is
to use a fully nonlinear model whose bifurcations to lock-in have already been well
analysed. One of the simplest is the van der Pol (VDP) oscillator, a second-order
ordinary differential equation whose complete set of bifurcations was analysed by
Holmes & Rand (1978) and Balanov et al. (2009), among others. This oscillator has
been used before to model various physical and biological systems (e.g. triode circuits,
tectonic plates and cardiac muscles), but its use in hydrodynamics has been limited
to closed flows (e.g. Rayleigh–Bénard convection; Fauve 1998) and open wake flows
(Gaster 1969; Noack, Ohle & Eckelmann 1991; Baek & Sung 2000; Facchinetti, de
Langre & Biolley 2002), including vortex-induced vibration (Hartlen & Currie 1970;
Iwan & Blevins 1974; Facchinetti, de Langre & Biolley 2004). To our knowledge,
the VDP oscillator has never been used to model open jet flows. If this can be done
successfully, it would strengthen the universality of open self-excited flows and help
identify the specific bifurcations through which they lock into external forcing.

In this paper, we study the nonlinear dynamics of a hydrodynamically self-excited
jet in the stages near lock-in. We do this experimentally, by applying open-loop
time-periodic acoustic forcing to a low-density jet: a canonical flow that is known to
oscillate at a well-defined natural frequency (Monkewitz et al. 1990). We apply the
forcing around this frequency, at varying amplitudes, and measure the response in the
wavemaker region. By analysing the data within a dynamical systems framework,
we discover much richer behaviour than that which is reported in the literature.
We then show that this behaviour can be qualitatively reproduced with a forced
VDP oscillator and use this analogy to improve our interpretation of the underlying
jet dynamics, particularly to identify the specific bifurcations that cause lock-in.
As well as providing new insight into the way acoustic oscillations interact with
hydrodynamic oscillations, this paper shows that this complex (infinite-dimensional)
forced self-excited jet can be modelled as a simple (three-dimensional) forced self-
excited oscillator.

2. Methodology

2.1. Experimental details

The jet that we consider is axisymmetric, unconfined and non-swirling. In the absence
of significant buoyancy and compressibility effects, its onset of global instability
has been shown by Hallberg & Strykowski (2006) to depend on three independent
parameters: (i) the density ratio between the jet and its surroundings, S ≡ ρj/ρ∞;
(ii) the momentum thickness of the initial shear layer, θ , which is often expressed
in inverse non-dimensional form as the transverse curvature, d/θ ; and (iii) the jet
Reynolds number, Re ≡ ρjUjd/µj, where Uj is the time-averaged bulk velocity, d is
the nozzle exit diameter and µj is the dynamic viscosity of the jet fluid. The onset
of global instability also depends on the shape and alignment of the density and
velocity profiles (particularly the relative position of their inflexion points), although
Srinivasan, Hallberg & Strykowski (2010) have shown that this dependence is of
secondary importance if the shear layer is moderately thin (d/θ ∼ 40).
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FIGURE 1. (Colour online) Baseflow characteristics: (a) turbulence intensity as a function of
radial position and (b) transverse curvature as a function of the square root of the Reynolds
number. The data are from a hot wire positioned at the injector outlet (x/d ≈ 0). The linear fit
in (b) shows that the shear layers are initially laminar.
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FIGURE 2. (Colour online) Cross-section of the injector used to create a hydrodynamically
self-excited jet.

Guided by these parameters, we create our self-excited jet by discharging helium gas
from a convergent nozzle. In ambient air, helium has a density (S = 0.14) well below
the upper threshold for global instability, which ranges between S ≈ 0.61 and 0.73 in
most experiments, such as those by Monkewitz et al. (1990) and Kyle & Sreenivasan
(1993). The convergent nozzle ensures that this instability can be easily distinguished
from background noise. It does this in two ways: (i) by creating a velocity profile
with thin shear layers, which reduces the critical Reynolds number and, hence, the
amplification of inherent disturbances by convective modes (Hallberg et al. 2007); and
(ii) by ensuring that the baseflow itself is quiet and that its shear layers are laminar
(Mehta & Bradshaw 1979). As figure 1 shows, for Re 6 3.5 × 103, the turbulence
intensity in the jet core is low (u′rms/u < 0.37 %) and the transverse curvature scales
as d/θ ∝ Re1/2 (with θ integrated to u/umax = 0.1), indicating that the shear layers are
indeed initially laminar. This nozzle is part of an injector assembly (figure 2) that was
loaned to us by Daniel Durox from École centrale de Paris. It has a round d = 6 mm
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diameter outlet and a contraction area ratio of 52:1. For flow conditioning, it has a
set of fine-mesh screens and honeycomb in its settling chamber, as described by Li
(2011).

We force the jet sinusoidally in time with a loudspeaker mounted upstream.
We do this over a range of frequencies (0.84 . ff /fn . 1.16) around the natural
global frequency, fn, in order to study 1:1 (primary) lock-in. These frequencies
(823 6 ff 6 1143 Hz) are sufficiently far from the Helmholtz resonance frequency
of the injector (380 Hz with helium) that the gain of the forcing system is relatively
constant. The acoustic wavelengths are sufficiently longer than the characteristic jet
length scale (c∞/ff d� 1) that the perturbations are spatially coherent. At each forcing
frequency, ff , we incrementally increase the forcing amplitude, A, until just beyond
the onset of lock-in. We define A as the peak-to-peak voltage into the loudspeaker (in
units of mVpp), so that it is directly proportional to the acoustic pressure amplitude and
to the square root of the acoustic power.

We measure the jet response with a hot-wire anemometer. We verify that the data
are unaffected by the physical presence of the probe with flow visualization (described
later) and simultaneous near-field pressure measurements. The probe consists of a
5 µm diameter tungsten wire, which we calibrate in both helium and air, using the
procedure of Johnson, Uddin & Pollard (2005), to a nominal uncertainty of ±1.7 %
at 95 % confidence on the normal distribution. We operate the probe in constant-
temperature mode, at an overheat ratio of 1.8, for a maximum spectral response
of 104 Hz, which is at least one order of magnitude higher than the expected flow
frequencies. According to Broze & Hussain (1994), a global mode tends to coordinate
the motion of an entire streamwise region such that its dynamics become primarily
temporal and can be characterized by measurements at a fixed location. For most
of our measurements, therefore, we position the probe on the jet centreline, 1.5d
downstream of the injector outlet (i.e. at (x/d, r/d) = (1.5, 0)) with an uncertainty of
±0.017d in each axis. We choose this sampling location for two reasons: (i) it is
sufficiently far downstream that the global mode, whose amplitude peaks at x/d ≈ 2
for our test conditions, has time to grow and interact with the upstream forcing; but
(ii) it is not so far downstream that it is outside the potential core, which means
that we can use the bridge calibration for helium without the need to account for
local fluctuations in mass fraction. At each forcing condition, we digitize the hot-wire
voltage at 16 384 Hz for 16 s on a 16-bit data converter, producing a time series of the
streamwise velocity. This sampling duration is sufficiently long for data stationarity: (i)
it is four orders of magnitude longer than the time scale of the natural jet oscillations;
(ii) it is three orders of magnitude longer than the longest time scale of the forced
jet oscillations (which is due to beating, see § 3.2.1); but (iii) it is not so long that
slow variations in the ambient conditions can cause significant parametric drifts in the
system, e.g. in its natural frequency. From the time series, we compute the PSD using
the algorithm of Welch (1967), with Hamming windows to reduce spectral leakage,
resulting in a frequency resolution of 0.25 Hz.

For flow visualization, we use schlieren imaging (Settles 2001). Our optical set-up
consists of two concave parabolic mirrors (152.4 mm in diameter and 1219 mm in
focal length) aligned in a Z-type Herschelian configuration. It receives illumination
from a light-emitting diode, collimates this through the jet and then focuses the output
onto a knife edge and into a high-speed digital camera (Phantom V4.2).
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2.2. Modelling
As noted in § 1, several researchers, including Huerre & Monkewitz (1990), have
suggested that open self-excited flows are amenable to low-dimensional modelling,
using analogies similar to those which have previously been demonstrated for closed
flows in small-aspect-ratio geometries (e.g. Taylor–Couette flow; Mullin & Price 1989).
We therefore model our forced jet system with the forced VDP oscillator, a three-
dimensional nonlinear dynamical system first studied by van der Pol & van der Mark
(1927). We use this particular oscillator because it is one of the simplest but most
well-analysed models with self-excited temporal solutions (see the book by Balanov
et al. 2009). As in the experiments, the forcing is external and sinusoidal:

z̈− ε(1− z2)ż+ ω2
0z= B sin(ωf t), (2.1)

where z is the dynamical variable and ω0 is the angular frequency at which it would
oscillate in the absence of feedback (ε = 0) and forcing (B = 0). The forcing has an
amplitude of B and an angular frequency of ωf . The feedback parameter, ε, controls
the degree of both linear self-excitation (power supply) and nonlinear self-limitation
(power dissipation). For ε = 0 (and B = 0), there is neither and the system becomes a
simple harmonic oscillator. For ε > 0 (and B = 0), there is a fixed point at z = ż = 0
but, because it is unstable (via a Hopf bifurcation at ε = 0), the system tends to a limit
cycle. This occurs through successive changes in the sign of the damping coefficient,
−ε(1 − z2), as z oscillates. When the amplitude is small (|z| < 1), this coefficient is
negative, causing self-excitation and growth. When the amplitude is large (|z| > 1),
it is positive, causing self-limitation and decay. The system thus alternates between
positive and negative damping as z oscillates. Eventually, the positive damping cancels
out the negative damping over a cycle, causing the system to settle into a limit cycle.

