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Thermoacoustic systems can oscillate self-excitedly, and often non-periodically,
owing to coupling between unsteady heat release and acoustic waves. We study
a slot-stabilized two-dimensional premixed flame in a duct via numerical simulations
of a G-equation flame coupled with duct acoustics. We examine the bifurcations
and routes to chaos for three control parameters: (i) the flame position in the duct,
(ii) the length of the duct and (iii) the mean flow velocity. We observe period-1,
period-2, quasi-periodic and chaotic oscillations. For certain parameter ranges, more
than one stable state exists, so mode switching is possible. At intermediate times,
the system is attracted to and repelled from unstable states, which are also identified.
Two routes to chaos are established for this system: the period-doubling route and
the Ruelle–Takens–Newhouse route. These are corroborated by analyses of the power
spectra of the acoustic velocity. Instantaneous flame images reveal that the wrinkles on
the flame surface and pinch-off of flame pockets are regular for periodic oscillations,
while they are irregular and have multiple time and length scales for quasi-periodic
and aperiodic oscillations. This study complements recent experiments by providing
a reduced-order model of a system with approximately 5000 degrees of freedom
that captures much of the elaborate nonlinear behaviour of ducted premixed flames
observed in the laboratory.
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1. Introduction
Thermoacoustic oscillations occur due to feedback between heat release rate

fluctuations and acoustic pressure fluctuations in confined spaces. The mechanisms
that cause unsteady heat release rate fluctuations are described in Lieuwen (2012).
In gas turbine combustion systems, the acoustics can be treated linearly, even for
acoustic velocity fluctuations comparable to the mean flow velocity, because the
perturbation Mach number remains small (Dowling 1997). In such thermoacoustic
systems, therefore, the behaviour of the flame’s heat release rate is the dominant
source of nonlinearity.
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The onset of thermoacoustic oscillations is well understood using linear theories, but
the subsequent nonlinear behaviour is poorly understood. Nonlinear thermoacoustics
may be analysed in either the frequency or time domains. Most studies of nonlinear
thermoacoustics are in the frequency domain. These studies assume a priori that the
oscillations are periodic, with a dominant frequency and a fixed amplitude (Poinsot
& Candel 1988; Dowling 1997; Noiray et al. 2008). Recent experiments, however,
reveal that even simple thermoacoustic systems exhibit nonlinear behaviour that can be
far more elaborate than period-1 limit cycle oscillations (Kabiraj et al. 2012; Kabiraj
& Sujith 2012a,b). By varying a control parameter in their thermoacoustic system,
consisting of an axisymmetric laminar conical flame in a duct, Kabiraj et al. show that
the system undergoes several bifurcations resulting in quasi-periodic, frequency-locked
or period-k, and chaotic oscillations (Kabiraj & Sujith 2012a). Experiments in large
industrial-scale thermoacoustic systems by Gotoda et al. (2011, 2012, 2014) show that,
as the equivalence ratio increases, the thermoacoustic behaviour undergoes a transition
from stochastic fluctuations to periodic oscillations through low-dimensional chaotic
oscillations, revealing similarly elaborate nonlinear behaviour.

A few studies of nonlinear thermoacoustics are in the time domain. These studies
do not assume a priori that the system reaches period-1 oscillations (Culick 1971;
Margolis 1993; Sterling 1993; Jahnke & Culick 1994; Lei & Turan 2009; Stow &
Dowling 2009). These studies show that the influence of harmonics and the interaction
between different modes can be modelled with the time-domain approach. Some
recent studies use approaches from dynamical systems theory to extract information
about thermoacoustic oscillations in turbulent environments that is beyond the reach
of conventional approaches (Nair & Sujith 2013; Nair et al. 2013). Many of these
studies, however, are limited by the assumption that the unsteady heat release rate
is a simple, often polynomial, function of the pressure or velocity fluctuations. This
assumption is unrealistic because the heat release rate of flames depends not only
on the instantaneous acoustic pressure or velocity, but also on the integrated effect
of historical values (Hemchandra & Lieuwen 2010). Therefore, simple analytical
descriptions of heat release rate that do not account for memory effects cannot
capture the complexities of unsteady flame dynamics.

In this study, therefore, we combine a more realistic flame model with simple duct
acoustics and do not assume a priori that the system reaches a period-1 oscillation.
The system consists of a slot-stabilized two-dimensional premixed flame in an
open duct. We study the nonlinear behaviour using numerical simulations of the
coupled nonlinear dynamical system in the time domain. This thermoacoustic system
resembles the system that has recently been investigated experimentally by Kabiraj
et al. but differs in that we use a two-dimensional slot-stabilized flame and not an
axisymmetric one (Kabiraj & Sujith 2012a). The aims of this study are: (i) to use
techniques and well-established results from dynamical systems theory and nonlinear
time-series analysis to characterize the nonlinear behaviour of this system, and (ii) to
use instantaneous flame images of the different types of oscillation to interpret the
elaborate nonlinear behaviour of this system.

In § 2 we describe the nonlinear kinematic model of the premixed flame, which
is based on the G-equation, and the acoustics, which are governed by linearized
momentum and energy equations. In § 3 we identify the bifurcations of this system
due to variations of: (i) the flame position in the duct, which changes the amplitude
and the frequency content of the acoustic perturbations at the flame, (ii) the length
of the duct, which changes the natural acoustic frequencies of the system, and
(iii) the mean flow velocity, which changes the flame geometry. We also examine the
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FIGURE 1. Diagram of the two-dimensional slot-stabilized premixed flame in a duct. Here
L0 is the length of the duct, x̃f is the flame position along the duct, α= 0.2 is the fraction
of the duct cross-sectional area occupied by the burner and the flow is from left to right.

influence that the number of coupled acoustic modes has on these bifurcations. In
§ 4 we show instantaneous flame images of different types of oscillation and examine
the flame wrinkling and pinch-off behaviour of each type of oscillation. In § 5 we
characterize the states of the system using power spectra, phase portraits, Poincaré
sections and correlation dimensions. In § 6 we highlight the role of unstable attractors
in the trajectory of the system from its initial condition to its final stable state. In
§ 7 we identify two routes to chaos seen in this system: the period-doubling route
and the Ruelle–Takens–Newhouse route. We show the sequence of steps in these
routes to chaos using Poincaré sections and power spectra and we find the maximal
Lyapunov exponents of the final chaotic states. In § 8 we discuss the implications of
this elaborate nonlinear behaviour for the prediction of thermoacoustic oscillations.

2. The models and their governing equations
2.1. Model for the acoustics

In this study we consider a duct of length L0 open at both ends with a two-
dimensional slot-stabilized laminar premixed flame located at a distance x̃f from
one end. Figure 1 shows a diagram of the system. The ratio of the area of the slot
burner to the cross-sectional area of the duct, α, is taken to be 0.2. The base flow
velocity is ũ0, the pressure is p̃0 and a constant mean density assumption is invoked,
so that the mean density, ρ̃0, and speed of sound in the unburnt mixture, c̃0, remain
constant everywhere in the duct. The Mach number, M ≡ ũ0/c̃0, is assumed to be
small, and therefore nonlinear effects in the acoustics are negligible (Dowling 1997).
The acoustics can be treated linearly even for large acoustic velocity fluctuations
because the perturbation Mach number remains small (Dowling 1997). We assume
that the flame length is small compared to the wavelengths of the duct’s acoustic
modes. The governing equations in dimensional and non-dimensional form have
been described in detail in previous studies that have used the same acoustic model
(Matveev 2003; Balasubramanian & Sujith 2008; Juniper 2011; Subramanian & Sujith
2011; Kashinath, Hemchandra & Juniper 2013a,b).

The dimensional governing equations for the acoustic perturbations are the
momentum and energy equations,

ρ̃0
∂ ũ
∂ t̃
+ ∂ p̃
∂ x̃
= 0, (2.1)

∂ p̃
∂ t̃
+ γ p̃0

∂ ũ
∂ x̃
+ ζ c̃0

L0
p̃− (γ − 1) ˜̇Q δ(x̃− x̃f )= 0, (2.2)

where the rate of heat transfer from the flame to the gas is given by ˜̇Q, which is
applied at the flame’s position by multiplying ˜̇Q by the dimensional Dirac delta
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distribution δ̃(x̃ − x̃f ). The acoustic damping is represented by ζ , and the model for
this is described later.

The above equations may be non-dimensionalized using ũ0, p̃0γM, L0 and L0/c̃0 for
speed, pressure, length and time, respectively. The dimensionless governing equations
are

∂u
∂t
+ ∂p
∂x
= 0, (2.3)

∂p
∂t
+ ∂u
∂x
+ ζp− βQ̇ δD(x− xf )= 0, (2.4)

β ≡ (γ − 1) ˜̇Q0α

γ p̃0ũ0
, Q̇≡

˜̇Q
˜̇Q0

, (2.5a,b)

where βQ̇ is the non-dimensional heat release rate perturbation, which encapsulates
all relevant information about the flame, base velocity and ambient conditions.

The heat release rate is averaged over the cross-sectional area of the duct, and the
ratio of the area of the base of the flame to the cross-sectional area of the duct, α, is
assumed to be 0.2 in this paper.

For the open duct examined here, the pressure perturbations and gradient of velocity
perturbations are both set to zero at the ends of the tube,

[p]x=0 = [p]x=1 = 0,
[
∂u
∂x

]
x=0

=
[
∂u
∂x

]
x=1

= 0. (2.6a,b)

These boundary conditions are enforced by choosing basis sets that match these
boundary conditions and satisfy the dimensionless momentum equation (2.3),

u(x, t)=
N∑

j=1

ηj(t) cos(jπx), p(x, t)=−
N∑

j=1

η̇j(t)
jπ

sin(jπx). (2.7a,b)

The governing equations are discretized using this Galerkin discretization with
orthogonal basis vectors and integrated over the domain to reduce them to a system
of ordinary differential equations.

In this formulation, for the sake of simplicity, we have not accounted for the
effect of the temperature change across the flame on the acoustic mode shapes and
frequencies. This has two important implications: (i) the eigenfrequencies of the duct
are multiples of the fundamental acoustic duct mode, and hence excitation of these
modes by a nonlinear heat release rate is amplified because the higher harmonics
of the heat release rate overlap perfectly with the eigenmodes, and (ii) quantitative
comparisons with experiments are not possible.

The acoustic damping due to radiation at the open ends of the duct and due to
losses in the viscous and thermal boundary layers is modelled using correlations
developed by Matveev (2003) from models in Landau & Lifshitz (1959). In this
model, the acoustic damping, ζ , is dealt with by assigning damping parameters, ζj,
to each mode, where ζj = c1 j2 + c2 j1/2. Note that c1 and c2 are functions of the duct
geometry and hence the fundamental acoustic frequency. Therefore higher frequencies
are more heavily damped than lower frequencies.
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2.2. Reduced-order model of the premixed flame: the G-equation
The flame is described by a kinematic model using a level set approach, also known
as the G-equation model in combustion (Williams 1985, pp. 97–131). This model has
been shown to capture the major nonlinearities in premixed flame dynamics (Dowling
1999; Lieuwen 2005) and has been used widely in low-order models of thermoacoustic
systems with premixed flames (Dowling 1999; Graham & Dowling 2011; Subramanian
& Sujith 2011). The principal assumptions of the model are that: (i) the flame is a
thin surface separating unburnt reactants from burnt products; (ii) the influence of gas
expansion across the flame front is negligible.

Assumption (i) requires that the flame front has length scales that are small
compared to the flow and acoustic scales, and is valid in this study. Furthermore,
this assumption is also valid in the wrinkled and corrugated flamelet regimes of
turbulent combustion, which may be encountered in technical devices. This assumption
allows for the flame to be tracked using the G-equation, which for the present
two-dimensional case can be written as (Williams 1985, pp. 97–131)

∂G
∂ t̃
+ Ũ

∂G
∂ x̃
+ Ṽ

∂G
∂ ỹ
= sL

√(
∂G
∂ x̃

)2

+
(
∂G
∂ ỹ

)2

, (2.8)

where tildes denote dimensional values, G(x̃, ỹ, t̃) is a time-varying function that is
negative in the unburnt gas, positive in the burnt gas and zero on the flame surface, Ũ
and Ṽ are the instantaneous velocities along the x and y directions, respectively, and
sL is the flame speed. In this paper the equivalence ratio is uniform, φ = 0.85, and
curvature and flame-stretch effects are ignored, so the flame speed, sL = 0.32 m s−1,
is also uniform.

Assumption (ii) allows for the velocity field to be independently specified,
neglecting the effect of the heat release on the flow field. This is strictly valid in the
limit of small temperature change across the flame and implies that the flame does
not modify the velocity field. Preetham & Lieuwen (2004) show that this assumption
is valid when the amplitude of flow perturbations is below that needed for parametric
instability. The amplitude range where this holds decreases when the temperature
ratio across the flame increases. In this study, this assumption is consistent with the
Galerkin method, which neglects the influence of the temperature change across the
flame on the acoustics. Therefore, as mentioned earlier, quantitative comparisons with
experiments are not possible, but these simplifications allow the flame to be modelled
with a much smaller system than would be required for fully resolved computational
fluid dynamics.

Equation (2.8) can be rewritten in terms of non-dimensional parameters, x∗ = x̃/Lf ,
y∗ = ỹ/R, u∗ = Ũ/ũ0, v

∗ = Ṽ/ũ0 and t∗ = t̃ũ0/Lf , as

∂G
∂t∗
+ u∗

∂G
∂x∗
+ βfv

∗ ∂G
∂y∗
=
(

sL

ũ0

)√(
∂G
∂x∗

)2

+ β2
f

(
∂G
∂y∗

)2

, (2.9)

where Lf is the nominal flame height, i.e. the height of the steady flame ignoring
stretch effects, R is the half-width of the burner and βf is the flame aspect ratio, Lf /R.

The calculation of the heat release rate and the numerical techniques used are
described in detail in our previous studies (Kashinath et al. 2013a,b).
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2.3. Reduced-order model of the perturbation velocity field
Studies of acoustically forced premixed flames have shown that acoustic waves
induce velocity perturbations at the base of the flame (Boyer & Quinard 1990;
Baillot, Durox & Prud’homme 1992). These velocity perturbations then travel along
the flame, distorting its surface and causing flame area fluctuations that result in
unsteady heat release rate oscillations. For this reason, the perturbation velocity is
modelled as a travelling wave that originates at the burner lip (Ducruix, Durox &
Candel 2000; Preetham, Hemchandra & Lieuwen 2008; Kashinath et al. 2013b).
Experiments on laminar premixed flames (Boyer & Quinard 1990; Baillot et al.
1992; Durox, Schuller & Candel 2005; Birbaud, Durox & Candel 2006; Kornilov,
Schreel & de Goey 2007; Karimi et al. 2009; Shanbhogue et al. 2009) and turbulent
premixed flames (Shin et al. 2011; O’Connor & Lieuwen 2012), and direct numerical
simulations (DNS) in our previous work (Kashinath et al. 2013b), have shown that
the phase speed of these velocity perturbations is not equal to the mean flow velocity.
It is a function of the forcing frequency but is independent of the forcing amplitude.
Furthermore, we found that for a slot-stabilized two-dimensional premixed flame it
is usually less than the mean flow velocity in the range of frequencies relevant to
thermoacoustic oscillations (Kashinath et al. 2013b). This is accounted for in our
models as described below.

The acoustic perturbations in this study are non-harmonic and we cannot use a
frequency-dependent phase speed because these frequencies are not known a priori.
For this reason we assume a constant phase speed, for which the non-dimensional
streamwise perturbation velocity field is found by solving the one-dimensional
advection equation,

∂u
∂t
+ Uc

U0

∂u
∂x
= 0. (2.10)

The phase speed of velocity perturbations, Uc, is equal to 0.9U0, and was chosen
based on our previous work using DNS (Kashinath et al. 2013b). In our previous
work we have shown that Uc has a strong effect on the nonlinear behaviour of the
thermoacoustic system and that subcritical bifurcations are more likely to exist for
U0 >Uc than for U0 =Uc (Kashinath et al. 2013a,b). The boundary condition is that
the perturbation at the burner lip equals the acoustic velocity at the flame position,
u(xburner, t) = uacoustic(xf , t). Therefore the axial velocity at any point in the flame
domain is the delayed acoustic velocity at the burner lip, with a delay equal to the
time taken for the travelling wave to propagate from the burner to that point.

As in our previous work (Kashinath et al. 2013a,b), we solve the continuity
equation within the flame domain to find the transverse velocity perturbation field,

∂u
∂x
+ ∂v
∂y
= 0. (2.11)

We have chosen to anchor the base of the flame to the burner lip, which simulates
the case with a hot burner lip. Recent experiments on a self-excited ducted premixed
flame show that flame lift-off occurs at large velocity fluctuation amplitudes and
can lead to elaborate nonlinear behaviour such as intermittency, ultimately leading
to flame blow-out (Kabiraj & Sujith 2012b). This cannot be captured in our model.
Furthermore, because we assume symmetry and simulate only one half of the flame,
asymmetric flame behaviour cannot be simulated. Flashback, however, is allowed,
using the boundary condition proposed by Dowling (1999) and implemented in the
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FIGURE 2. Instantaneous images of the flame during a period-1 limit cycle oscillation,
mean equivalence ratio φ = 0.85, ratio of flame height to flame radius Lf /R = βf = 5.
Note the formation of sharp cusps towards the products and flame pinch-off, which are
characteristics of premixed flames seen in experiments (Baillot et al. 1992; Ducruix et al.
2000; Durox et al. 2005; Birbaud et al. 2006; Karimi et al. 2009).

level set solver by Waugh (2013). We have neglected the influence of curvature on
the flame speed in this study, but this has been included in a continuation analysis
of a similar thermoacoustic system by Waugh (2013). Neglecting the influence of
curvature on the flame speed leads to sharp cusps on the flame surface but allows
faster computations because curvature is a second-order quantity that requires a
much smaller time step for numerical stability. For premixed flames with constant
flame speed, the heat release rate is proportional to the flame surface area, which is
calculated as in previous studies (Hemchandra 2012; Kashinath et al. 2013a,b). The
simple velocity model and boundary conditions we use here result in an unsteady heat
release rate whose mean is less than the steady heat release rate of the unperturbed
flame, which is unphysical. This is a well-known feature of the G-equation approach
(Oberlack & Cheviakov 2010). The thermoacoustic oscillations are not affected by
the mean of the heat release rate but only by its rate of change. So this simple model
is retained.

The evolution equations of the coupled nonlinear system, i.e. the G-equation, the
acoustic equations and perturbation velocity equations (2.10) and (2.11), are solved
simultaneously using a weighted essentially non-oscillatory (WENO) fifth-order
scheme in space (Jiang & Peng 2000) with a third-order total variation diminishing
(TVD) Runge–Kutta scheme (Gottlieb & Shu 1998) in time. The non-dimensionalized
spatial and temporal resolution in all the simulations are 5 × 10−3 and 1 × 10−3,
respectively, with a uniform mesh spacing in both spatial directions. For the
G-equation computations, the local level set method is used to achieve a significant
reduction in computational cost (Peng 1999) and is solved using LSGEN2D, a general
level set method solver, developed by Hemchandra (Hemchandra 2009; Shreekrishna,
Hemchandra & Lieuwen 2010) with extensions and modifications by Waugh (2013).

Figure 2 shows instantaneous flame images over one cycle of a period-1 limit cycle.
Sharp cusps form towards the products and pockets of flame pinch-off, which are
characteristics of premixed flames and the main sources of their nonlinearity in heat
release rate. The same characteristics are seen in experiments (Baillot et al. 1992;
Ducruix et al. 2000; Karimi et al. 2009).

3. Bifurcation analyses
A bifurcation diagram shows the changes in the nature of solutions to the governing

equations as a control parameter changes. The governing equations of the coupled
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nonlinear dynamical system are marched forward in time starting from the steady
unperturbed state until the system reaches its stable state. At a particular value of the
control parameter, the points on these bifurcation diagrams are the peaks and troughs
of the time series of acoustic velocity at the flame position, i.e. uf = u(xf ), after the
system reaches its stable state. Therefore, a period-1 oscillation has two points (one
peak and one trough), a period-2 oscillation has four points, a period-k oscillation has
2k points, and quasi-periodic and chaotic oscillations have an infinite number of points
bounded within a range of uf . In practice, the number of points for quasi-periodic
and chaotic oscillations depends on the length of the time series. In the diagrams that
follow, we show only the stable states. The unstable states are shown separately later.
We choose uf , the acoustic velocity at xf , as the relevant physical quantity on these
diagrams for two reasons: (i) it is the perturbation velocity at the burner exit and is
often measured in experiments Durox et al. (2005), and (ii) it perturbs the base of the
flame, creating flame wrinkles that travel along the flame, which play an important
role in the behaviour of the unsteady heat release rate.

3.1. Control parameter: flame position, xf

Figure 3 shows the bifurcation diagram, with the flame position, xf , as the control
parameter. The flame position influences how the flame affects the acoustics, and how
the acoustics affects the flame. This is because the contribution of each mode to the
acoustic velocity is ηj cos(jπxf ), and the contribution of the heat release to each mode
is βQ̇ sin(jπxf ), where ηj is the velocity amplitude of the jth mode and β encapsulates
all relevant information about the steady flame, base velocity and ambient conditions.

The initial condition for the simulation at a new flame position is the final stable
state of the previous flame position. This diagram is constructed using two sets
of time-marching simulations, one by increasing xf and the other by decreasing xf ,
in order to find hysteresis in the system. The different colours represent the most
dominant acoustic mode in the power spectrum of the oscillation: mode 1 is shown
in light grey (red online), mode 2 in dark grey (blue online), mode 3 in black (black
online) and mode 4 in very light grey (green online). This diagram shows only the
stable states of the system, so some branches of solutions end abruptly when the state
becomes unstable. A complete bifurcation diagram contains both stable and unstable
states. The unstable states for a few cases are shown separately later.

The sequence of bifurcations from right to left (decreasing xf ) are: a subcritical
Hopf from a stable fixed point to an unstable period-1 oscillation at xf = 0.48; a
fold from an unstable to a stable period-1 oscillation (mode 1) at xf = 0.487; and
a supercritical Neimark–Sacker bifurcation to quasi-periodic oscillations at xf = 0.438.
This branch of states (mode 1) loses stability at xf = 0.42. A second stable branch
with a dominant frequency near that of mode 2 begins at a fold bifurcation to period-1
oscillation at xf = 0.456. This branch has a supercritical Neimark–Sacker bifurcation
to quasi-periodic oscillations at xf = 0.434. In the narrow band of 0.415< xf < 0.422
on the mode-2 branch, the system has period-k states, seen as just a few points on the
diagram, as against many points in the quasi-periodic case. For 0.347< xf < 0.415 the
system has quasi-periodic oscillations and this branch goes to a period-1 oscillation
via a supercritical Neimark–Sacker bifurcation at xf = 0.347. The system undergoes
a subcritical period-doubling bifurcation followed by a fold bifurcation at xf = 0.311
to period-2 oscillations, which lose stability at xf = 0.289 where the period-2 branch
ends abruptly.

Similar features are noticed for lower values of xf . Between xf = 0.03 and 0.1 and
between xf = 0.27 and 0.295 there exist bands of chaos. For sizable intervals of xf , at



Nonlinear thermoacoustic oscillations of a ducted premixed flame 407

1.0

0.8

0.6

0.4

0.2

0

−0.8

0 0.05 0.10 0.15 0.20 0.25
xf

uf

0.30 0.35 0.40 0.45 0.50

−0.6

−0.4

−0.2

Mode 1
Mode 2
Mode 3
Mode 4

QP CH QP FL

QP FL CHQP FL

QP FLP1

P1 P1 FP

P2 P1 P1

FL
FL

QPCH

QP

FIGURE 3. (Colour online) Bifurcation diagram with flame position, xf , as the control
parameter keeping all other parameters constant: φmean = 0.85, βf = Lf /R = 7, ratio of
combustion to acoustic time scales Lf /ML0= 2.2. The uf values are the peaks and troughs
of the time series once the system has settled to its ultimate stable state. One set of
points is obtained by increasing xf starting from the stable state at the previous xf . The
other set of points is obtained by decreasing xf . The different colours represent the most
dominant acoustic mode in the power spectrum of the oscillation: mode 1 is shown in
grey (red online), mode 2 in dark grey (blue online), mode 3 in black (black online) and
mode 4 in very light grey (green online). Some branches end abruptly because the state
becomes unstable. The sequence of bifurcations are explained in the text. This chart shows
that the system can have a stable fixed point (labelled FP), stable period-1 oscillations
(labelled P1), period-2 oscillations (labelled P2), frequency-locked or period-k oscillations
(labelled FL), quasi-periodic oscillations (labelled QP) and chaotic oscillations (labelled
CH) depending on xf and initial conditions. There are several bistable regions, hence mode
switching and hysteresis are possible.

least two stable attractors coexist and the final state reached by the system therefore
depends on the initial conditions. This shows that hysteresis and mode switching are
possible in these bistable regions. A mode switch is an abrupt change in the oscillatory
state of the system due to an external perturbation that is strong enough to shift the
system from one basin of attraction into another. Mode switching does not involve a
change in any control parameter. It is usually caused by noise, but can also be brought
about by a coherent and carefully designed perturbation.

3.2. Solution dependence on number of modes used in the discretization
The number of Galerkin modes, Ng, used in the discretization of the acoustic equations
affects the solutions to the governing equations of the coupled system. When there
is more than one Galerkin mode, the heat release rate excites all the modes and
each mode in turn affects the heat release rate via the velocity perturbation field.
This couples the individual ordinary differential equations for each mode, resulting
in a non-harmonic acoustic waveform and more complex behaviour than that in the
single-mode case.
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FIGURE 4. (Colour online) Bifurcation diagrams with flame position, xf , as control
parameter with different numbers of Galerkin modes, Ng, in the discretization: (a) Ng= 1,
(b) Ng= 2, (c) Ng= 3, (d) Ng= 5, (e) Ng= 10, ( f ) Ng= 19, (g) Ng= 20 and (h) Ng= 21.
All other parameters are kept constant: βf = Lf /R = 7, ratio of combustion to acoustic
time scales Lf /ML0 = 2.2. At a given value of xf the points on the diagrams are the
peaks and troughs of the velocity time-series data once the system has reached a stable
state. (a) For Ng = 1 the system always reaches a period-1 limit cycle. As the number
of modes is increased, even though the higher modes are more heavily damped, modal
interactions result in non-harmonic states such as period-2, period-k and quasi-periodic
states. Further, the maximum amplitudes of oscillations are significantly higher than the
single-mode case (a). ( f –h) Comparison of these panels shows that the solutions are nearly
independent of the discretization when Ng is sufficiently large.

Figure 4 shows bifurcation diagrams with flame position, xf , as control parameter
using different numbers of Galerkin modes, Ng. Figure 4(a) shows that, when there
is just one mode, the system is either stable or reaches a period-1 limit cycle. The
maximum oscillation amplitude occurs at xf = 0.25 and is about one-half of the mean
flow velocity. In a previous study we have shown that period-1 limit cycles obtained
in the frequency domain using a flame describing function (FDF) approach are the
same as those obtained in the time domain using a single mode in the discretization
(Kashinath et al. 2013a). This is because the FDF approach assumes harmonic
velocity and pressure signals and ignores the influence of the higher harmonics of
the heat release rate on the acoustic velocity and pressure, as is the case when only
one mode is used for the discretization. Therefore figure 4(a) is similar to the result
obtained when the FDF approach is used.

We emphasize that the FDF approach we refer to here, and that is used in Kashinath
et al. (2013a), neglects the influence of the temperature change across the flame on
the acoustic eigenfrequencies and eigenmode shapes. This, however, is not the same
as the FDF approach as described by Noiray et al. (2008) and typically used in
experiments because the influence of temperature change on the thermoacoustic
eigenmodes is taken into account in their calculations.

Figure 4(b–h) shows that, as the number of modes is increased, period-2,
quasi-periodic and chaotic oscillations appear. Similar behaviour is seen in numerical
simulations of a thermoacoustic system by Subramanian et al. (2010) and Subramanian
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(2011). Furthermore, the peak amplitudes of oscillations are significantly higher than
the single-mode case. This shows that, even though the amplitudes of oscillations in
the higher modes are smaller than in the first mode, they have a strong effect on the
amplitude of heat release rate oscillations, and therefore on the nature of solutions of
the governing equations.

These figures also show that the location of the Hopf point depends on the number
of modes in the discretization. This is because assuming a harmonic velocity or
pressure signal (as done in a single-mode analysis) implies that all other modes
are forced to be inactive and cannot contribute to the instability. The Routh–Hurwitz
stability criterion from control theory shows how stability criteria depend on the order
of the system, which in this system depends on the number of degrees of freedom
in the acoustics.

Figure 4( f –h), at Ng = 19, 20 and 21, shows that the solutions are nearly
independent of the discretization when Ng is sufficiently large. Therefore we use
20 modes for this study.

In the time domain, only three to five modes are necessary to capture most of
the elaborate features seen in the case with 20 modes (figure 4g). In the frequency
domain, however, it is difficult to extend the FDF approach to include the effect of
interactions between modes. Furthermore, a single-mode system cannot be used to
simulate mode switching because during switching the system oscillates at two or
more frequencies. Simulating mode switching, multi-periodic and aperiodic behaviour
requires many multi-input multi-output describing functions, which can only be
calculated by forcing the flame at many different combinations of frequencies and
amplitudes simultaneously (Balachandran, Dowling & Mastorakos 2008; Moeck &
Paschereit 2012; Boudy et al. 2013). This becomes prohibitively expensive even for
a small number of modes.

3.3. Control parameter: flame geometry, Lf /R

Figure 5 shows the bifurcation diagram with the flame aspect ratio (the ratio of the
flame height to the flame radius, βf = Lf /R) as the control parameter at four flame
positions, (a) xf = 0.1, (b) xf = 0.2, (c) xf = 0.3 and (d) xf = 0.4. The range of βf is
1–10, which corresponds to mean flow velocities in the range of 0.5–3.5 m s−1. This
range is realistic because laminar premixed flames with φmean = 0.85 tend to either
flash back or blow off for mean flow velocities outside this range. In all cases the
initial condition is the steady unperturbed flame. Parameter βf is varied by changing
the mean flow velocity U0 keeping the equivalence ratio and flame speed constant.

In all cases, when βf is decreased below 3, the system has chaotic oscillations.
The route to chaos here is the Ruelle–Takens–Newhouse route and is described in
detail in § 7. The system tends to chaos at low flame aspect ratios because short
flames have stronger nonlinearities than long flames (Lieuwen 2005), which results
in cusp formation on the flame surface at much lower oscillation amplitudes for
short flames than for long flames. Therefore flame geometry plays a crucial role in
the nonlinear dynamics of premixed flames, as shown by Lieuwen (2005), using the
analytical expression for the heat release rate in the flame tracking equation, which is
derived from the G-equation. Lieuwen showed that this expression can be simplified
to a linear function of velocity for long flames, but is a nonlinear function for short
flames.
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FIGURE 5. Bifurcation diagrams with flame aspect ratio, βf = Lf /R, as control parameter
at flame positions (a) xf = 0.1, (b) xf = 0.2, (c) xf = 0.3 and (d) xf = 0.4. Here βf is
varied by changing the mean flow velocity U0 but keeping the equivalence ratio and
flame speed constant. In all cases the initial condition is the steady unperturbed flame.
Firstly, we see that periodic oscillations are not necessarily the preferred stable states;
quasi-periodic and chaotic oscillations are seen over significant parameter ranges. Secondly,
chaotic oscillations are seen in all cases at low aspect ratios.
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FIGURE 6. Bifurcation diagrams with non-dimensional fundamental frequency of the
duct (Lf /ML0) as control parameter at positions (a) xf = 0.07 and (b) xf = 0.4. The
non-dimensional frequency is varied by changing the duct length L0 but keeping all other
parameters constant. Note that the ratio of combustion to acoustic time scales, Lf /ML0,
varies when L0 changes. In all cases the steady-state flame position is used as the initial
condition for the simulation.

3.4. Control parameter: duct length, L0

Figure 6 shows the bifurcation diagram with the non-dimensional fundamental
frequency of the duct, Lf /ML0, as the control parameter at two flame positions,
(a) xf = 0.07 and (b) xf = 0.4. In all the simulations the initial condition is the steady
unperturbed flame. The fundamental frequency of the duct is varied by changing its
length, L0, keeping all other parameters constant.

In figure 6(a) and (b), the system has period-1 oscillations when the duct is short,
i.e. its fundamental acoustic frequency is high, but has more elaborate oscillatory
behaviour when the duct is long, i.e. its fundamental acoustic frequency is low. In
this range of frequencies the flame response remains fairly constant (Kashinath et al.
2013b). The damping due to acoustic radiation scales as the square of the frequency;
therefore, higher modes in short ducts are more heavily damped than those in
long ducts. Hence systems with short ducts, i.e. high Lf /ML0, tend to behave like
single-mode systems.
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While the nonlinear characteristics of the G-equation are amplitude-dependent and
the generation of higher harmonics is larger at larger amplitudes of oscillation, the
bifurcation diagrams presented in this section show that the bifurcations leading to
quasi-periodic and chaotic behaviour occur even at small or moderate amplitudes – for
example, in figure 3 a Neimark–Sacker bifurcation occurs at xf = 0.02 and uf ≈ 0.1,
and in figure 6(a) chaos is seen in the range 1.9< Lf /ML0 < 2.2 and uf < 0.2. This is
because the flame dynamics and generation of higher harmonics is only half the story,
while the receptivity of the higher (or lower) acoustic modes is the other half. The
receptivity of the acoustics is a strong function of the geometry of the duct and the
flame position. Therefore, bifurcation phenomena and elaborate nonlinear behaviour
are possible even if the oscillation amplitude and generation of higher harmonics is
small, provided the higher (or lower) acoustic modes are very receptive. Since both of
these aspects contribute to the bifurcations and macro-system behaviour, we cannot, in
this study, comment on a direct relationship between the macro-system behaviour and
the amplitude dependence of the driving nonlinear characteristics of the G-equation.

4. Instantaneous flame images

Figure 7 shows images of the flame during different types of oscillation, namely
(a) period-1, (b) period-2, (c) quasi-periodic, (d) period-k and (e) chaotic. Fifteen
temporally equispaced images are shown for each case, spanning three cycles of the
dominant frequency. Snapshots (a1–5), (a6–10) and (a11–15) are identical, showing
that the oscillation is period-1. Snapshots (b1–5) have sharper cusps and larger pinch-
off pockets than (b6–10). However, (b11–15) are the same as (b1–5), showing that
the oscillation is period-2. Snapshots (c1–5), (c6–10) and (c11–15) are similar but not
identical, with a gradual shift in flame shapes, showing a low-frequency modulation
of the dominant mode of oscillation. In case (d) the behaviour is similar to the quasi-
periodic case in (c), but the low-frequency modulation is at exactly one-fifth of the
dominant frequency; therefore the cycle repeats itself after every 25 snapshots (not
shown here). In case (e) each cycle is different. The cusps on the flame surface are
of different shapes and sizes, and the intervals between pinch-off events are irregular,
showing that the oscillation is chaotic.

These images show that, while the basic flame dynamics, such as cusp formation,
advection of wrinkles along the flame and pinch-off at the tip, remain the same in
all cases, clear differences exist in the shape of the cusps and the instants when
they are formed at the base of the flame. This is because the acoustic velocity at
the flame position, which creates wrinkles by perturbing the base of the flame, are
subtly different for different types of oscillation. For example, in the period-2 case,
the acoustic velocity in one cycle has a smaller amplitude than in the other; therefore
the cusp formed on the flame surface and the pocket that pinches off in the first cycle
are smaller than the corresponding features in the second cycle. This shows that the
nonlinear behaviour of the flame depends very sensitively on the way the flame surface
deforms, because the flame surface deformation greatly affects the heat release rate,
which in turn depends very sensitively on the velocity perturbation at the inlet plane.

The formation of cusps, their advection along the flame surface, their destruction by
flame propagation normal to itself, pinch-off and rapid burning of pockets of reactants
generate a heat release rate that is a highly nonlinear function of velocity perturbations.
Section 3.2 showed that, within an acoustic model of the duct, several modes are
required to capture the influence of this highly nonlinear unsteady heat release rate
on the acoustics and the interactions between the acoustic modes via the unsteady
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FIGURE 7. (Colour online) Instantaneous flame images of the self-excited flame for
different types of oscillation: (a) period-1 oscillation at xf = 0.435 (mode-2 branch);
(b) period-2 oscillation at xf = 0.3; (c) quasi-periodic oscillation at xf = 0.4; (d) period-k
oscillation at xf = 0.286; and (e) chaotic oscillation at xf = 0.4. For panels (a–d) all
other parameters are the same as in figure 8, while panel (e) has the same parameters as
figure 11(e). Fifteen images are shown for each case spanning three cycles of the dominant
frequency.

heat release rate. Both of these are required to simulate the rich dynamics seen in
experiments.

In summary, we find that the topological features of the flame wrinkling reflect
some features of the macro-system behaviour, but that we cannot say that one causes
the other. Recent work by Waugh (2013) on matrix-free continuation of limit cycles
and their bifurcations shows how Floquet modes can be used to isolate the coupled
flame–acoustic motions that cause bifurcations of limit cycles.

5. Nonlinear time-series analyses
This section describes the nonlinear time-series analysis of the data obtained from

simulating the self-excited system.

5.1. Nonlinear time series
Figure 8 shows the time series of the acoustic velocity at the flame position
normalized by the mean flow velocity, U0, and the heat release rate normalized
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FIGURE 8. Time series of velocity and heat release rate for the different types of
oscillation corresponding to different flame positions of figure 3: (a) period-1 oscillation
at xf = 0.45; (b) period-2 oscillation at xf = 0.3; (c) quasi-periodic oscillation at xf = 0.4;
(d) period-k oscillation at xf = 0.286; and (e) chaotic oscillation at xf = 0.046.

by the mean heat release, Q̇0, for five flame positions in figure 3: (a) xf = 0.45,
(b) xf = 0.3, (c) xf = 0.4, (d) xf = 0.286 and (e) xf = 0.046. These are obtained by
time marching from the steady unperturbed flame. In all cases the system is linearly
unstable, so perturbations grow exponentially before nonlinear effects dominate.

In figure 8(a) the system is first attracted towards an unstable period-1 oscillatory
state (30 < t < 60) before being repelled from it and is then attracted to a period-1
attractor (180< t). The velocity and heat release rate oscillations are periodic but not
harmonic. In figure 8(b) the system is first attracted towards an unstable quasi-periodic
state (20 < t < 40) before being repelled from it and is then attracted to a period-2
attractor (120< t). In figure 8(c) the system tends towards a quasi-periodic attractor
(80< t). In figure 8(d) the system is first attracted towards an unstable quasi-periodic
oscillatory state (15 < t < 35) before being repelled from it and finally tending
towards a period-5 attractor (50 < t). In figure 8(e) the system tends towards a
chaotic attractor (50< t). The different attractors are characterized more precisely in
subsequent sections.

5.2. Power spectra
Power spectra of the different time series in figure 8 are obtained using MATLAB’s
pwelch command, which computes the power spectral density of a time series using
Welch’s overlapped segment averaging spectral estimation algorithm. This is applied
on 300 non-dimensional time units after the system has reached its stable state.

Figure 9 shows power spectra of the velocity at the flame position on the left
(column 1) and heat release rate on the right (column 2). Figure 9(a) shows that
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FIGURE 9. (Colour online) Power spectra of velocity (labelled 1) and heat release rate
(labelled 2) for the different types of oscillation corresponding to different flame positions
of figure 3: (a) period-1 oscillation at xf = 0.45; (b) period-2 oscillation at xf = 0.3;
(c) quasi-periodic oscillation at xf = 0.4; (d) period-5 oscillation at xf = 0.286; and
(e) chaotic oscillation at xf = 0.046. The power spectral density is on a logarithmic scale.

spectra of period-1 oscillations have a dominant frequency and its higher harmonics
because the signal is not sinusoidal. Figure 9(b) shows that spectra of period-2
oscillations have a dominant peak and a second peak at exactly half the frequency, and
their higher harmonics. Figure 9(c) shows that spectra of quasi-periodic oscillations
have several frequencies. In these spectra only two frequencies, however, are
independent and incommensurate while all the others are linear combinations of the
two independent frequencies. These combinations arise due to nonlinear interactions
between the two independent frequencies. Figure 9(d) shows the spectra of period-5
oscillations, which resemble figure 9(c). The two independent frequencies in this
case, however, are commensurate with each other. As in figure 9(c), combinations of
the two frequencies arise due to nonlinear interactions between the two independent
frequencies. Figure 9(e) shows that spectra of chaotic oscillations are generally
broadband with peaks at frequencies that are close to some of the acoustic frequencies
of the duct. The broadband part of the spectrum is at least 10 dB higher than the
noise levels in figure 9(a)–(d).
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FIGURE 10. (Colour online) Phase portraits and Poincaré sections of velocity and heat
release rate for the different types of oscillation corresponding to different flame positions
of figure 3: (a) period-1 limit cycle oscillation at xf = 0.45; (b) period-2 oscillation at
xf = 0.3; (c) quasi-periodic oscillation at xf = 0.4; (d) period-k oscillation at xf = 0.286;
and (e) chaotic oscillation at xf = 0.046.

5.3. Phase space reconstruction and Poincaré sections
A phase space diagram is reconstructed from the time series. The first zero crossing
of the autocorrelation function was used to find an optimal time delay, and Takens’
embedding theorem was used to reconstruct the phase space. Three embedding
dimensions were sufficient to represent the dynamics of the system. Figure 10 shows
the phase portraits and Poincaré sections of the velocity (on the left) and heat release
rate (on the right) for the oscillations in figures 8 and 9.

Figure 10 shows that periodic oscillations (or limit cycles), i.e. panels (a), (b) and
(d), are closed loops in phase space. A period-1 oscillation, panel (a), is a single loop,
a period-2 oscillation, panel (b), is a double loop, and a period-k oscillation, panel (d),
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is a k-loop, where k is the least common integer multiple of the two commensurate
frequencies that characterize the oscillation. Their corresponding Poincaré sections,
which are planes perpendicular to the attractors in phase space, have two points, four
points or 2k points. Figure 10(c) shows that quasi-periodic oscillations are tori in
phase space: in this case 2-tori because the oscillations have two incommensurate
frequencies. On a quasi-periodic attractor, the torus is ergodic. Figure 10(e) shows that
chaotic oscillations have complex topology in phase space and in the Poincaré section,
because the corresponding strange attractors are highly folded fractal structures. This
type of oscillation is characterized more precisely using correlation dimensions, which
are described next.

Phase portraits and Poincaré sections represent the different types of oscillation
distinctly. They are more useful than simply examining time series or power spectra
because the well-defined topological structure of attractors can be used to obtain
quantitative information about the nonlinear behaviour of the system, even in the case
of noisy experimental data (Kabiraj & Sujith 2012b).

5.4. Correlation dimensions
The correlation dimension measures the number of active degrees of freedom in a
dynamical system and is used to determine the nature of an attractor. We use the
algorithm of Grassberger & Procaccia (1983) implemented in the online package
TISEAN by Hegger, Kantz & Schreiber (1999), with up to seven embedding
dimensions. Figure 11 shows the correlation sum (left) and its local slope (middle)
as functions of the Euclidean distance in phase space. In the right column is the
correlation dimension, defined as the average slope over the range of radii where the
slope remains approximately constant, as a function of the embedding dimension. For
periodic oscillations (a, b and d), the correlation dimension and hence the number of
active degrees of freedom is unity. For quasi-periodic oscillations (c) it is two, and
for chaotic oscillations (e) it is not an integer, in this case 1.7± 0.15.

The self-similar scaling region over which the correlation dimension is determined
may be small when the correlation sum is a strong function of the magnification, as in
case (e), where the average is found over 0.1<R/Rmax < 0.6 (Li & Juniper 2013). In
figure 11(a–d), however, self-similar scaling regions exist over almost two orders of
magnitude, and these ranges are used to determine the correlation dimensions. The
local slope of the correlation sum does not converge at very small or very large
scales, indicating an absence of self-similarity at these scales. This is because, at
very small scales, the dynamics are dominated by noise and, at very large scales,
the self-similarity is disrupted by the finite scale of the attractor, which acts as a
macroscopic cutoff filter (Kantz & Schreiber 2000).

We note here that, since the algorithm of Grassberger & Procaccia (1983), there
have been more sophisticated algorithms that deal with noisy time series. Although
one of the main applications of this algorithm is to distinguish between stochastic and
deterministically chaotic time series, there are several criteria that the time series needs
to satisfy for proper use of this method. Its limitations when applied to experimental
data are due to experimental noise, finiteness of number of data points, non-stationarity
and intermittency effects, and due to the uncertainties involved in the extrapolation
of the slope to zero radius. Many of these issues are discussed in a review article
by Theiler (1990), and alternative methods for extracting the underlying nonlinear
dynamics from noisy experimental data are discussed in Kantz & Schreiber (2000).
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FIGURE 11. (Colour online) The correlation sum C(m, R) (left column) and its local
slope Dc(m, R) = ∂ log C(m, R)/∂ log R (middle column), as functions of the Euclidean
distance R/Rmax, for an embedding dimension up to m= 7. The right column shows the
correlation dimension defined as the average slope Dc(m, R)= ∂ log C(m, R)/∂ log R over
the range of radii where the slope remains fairly constant, as a function of the embedding
dimension m. Panels (a–e) correspond to period-1, period-2, quasi-periodic, period-k and
chaotic oscillations of figure 8.

6. The role of unstable attractors

An unstable attractor is a special class of measure attractor (Milnor 1985).
Trajectories in the neighbourhood of unstable attractors are attracted towards them in
some directions but repelled in others (Ashwin & Timme 2005). Unstable solutions
divide the phase space into basins of attraction. Identifying the unstable attractors
of a dynamical system helps predict the mechanisms or pathways for a system to
transition from one attractor to another. They are especially useful in noise-induced
transition mechanisms such as triggering, as shown by Waugh & Juniper (2011).

The advantage of this numerical approach is that we can see how the system passes
in the vicinity of unstable attractors as it moves towards a stable attractor. This has
been shown in thermoacoustics only for an unstable period-1 attractor (Juniper 2011).
It has not been shown, however, for more elaborate unstable attractors. It is, however,
well known in hydrodynamics (Eckhardt et al. 2007). Figures 12 and 13 show the
time series, phase portraits and Poincaré sections, starting from the steady base state
evolving to the ultimate stable state, via intermediate states. These intermediate states
lie in the neighbourhood of the unstable attractors of the system.
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FIGURE 12. (Colour online) The time series, phase portraits and Poincaré sections of
trajectories starting from the steady base state to the ultimate stable state with one or more
intermediate states: (a) xf = 0.480, (b) xf = 0.420, (c) xf = 0.347 and (d) xf = 0.2651. For
panels (a–c) Lf /ML0=2.2 and for panel (d) Lf /ML0=2.0. The windows of the time series
that are used to extract the phase portraits are shown as coloured patches. Intermediate
states are shown in dark grey (red online) and light grey (green online), and the final
stable state is shown in grey (blue online). These intermediate states play an important
role in the mechanism of transition from one attractor to another (Waugh & Juniper 2011).

The phase portraits and Poincaré sections are used to identify these unstable
attractors. In figure 12(a), the system is first attracted towards an unstable period-1
limit cycle (dark grey; red online) and then repelled from it towards a stable period-1
limit cycle of larger amplitude (grey; blue online). In figure 12(b) the system is
attracted towards an unstable period-1 limit cycle on the same branch of unstable
limit cycles as in panel (a), then it is repelled from it and attracted towards a second
unstable quasi-periodic period state (light grey; green online), then it is repelled from
this state and ultimately it tends towards another stable quasi-periodic state (grey;
blue online). In figure 12(c) the system is strongly attracted from its steady base state
towards a quasi-periodic state (dark grey; red online) and then repelled from it and
finally tends towards a stable period-1 limit cycle (grey; blue online). In figure 12(d)
the system is attracted towards an unstable period-1 limit cycle (dark grey; red online)
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FIGURE 13. (Colour online) A continuation of the previous figure, showing the
intermediate states in the time evolution of the self-excited system: (a) xf = 0.295,
Lf /ML0 = 2.2; (b) xf = 0.2862, Lf /ML0 = 2.0; (c) xf = 0.066, Lf /ML0 = 2.2; and (d) xf =
0.063, Lf /ML0 = 2.2. The windows of the time series that are used to extract the phase
portraits are shown as coloured patches. Intermediate states are shown in dark grey (red
online) and light grey (green online), and the ultimate stable state is shown in grey (blue
online).

of large amplitude before it is repelled from it towards its ultimate quasi-periodic
state (grey; blue online).

In figure 13(a) there exist two intermediate unstable states. The first two are quasi-
periodic (dark grey and light grey; red and green online) and the third state is a
period-2 limit cycle (grey; blue online). In figure 13(b–d) some of the intermediate
states are chaotic.

These figures show clearly that the system has several unstable attractors. This
makes the trajectory of the system elaborate. