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In drop-on-demand injket printheads, ink is pumped steadily through small channels,
each of which contains an actuator and a nozzle. When an actuator pulses, a droplet is
forced through the nozzle, after which acoustic oscillations reverberate within the channel.
Manufacturers would like to damp the residual reverberations, without increasing the
pressure drop required to drive the steady flow. In this paper we use gradient-based
optimization to show that this can be achieved by constricting the channel where the
acoustic velocity is largest and enlarging the channel where the acoustic velocity is
smallest. This increases the viscothermal dissipation of the acoustics without changing
the viscous dissipation of the steady flow. We separate the compressible Navier–Stokes
equations into equations for a steady flow with no oscillations and equations for oscil-
lations with no steady flow. We define two objective functions: the viscous dissipation
of the steady flow and the dissipation of the oscillations. We then derive the adjoints
for both sets of equations, and obtain expressions for the gradient of each objective
function with respect to boundary deformations in Hadamard form. We combine these
with a gradient-based optimization algorithm, incorporating constraints such as the
shapes of the actuator and nozzle. This algorithm quickly converges to a design that
has the same viscous dissipation for the steady flow but a 50% larger decay rate for
the oscillating flow. We show that this design is nearly optimal. It is a shape that inkjet
manufacturers, using physical insight and trial and error, have not yet considered. We also
show how the adjoint fields provide physical insight into the mechanisms affecting each
objective function. The main requirements of this method are that the steady flow Mach
number and oscillating flow Mach number are small, and that dissipation is dominated
by thermo-viscous mechanisms. These requirements are often satisfied in microfluidics,
so the method in this paper could be applied to many other applications.
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1. Introduction

Inkjet printers are used extensively in industry to print pictures, patterns and labels
onto textiles, ceramics, and packaging. Increasingly they are used for 3D printing and
advanced manufacturing (Hoath 2016). This paper concerns one type of drop-on-demand
printhead. This contains several hundred ink-filled parallel channels, each of which has a
piezo-electric actuator on one side and a 20-50 micron nozzle on the opposite side. When
a drop is demanded, an electric signal is applied to the actuator. The actuator moves
the boundary of the channel by several hundred nanometers, forcing an ink droplet
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out of the nozzle and onto a moving substrate below. After this droplet formation
stage, acoustic oscillations reverberate within the channel, decaying through viscous and
thermal dissipation.

In injket printers, it is crucial that every nozzle functions identically and that all drops
are the same. If a single nozzle stops working, it leaves a straight unprinted line on the
substrate. For this reason, ink is flushed continually through the channels. This flushes
away any air bubbles and also reduces the chance that any solid impurities become lodged
in the nozzle. This, however, comes at a cost: a pump is required to push the ink through
the narrow channels. A faster flowrate or more constricted channels require more power,
which is dissipated by viscosity in the printhead. In addition, if the characteristics of
one droplet depend on the time since the previous droplet, sharp edges become fuzzy.
This occurs if the acoustic reverberations from the previous droplet have not died away
sufficiently when the next droplet is demanded. This limits the rate at which droplets
can be printed to around 100,000 per second. Manufacturers would like to increase this
rate but, to do so, need the reverberations to decay more quickly.

In this paper we consider the reverberation stage of the drop-on-demand process.
We ask whether it is possible to change the shape of the printhead’s microchannels in
order to increase the decay rate of acoustic reverberations while decreasing (or at least
maintaining) the pressure drop required to flush ink through the printhead. In both
cases, viscous dissipation in the channel is the major damping mechanism. We discover
that it is possible to increase one while decreasing the other. The question then arises
as to how to find the optimal channel shape. So many shape parameters can be changed
that a particularly efficient approach is to use gradient-based optimization algorithms.
We define two objective functions: the steady flow viscous dissipation and the oscillating
flow decay rate. In this paper we obtain the shape sensitivities of both objective functions
and their gradients with respect to all shape parameters using adjoint methods. We then
set one objective function to be a constraint.

We reduce the complexity of the problem by splitting the compressible Navier–Stokes
equations into equations for a steady flow with no oscillation and equations for an oscil-
lation with no steady flow. This is done by two-parameter low Mach number asymptotic
expansion of the equations of motion (Müller 1998; Culick et al. 2012). The oscillating flow
equations describe the wave propagation inside the printhead’s microchannels (Bogy &
Talke 1984). The efficiency of the inkjet devices depends on the natural frequency and the
decay rate of the thermoviscous acoustic oscillations (Beltman 1998). In microchannels,
the viscous and thermal losses due to the boundary effects are the main damping
mechanisms. This also applies to other microfluidic applications, such as hearing aid
devices (Christensen 2017), Micro Electro Mechanical Systems (MEMS) (Homentcovschi
et al. 2010, 2014), micro-loudspeakers and microphones (Kampinga et al. 2011).

The low Mach number acoustic equations can be simplified for particularly simple
geometries (Tijdeman 1975; Moser 1980), or by using boundary-layer analysis (Beltman
1999; Rienstra & Hirschberg 2013; Berggren et al. 2018). The results of these reduced
models, however, are not valid when the thickness of the boundary layer is of the order
of the radii of the surface curvature. Because this paper considers shape deformations
without restrictions on the surface curvature, we perform our analysis on the full system
of thermoviscous acoustic equations.

Using the adjoint approach, it is possible to obtain the sensitivity of the objective
functions to shape modifications. The shape sensitivity of the steady flow viscous dis-
sipation is calculated using results obtained by Schmidt & Schulz (2010). In this paper
we derive the adjoint counterpart of the thermoviscous acoustic equations and calculate
the natural frequency and decay rate shape sensitivities (e.g. Luchini & Bottaro (2014)).
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The gradient-based optimization is then applied to a 2D channel and a generic geometry
of printhead’s microchannels. The main goal of this paper is to describe the method that
we use and the physics that it exploits. Constraining the channel to be 2D considerably
reduces the computational expense of the problem without altering the most influential
aspects of the physics. This is because the longest-lasting residual oscillations are those
of the lowest frequency mode, whose frequency is determined mainly by the length of the
channel and whose dissipation is predominantly in the boundary layers at the sides of
the channel. Our 2D optimization process changes the height of the channel, increasing
this dissipation in influential areas. A 3D process would also change the width of the
channel, but we expect this change to be in the same areas, for the same reasons. The
2D simulations under-estimate the dissipation because they have two sides, rather than
four, but they capture the major shape changes required in both the 2D and 3D cases.
Nevertheless, our next step is to repeat the calculations for a 3D geometry and with the
large number of extra shape parameters that this will entail.

2. Equations of motion in the low Mach number limit

The motion of a fluid with viscosity, heat conductivity, compressibility and external
body forces is governed by the compressible Navier–Stokes equations, which, in conser-
vative form, are governed by:

∂

∂t
q +∇k (fck(q)− fvk(q,∇ · q)) = 0 in Ω (2.1)

where ∇k is the k-th component of the spatial derivative ∇k ≡ ∂
∂xk

, superscripts c and v

refer to convective and viscous components of the equations. The vector of conservative
variables, q, and the fluxes, f c(q), fv(q), are defined by

q ≡


ρ

ρui

ρE

 , f ck(q) =


ρuk

ρuiuk + Pδik

ρuk (ρE + P )

 , fvk (q) =


0

τki

τkjuj + κ∇kT

 (2.2)

The variables ρ,u, P, T denote the flow density, velocity vector, pressure and temperature;
τij is the viscous stress tensor, which is proportional to the dynamic viscosity coefficient
µvis

τij = µvis

(
∇iuj +∇jui −

2

3
δij∇kuk

)
, (2.3)

and the total energy of the flow E is a sum of the kinetic energy and the static internal
energy e = e(T, P ):

ρE = ρe+
ρukuk

2
, (2.4)

and κ is the thermal conductivity coefficient. We also introduce an equation of state,
which relates the pressure, density and temperature:

ρ = ρ(P, T ) (2.5)

2.1. Low Mach number expansion

Equation (2.1) can describe a range of physical phenomena, which is excessive in this
case because the system’s behaviour is governed to first order by only two phenomena.
The first is steady flow in a channel with rigid boundaries, with the inlet velocity of
order Ū = 0.1 m/s and Re ≈ 1. The second is periodic acoustic oscillation, with a small
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displacement amplitude at the boundary ∆ 6 0.1µm and a high oscillation frequency
ω ≈ 100 kHz. The characteristic oscillation velocity is of order Ũ = ω∆ ≈ 0.01 m/s.

We choose the ambient state density ρb and the speed of sound
(
cbs
)2

= (∂P/∂ρ)s as
the reference dimensional density and velocity, and the characteristic domain size L as
the reference length. The reference pressure P b is chosen as a function of density and

the speed of sound: P b = ρb
(
cbs
)2

, and the reference temperature T b is the ambient
temperature.

In this problem, we assume that the local Mach number is small:

M ≡ |u|
cbs
� 1 (2.6)

The characteristic velocity amplitudes of the steady flow, Ū , and the oscillating flow, Ũ ,
are also small in comparison to the speed of sound, which allows us to introduce two small
parameters: the steady flow Mach number, µ, and the oscillating flow Mach number, ε:

µ ≡ Ū

cbs
' 0.1

1000
� 1, (2.7a)

ε ≡ Ũ

cbs
' 0.01

1000
� 1 (2.7b)

The oscillating flow time scale differs greatly from the steady flow time scale. The
oscillating time scale is tac ∼ L/cs, and the steady flow time scale is thyd ∼ L/Ū =
µ−1tac � tac. This allows us to decouple two phenomena and study them independently.
We consider a generic state variable ψ(x, t) = (ρ, ui, P ). We denote a zero-order state
variable by ψ0(x, t), as if the steady flow and the oscillating flow were absent, i.e. ε = µ =
0. If there is no external energy and momentum production (by imposed temperature
gradients, heat release or body forces), then ψ0 is uniform in space and constant in time.
We then assume that the perturbation φ(x, t) of ψ0 is at least linearly proportional to µ
and ε, such that:

ψ(x, t) = ψ0 + φ(x, t, µ, ε) (2.8)

We assume that a flow state perturbation related to a particular phenomenon depends
solely on the phenomenon’s temporal scale, such that φ(x, t) becomes a sum of the slow
hydrodynamic perturbation φ̄(x, t, µ), labelled the steady flow, and the fast acoustic
perturbation φ̃(x, t.ε), labelled the oscillating flow:

φ(x, t, µ, ε) = φ̄(x, t, µ) + φ̃(x, t, ε), (2.9a)

φ̄(x, t, µ) =
1

Tac

∫
Tac

φ(x, t, µ, ε)dt. (2.9b)

In summary, the generic flow variable ψ(x, t) consists of the zero-frequency ambient state,
ψ0, the low-frequency hydrodynamic perturbation φ̄(x, thyd, µ) and the high-frequency

acoustic perturbation φ̃(x, tac, ε):

ψ(x, t) = ψ0 + φ̄(x, thyd, µ) + φ̃(x, tac, ε) (2.10)

We can perform a low Mach number expansion in terms of µ and ε because they
are both small. The state perturbations φ̄(x, thyd) and φ̃(x, tac) independently tend to
zero as µ → 0 and ε → 0, so we assume low Mach-number decompositions of the
form φ̄(x, thyd) = ||φ̄||∑µkφ̄(k)(x, thyd) and φ̃(x, tac) = ||φ̃||∑ εkφ̃(k)(x, tac), where

φ̄(k), φ̃(k) are the k-th order non-dimensional perturbation shapes, and ||φ̄||, ||φ̃|| are the
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characteristic dimensional magnitudes of the variables: ||ρ̄|| = ||ρ̃|| = ρb, ||ū|| = Ū , ||ũ|| =
Ũ , ||P̄ || = ||P̃ || = P b.

We neglect the interaction between the steady flow and the oscillating flow given by
the higher order mixed terms

∑
µnεmφ(m+n)(x, tac, thyd); m,n > 1 because ε and µ are

both small. The expansion of the primal variables is therefore:

ρ(x, t) = ρbρ0 + ρb
(
µρ̄(1) + ερ̃(1)

)
+ O(µ2, ε2, µε), (2.11a)

u(x, t) = cbs

(
µū(1) + εũ(1)

)
+ O(µ2, ε2, µε), (2.11b)

P (x, t) = P bP0 + P b
(
µP̄ (1) + µ2P̄ (2) + εP̃ (1)

)
+ O(µ3, ε2, µε) (2.11c)

We keep µ2P̄ (2) here because the first order steady flow pressure perturbation P̄ (1) does
not contribute to the steady flow, being a part of the ambient state, as shown by Müller
(1998).

2.2. Zero Mach number limit

Substituting the primal variables expansion (2.11) into (2.1) and (2.5), and collecting
the zero-order terms, we obtain:

∇iP (0)(x) = 0, (2.12a)

∇k
(
κ∇kT (0)(x)

)
= 0, (2.12b)

ρ(0)(x) = ρ(P (0), T (0)) (2.12c)

The zeroth-order equations describe the ambient state, ε = µ = 0. Equation (2.12a)
shows that the ambient pressure P0 is spatially uniform, and (2.12b) describes the
temperature distribution of the ambient state. If all the boundaries have uniform and
constant temperature, then the ambient temperature and density are uniform and non-
dimensionalized as T (0)(x) = 1, ρ(0)(x) = 1.

2.3. Low Mach number steady flow

Collecting the first order terms of µ in the continuity equation and the second order
terms of µ2 in the momentum equations (2.2) and assuming a Newtonian fluid results in
the incompressible Navier–Stokes equation:

∇iū(1)i = 0, (2.13a)

∂

∂thyd
ū
(1)
i +

(
ū
(1)
j ∇j

)
ū
(1)
i +∇iP̄ (2) − 1

Re
∆ū

(1)
i = 0 (2.13b)

The steady flow pressure perturbation, P̄ , balances the nonlinear convective term in the
momentum equation, so P̄ = µ2P̄ (2) + O(µ3). Here Re ≡ ρbLUin/µvis is the steady flow
Reynolds number.

We supplement the steady flow equations with a prescribed velocity boundary condi-
tion at the inlet, Γin, a no slip boundary condition on the walls, Γw, and a zero stress
boundary condition at the outlet, Γout:

ū
(1)
i = Ui on Γin, (2.14a)

ū
(1)
i = 0 on Γw, (2.14b)

−P̄ (2)ni +
1

Re

∂ū
(1)
i

∂n
= 0 on Γout (2.14c)
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2.4. Low Mach number oscillating flow

Collecting the first order terms of ε, the oscillating flow continuity, momentum and
energy equations are governed by:

∂

∂tac
ρ̃(1) +∇iũ(1)i = 0, (2.15a)

∂

∂tac
ũ
(1)
i +∇iP̃ (1) =

1

R̃e
∇j τ̃ (1)ij , (2.15b)

sb

cp

∂

∂tac
s̃(1) =

1

P̃e
∆T̃ (1) (2.15c)

The Reynolds and Peclet numbers based on the speed of sound are R̃e ≡ ρbLcbs/µvis
and P̃e ≡ ρbLcbscp/κ. The heat capacity ratio is γ ≡ cp/cv, where cp and cv are the specific
heats at constant pressure and constant volume, and sb is the dimensional ambient state

entropy. The viscous contribution to the mechanical energy dissipation ∇k
(
τ̃
(1)
kj ũ

(1)
j

)
is

absent in (2.15c) because it is second order in ε and therefore negligible. We solve the

oscillating flow equations in terms of the oscillating flow pressure P̃ (1), velocity ũ
(1)
i and

temperature T̃ (1), and express the flow density and entropy as s̃(1) = s̃(P̃ (1), T̃ (1)),and
ρ̃(1) = ρ̃(P̃ (1), T̃ (1)) using the following thermodynamic equalities:

sbs̃(1) =

(
∂S

∂P

)
T

P bP̃ (1) +

(
∂S

∂T

)
P

T bT̃ (1) = −αp
ρb
P bP̃ (1) +

cp
Tb
T bT̃ (1), (2.16a)

ρbρ̃(1) =

(
∂ρ

∂P

)
T

P bP̃ (1) +

(
∂ρ

∂T

)
P

T bT̃ (1) =
γ

(cbs)
2P

bP̃ (1) − ρbαpT bT̃ (1), (2.16b)

where αp ≡ ρb
(
∂V
∂T

)
P

is the volumetric coefficient of thermal expansion. These ex-
pressions are substituted into (2.15). For convenience, we redefine the oscillating flow

temperature as αpT
bT̃ (1) → T̃ (1), and use the fact that cp − cv = T b

(
cbs
)2
α2
p/γ to

express the continuity (2.15a) and energy (2.15c) equations in terms of pressure and
temperature:

∂

∂tac

(
γP̃ (1) − T̃ (1)

)
+∇iũ(1)i = 0, (2.17a)

∂

∂tac

(
T̃ (1)

γ − 1
− P̃ (1)

)
=

1

P̃e
∆T̃ (1) (2.17b)

The density and entropy variables become

ρ̃(1) ≡ γP̃ (1) − T̃ (1), s̃(1) ≡ T̃ (1)

γ − 1
− P̃ (1) (2.18)

No-slip velocity ũ(1) = 0 and isothermal T̃ (1) = 0 boundary conditions induce viscous
and thermal boundary layers, which damp the acoustic waves. The thickness of the
viscous boundary layer δν and the thermal boundary layer δT depends on the oscillation
frequency (Beltman 1999): δν(ω) =

√
µvis/(ρbω) = δT

√
Pr. The non-dimensional viscous

and thermal boundary layers thicknesses, δ̃ν(ω), δ̃T (ω), are:

δ̃2ν(ω) =
δ2ν(ω)

L2
=

1

R̃e

ωac
ω
, δ̃2T (ω) =

δ2T (ω)

L2
=

1

P̃e

ωac
ω
, (2.19)

where ωac = t−1ac is the characteristic acoustic frequency. If the oscillation frequency, ω,
is similar to or smaller than the acoustic frequency, ωac, then the viscothermal effects
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cannot be ignored for general R̃e, P̃e. For an inkjet printhead, the fluid viscosity is of
order 10−2 Pa·s, the speed of sound is 103 ms−1, and the channel width is of order 100µm,
which results in ωac = 10 MHz. At the typical operational frequency of ω = 100kHz the
viscous boundary layer thickness is then δ̃ν ∼ 0.1. The thermal boundary layer thickness
is smaller by a factor of

√
Pr . For inks used in inkjet printers, with 10 < Pr < 30

(Seccombe 1997) δ̃T ∼ 0.025.
We perform a modal decomposition of the oscillating flow state vector q̃(x, t) = q̂(x)est.

The Laplace transform of (2.15) results in an eigenvalue problem sBq̂+Aq̂ = 0 in terms
of q̂ = (ûi, P̂ , T̂ ), where q̂ is the complex eigenfunction, and s is the complex eigenvalue:

s


1 0 0

0 γ −1

0 −1 1
γ−1



ûi

P̂

T̂

+


− 1

˜Re
∇j τ̂ij ∇i 0

∇i 0 0

0 0 − ∆

(γ−1) ˜Pe



ûi

P̂

T̂

 = 0,(2.20a)

s = σ + iω (2.20b)

where −σ is the decay rate and ω is the angular frequency of the mode. The matrix
form of the governing equation for the oscillating flow written in this particular form is
Hermitian: B = BH , A = AH .

2.4.1. Boundary conditions

For rigid boundaries we apply a no-slip boundary condition and for open boundaries
we apply a stress-free boundary condition:

ûi = 0 on Γnsl, (2.21a)(
−P̂ δij + R̃e

−1
τ̂ij

)
nj = 0 on Γfree. (2.21b)

We also apply isothermal and adiabatic boundary conditions for temperature:

T̂ = 0 on Γiso,
∂T̂

∂n
= 0 on Γad. (2.22)

If the boundaries are not rigid, they displace in reaction to the flow on the boundary.
For inviscid flow, the boundary impedance, Z, links the pressure to the velocity on the
boundary (Myers 1980). Z is typically frequency-dependent: Z = Z(s). For viscous flow,
the force at the boundary needs to include the viscous stress, such that the impedance
boundary condition is

Zûi =
(
−P̂ δij + R̃e

−1
τ̂ij

)
nj . (2.23)

Here we neither restrict the tangential velocity to be zero nor forbid tangential displace-
ments of the compliant boundary. As Z → 0, the boundary becomes a free surface,
σ̂ijnj → 0. As Z →∞, the boundary becomes a no-slip rigid wall, ûi → 0.

Similarly, the thermal accommodation coefficient αw > 0 can be introduced to describe
the temperature boundary condition (Carslaw & Jaeger 1986; Beltman 1999),

T̂ = −αw
∂T̂

∂n
. (2.24)

As αw → 0, the boundary becomes isothermal. As αw → ∞, the boundary becomes
adiabatic.

The domain boundaries can have non-uniform compliance and thermal properties. The
boundary impedance and thermal accommodation coefficients are non-uniform frequency
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dependent functions, Z = Z(s), αw = αw(s) on ∂Ω. In summary, the velocity and
temperature boundary conditions can be generalized to Robin boundary conditions (2.23,
2.24), with special cases for rigid and open boundaries:

Z = 0 on Γnsl, Z−1 = 0 on Γfree, (2.25a)

αw = 0 on Γiso, α−1w = 0 on Γad. (2.25b)

2.4.2. Energy of the acoustic oscillation

The thermoviscous acoustic problem (2.15) is dissipative, and later we will investigate
how and where this dissipation occurs. For this we introduce an energy norm (Chu 1965),
Ê, where ∗ denotes the complex conjugate:

Ê =

∫
Ω

ûiû
∗
i + ρ̂P̂ ∗ + ŝT̂ ∗ dx, (2.26)

such that the total energy Ẽ = Êe2st decays in time as e2σt (2.20b). We premultiply the
oscillating flow governing equation (2.20) by the state vector q̂T and integrate it over the
volume,

∫
Ω
sq̂TBq̂ + q̂TAq̂ = 0. We integrate the second term by parts once and apply

the boundary conditions (2.23, 2.24). The first term is the energy norm,
∫
Ω
q̂TBq̂ = Ê,

and the second term is the energy dissipation inside the domain and the energy flux
through the boundary. We take the real part of this volume integral to express the decay
rate of the mode as the sum of volumetric energy dissipation σΩ and the surface energy
transfer σ∂Ω :

σ ≡ Re(s) =
1

Ê

∫
Ω

− 1

R̃e
τ̂ij∇j û∗i −

1

(γ − 1)P̃e
‖∇iT̂‖2dx

+
1

Ê

∫
∂Ω

− Re(αw)

(γ − 1)P̃e
‖∂T̂
∂n
‖2 + Re(Z)‖ûi‖2ds

≡ 1

Ê

(∫
Ω

σΩdx +

∫
∂Ω

σ∂Ωds

)
. (2.27)

The volumetric energy dissipation of the acoustic perturbation consists of viscous and
thermal dissipation and is always negative, σΩ 6 0, while the surface energy transfer of
the acoustic perturbation depends on the heat losses through the boundary and the work
done by or on the fluid at the boundary. For the rigid and open boundary conditions
(2.25) the surface energy transfer vanishes.

3. Shape sensitivities

3.1. Shape gradients in Hadamard form

We consider a governing equation R (q,a) = 0 satisfied over a domain Ω, with solution
q for parameters a. We define an objective function J(q,Ω,a). The gradient of J with
respect to a parameter variation, δa, at a = a0, q0 = q(a0), Ω0 = Ω(a0), is denoted with
a square bracket J ′[δa]:

J ′(q0, Ω0,a0)[δa] = lim
ξ→0+

J(q (a0 + ξδa) , Ω (a0 + ξδa))− J0
ξ

. (3.1)

In shape optimisation, the parameters a also determine the domain boundary Γ = ∂Ω.
In 2D, a displacement field V : R2 → R2 defined in Ω represents the domain deformation,
and ξ is the displacement amplitude. We denote the perturbed domain as Ωξ, and qξ as
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the corresponding perturbed flow state. A perturbed boundary Γξ = ∂Ωξ is given by

Γξ = Γ + ξV (x) for x ∈ Γ. (3.2)

If the domain boundary Γ is sufficiently smooth, any tangential displacement only
changes the boundary parametrization but not the actual shape. Therefore the boundary
displacements in the direction of V and its normal component (V · n)n are equivalent,
where n is the boundary unit normal vector.

The shape derivative of a general boundary condition independent of the geometry,
in particular independent of the surface normal, can be calculated as follows. Given a
boundary condition g(q0) = g0 on the unperturbed boundary Γ0, the perturbed boundary
condition g(qξ) = gξ on Γξ can be linearised around Γ0 for a small shape deformation
with magnitude ξ � 1. We expand the perturbed solution as

qξ (Γξ) = (1 + ξ(V · ∇)) qξ (Γ0) +O(ξ2) = (1 + ξ(V · ∇)) (q0 (Γ0) + ξq′0[V ] (Γ0)) +O(ξ2)

= q0 (Γ0) + ξq′0[V ] (Γ0) + ξ(V · ∇)q0 (Γ0) +O(ξ2), (3.3)

such that the total derivative of the solution with respect to the shape perturbation
V is dq[V ] ≡ q′0[V ] (Γ0) + (V · ∇)qξ (Γ0) and q′0[V ] is the local shape derivative. The
linearisation of the boundary condition is

g (qξ (Γξ)) = g(q0 + ξdq[V ]) = g(q0, Γ0) + ξ

(
∂g

∂q

∣∣∣∣
0

(q′0[V ] + (V · ∇)q0)

)
+O(ξ2),(3.4)

where the subscript |0 indicates the value at q = q0, Γ = Γ0. The term ∂g
∂q

∣∣∣
0
q′[V ] repre-

sents the boundary condition of the first order solution’s response to shape deformation
on the unperturbed boundary. It can be expressed in terms of the initial solution q0 as

∂g

∂q

∣∣∣∣
0

q′[V ] = lim
ξ→0+

gb,ξ − gb,0
ξ

− ∂g

∂q

∣∣∣∣
0

(V · ∇)q0 = (V · ∇)gb,0 −
∂g

∂q

∣∣∣∣
0

(V · ∇)q0. (3.5)

A shape derivative J ′(Ω)[V ] can be written in Hadamard form as a scalar product of
a sensitivity functional G(q, q+) and the normal component of the deformation field V ,
where q+ is the adjoint state:

J ′[V ] =

∫
Γ0

(V · n)G(q, q+)ds. (3.6)

In the following sections, we discuss the choice of the objective functions for the steady
and the oscillating flows, construct the adjoint states, and derive the corresponding
sensitivity functionals.

3.2. Steady flow shape sensitivity

For the steady flow, we wish to minimize the viscous dissipation, Jvd, in the domain:

Jvd(ū, Ω) =

∫
Ω

1

Re
(∇j ūi)2 dx, (3.7)

where ū satisfies the momentum equation and the divergence-free condition given by
(2.13, 2.14). As discussed by Schmidt & Schulz (2010), the viscous dissipation sensitivity
functional Gvd for a shape displacement defined on a no slip surface is

Gvd(ūi, λi) =
1

Re

∂ūi
∂n

∂ (λi − ūi)
∂n

, (3.8)
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where λi and λp are the adjoint velocity and pressure states satisfying

ūj∇jλi + ūj∇iλj + ν∆λi +∇iλp =
2

Re
∆ūi, (3.9a)

∇iλi = 0, in Ω, (3.9b)

λi = 0 on Γin ∪ Γw, (3.9c)

λiūjnj + λj ūjni + ν
∂λi
∂n

+ λpni =
2

Re

∂ūi
∂n

on Γout (3.9d)

The right hand side source terms of the adjoint equations and boundary conditions
depend on the choice of the objective function, while the left hand sides are governed
only by the direct steady flow formulation.

3.3. Oscillating flow shape sensitivity

For the oscillating flow we wish to control the decay rate and frequency (Luchini
& Bottaro 2014), so the objective function is the complex natural frequency, s, of the
thermoviscous acoustic flow (2.20):

Js = s. (3.10)

We introduce an adjoint state vector q+ = (P+, u+i , T
+) containing the adjoint

pressure, velocity, and temperature variables. Taking the inner product of the direct
equations and the corresponding adjoint variables, we construct a Lagrangian of the
system (Gunzburger 2002),

L = s−
〈
q+, sBq̂ +Aq̂

〉
. (3.11)

The optimality condition sets any first Lagrangian variation to zero. Variation with
respect to the adjoint and direct variables gives the direct and the adjoint state equations,
respectively. As discussed in Appendix A.1, the adjoint and the direct states of the
thermoviscous acoustic problem are related by P+ = P̂ ∗, u+i = −û∗i , T+ = T̂ ∗, subject
to the normalization condition:

1 =
〈
u+i , ûi

〉
+
〈
P+, γP̂ − T̂

〉
+

〈
T+,

T̂

γ − 1
− P̂

〉
+ (3.12)

+

{
u+i ,

∂Z

∂s
ûi

}
−
{
∂T+

∂n
,

(∂αw/∂s)

(γ − 1)P̃e

∂T̂

∂n

}
,

where we define the volume inner product 〈a+, b〉 =
∫
Ω

(a+)
∗
b dx (A 3a) and the surface

inner product {a+, b} =
∫
∂Ω

(a+)
∗
b ds (A 3b).

For a shape deformation normal to a boundary, the oscillating flow eigenvalue sensi-
tivity Gs consists of the surface stress and the thermal terms, Gs = Gstrs +Gths (derived
in Appendix A.2). Given that the direct and adjoint states are identical up to the sign
of the velocity term, the sensitivity functionals are:

Gstrs = −
(

2
∂ûi
∂n

nj σ̂ij + κûiσ̂ijnj −∇j (ûiσ̂ij)

)
, (3.13)

Gths = 2
∂T̂

∂n
q̂n + κT̂ q̂n −∇j

(
T̂ q̂j

)
.

where q̂i ≡
(
(γ − 1)P̃e

)−1∇iT̂ is the boundary heat flux, and q̂n = (q̂ · n) is its normal
component. The viscous and the thermal sensitivity functionals have equivalent structure

in terms of the (ûi, σ̂ij) and
(
T̂ , q̂i

)
pairs.
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On the no slip and stress-free boundaries, the viscous sensitivity functional simplifies
to

Gstrs,nsl = −∂ûi
∂n

nj σ̂ij , (3.14a)

Gstrs,free = ∇j (ûiσ̂ij) , (3.14b)

and on the isothermal and adiabatic boundaries, the thermal sensitivity functional
simplifies to

Gths,iso =
∂T̂

∂n
q̂n, (3.15a)

Gths,ad = −∇j
(
T̂ q̂j

)
. (3.15b)

4. Shape optimization in a 2D channel

4.1. Numerical methods

4.1.1. Optimization domain

We start with a flow in a two-dimensional uniform-width channel, defined as

Ω0 =
{

(x, y) ∈ R2 | [0, 1]× [0, 0.1]
}
, (4.1)

with inlet and outlet boundaries

Γin,0 =
{

(x, y) ∈ R2 | x = 0
}
, (4.2a)

Γout,0 =
{

(x, y) ∈ R2 | x = 1
}
, (4.2b)

and no slip boundaries Γw,0 = ∂Ω0\ (Γin,0 ∪ Γout,0). For the oscillating flow, the stress
free boundary is Γfree,0 = Γin,0 ∪ Γout,0.

The boundary Γw,0 is to be optimized by modifying the no slip boundaries, while
fixing the inlet and the outlet. If equivalent boundary displacement fields are applied to
the top and the bottom no slip surfaces then the steady flow and the oscillating flow
boundary sensitivities and the shape gradients remain symmetric. Therefore we may
consider deformation of only the top boundary.

In this study, we parametrize the boundary with a set of N control points{
ak ∈ R2 | k = 1 . . . N

}
defining the third order rational uniform B-spline curve.

This provides a smooth surface of class C2 for which parametric sensitivities can be
calculated (Samareh 2001). Boundary displacement fields, V k, are, by definition, the
boundary shape sensitivities to the control points’ positions,

V k =
∂Γw
∂ak

, (4.3)

which implies that the objective function gradient with respect to the displacement field
J ′[V k] transforms to the sensitivity with respect to the control parameters, J ′[ak]. As
the positions of the control points are moved in the gradient direction, the domain is
updated and the computational mesh is rebuilt.

We parametrize the top boundary of the initial rectangular domain with 11 control
points, ai = (i/10, 0.1) , i = 0 . . . 10, spaced uniformly at intervals of 0.1. The first and
last points are kept at their initial positions so that the inlet and outlet boundaries are
fixed and the channel’s length remains equal to 1.
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4.1.2. Numerical discretization

We use a finite element method for spatial discretization. The direct and adjoint
formulations of the steady flow problem and the direct formulation of the oscillating
flow problem are first written in a variational form and then discretized using the Fenics
finite elements solver (Logg et al. 2012) on a mesh of triangular elements generated by
Gmsh (Geuzaine & Remacle 2009). The velocity and pressure fields

(
ūi, P̄

)
(2.13, 2.14)

and the adjoint fields (λi, λp) (3.9) for the steady flow are discretized using Taylor–Hood

(P2,P1) elements. The acoustic perturbation field
(
P̃ , ũi, T̃

)
(2.20) is discretized using

(P1,P2,P2) elements (see Kampinga et al. 2010). The resulting discrete sparse matrices
are inverted by a direct LU solver using MUMPS.

For the steady flow problem, the Dirichlet-type boundary conditions are set up strongly
for each boundary degree of freedom and the outlet boundary condition is enforced
weakly. The nonlinear direct flow is solved using a Newton iterative method. The steady
flow inlet velocity profile is parabolic. The oscillating flow problem is a generalized
eigenvalue problem and is solved with a shift-invert method from an initial guess.

The oscillating flow viscous and thermal boundary layers are resolved using triangular
elements. We apply the goal-oriented adjoint-based error control technique (Rognes &
Logg 2013) for the automated adaptive mesh refinement. The goal functional in our case
is the target eigenvalue.

4.1.3. Constrained gradient optimization

Our goals are to decrease the steady flow viscous dissipation and make the oscillation’s
decay rate, −σ, more negative. There is a trade-off between these goals, so here we set
the steady flow dissipation as an inequality constraint and minimize Re(s).

min
Ω

Re(s) (4.4a)

subject to Jvd 6 J0
vd (4.4b)

and state equations (2.13), (2.20). (4.4c)

In section A.1 we derive shape gradients in Hadamard form of both the objective
function and the constraint with respect to an arbitrary boundary displacement V . The
parameter-based approach restricts the number of possible boundary deformations to the
number of control parameters. Essentially, a parametrization projects the function space
of the admissible shape deformations onto a lower dimensional subspace, which allows
us to operate with the vector representation of shape gradients instead of the continuous
boundary sensitivities.

We can estimate the optimality of a shape (but not the parametrization) by considering
the scalar product of the objective shape sensitivity, G, with the constraint shape
sensitivity, G′. The surface inner product {G,G′} (A 3) and the surface norm ||G||2Γ =
{G,G} form the optimality coefficient α:

α =
{G,G′}

||G||Γ ||G′||Γ
> −1. (4.5)

The optimality coefficient indicates cosine of the angle between the objective function
shape sensitivity and the constraint shape sensitivity, such that α = −1 implies that they
point in opposite directions and the system has reached its local optimum. In the case
of N optimization parameters, a sensitivity functional is realised on a shape deformation
subspace, spanned by V k, k = 1 . . . N . The discrete gradient vector g ∈ RN is defined as
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Figure 1. First natural mode of the oscillating flow in a flat channel at R̃e = 1000. From top to

bottom: pressure P̂ , longitudinal ûx and transverse ûy velocity components, and temperature

T̂ mode shapes; real (left) and imaginary (right) parts.

Figure 2. Spatial distribution of the decay rate production σΩ in a flat channel. Black lines
correspond to the oscillating flow velocity magnitude isolines û = const.

gk =
{
V k, G

}
, and the parametric optimality coefficient αp is:

αp =
gTg′

||g|| · ||g′|| 6 α. (4.6)

In the parameter-based optimization, αp = −1 implies that the local optimum has been
reached within the choice of parametrization.

The optimization algorithm for the problem (4.4) is based on the method of moving
asymptotes (Svanberg 1987). The objective and the constraint values and their gradients
are calculated by (i) solving the steady steady flow (2.13) and the oscillating eigenvalue
(2.20) problems, (ii) finding the adjoint steady flow (3.9) and oscillating flow (3.12)
states, (iii) calculating the boundary sensitivities Gvd, Gs using (3.8) and (3.13), and
computing the objective and constraint gradients with respect to the boundary control
points s′[ak] =

{
V k, Gs

}
, J ′vd[ak] =

{
V k, Gvd

}
. We use εp = αp+1 as a tolerance criteria

for the optimization process.

4.2. Optimization results

4.2.1. Initial domain

The steady flow is computed in the initially flat channel (4.1) at Re = 0.1 with a
parabolic inflow velocity profile. In the unaltered domain this results in the Poiseuille flow
solution, and the corresponding viscous dissipation value J0

vd is taken as a reference. For

the oscillating flow at R̃e = 1000, we choose the smallest non-zero frequency natural mode
as the target mode, with s0 = −0.555+2.81i. Fig. 1 shows the real and imaginary parts of
the mode shape, normalized by (3.12). The pressure gradient ∂xP̂ and the longitudinal
velocity ûx are highest on the stress-free open end boundaries at x = 0, x = 1. As
indicated on Fig. 2, the regions with the highest contribution to the decay rate σΩ are
the no slip wall regions close to the open ends, where the velocity magnitude isolines
converge and therefore the transverse velocity gradient is the largest. For the initial
channel configuration, αp = −0.7.

The steady flow state in the unperturbed channel is independent of the longitudinal
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Figure 3. Shape sensitivity distribution along the flat channel top boundary for the decay rate
Re(Gs) (solid line) and frequency Im(Gs) (dashed line) of the first oscillating mode, and the
steady flow viscous dissipation shape sensitivity Gvd/J0 normalized by viscous dissipation inside
the channel (dotted line).

coordinate x so the viscous dissipation shape sensitivity Gvd(ūi, λi) is constant along the
no slip walls (Fig. 3). Here, and later, Gvd is normalized by the viscous dissipation value
J0
vd in the starting geometry configuration. The shape sensitivity Gvd is always negative,

so any boundary displacement resulting in contraction of the channel’s width leads to
growth of viscous dissipation. The complex eigenvalue shape sensitivity Gs(P̂ , ûi, T̂ ) is
not uniform; the real part Re(Gs) is almost zero in the middle part of the boundary
and grows towards the channel’s open ends where the decay rate production is highest,
as shown previously. As for viscous dissipation, any shape deformation directed inwards
(V · n) < 0 leads to an increase in the decay rate magnitude.

As indicated on Fig.3, the decay rate is less sensitive to shape modifications in the
middle region of the channel at 0.3 6 x 6 0.7, and has higher sensitivity on the outer
region. We expect therefore, that the channel will expand in the middle and shrink around
the free boundaries to increase the decay rate while keeping the steady flow viscous
dissipation constant. This is also what we expect on physical grounds: the channels will
constrict where the acoustic velocity is greater.

4.2.2. Optimized domain

The optimized configuration is found in 20 iterations and has the optimality coefficient
(4.5) of αp = −0.98. The first eigenmode in the optimized channel is s = −1.31+1.68i. In
comparison to the initial solution, the decay rate objective function changes by almost
140%, and the frequency (which is unconstrained) decreases by 40%. The total area
almost doubles and the channel’s shape loses symmetry around the x = 0.5 vertical
plane, while remaining symmetric in the horizontal plane. The channel constricts near
x = 0.07 and x = 0.99, and the middle part of the channel expands, as expected.

Fig. 4 shows the steady flow (top) and the adjoint flow (bottom) velocity magnitude
ū and λ for the optimized channel. The lines correspond to the steady flow streamlines.
The no slip boundaries are smooth and the flow remains attached to the walls with no
recirculation zones. Viscous dissipation in the optimized channel is the same as in the
initial channel.

The steady flow velocity amplitude and velocity gradients as well as the adjoint velocity
are highest in the constricted areas. This makes the constricted regions much more
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Figure 4. Steady flow in the optimized channel at Re = 0.1. Top: the direct steady flow |ū|
velocity magnitude, with the streamlines indicated (solid lines). Bottom: the adjoint steady flow
|λ| velocity magnitude.

Figure 5. Spatial distribution of the absolute value of the decay rate production in the optimized
channel (on a logarithmic scale), ln(−σΩ). Black lines correspond to the oscillating flow velocity
magnitude isolines û = const.

sensitive to shape changes than the expanded part, where the adjoint velocity magnitude
is almost zero.

The decay rate production is initially located in the corner regions of the uniform
width channel. When the boundaries shift, this region shifts inside the channel towards
the constrictions, as indicated in Fig. 5. The decay rate production strongly concentrates
in the narrow parts of the channel, with the maximum at x = 0.99 more than 10000
times higher than the average value. It is almost zero between the constrictions.

Figure 6 illustrates the viscous dissipation Gvd/J
0
vd (dash-dotted line) and the de-

cay rate Re(Gs)/ω0 (solid line) boundary sensitivities as functions of the longitudinal
coordinate along the top boundary in the optimized channel. Both sensitivities reach
their extreme values in the constricted areas and are much smaller in the intermediate
region. They are almost equal and opposite to each other, showing that the design is
almost optimal. Further improvements can still be made, for instance, by boundary
re-parametrization or by introducing additional control points. However, this simple
problem has achieved its purpose by showing that the optimization procedure can indeed
increase acoustic dissipation while keeping the steady flow dissipation constant.

5. Shape optimization for a 2D generic inkjet printhead

5.1. Generic geometry and shape parametrisation

Figure 7 shows a 2D generic inkjet printhead chamber, which consists of a vertical inlet
and outlet, connected to ink manifolds, and a horizontal main channel. The manifolds’
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Figure 6. The decay rate shape sensitivity distribution (solid line) of the first oscillating
mode in the optimized channel, and the steady flow viscous dissipation sensitivity (dotted line)
normalized by viscous dissipation inside the channel.

Inlet manifold Outlet manifold

Actuator membrane

1840

20

70 200

470

Figure 7. A 2D generic printhead geometry with a piezoelectric actuator. The channel is
connected to the ink supply manifolds via the inlet and outlet boundaries. Circles denote the
b-spline boundary control points. All sizes are in µm.

cross sections are much larger than the printhead cross section. A 30µm long conical
printing nozzle, which has a 20µm outer diameter and a taper of 8◦, is located in the
middle of the printhead. A flat piezoelectric membrane is located on the top boundary
opposite the nozzle. In 3D, the channel has a depth of 60µm into the page. For this
study, we approximate the channel to be uniform in that direction and examine only 2D
deformations, as in §4.2. We aim to increase the decay rate of the oscillating flow while
keeping the steady flow viscous dissipation constant.

We parametrize the printhead walls by third order b-splines with the control points
indicated on figure 7. The inlet and the outlet points are fixed. The nozzle shape cannot
change but it can move in the vertical direction. The bottom wall cannot extend below
the nozzle tip.

We choose a characteristic length L = 100µm. The steady flow Reynolds number is
Re = 0.066 and the Reynolds number based on the speed of sound is R̃e = 6000. The
steady flow Mach number is µ = 10−4 and the oscillating flow Mach number is ε = 10−5.
For the steady flow, the inlet has a fixed parabolic velocity profile, the outlet is an open
end with stress-free boundary condition (2.14c), and the walls are no-slip boundaries and
the nozzle exit is modelled as a no slip boundary because there is no flow through it. For
the acoustic flow, the walls are adiabatic no-slip, and the open boundaries, including the
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Figure 8. The direct velocity magnitude ū (top) and the adjoint velocity magnitude λ

(bottom) of the steady flow in the initial printhead channel at Re = 0.066.

nozzle exit, are stress-free and isothermal. In this study we neglect the surface tension
at the nozzle exit.

Figure 8 shows the steady flow direct ū and adjoint λ velocity magnitude in the initial
geometry. The largest direct velocity magnitude is in the narrow horizontal channel. The
adjoint velocity has highest value near the sharp corners at the channel entrance and the
nozzle. These regions have the greatest influence on the steady flow viscous dissipation.

The frequency of the first natural mode is Im(s1/2π) = ω/2π = 0.342 MHz, and
the decay rate is Re(s1/2π) = σ/2π = 0.0171 MHz. Figure 9 shows the mode shape,
normalized by (3.12). The pressure and the temperature modes are zero on the stress-free
boundaries and have antinodes in the middle of the channel. Since the walls are adiabatic,
the thermal boundary layer is absent and the pressure and temperature gradients are
tangential to the boundaries. The velocity magnitude is highest near the nozzle, as shown
in figure 9, where the viscous boundary layers overlap. The decay rate production is shown
in Fig. 10. It is concentrated in the nozzle region of the initial printhead configuration,
in the viscous boundary layers along the no slip walls, and around the corners.

The parametric optimality coefficient for the initial printhead design is αp = 0.017,
which implies that the decay rate and the viscous dissipation gradient vectors are almost
orthogonal. Therefore we expect to be able to obtain a noticeable improvement in the
objective function.

5.2. Optimization

In this section we use the optimization algorithm in section 4.1.3 to update the control
points until the relative improvement falls below the tolerance level of εp 6 0.1. The
optimized domain is shown in figure 11. The channel constricts near the corners of the top
boundary, where the decay rate production had a local maximum. These constrictions
increase the steady flow viscous dissipation there, but the central part of the channel
expands to compensate. The new frequency of the first natural mode is Im(s1/2π) =
ω/2π = 0.264 MHz, and the decay rate increases to Re(s1/2π) = σ/2π = 0.0257 MHz,
which is over 50% higher than before. The steady flow viscous dissipation is the same as
in the initial printhead. The parametric optimality coefficient of the optimized shape is
αp = −0.94, showing that it is nearly optimal.

Figure 12 shows the spatial distrubution of the decay rate production ln (−σΩ) inside
the optimized domain. The viscous boundary layers overlap in the narrow parts of the
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P̂ T̂

Im(û)

Re(û)

Figure 9. The first natural mode of the oscillating flow in the initial printhead geometry at
R̃e = 6000. From top to bottom: the magnitude of the velocity mode real part Re(û) in the
entire domain (left) and near the nozzle (right), the magnitude of the velocity mode imaginary

part Im(û), and pressure P̂ (bottom left) and temperature T̂ (bottom right) mode shapes.

Figure 10. Spatial distribution of the absolute value of the decay rate production in the
initial printhead channel (on a logarithmic scale), ln(−σΩ).
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Figure 11. The initial (solid lines) and the optimized (dashed lines) printhead geometry. The
inlet and the outlet boundaries remain fixed. The piezoelectric membrane and nozzle parts can
move up and down but cannot change shape.
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Figure 12. Spatial distribution of the decay rate production absolute value in the optimized
printhead channel (on a logarithmic scale), ln (−σΩ).

channel, resulting in higher acoustic energy dissipation there. The highest amplitudes
of decay rate production are around the nozzle. This shows that changes to the nozzle
geometry are particulary influential.

6. Conclusions

In this paper we perform constrained gradient-based shape optimization of a mi-
crochannel in an inkjet print head. Two Mach numbers are formed: one based on the
steady flow and the other on the oscillating flow. Both Mach numbers are small, which
allows us to separate the flow into (i) a steady flow with no oscillations (2.13) and (ii)
oscillations with no steady flow (2.15). We then seek to control two objective functions
by changing the shape of the boundaries. The objective functions are (i) the viscous
dissipation of the first flow and (ii) a complex number that encapsulates the growth/decay
rate and frequency of the second flow. We obtain expressions for the derivatives of the
above objective functions with respect to boundary deformations in Hadamard form by
deriving the adjoint equations for both flows.

These equations are general and could be used in many ways. We start by showing how
they can be combined with an optimization algorithm in order to increase the viscous and
thermal dissipation of oscillations in a channel without changing the viscous dissipation of
the steady flow in the channel. This works by constricting the channel where the acoustic
velocity is largest and enlarging the channel where the acoustic velocity is smallest. This
result is straight-forward and could have been obtained using physical intuition.

We then apply this technique to the same problem in a 2D generic injket printhead.
The printhead manufacturer would like to increase the decay rate of residual oscillations
after a drop has been ejected, without changing the pressure drop required to continually
flush ink through the head. Starting from a generic design and incorporating constraints
such as the sizes of the nozzle and piezo-electric actuator, the algorithm converges to
a design with a 50% larger decay rate, but the same pressure drop, which we show to
be nearly optimal. The final shape is not straight-forward and would have been difficult
to achieve through physical insight or trial and error. It could be improved further by
adapting the parameters that describe the shape, but in this case the improvement would
be small.

In this paper we derive and demonstrate a new way to optimize the shapes of channels
that contain thermoviscous oscillating flows with (or without) steady flow. The main
novelty is the cheap and accurate calculation of the shape gradients, using adjoint
methods, which allows optimization with gradient-based algorithms. This is useful in
two complementary ways. Firstly, these algorithms quickly converge to shapes that a
human designer, using physical insight and trial and error, would probably not consider.
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Secondly, the adjoint methods provide physical insight into the mechanisms that influence
the objective functions. It can be then used to alter the choice of shape parameters if it
becomes apparent that the algorithm is missing a good shape due to a bad choice of shape
parameters. The method in this paper is general and could be applied to many different
applications in microfluidics. Its main requirements are that the steady flow Mach number
and oscillating flow Mach number are small, and that dissipation is dominated by thermo-
viscous mechanisms.

Now that the technique has been proven on a 2D geometry, the desirable next step
is to apply it to 3D geometries. For the adjoint methods and optimization algorithms,
the extension from 2D to 3D is straightforward. For the shape parametrization, this
extension is usually harder. In this case, however, the manufacturable 3D shapes of inkjet
print heads are severely constrained because they are etched into silicon wafers. Similar
constraints apply to many microfluidic applications. These constraints, which require
geometries to be close to 2D, both render the 2D analysis more relevant and make the
3D shape parametrization more simple. Another extension, which is particularly relevant
to inkjet printing, is to consider non-Newtonian fluids. Although these are challenging
to model, it should be relatively straight-forward to develop adjoints of these models.
Another extension, which is the subject of our current work, is to use adjoint methods to
optimize the droplet formation stage by varying the signal applied to the piezo-electric
actuator.
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Appendix A

A.1. Derivation of the thermoviscous acoustic adjoint equations

The thermoviscous acoustic eigenvalue problem (2.20) can be written in terms of

the velocity, pressure and temperature q̂T =
(
ûi, P̂ , T̂

)
eigenvector and the complex

eigenvalue s in matrix form sAq̂ +Bq̂ = 0:

s


1 0 0

0 γ −1

0 −1 1
γ−1

 q̂ +


−R̃e

−1∇j τ̂ij ∇i 0

∇i 0 0

0 0 − 1

(γ−1) ˜Pe
∆

 q̂ = 0 (A 1)

where τ̂ij denotes the viscous stress tensor differential operator, τ̂ij û ≡ τ̂ij . The direct
boundary conditions N q̂ = 0 satisfy the following equations:

Z(s, x)ûi =
(
−P̂ δij + R̃e

−1
τ̂ij

)
nj , (A 2a)

T̂ = −αw(s, x)
∂T̂

∂n
. (A 2b)

There exists a corresponding adjoint state vector q+ =
(
u+i , P

+, T+
)
. We define the

following volume and surface inner products:

〈a,b〉 =

∫
Ω

a∗b dx, (A 3a)
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{a,b} =

∫
∂Ω

a∗b ds. (A 3b)

A Lagrangian functional of the system (A 1) with a objective function J is defined as

L = J −
〈
q+, sAq̂ +Bq̂

〉
. (A 4)

The system’s eigenvalue sensitivity can be determined by setting J = s.
The optimality condition yields that the total variation of the Lagrangian with respect

to the direct q̂, s, and the adjoint q+ variables must be zero. The variation with respect
to the adjoint variables gives the direct state equations. To determine the adjoint set of
equations, we take the variation with respect to the direct variables and integrate the
volume term in (A 4) by parts:

∂L
∂q̂

δq̂ = 0 =
∂J
∂q̂

δq̂−
〈
s∗A+q+ +B+q+, δq̂

〉
−
{
N+q+, δq̂

}
. (A 5)

The volume terms define the adjoint state equations, which in matrix form are:

s∗


1 0 0

0 γ −1

0 −1 1
γ−1

q+ +


−R̃e

−1∇j τ̂ij −∇i 0

−∇i 0 0

0 0 − 1

(γ−1) ˜Pe
∆

q+ = 0, (A 6)

where τ̂ijq
+ = τ+ij ≡ ∇ju+i +∇iu+j − 2/3 δijdivu+ is the adjoint viscous stress tensor.

The surface terms determine the adjoint boundary conditions N+q+ = 0:

Z∗(s, x)u+i =
(
P+δij + R̃e

−1
τ+ij

)
nj , (A 7a)

T+ = −αw(s, x)
∂T+

∂n
. (A 7b)

Consideration of the direct (A 1) and adjoint (A 6) state equations, and the corre-
sponding boundary conditions (A 2, A 7) yields that the adjoint state can be expressed
in terms of the direct state variables:

q+ =
(
−û∗i , P̂ ∗, T̂ ∗

)
. (A 8)

The variation of the Lagrangian with respect to the eigenvalue δs gives the normaliza-
tion condition:

∂L
∂s
δs = 0 = δs−

〈
q+, Aq̂

〉
δs−

{
q+,

∂N
∂s

q̂

}
δs. (A 9)

Taking into account the adjoint state representation in terms of the direct variables, the
normalization condition is:

1 = − 〈û∗i , ûi〉+
〈
P̂ ∗, γP̂ − T̂

〉
+

〈
T̂ ∗,

T̂

γ − 1
− P̂

〉
+ (A 10)

+

{
û∗i ,

∂Z

∂s
ûi

}
−
{
∂T̂ ∗

∂n
,

(∂αw/∂s)

(γ − 1)P̃e

∂T̂

∂n

}
.

If the boundaries’ impedance and thermal accommodation coefficient are frequency-
independent, the surface terms in (A 10) vanish and the normalization condition is given
by 〈

q+, Aq̂
〉

= 1. (A 11)
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A.2. Oscillating flow shape sensitivity

We want to construct the eigenvalue shape sensitivity G(q̂,q+) of the thermoviscous
acoustic problem for a given shape displacement field V . We take the variation of the
Lagrangian (A 4) with respect to a shape perturbation L′[V ], and, due to the choice of
the adjoint state (A 8), only the boundary terms do not vanish. This gives us the shape
gradient

L′[V ] = −
{
N+q+, q̂′[V ]

}
= (A 12){

u+i ,
(
−P̂ ′[V ]δij + R̃e

−1
τ̂ ′ij [V ]

)
nj

}
−
{(
P+δij + R̃e

−1
τ+ij

)
nj , û

′
i[V ]

}
+

{
T+,

1

(γ − 1)P̃e

∂T̂ ′[V ]

∂n

}
−
{
∂T+

∂n
,

1

(γ − 1)P̃e
T̂ ′[V ]

}
For simplicity, we introduce the direct σ̂ij = −P̂ δij + R̃e

−1
τ̂ij and the adjoint σ+

ij =

−P+δij + R̃e
−1
τ+ij force tensors. Also, we define the direct q̂i = 1

(γ−1) ˜Pe
∇iT̂ and adjoint

q+i = 1

(γ−1) ˜Pe
∇iT+ heat fluxes, and their normal components q̂ini ≡ q̂n, q+i ni ≡ q+n .

On boundaries, the conditions (A 2) hold, resulting in the compliant and thermal
boundary shape derivatives:

0 = d (Zûi − σ̂ijnj) [V ] = dZ[V ]ûi + Zdûi[V ]− dσ̂ij [V ]nj − σ̂ijdnj [V ], (A 13a)

0 = d

(
T̂ + αw

∂T̂

∂n

)
[V ] = dT̂ [V ] + dαw[V ]

∂T̂

∂n
+ (A 13b)

+ αwdnj [V ]∇j T̂ + αw
∂dT̂ [V ]

∂n

As discussed in section 3.1, the total and the local shape derivatives of the Dirichlet and
Neumann boundaries, satisfy:

dûi[V ] = û′i[V ] + (V · ∇)ûi, (A 14a)

dσ̂ij [V ] = σ̂′ij [V ] + (V · ∇)σ̂ij , (A 14b)

dT̂ [V ] = T̂ ′[V ] + (V · ∇)T̂ , (A 14c)

d
(
∇j T̂

)
[V ] = ∇j T̂ ′[V ] + (V · ∇)∇j T̂ (A 14d)

Assuming the boundary properties (impedance and thermal accomodation) to be
constant in the displacement direction, the material derivative results in dZ[V ] =
0,dαw[V ] = 0.

The displacement vector field V can be presented as a sum of its normal and tangential
components, V = (V ·n)n+

∑d−1
i=1 (V · τi)τi, where τi spans the d− 1 dimensional space

tangent to the surface. As shown in Sokolowski & Zolesio (1992), a shape derivative
vanishes in the tangential direction, since any boundary deformation in the tangential
direction does not change the domain boundary. Therefore, for a domain boundary of
sufficient smoothness the shape derivatives in the direction of the displacement field are
equivalent to the shape derivatives in its normal projection. Therefore V can be replaced
with (V · n)n and (V · ∇) with (V · n)∂/∂n. By introducing the tangential gradient
∇Γi = ∇i−ninj∇j , the shape derivative of the boundary normal is (Sonntag et al. 2016)

dni[V ] = −∇Γi (V · n). (A 15)
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Combining (A 13 - A 15), the shape derivatives of the compliant boundary condition
and the thermal boundary condition result in

Zû′i[V ]− σ̂′ij [V ]nj = −Z(V · n)
∂ûi
∂n

+ (V · n)nj
∂σ̂ij
∂n
− σ̂ij∇Γi (V · n), (A 16a)

T̂ ′[V ] + αw
∂T̂ ′[V ]

∂n
= −(V · n)

∂T̂

∂n
− αw(V · n)nj

∂∇j T̂
∂n

+ αw∇Γi (V · n)∇iT̂(A 16b)

Considering the adjoint boundary conditions (A 7) in the primal shape derivative (A 12)
and substituting the above expressions, we obtain

L′[V ] =
{
u+i , σ̂

′
ij [V ]nj − Zû′i[V ]

}
−
{
q+n , T̂

′[V ] + αw
∂T̂ ′[V ]

∂n

}
(A 17a)

=

{
u+i , (V · n)

(
Z
∂ûi
∂n
− nj

∂σ̂ij
∂n

)
+ σ̂ij∇Γj (V · n)

}
+ (A 17b){

q+n , (V · n)

(
∂T̂

∂n
+ αwnj

∂∇j T̂
∂n

)
− αw∇Γi (V · n)∇iT̂

}
.

The shape gradient is represented by stress and thermal contributions. Two terms are
still not in Hadamard form, so we apply the surface tangential Green’s formula (Delfour
& Zolsio 2011). The relation holds for a smooth vector field A and a scalar field b:∫

∂Ω

(A,∇Γ )b ds =

∫
∂Ω

κb(A,n)− b divΓA ds. (A 18)

Here κ = divΓn describes the surface curvature. With Aj = −u+∗i σ̂ij , b = (V · n),
the transformation of the stress contribution (the first surface integral in (A 17b)) to
Hadamard form is given by

u+∗i σ̂ij∇Γj (V · n) = κ(V · n)u+∗i σ̂ijnj − (V · n)∇Γj (u+∗i σ̂ij), (A 19)

and using the definition of the tangential gradient, the tangential divergence in (A 19)
combines with the following term and we obtain:

∇Γj (u+∗i σ̂ij) + u+∗i nj
∂σ̂ij
∂n

= ∇j(u+∗i σ̂ij)−
∂u+∗i
∂n

nj σ̂ij . (A 20)

For the thermal contribution (the second surface integral in (A 17b)) Aj =

αw∇j T̂ (∂T+/∂n)
∗

so the Hadamard form is:

αwq
+
n∇j T̂∇Γj (V · n) = κ(V · n)αwq

+∗
n

∂T̂

∂n
− (V · n)∇Γj

(
αwq

+∗
n ∇j T̂

)
(A 21)

= (V · n)

(
καwq

+∗
n

∂T̂

∂n
− αwq+∗n

(
∆T̂ − nj

∂∇j T̂
∂n

)
−∇Γj

(
αwq

+∗
n

)
∇Γj T̂

)
After rearranging the terms in (A 17), the shape derivative in Hadamard form is given

by the surface integral of the normal displacement and the sum of the stress and thermal
sensitivity functionals, Gstrs and Gths :

s′[V ] = L′[V ] =

∫
∂Ω

(V · n)
(
Gstrs (q̂,q+) +Gths (q̂,q+)

)
, (A 22)

where the functionals are defined as

Gstrs (q̂,q+) =
∂ûi
∂n

njσ
+∗
ij +

∂u+∗i
∂n

nj σ̂ij + κûiσ
+∗
ij nj −∇j

(
u+∗i σ̂ij

)
, (A 23a)
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Gths (q̂,q+) =
∂T̂

∂n
q+∗n +

∂T+∗

∂n
q̂n + κT̂ q+∗n −∇j

(
T+∗q̂j

)
. (A 23b)

Finally, considering (A 8), the eigenvalue sensitivity functionals can be derived:

Gstrs = −
(

2
∂ûi
∂n

nj σ̂ij + κûiσ̂ijnj −∇j (ûiσ̂ij)

)
, (A 24)

Gths = 2
∂T̂

∂n
q̂n + κT̂ q̂n −∇j

(
T̂ q̂j

)
.

Two special cases, the no slip and stress-free boundaries, simplify the viscous sensitivity
functional to

Gstrs,nsl = −∂ûi
∂n

nj σ̂ij , (A 25a)

Gstrs,free = ∇j (ûiσ̂ij) , (A 25b)

and the thermal sensitivity functional turns into the following expressions on isothermal
and adiabatic boundaries:

Gths,iso =
∂T̂

∂n
q̂n, (A 26a)

Gths,ad = −∇j
(
T̂ q̂j

)
. (A 26b)
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