For ε � 1 (and B = 0), the system has weak nonlinearity and its phase trajectory
(to be defined in § 2.3) is almost a perfect circle. For ε � 1 (and B = 0), the system
has strong nonlinearity and its phase trajectory is no longer circular. Instead, it exhibits
relaxation oscillations, described by van der Pol (1926) as periodic oscillations that
have a slow gradual buildup followed by a fast sudden discharge (or vice versa).
Regardless of the degree of nonlinearity, however, the (unforced) system always settles
into a stable limit cycle, which attracts all other trajectories regardless of their initial
conditions, i.e. the entire phase plane is a basin of attraction for this periodic attractor.

In § 3.2, we will study how this limit cycle of the VDP oscillator is affected by
external forcing (B> 0). We will use this as an analogy for how the limit cycle of the
low-density jet is affected by similar forcing (A> 0). We fix the feedback parameter at
a small value of ε = 0.2 for reasons that will become clear in § 3.2.3. We leave ω0 at 1
but note that this value is not necessarily equal to the natural angular frequency of the
actual nonlinear (ε > 0) oscillations, which we will call ωn. We solve the system (2.1)
numerically using a multistep variable-order algorithm (Shampine & Reichelt 1997).
We do this for a range of forcing frequencies and amplitudes in order to replicate the
experimental conditions.

2.3. Nonlinear time-series analysis
As noted above, both the jet and the VDP oscillator are self-excited systems. This
means that their dynamics are governed by nonlinear processes and cannot be
adequately described with linear tools operating in the time or frequency domain.
Instead, nonlinear tools operating in the state domain must be used, one of the most
powerful of which is nonlinear time-series analysis (NTSA). Developed from the
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theory of dynamical systems, NTSA has been continually refined since the 1980s and
is now a relatively mature and reliable tool, as demonstrated by the many books on
the subject, such as those by Kantz & Schreiber (2003) and Small (2005). In this
paper, we apply NTSA to both the jet and the VDP oscillator in order to describe and
compare their nonlinear dynamics.

The first step of NTSA is to determine the phase space. For a continuous dynamical
system, this is a D-dimensional hyperspace containing all D state variables. Within
it, the state of the system, at any given time, is represented by a discrete point.
As the system evolves, the active points trace out a continuous path, known as the
phase trajectory. According to Strogatz (1994), the features of this trajectory can
provide useful insight into the topology of the attractor (the set approached as t→∞)
and, hence, into the underlying dynamics. If the system is periodic, for example, its
trajectory is an isolated closed orbit around a periodic attractor. If it is quasiperiodic,
its trajectory is a non-repeating orbit around a torus attractor. If it is chaotic, its
trajectory is a non-repeating orbit around one or more strange attractors (self-similar
fractals).

For most physical systems, the phase space cannot be directly measured because the
state variables within it are neither known nor measurable. Fortunately, though, many
such variables are intrinsically coupled to each other. This means that, through the use
of time-delay embedding (Takens 1981), the phase space can be reconstructed from a
generic observation function, typically just a single scalar time series, which is either
measured in experiments or computed in simulations. In our analysis, we follow this
procedure by unfolding the original attractor into an m-dimensional Euclidean vector
of time-delayed elements formed from our data:

ξ(t)= [u′(t), u′(t − τ), u′(t − 2τ), . . . , u′(t − (m− 1)τ )], ξ ∈ Rm, (2.2)

where u′ is the jet velocity fluctuation (for the VDP oscillator, this is replaced by z′).
For an accurate reconstruction, both the time delay, τ , and the embedding dimension,
m, must be carefully chosen. If τ is too small, the vector elements become strongly
correlated, accumulating along the bisectrix of the embedding space. If τ is too large,
they become weakly correlated owing to numerical inaccuracies and noise, appearing
randomly distributed. The optimal time delay is that which maximizes the unfolding
of the attractor in all embedding dimensions and thus provides the most information
about the dynamics. To find this value, we follow the suggestion of Fraser & Swinney
(1986) by calculating the average mutual information. This is a quantity taken from
the field of information theory and its use in NTSA is standard. According to Kantz &
Schreiber (2003), its key advantage over other similar quantities is that it accounts for
nonlinear correlations, not just linear ones. Mathematically, it is a statistical measure
of the average amount of information that can be predicted about u′(t − τ) from the
original signal u′(t):

I(τ )=
n∑

i=1

P[u′(ti) ∩ u′(ti − τ)]log2

P[u′(ti) ∩ u′(ti − τ)]
P[u′(ti)]P[u′(ti − τ)] , (2.3)

where n is the number of samples and P is the standard notation for probability. For
example, P[u′(ti)] is the probability that u′(t) has a value u′(ti), and P[u′(ti)∩ u′(ti− τ)]
is the analogous joint probability. Fraser & Swinney (1986) recommend that the time
delay for reconstruction be set to the time required by I(τ ) to reach its first minimum,
because this is when the delayed elements are least predictable and, hence, most
informative. Applying this criterion (figure 3a), we find that, for both of our self-
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FIGURE 3. (Colour online) Optimal parameters for phase-space reconstruction: (a) average
mutual information as a function of the time delay and (b) false nearest neighbours as a
function of the embedding dimension, both for the jet and the VDP oscillator. In (a) the time
delay is normalized by the natural oscillation period.

excited systems, the optimal time delay is about one-third of the natural oscillation
period. We find the same result for the forced cases (not shown). Incidentally,
this value of τ concurs with that found by using the first zero-crossing of the
autocorrelation function, which is another common, albeit linear, way of choosing
the optimal time delay (Abarbanel 1996).

The embedding dimension, m, is the dimension of the hyperspace onto which
the original phase space is projected. Its value must be sufficiently large in order
for the reconstructed attractor to be a one-to-one projection of the original attractor.
Achieving this is crucial to ensuring that the dynamical invariants of the system, such
as generalized dimensions and other topological properties, are preserved. Otherwise,
if m is too small, points are falsely projected into the neighbourhood of other points,
creating false neighbours, thus causing the phase trajectory to cross itself. According
to Takens (1981), the minimum value of m required for a one-to-one projection
depends on the number of DOFs in the system. For most physical systems, only a
few DOFs remain active in the limit t→∞. This means that the dominant attractor
occupies only a small subspace and that m need not be as large as the full phase-space
dimension. However, m must be larger than twice the attractor dimension (Takens
1981), i.e. larger than twice the topological dimension of the manifold on which
the effective dynamics occurs. This dimension can be estimated with the correlation
dimension (appendix A), although most algorithms for this still use m as a user-
defined input.

To find the minimum value of m required, we use the method of false nearest
neighbours, as proposed by Kennel, Brown & Abarbanel (1992). This involves
calculating the percentage of false neighbours as a function of m and then finding
the value of m above which this percentage is near zero. Applying this method
(figure 3b), we find just a few false neighbours for m = 3 and almost none for
m > 4. This means that a three-dimensional projection is sufficient to resolve the main
features of the attractor, but that at least a four-dimensional projection is required to
resolve all of the detailed features. In our reconstruction, therefore, we use m = 7
to calculate quantitative information, such as the correlation dimension (appendix A).
However, we use m = 3 to visualize qualitative information, such as the attractor
structure (§§ 3.2.1 and 3.2.2). In particular, we make a transverse cut through the
(three-dimensional) phase trajectory formed by (2.2) and then inspect the intercepts
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FIGURE 4. (Colour online) Natural jet dynamics: (a) time trace, (b) PSD and (c) squared
amplitude of velocity fluctuations in the low-density jet at 480 6 Re 6 1900 and in an
equidensity jet at Re = 1410 (shown at the bottom, in red online). The data are from a
hot wire positioned at (x/d, r/d) = (1.5, 0). In (c), which has linear axes and contains data
from only the low-density jet, the linear increase in (u′rms/u)

2 for 630 6 Re 6 1110 indicates a
supercritical Hopf bifurcation to a global mode.

for information about the topology and geometry. For clarity, we consider a section
of the cut that contains only (one-way) intercepts of the trajectory with the plane
u′(t−2τ)= 0+. This section is called a (one-sided) Poincaré map, on which every class
of nonlinear response has its own characteristic features. For example, a periodic limit
cycle, whose trajectory is a closed orbit, appears as a point. A quasiperiodic oscillation
with two incommensurate modes, whose trajectory is a non-repeating orbit on a two-
dimensional torus T2, appears as a continuous ring. (A quasiperiodic trajectory never
repeats itself because its orbital period about the major toroidal axis is not a rational
multiple of its orbital period about the minor toroidal axis. Its intercept with the
Poincaré plane therefore drifts from cycle to cycle, never returning to the same point.
Over many cycles, it gradually fills in a closed curve, forming a continuous ring,
which is sometimes called a drift ring.)

3. Results
3.1. Natural global bifurcation of the jet

Before examining the forced jet response, we must first find an unforced operating
condition that supports global instability. Because S is fixed by the use of helium,
there are in theory two control parameters (§ 2.1): Re and d/θ . Because our injector
geometry is also fixed, however, these two parameters are coupled to each other
(d/θ ∝ Re1/2, figure 1b), leaving just one independent control parameter: Re.

In figure 4, we show the time trace, PSD and squared amplitude of velocity
fluctuations from the low-density jet for 11 Reynolds numbers: 480 6 Re 6 1900.
For comparison, we also show the same quantities (except the squared amplitude)
from an equidensity jet (S = 1) for an intermediate Reynolds number: Re = 1410. We
define the squared amplitude as the square of the root-mean-square (r.m.s.) velocity
fluctuation normalized by the time-averaged velocity: (u′rms/u)

2.
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For the equidensity jet, the PSD contains broadband noise, with a slight increase
around 250 Hz but no clear peak. This is because the jet is marginally globally stable
(Ho & Huerre 1984): the global mode is lightly damped, with a temporal growth
rate just below zero. The broadband spectrum indicates that neither acoustical nor
mechanical resonance of the injector is strong enough to cause oscillations.

For the low-density jet, the PSD at Re = 480 resembles that for the equidensity
jet: there is a slight increase around a few hundred Hertz but no clear peak. This
is because the jet is not globally unstable at this Reynolds number, i.e. the inertia
of small perturbations is not sufficient to overcome the stabilizing effect of viscosity.
The behaviour at Re = 630 is marginal but, at Re = 710, a sharp peak emerges in
the PSD, along with its harmonics. This indicates that the jet has become globally
unstable, behaving as a self-excited oscillator with an intrinsic natural frequency, rather
than as a spatial amplifier of extrinsic perturbations. This hydrodynamic oscillator
sustains its limit-cycle motion against dissipation by continually extracting power
from the baseflow through the action of baroclinicity (Lesshafft & Huerre 2007). Its
natural frequency increases with Re according to the scaling proposed by Hallberg &
Strykowski (2006) using a viscous diffusion time scale.

Close to criticality (630 6 Re 6 1110), the squared amplitude, (u′rms/u)
2, increases

linearly with Re. This is the classical behaviour near a supercritical Hopf bifurcation,
which can be modelled with a Landau equation containing just first- and third-
order terms (Provansal et al. 1987; Monkewitz et al. 1990). Far from criticality
(1270 6 Re 6 1900), the increase is less than linear, as higher-order effects become
influential.

These results show that a wide range of operating conditions in our experimental
facility can lead to global instability in a low-density axisymmetric jet. For the forcing
tests that follow (§ 3.2), we will focus on just one operating condition: Re = 1110,
d/θ = 35.5 and S = 0.14. We choose this particular condition for four reasons: (i)
it is sufficiently far from the bifurcation point that, even with strong forcing, the
instantaneous Re remains above criticality; (ii) it is not so far from the bifurcation
point that lock-in becomes unachievable with our forcing system; (iii) its Richardson
and Mach numbers are sufficiently low (Ri ≡ gd(ρ∞ − ρj)/ρjU2

j = 7.4 × 10−4 and
M ≡ Uj/c∞ = 6.5 × 10−2) that buoyancy and compressibility effects are negligible
(Subbarao & Cantwell 1992); and (iv) its transverse curvature is in a range that
gives rise to absolute instability for the axisymmetric mode but not for any of the
helical modes (Jendoubi & Strykowski 1994; Hallberg et al. 2007; Lesshafft & Huerre
2007). The helical modes are more geometrically complex and could compete with
the axisymmetric mode for control of the global oscillations, potentially distorting their
motion and complicating the interpretation of the PSD and Poincaré map.

At this operating condition, the global mode consists of axisymmetric (varicose)
structures in the near field, oscillating within an intact potential core (figure 5).
With downstream development, however, these structures break down, starting with an
abrupt termination of the potential core (x/d ≈ 2.5), followed by the three-dimensional
formation of side jets (which arise from secondary instabilities; Nichols, Chomaz &
Schmid 2007), and ending in turbulence in the far field. Because we position our hot
wire upstream of this breakdown (§ 2.1), we obtain relatively clean measurements of
the dynamics of the intrinsic wavemaker, which local stability analyses show sits at
the injector plane (Monkewitz, Huerre & Chomaz 1993; Chomaz 2005; Lesshafft et al.
2006), including its response to upstream forcing.

When unforced, the global mode has a natural frequency of fn = 983.0 Hz ± 0.15 %
and a Strouhal number of Stn ≡ fnd/Uj = 0.27 ± 3.0 %, both at 95 % confidence on
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Side-jets

Axisymmetric 
global mode

Hot-wire

FIGURE 5. Schlieren snapshot of the unforced low-density jet at the operating condition of
our forcing tests: Re = 1110, d/θ = 35.5 and S = 0.14 (helium in air). The axisymmetric
global mode is visible around the potential core, upstream of the side jets. The hot wire is
positioned at (x/d, r/d)= (1.5, 0) with its holder parallel to the jet axis.

the t-distribution of Student (1908). When forced, however, the global mode has a
natural frequency, f ∗n , whose value can shift from its unforced value (fn, without
an asterisk), as we will see in § 3.2. According to Hilborn (2000), this shifting, or
pulling, as it is often called (Koepke & Hartley 1991), of the natural frequency is a
characteristic feature of forced nonlinear oscillators. In the literature, it is quantified
using both the bare winding number, fn/ff , and the dressed winding number, f ∗n /ff .
In the sections to follow, we will use similar ratios, but in inverse or rescaled form,
for similar and related purposes. However, we will always express them as rational
numbers, not because they necessarily are, but because we must round them to the
significant digits required by the finite precision of the PSD measurements. (Numerical
simulations suffer from a similar artefact in that floating point numbers are necessarily
rational.) On examining the forced response (§ 3.2), we will find that, at the resolution
of our phase-space reconstruction, all such ratios arising from our test conditions
(except lock-in) can be considered irrational, i.e. incommensurate. This distinction is
important for determining quasiperiodicity and for distinguishing it from very long
periodicity.

3.2. Forced response of the jet and the VDP oscillator
Having chosen a suitable operating condition, we proceed to examine the forced
response of the jet and to compare this to that of the VDP oscillator.

3.2.1. Leading up to lock-in: ff close to fn (|1− ff /fn|. 0.07)
First we consider the jet when it is forced at a frequency slightly above its

natural frequency: ff /fn = 1023 Hz/983 Hz≈ 1.04. In figure 6(a–c), we show the time
trace, PSD and Poincaré map of its velocity fluctuation for eight forcing amplitudes:
300 6 A 6 900 mVpp. For comparison, we also show the same quantities without
forcing. We find that the jet exhibits a range of nonlinear dynamics:
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FIGURE 6. (Colour online) Forced response of (a–c) the jet and (d–f ) the VDP oscillator
for a forcing frequency slightly above the natural frequency: ff /fn = ωf /ωn ≈ 1.04. For both
systems, the (a,d) time trace, (b,e) PSD and (c,f ) Poincaré map are shown for eight forcing
amplitudes and for the unforced case. The transition from periodicity to quasiperiodicity
occurs via a torus-birth bifurcation: see the arrows labelled TB (A = 0 → 300 mVpp;
B = 0→ 0.070). The transition from quasiperiodicity to lock-in occurs via a saddle-node
bifurcation with frequency pulling: see the arrows labelled SN (A = 650→ Aloc = 700 mVpp;
B= 0.158→ Bloc = 0.160).

(i) When unforced (A= 0 mVpp), it has a global mode at a discrete natural frequency,
represented in the PSD by a sharp peak at fn = 983 Hz. This is accompanied by
similar, but weaker, peaks at its harmonics (both even and odd), indicating that the
natural varicose oscillations are not perfectly sinusoidal in time. In particular, the
peak at the first subharmonic, fn/2= 491.5 Hz, suggests a period-doubling motion,
commonly associated with vortex pairing. In the Poincaré map, the data points
are clustered around one blob. This indicates that the phase trajectory is closed,
confirming that the jet oscillates periodically in a limit cycle. If the oscillations
were free of cyclic variability, the trajectory would be perfectly closed and the
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Poincaré map would show one discrete point. The source of this variability
is background noise, as our calculations of the correlation dimension show no
evidence of a low-dimensional strange attractor (appendix A).

(ii) When forced at low amplitudes (300 6 A 6 400 mVpp), the jet responds at ff

as well as f ∗n , the natural frequency modified by the forcing. It also responds
at several different frequencies around these two incommensurate frequencies,
as indicated by the spectral peaks at their linear combinations (i.e. |pff ± qf ∗n |,
with p and q as integers). Known as sidebands, these peaks are caused by
nonlinear wave–triad interactions between the forced and natural modes (Craik
1988). Their presence suggests that the jet has become quasiperiodic via a
torus-birth (Neimark–Sacker) bifurcation, behaving like a typical forced oscillator
before lock-in (Nayfeh & Balachandran 2004). This is confirmed by the Poincaré
map: the emergence of a continuous ring indicates that the phase trajectory is
no longer closed, but spirals around the surface of a stable ergodic T2 torus
attractor (Kuznetsov 2004). The bifurcation is also confirmed by the correlation
dimension (appendix A): over a range of intermediate Euclidean scales, this
attractor invariant does indeed approach two, the value for quasiperiodicity with
two incommensurate modes. Finally, there are additional spectral peaks at low
frequencies, f < 100 Hz. Among them, the strongest corresponds to the beat
frequency, |ff − f ∗n |. In the time trace, this beating phenomenon can be seen as
low-frequency (long-wavelength) modulations of the velocity amplitude.

(iii) When forced at moderate amplitudes (500 6 A 6 650 mVpp), the jet continues to
respond at both ff and f ∗n , as well as at several nearby frequencies. However,
f ∗n is increasingly pulled towards ff , which remains fixed. This decrease in
|ff − f ∗n | causes an equal decrease in the main beat frequency. Meanwhile, the
spectral peaks around ff and f ∗n become closer and their envelope widens. By
A = 650 mVpp, they are almost imperceptible (within the limits of the PSD
resolution) and their envelope is biased towards low frequencies, as indicated
by the longer tail. In the Poincaré map, the ring grows as A increases, confirming
that the jet is still quasiperiodic.

(iv) When forced above a critical amplitude (A > Aloc = 700 mVpp), the jet locks
into the forcing. The PSD becomes dominated by ff and its harmonics, with
no sign of the original natural mode. The time trace shows that the velocity
amplitude is no longer modulated. In the Poincaré map, the ring collapses to
another blob, indicating that the phase trajectory collapses to another periodic
orbit. The abruptness of this collapse suggests that the torus attractor is not dead,
but has become resonant via a saddle-node (blue-sky) bifurcation, which means
that it now contains periodic orbits on its surface. As we will see shortly, this
interpretation of the dynamics is consistent with an analysis of the VDP oscillator
performed by Balanov et al. (2009). According to this analysis, the onset of (1:1)
lock-in occurs when the phase trajectory locks into a stable periodic orbit on
the resonant torus surface. Once locked-in, the jet behaves like the unforced jet,
except that its limit-cycle frequency is ff instead of fn.

When the VDP oscillator is forced at the same frequency (ωf /ωn = 1.038/0.998 ≈
1.04), it responds qualitatively like the jet. This is clear from figure 6(d–f ), in which
we show the time trace, PSD and Poincaré map of the steady-state solution for
eight forcing amplitudes: 0.070 6 B 6 0.180. For comparison, we also show the same
quantities without forcing. We find striking similarities between the jet and the VDP
oscillator:
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(i) When unforced (B = 0), the VDP oscillator has a dominant natural frequency,
represented in the PSD by a sharp peak at ωn = 0.998, which is slightly less than
ω0 = 1 owing to nonlinearity (Guicking & Haars 1991). There are, however, no
even harmonics, only odd ones (not shown). These are weak because the cubic
nonlinear term is small (ε = 0.2) and, hence, the solution is nearly sinusoidal
in time. The Poincaré map shows one discrete point, indicating that the phase
trajectory is closed, confirming that the solution is a periodic limit cycle.

(ii) When forced at low amplitudes (0.070 6 B 6 0.110), the VDP oscillator responds
at ωf as well as ω∗n , with multiple components around these but none at the
beat frequency. The Poincaré map shows a continuous ring, indicating that the
phase trajectory spirals around the surface of a stable ergodic T2 torus attractor
(Kuznetsov 2004). Thus, like the jet, the VDP oscillator becomes quasiperiodic
via a torus-birth bifurcation.

(iii) When forced at moderate amplitudes (0.140 6 B 6 0.158), the VDP oscillator
continues to respond at both ωf and ω∗n , as well as at several nearby frequencies.
It exhibits the same pulling of ω∗n towards ωf as in the jet, with the same bias of
the PSD envelope towards low frequencies. In the Poincaré map, the ring grows
as B increases, confirming that the solution is still quasiperiodic.

(iv) When forced above a critical amplitude (B > Bloc = 0.160), the VDP oscillator
locks into the forcing. This occurs because its topology changes. To show this,
Balanov et al. (2009) transformed the original forced VDP equation (2.1) into
an autonomous system, thereby reducing the analysis of periodic orbits to an
analysis of fixed points. At these fixed points, both the amplitude of the forced
oscillations and the phase difference between them and the forcing do not vary
with time. To explore lock-in, the researchers searched for a stable fixed point, i.e.
a stable periodic orbit. They found one emerging as the torus attractor became
resonant via a saddle-node bifurcation. This analytical finding concurs not only
with our numerical VDP data (figure 6d–f : B = 0.158→ 0.160) but also with
our experimental jet data (figure 6a–c: A = 650→ 700 mVpp). For both systems,
the ring in the Poincaré map collapses abruptly at lock-in, indicating a sudden
loss of stability in the torus attractor but not its death. In particular, the analysis
of Balanov et al. (2009, figure 3.11) predicts that a pair of fixed points, one
stable and one saddle, emerges on the resonant torus surface, with the stable one
being a periodic orbit at ωf . Inside the torus lies an existing (third) fixed point,
which arises from the natural mode but is unstable; it was initially stable before
forcing was applied (B = 0) but became unstable after the torus-birth bifurcation
to quasiperiodicity. After lock-in, as B increases above Bloc, this unstable fixed
point collides with the saddle fixed point on the torus surface, causing both
of them and the torus itself to disappear via another saddle-node bifurcation.
Meanwhile, the stable fixed point, to which the phase trajectory has converged,
is unaffected, which means that this last bifurcation would be undetectable in
simulations or experiments. This is another analytical finding that concurs with
our numerical VDP data (figure 6d–f : B = 0.160→ 0.180) and experimental jet
data (figure 6a–c: A= 700→ 900 mVpp).

In both the jet and the VDP oscillator, the above sequence of dynamics arises not
just when the forcing frequency is above the natural frequency, but also when it is
below it. For example, figure 7 is analogous to figure 6 but for ff /fn = ωf /ωn ≈ 0.96
(instead of 1.04). It shows that, regardless of the relative value of the two frequencies
(as long as they are close together, which we will explain in § 3.2.2), the forced
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FIGURE 7. (Colour online) Forced response of (a–c) the jet and (d–f ) the VDP oscillator
for a forcing frequency slightly below the natural frequency: ff /fn = ωf /ωn ≈ 0.96. For both
systems, the (a,d) time trace, (b,e) PSD and (c,f ) Poincaré map are shown for eight forcing
amplitudes and for the unforced case. The transition from periodicity to quasiperiodicity
occurs via a torus-birth bifurcation: see the arrows labelled TB (A = 0 → 200 mVpp;
B = 0→ 0.060). The transition from quasiperiodicity to lock-in occurs via a saddle-node
bifurcation with frequency pulling: see the arrows labelled SN (A = 375→ Aloc = 400 mVpp;
B= 0.149→ Bloc = 0.152).

response leading up to lock-in is qualitatively similar. This implies (i) for no forcing,
a periodic limit cycle at the natural frequency; (ii) for weak forcing, a torus-birth
bifurcation to quasiperiodicity; (iii) for moderate forcing, a bias of the PSD envelope
and a growth of the torus attractor; and (iv) for strong forcing, a saddle-node
bifurcation to lock-in.

Crucially, these similarities also include frequency pulling (or phase pulling; Dewan
1972): the pulling of the natural frequency towards the forcing frequency as the
forcing amplitude increases towards the critical value for lock-in. To explore this,
we show in figure 8 the frequency-pulling ratio, φ ≡ |ff − f ∗n |/|ff − fn| for the jet or
φ ≡ |ωf −ω∗n|/|ωf −ωn| for the VDP oscillator, as a function of the normalized forcing
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FIGURE 8. (Colour online) Frequency-pulling ratio as a function of the forcing amplitude for
(a) the jet and (b) the VDP oscillator. Data are shown for a range of forcing frequencies, with
hollow markers denoting ff /fn = ωf /ωn > 1 and filled markers denoting ff /fn = ωf /ωn < 1.

amplitude, A/Aloc or B/Bloc. This ratio (φ) is like a rescaled version of the dressed
winding number (f ∗n /ff or ω∗n/ωf ; Hilborn 2000) in that it accounts for changes in the
actual frequency of oscillation due to nonlinear coupling. Once again, we find striking
similarities, but also subtle differences, between the jet and the VDP oscillator:

(i) When forced close to the natural frequency (|1 − ff /fn| = |1 − ωf /ωn| . 0.07),
both systems exhibit frequency pulling up to lock-in: φ starts at 1 and decreases
towards 0 as A/Aloc or B/Bloc increases. For the jet (figure 8a), there appears to be
significant scatter at the higher forcing amplitudes (0.75 6 A/Aloc 6 1), but most of
this can be attributed to two systematic factors. The first is an asymmetry about
ff /fn = 1: for a given difference between ff and fn, frequency pulling is stronger for
ff /fn > 1 (hollow markers) than it is for ff /fn < 1 (filled markers). This asymmetry
is strongest when ff /fn is near 1, and weakens as ff /fn deviates from 1. The second
factor is a bias towards ff /fn = 1: for either ff /fn > 1 or ff /fn < 1, frequency pulling
is strongest when ff /fn is near 1, and weakens as ff /fn deviates from 1. For the
VDP oscillator (figure 8b), there is less scatter because both of these factors are
less dominant.

(ii) When forced far from the natural frequency (|1 − ff /fn| = |1 − ωf /ωn| & 0.07),
both systems exhibit frequency pulling but not up to lock-in: φ decreases from
1, reaches a minimum and then increases back towards 1 as A/Aloc or B/Bloc

increases. Moreover, as the forcing frequency deviates from the natural frequency,
the minimum in φ shifts to lower forcing amplitudes and its value increases,
indicating weaker frequency pulling. Although these trends are clear in the VDP
data, they are much less clear in the jet data, particularly at ff /fn ≈ 0.92 and
1.08. For these two cases, we speculate that the discrepancy arises from a lack
of resolution in A/Aloc near A/Aloc = 1: φ for the jet probably returns to 1 just
before lock-in, as it does for the VDP oscillator at the same forcing frequencies,
ωf /ωn ≈ 0.92 and 1.08. We base this speculation on the fact that the Poincaré
maps for ff far from fn (including ff /fn ≈ 0.92 and 1.08) are qualitatively different
from those for ff close to fn. We will discuss this difference in § 3.2.2 (ff far
from fn) but for now it suggests that lock-in without frequency pulling occurs via
a different type of bifurcation than does lock-in with frequency pulling. Before
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FIGURE 9. (Colour online) Spectral power of oscillations as a function of the forcing power
for (a,b) the jet and (c,d) the VDP oscillator. Two forcing frequencies are considered, both
far from the natural frequency: ff /fn = ωf /ωn ≈ 0.88 (a,c) and 1.12 (b,d). The linear regime
is entered at (A/Aloc)

2 = (B/Bloc)
2 = 0 via a torus-birth (TB) bifurcation. The lock-in regime

is entered at (A/Aloc)
2 = (B/Bloc)

2 = 1 via a torus-death (TD) bifurcation without frequency
pulling. The forcing power at which P′ ∗f (B) overtakes P′ ∗n (◦) is that at which the peak torus
size (PTS) occurs. The combined power, P′ ∗n + P′ ∗f , is denoted by ×, and P′ ∗t by ?.

proceeding, we note that forcing the jet at ff /fn ≈ 0.84 gives rise to a complicated
(possibly chaotic) response in which we cannot find a definitive bifurcation to
lock-in. We speculate that this may be due to an overlap of the 1:1 Arnol’d
tongue (which is asymmetric towards ff /fn < 1, § 3.2.3) with its adjacent higher-
order tongues. Because we consider only 1:1 lock-in in this paper, however, we
cannot confirm this speculation and therefore exclude this particular data set from
figure 8(a).

3.2.2. Leading up to lock-in: ff far from fn (|1− ff /fn|& 0.07)
Without frequency pulling, lock-in occurs through a decrease in the power of the

natural mode, P′ ∗n , and an increase in the power of the forced mode, P′ ∗f . This
process, known as asynchronous quenching (Dewan 1972), is shown in figure 9
alongside the total power, P′ ∗t , for two forcing frequencies, both far from the natural
frequency: ff /fn = ωf /ωn ≈ 0.88 and 1.12. The corresponding time traces, PSDs and
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FIGURE 10. (Colour online) Forced response of (a–c) the jet and (d–f ) the VDP oscillator
for a forcing frequency far below the natural frequency: ff /fn = ωf /ωn ≈ 0.88. For both
systems, the (a,d) time trace, (b,e) PSD and (c,f ) Poincaré map are shown for eight forcing
amplitudes and for the unforced case. The transition from periodicity to quasiperiodicity
occurs via a torus-birth bifurcation: see the arrows labelled TB (A= 0→ 500 mVpp; B= 0→
0.10). The transition from quasiperiodicity to lock-in occurs via a torus-death bifurcation
without frequency pulling: see the arrows labelled TD (A = 1100→ Aloc = 1200 mVpp;
B= 0.34→ Bloc = 0.35).

Poincaré maps are shown in figures 10 and 11. All three powers (P′ ∗n , P′ ∗f , P′ ∗t ) are
normalized by the total power of the unforced oscillations (P′t, without an asterisk) and
shown as a function of the forcing power: (A/Aloc)

2 for the jet or (B/Bloc)
2 for the

VDP oscillator. The modal power is found by integrating the PSD around each mode,
a procedure equivalent to bandpass filtering around each frequency. The total power is
found by integrating the PSD across its full bandwidth, and the result is checked to
be equal (within 0.2 %) to the mean squared fluctuation, in accordance with Parseval’s
theorem. In both the jet and the VDP oscillator, three regimes can be identified:

(i) In the linear regime (0 6 (A/Aloc)
2 = (B/Bloc)

2 . 0.5), which is quasiperiodic and
is entered via a torus-birth bifurcation, P′ ∗f increases linearly as P′ ∗n decreases
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FIGURE 11. (Colour online) Forced response of (a–c) the jet and (d–f ) the VDP oscillator
for a forcing frequency far above the natural frequency: ff /fn = ωf /ωn ≈ 1.12. For both
systems, the (a,d) time trace, (b,e) PSD and (c,f ) Poincaré map are shown for eight forcing
amplitudes and for the unforced case. The transition from periodicity to quasiperiodicity
occurs via a torus-birth bifurcation: see the arrows labelled TB (A= 0→ 500 mVpp; B= 0→
0.15). The transition from quasiperiodicity to lock-in occurs via a torus-death bifurcation
without frequency pulling: see the arrows labelled TD (A = 1400→ Aloc = 1500 mVpp;
B= 0.38→ Bloc = 0.39).

linearly. This indicates that, with each increment in forcing power (at ff or ωf ), a
constant proportion of it is supplied to the forced mode, while a different constant
proportion of it is removed from the natural mode. The fact that the natural
mode is affected at all suggests that nonlinear interactions occur even though the
forced mode is still linear: P′ ∗f ∝ (A/Aloc)

2 or P′ ∗f ∝ (B/Bloc)
2. The linear increase

in P′ ∗f has been observed by Sreenivasan et al. (1989) and Kyle & Sreenivasan
(1993) in both self-excited and convectively unstable jets. The linear decrease
in P′ ∗n , however, has not, to our knowledge, been reported before, although it
has been observed by Bellows, Hreiz & Lieuwen (2008) in premixed flames
that are self-excited by thermoacoustic, not hydrodynamic, resonance. Its physical
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mechanisms must be nonlinear and could act by impairing the natural mode’s
ability to extract power from the baseflow, by increasing dissipation, and/or by
transferring power from the natural mode to its sidebands. Nevertheless, because
P′ ∗n decreases more strongly than P′ ∗f increases, their combined power, P′ ∗n + P′ ∗f ,
also decreases (linearly). The difference between this combined power and P′ ∗t
is the power contained in the other components. This residual power increases
slightly with the forcing power, causing P′ ∗t to decrease (linearly) at a slightly
lower rate than the combined power.

(ii) In the power transfer regime (0.5 . (A/Aloc)
2 = (B/Bloc)

2 6 1), which is still
quasiperiodic, P′ ∗f increases nonlinearly as P′ ∗n decreases nonlinearly. This
coincident departure from linearity suggests the activation of some mechanism
that facilitates the transfer of power from the natural mode to the forced mode.
This transfer, however, is not completely efficient as only a fraction of the power
lost by the natural mode is gained by the forced mode. The rest is dissipated,
contributing to the decrease in P′ ∗t . In the jet (figure 9a,b), this decrease is
large at ff /fn ≈ 1.12 but small at ff /fn ≈ 0.88. This is because, at ff /fn ≈ 0.88,
more power remains in the natural mode from the previous (linear) regime for
subsequent transfer to the forced mode in this regime. In the VDP oscillator
(figure 9c,d), however, this asymmetry about the natural frequency is absent: P′ ∗t
decreases to equally low values at both forcing frequencies. In both systems,
P′ ∗f overtakes P′ ∗n at a certain forcing power, indicating a swap of the dominant
mode. This swap can be seen in the Poincaré map as a peak in the cross-
sectional size of the torus attractor: figure 10 (A = 900 mVpp; B = 0.30) and
figure 11 (A = 1100 mVpp; B = 0.34). With further increases in forcing power,
the transfer rate from P′ ∗n to P′ ∗f decreases because P′ ∗n → 0, causing P′ ∗f to
saturate. This is a gradual process, accompanied by a similarly gradual shrinkage
of the torus attractor: figure 10 (A = 1000→ 1200 mVpp; B = 0.32→ 0.35) and
figure 11 (A = 1300→ 1500 mVpp; B = 0.36→ 0.39). This gradual approach to
lock-in is in stark contrast to the abrupt approach seen in cases with frequency
pulling (figures 6 and 7: ff close to fn), in which the torus attractor grows
and then suddenly becomes resonant at lock-in via a saddle-node bifurcation.
In the absence of frequency pulling (figures 10 and 11: ff far from fn), the
fact that the torus attractor grows, peaks, but then gradually shrinks suggests
that lock-in occurs via a different type of bifurcation: a torus-death (inverse
Neimark–Sacker) bifurcation. This conclusion, like our earlier one suggesting a
saddle-node bifurcation for lock-in with frequency pulling (§ 3.2.1), is consistent
with the truncated VDP analysis of Balanov et al. (2009, figure 3.12).

(iii) In the lock-in regime (1 6 (A/Aloc)
2 = (B/Bloc)

2 6 1.5), P′ ∗t is determined mostly
by P′ ∗f because P′ ∗n ≈ 0 and the other components are weak. In the jet, the
asymmetry in P′ ∗t about ff /fn = 1 is still present: P′ ∗t can be greater (ff /fn ≈ 0.88)
or less (ff /fn ≈ 1.12) than P′t. In the VDP oscillator, the same asymmetry is again
absent: P′ ∗t reaches a minimum at the onset of lock-in, (B/Bloc)

2 = 1, whose value
is always less than P′t regardless of whether ωf /ωn > 1 or ωf /ωn < 1.

In summary, we have shown that a self-excited jet responds to forcing in a way that
is more complicated than that which is expected from the hydrodynamics literature.
When forced at increasing amplitudes, the jet undergoes a sequence of two nonlinear
transitions. The first transition, which occurs when A initially increases from zero, is
from periodicity to T2 quasiperiodicity. It always occurs via a torus-birth bifurcation.
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FIGURE 12. (Colour online) Critical forcing amplitude for lock-in (circular markers) shown
on contours of the total oscillation power for (a) the jet and (b) the VDP oscillator.
The transition from periodicity to quasiperiodicity occurs at A = B = 0 via a torus-birth
bifurcation. The transition from quasiperiodicity to lock-in occurs at the circular markers via
either a saddle-node bifurcation (black) or a torus-death bifurcation (white). In (a) the error
bars denote the A increment used just before lock-in.

The second transition, which occurs when A reaches a critical value, is from T2

quasiperiodicity to 1:1 lock-in. It occurs via either a saddle-node bifurcation with
frequency pulling, if ff and fn are close together, or a torus-death bifurcation without
frequency pulling, but with a gradual suppression of the natural mode, if the two
frequencies are far apart. Qualitatively, all of these transitions and bifurcations are
accurately reproduced by the forced VDP oscillator. The only feature not reproduced is
an asymmetry in P′ ∗t about ff /fn = 1, which we will explore next.

3.2.3. At lock-in
In this section, we examine the forced response at lock-in. We start with the

relationship between the minimum forcing amplitude required for lock-in, Aloc or
Bloc, and the normalized forcing frequency, ff /fn or ωf /ωn. This is known as the 1:1
Arnol’d tongue in dynamical systems terminology. It is shown in figure 12 as circular
markers, which are coloured black for saddle-node bifurcations and white for torus-
death bifurcations. The black diagonal lines on either side of the natural frequency are
linear fits to the saddle-node data. As is the case before lock-in (§§ 3.2.1 and 3.2.2),
we find striking similarities, but also subtle differences, between the jet and the VDP
oscillator:

(i) When forced close to the natural frequency (saddle-node bifurcation), both systems
have values of Aloc or Bloc that increase as the forcing frequency deviates from
the natural frequency. This increase is linear, giving rise to a characteristic ∨-
shaped curve, similar to those reported by Provansal et al. (1987), Bellows et al.
(2008), Davitian et al. (2010), Getsinger et al. (2012) and Li & Juniper (2013) for
other self-excited flows. In the jet (figure 12a), there is a new asymmetry about
ff /fn = 1: lock-in occurs more readily for ff /fn < 1 than it does for ff /fn > 1. A
similar asymmetry has been observed by Getsinger et al. (2012) in low-density
cross-flowing jets and by Blevins (1985) and Provansal et al. (1987) in cylinder
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wakes, although an opposite one has been observed by Davitian et al. (2010)
in equidensity cross-flowing jets and by Li & Juniper (2013) in jet diffusion
flames. In the VDP oscillator (figure 12b), this asymmetry is also present but
is not as strong. According to our supplemental simulations (appendix B), its
strength, as measured by the difference in slope of the two black lines, remains
relatively constant with increasing ε, which suggests that it is not a dominant
feature of nonlinearity. Nevertheless, increasing ε causes the boundary between
saddle-node and torus-death bifurcations to deviate from the natural frequency. For
this paper, we specifically chose to use ε = 0.2 because this places that boundary
at a frequency that matches that found for the jet: |1− ff /fn| ≈ 0.07.

(ii) When forced far from the natural frequency (torus-death bifurcation), both systems
continue to have values of Aloc or Bloc that increase linearly as the forcing
frequency deviates from the natural frequency. However, the slope of this increase
changes. For the jet, it decreases for ff /fn > 1 and increases for ff /fn < 1. For the
VDP oscillator, it decreases for either ωf /ωn > 1 or ωf /ωn < 1.

Also shown in figure 12 are contours of P′ ∗t /P
′
t. For the jet (figure 12a), as A

increases, this power ratio first decreases from unity and reaches a minimum before
or at lock-in (the value of this minimum decreases as ff /fn deviates from 1). It then
either increases above unity (ff /fn < 1) or stays below it (ff /fn > 1), confirming the
asymmetry about ff /fn = 1 that was noticed in figure 9. A similar asymmetry has been
observed by Hallberg & Strykowski (2008) in similar low-density jets and by Li &
Juniper (2013) in jet diffusion flames. Finally, as A increases for ff /fn = 1, P′ ∗t /P

′
t

increases from unity and saturates. Except for the asymmetry, these features are also
exhibited by the VDP oscillator (figure 12b).

In summary, we have shown that a self-excited jet locks in most readily when
forced close to fn, as expected. What was not expected, though, was that the details
would depend on whether it is forced above or below fn. When forced above fn, the
jet is more resistant to lock-in, and its oscillations at lock-in are relatively weak.
When forced below fn, it is less resistant to lock-in, and its oscillations at lock-in
are relatively strong. Qualitatively, all of these dynamics are accurately reproduced by
the forced VDP oscillator, with the only exception being the asymmetry in P′ ∗t about
ff /fn = 1.

3.3. Other low-dimensional models

Before concluding this paper, we note that other low-dimensional models can give
similar results. One example is the Landau–Stuart model, which has been used by
many researchers to study the supercritical Hopf bifurcation to a global mode (see
the review by Huerre & Monkewitz 1990). With external sinusoidal forcing, it has the
form:

dû

dt
= α̂û− β̂|û|2û+ Feiωf t, (3.1)

where complex quantities are denoted by a hat symbol. For example, û is the
complex velocity fluctuation, defined as û(t) = σ(t)eiψ(t), and α̂ and β̂ are the
complex Landau–Stuart constants, which are usually determined from experiments.
The forcing has an amplitude of F and an angular frequency of ωf . To solve (3.1), we
follow Olinger (1993) by separating it into real and imaginary parts, thus creating a
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low-dimensional dissipative system of ordinary differential equations:

dσ
dt
= ω0(αr − βrσ

2)σ + F cos(ωf t − ψ), (3.2)

dψ
dt
= ω0(αi − βiσ

2)+ F

σ
sin(ωf t − ψ), (3.3)

where subscripts r and i denote the real and imaginary parts, respectively. These
equations are similar to those of Provansal et al. (1987) except that βi is
retained in order to permit non-isochronous oscillations, i.e. oscillations whose
frequency depends on the saturated amplitude. As with the VDP oscillator (§ 2.2),
we leave ω0 at 1 but note that this value is not necessarily equal to the
natural angular frequency of the actual nonlinear oscillations, ωn. We solve (3.2)
and (3.3) numerically using a multistep variable-order algorithm (Shampine &
Reichelt 1997), with Landau–Stuart constants from the cylinder-wake experiments
of Sreenivasan, Strykowski & Olinger (1987). We do this for a range of forcing
frequencies, but show only two representative values: one close to the natural
frequency (ωf /ωn ≈ 1.04) in figure 13(a–c), which can be compared with figure 6,
and one far from it (ωf /ωn ≈ 1.30) in figure 13(d–f ), which can be compared
with figure 11. This comparison shows that the forced Landau–Stuart model
can qualitatively reproduce most of the transitions, bifurcations and dynamics
exhibited by the forced low-density jet and the forced VDP oscillator, including
the two different types of bifurcations to lock-in. This agreement is not surprising
because, as Albarède & Monkewitz (1992) and Olinger (1993) noted, most suitable
temporal models (including the VDP oscillator) can be simplified to the generic
Landau–Stuart model near the onset of global instability, in the weakly nonlinear
regime.

4. Conclusions
Hydrodynamically self-excited jets are known to lock into strong external forcing,

but their dynamics before lock-in and the specific bifurcations through which they
lock in have not previously been studied in detail. In this experimental study, we
have applied open-loop time-periodic acoustic forcing to a low-density jet that is self-
excited at a discrete natural frequency. We applied the forcing around this frequency,
at varying amplitudes, and measured the response leading up to lock-in. We then
modelled the system as a forced VDP oscillator in order to better understand its
underlying dynamics.

Our results show that a self-excited jet responds to forcing in a way that is
more complicated than that which is expected from the hydrodynamics literature.
When forced at increasing amplitudes, the jet undergoes a sequence of two nonlinear
transitions: (i) from periodicity to T2 quasiperiodicity via a torus-birth bifurcation; and
then (ii) from T2 quasiperiodicity to 1:1 lock-in via either a saddle-node bifurcation
with frequency pulling, if ff and fn are close together, or a torus-death bifurcation
without frequency pulling, but with a gradual suppression of the natural mode, if the
two frequencies are far apart. The jet locks in most readily when forced close to fn, but
the details contain two asymmetries about ff /fn = 1: (i) the critical forcing amplitude
for lock-in is lower and (ii) the total oscillation power is higher for ff /fn < 1 than for
ff /fn > 1.

Except for the second asymmetry, all of these transitions, bifurcations and dynamics
are accurately reproduced by the forced VDP oscillator. This shows that this
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FIGURE 13. (Colour online) Forced response of the Landau–Stuart model for two different
forcing frequencies: one close to the natural frequency (a–c: ωf /ωn ≈ 1.04) and one far
from it (d–f : ωf /ωn ≈ 1.30). For both frequencies, the (a,d) time trace, (b,e) PSD and (c,f )
Poincaré map of the real part of û are shown for eight forcing amplitudes and for the unforced
case. The transition from periodicity to quasiperiodicity occurs via a torus-birth bifurcation:
see the arrows labelled TB (a–c: F = 0→ 0.050; d–f : F = 0→ 0.50). The transition from
quasiperiodicity to lock-in occurs via either a saddle-node bifurcation with frequency pulling
(see arrow labelled SN in a–c: F = 0.119→ Floc = 0.121), if ωf and ωn are close together,
or a torus-death bifurcation without frequency pulling, but with a suppression of the natural
mode (see arrow labelled TD in d–f : F = 1.98→ Floc = 2.01), if the two frequencies are far
apart.

forced self-excited jet with infinite DOFs can be modelled reasonably well as a
nonlinear dynamical system with just three DOFs. This result is consistent with
previous suggestions that open self-excited flows belong to a generic class of
dissipative dynamical systems that is amenable to low-dimensional modelling. It
raises the possibility that other, more industrially relevant, self-excited flows— such
as multiphase, combusting, compressible and/or turbulent jets and wakes— can be
similarly modelled. This would not only strengthen the universality of such flows,
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but would also provide a predictive capability that could be useful to engineers from
various fields.

In the development of gas turbines and rocket engines, for example, a recurring
problem is thermoacoustic instability (Zinn & Lieuwen 2005). This occurs when
heat-release and pressure oscillations in a combustor interact such that thermal
energy is fed into the acoustic waves. If these waves are insufficiently damped,
they can grow to dangerously high amplitudes. In experiments on a flame with an
intrinsic hydrodynamic instability, Chakravarthy et al. (2007) showed that they grow to
particularly high amplitudes when the heat-release oscillations lock into the acoustic
oscillations. In many fuel injectors, the heat-release oscillations are caused by the
hydrodynamic oscillations of the flame. Several mechanisms are possible for this, but
most rely on the development of coherent flow structures (e.g. large-scale vortices).
These structures can (i) entrain pockets of reactants and transport them to regions
hot enough for delayed ignition (Rogers & Marble 1956); (ii) impinge on the flame
and cause its surface area, and hence its heat release, to vary in time (Balachandran
et al. 2005); and/or (iii) break down into fine-scale turbulence to aid molecular mixing
of the air and fuel, thereby causing sudden increases in heat release (Schadow &
Gutmark 1992). For the suppression of thermoacoustic instability, therefore, it would
be useful to be able to predict how the hydrodynamic oscillations of a flame interact
with the acoustic oscillations of its combustor.

Our low-dimensional modelling of the forced low-density jet is a first step towards
achieving this predictive capability. Our next step is to apply the same modelling to
a simple self-excited flame: a jet diffusion flame. Our preliminary findings indicate
that, like the low-density jet, this flame can exhibit several different nonlinear states,
such as periodicity, quasiperiodicity and lock-in, depending on the forcing parameters
(Li & Juniper 2013). However, we have yet to confirm whether it also transitions
between those states via the same bifurcations as those seen in the forced VDP
oscillator. Nevertheless, the jet diffusion flame is not widely used in gas turbines
because of its low combustion efficiency and high pollutant emissions (e.g. nitrogen
oxides and soot). We will therefore perform similar experiments and modelling on a
more relevant configuration: a premixed or partially premixed flame stabilized behind a
bluff-body within an acoustic duct. This system will be susceptible not only to the self-
excited vortex shedding that develops in the near-wake region (Anderson, Hertzberg &
Mahalingam 1996), but also to thermoacoustic oscillations. These occur when acoustic
perturbations impinge on the flame base and cause heat-release perturbations some
time later, e.g. by perturbing the surface area and stretch of the flame as they
travel down its body. If the heat release increases at moments of higher pressure
and decreases at moments of lower pressure, then this mechanism can cause the
acoustic energy to increase over a cycle. This mechanism and the hydrodynamic
mechanism can exist independently but, as Chakravarthy et al. (2007) showed, they
can also interact with each other if their frequencies are similar. Following on from
the approach in this paper, we will model this interacting system as two coupled
oscillators. The stability of this system will depend on the way in which the individual
oscillators force each other. This approach is analogous to that which is often used
to study vortex-induced vibration, in which the hydrodynamics is represented by
one oscillator and the structural dynamics by another. Regardless of the specific
application, though, the accurate representation of an infinite-dimensional forced self-
excited flow by a low-dimensional ordinary differential equation remains one of the
most crucial steps in the modelling process, for which the results in this paper will be
valuable.
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Appendix A. Correlation dimension
The correlation dimension is a topological measure of the self-similarity of an

attractor. In other words, it is a measure of the number of active DOFs in a
dynamical system. Compared with other fractal dimensions (for a full list, see Kantz
& Schreiber 2003), it is relatively easy to calculate, even for an attractor that has been
reconstructed from an experimental time series of finite duration. For this reason, it
is often used to diagnose the underlying dynamics. Its value is zero for a steady flow
(fixed point), one for a periodic limit cycle (closed trajectory), two for a quasiperiodic
oscillation with two incommensurate modes (torus surface), fractional for a chaotic
motion (self-similar fractal) and infinite for a purely stochastic process (random noise).

To calculate the correlation dimension, we use the algorithm of Grassberger &
Procaccia (1983), as did Gotoda & Ueda (2002) and Lieuwen (2002). The details
can be found in the original paper, as well as in the book chapter by Henry, Lovell
& Camacho (2000). The algorithm relies on one key assumption: the probability
that two points on an attractor occupy the same R-sized cell is approximately
the same as the probability that they are separated by a distance less than or
equal to R. Mathematically, this is implemented by considering an m-dimensional
hypersphere centred around a point on the attractor in Euclidean space Rm, where
m is the embedding dimension, as defined in § 2.3. The number of neighbouring
points enclosed by the hypersphere is estimated as a function of its radius R with the
correlation sum:

C(m,R)≈

n∑
i=1,j6=i

H(R− ‖ξ(ti)− ξ(tj)‖)

(n/2)(n− 1)
, (A 1)

where n is the number of data points in each element u′ of the time-delayed vector
ξ(t), as defined in (2.2). The approximation in (A 1) becomes exact in the limit
n→∞. The Heaviside step function is defined as

H(s)=
{

1 for s > 0
0 for s< 0,

(A 2)

which means that, as the hypersphere moves around the attractor and grows, C(m,R)
increments every time R is greater than or equal to the Euclidean distance between the
vectors ξ(ti) and ξ(tj). This distance is defined as the following norm:

‖ξ(ti)− ξ(tj)‖ =
√√√√m−1∑

k=0

(u′(ti − kτ)− u′(tj − kτ))2. (A 3)

The number of data points in the hypersphere scales with R according to a power
law but the exponent depends on R itself. This is because the dimension of any
geometric object depends on the magnification at which it is viewed. A ball of string,
for example, appears as a zero-dimensional point from afar, as a three-dimensional
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solid from a few metres, as a one-dimensional intertwined string from a few
centimetres, and as a three-dimensional intertwined string of solid fibres from under
a microscope. An attractor in phase space, similarly, appears as a zero-dimensional
point at large scales (large R) but as a high-dimensional object at small scales (small
R). The increased dimensionality at small scales is due to the increased influence of
background noise, which imparts a degree of stochasticity and thus activates additional
DOFs. If the scale of such noise is RN , the correlation sum typically increases as
follows:

C(m,R)∝
{

Rm for R< RN

RD for R> RN,
(A 4)

where, for many physical systems, the exponent D is constant over an appreciable,
but finite, range of R larger than RN . This range is known as the self-similar scaling
region, and the value of D within it is an estimate of the correlation dimension, D2. In
this paper, we estimate D2 by plotting log C(m,R) versus log R and then finding the
value to which the slope of the linear region converges as m increases. For reliable
convergence, we use up to m= 7, which is sufficiently larger than the largest expected
attractor dimension. If the signal were from a purely stochastic process, however, then
even a very large m would not lead to convergence, because the actual attractor would
have infinitely many active DOFs and hence infinitely many dimensions.

In figure 14, we show results from a D2 calculation performed on the low-density jet
at the conditions of figure 6. We consider three forcing amplitudes:

(i) For no forcing (A = 0 mVpp), D2 ≈ 1 over an order of magnitude of scales
(0.04 . R/Rmax . 0.4), indicating a periodic limit cycle with one DOF. Beyond
either end of this scaling region, the local slope of C(m,R) does not converge,
indicating an absence of self-similarity at extreme scales. According to Kantz
& Schreiber (2003), at very small scales, the dynamics are dominated by noise.
Noise tends to randomly displace the phase trajectory away from its intended path,
thus activating additional DOFs and causing the local slope of C(m,R) to increase
with m. At very large scales, self-similarity is disrupted by the finite scale of the
attractor, which acts as a macroscopic cutoff filter.

(ii) For weak forcing (A = 300 mVpp), D2 ≈ 2 over a range of intermediate
scales (0.03 . R/Rmax . 0.06), indicating a quasiperiodic oscillation with two
incommensurate modes. This primary scaling region is followed by a secondary
scaling region at slightly larger scales (0.1 . R/Rmax . 0.4) for which D2 ≈ 1.
These two scaling regions coexist because, at the inception of quasiperiodicity (i.e.
just after a torus-birth bifurcation), the minor radius of the torus attractor is still
much smaller than the major radius. In other words, there is a distinct separation
of scales. According to Theiler (1986), the most representative value of D2 for
systems with multiple scaling regions is that which is found at the smallest scales.
This is because D2 is defined strictly for R→ 0, although, in practice, noise and
discretization errors prevent this limit from being reached. We therefore classify
this attractor as a torus attractor with two DOFs (T2).

(iii) For strong forcing (A = 700 mVpp), D2 ≈ 1 over an order of magnitude of scales
(0.04 . R/Rmax . 0.4), indicating another periodic limit cycle with one DOF.
Unlike the original (unforced) limit cycle, however, this one is locked into the
forcing.
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FIGURE 14. (Colour online) Correlation sum (left column) and its local slope (right column),
both shown as a function of the Euclidean distance, for an embedding dimension up to
m = 7. The data are for the low-density jet when forced at a frequency slightly above its
natural frequency (figure 6): ff /fn ≈ 1.04. Three forcing amplitudes are considered, giving a
range of nonlinear dynamics: (a) forced lock-in with one DOF, A = 700 mVpp; (b) forced
quasiperiodicity with two DOFs, A = 300 mVpp; and (c) unforced periodicity with one DOF,
A= 0 mVpp.

These results are for a saddle-node bifurcation to lock-in (§ 3.2.1: ff close to fn) but
are also typical of those for a torus-death bifurcation to lock-in (§ 3.2.2: ff far from
fn). This shows that, although the specific type of bifurcation to lock-in depends on ff

relative to fn, the number of active DOFs in the system does not.

Appendix B. Forced VDP oscillator with stronger nonlinearity
We also examine the forced VDP oscillator (2.1) for values of its feedback

parameter higher than ε = 0.2, the value used so far in this paper. In figure 15,
we show the critical forcing amplitude for lock-in (Bloc) and the total oscillation
power (P′ ∗t /P

′
t) for ε = 0.4 and 0.8. This figure can be compared with figure 12(b),

which is for ε = 0.2. We find that increasing ε, and thus increasing the degree of
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FIGURE 15. (Colour online) Critical forcing amplitude for lock-in (circular markers) shown
on contours of the total oscillation power for the forced VDP oscillator at (a) ε = 0.4 and
(b) ε = 0.8. This figure can be compared with figure 12(b), which is for ε = 0.2. The
transition from periodicity to quasiperiodicity occurs at B = 0 via a torus-birth bifurcation.
The transition from quasiperiodicity to lock-in occurs at the circular markers via either a
saddle-node bifurcation (black) or a torus-death bifurcation (white).

nonlinearity, has two major effects: (i) it causes the boundary between saddle-node and
torus-death bifurcations to deviate from the natural frequency, which means that the
∨-shaped lock-in curve remains on its initial (saddle-node) slopes for larger deviations
from ωf /ωn = 1; and (ii) it causes the total oscillation power to deviate less from
P′ ∗t /P

′
t = 1, which means that, over the specific range of (ωf /ωn,B) shown, the power

of the forced oscillations deviates less from that of the unforced oscillations. However,
increasing ε has only a minor effect on the slopes of the central (saddle-node) portion
of the lock-in curve, in which a slight asymmetry towards ωf /ωn < 1 always exists,
regardless of the degree of nonlinearity.
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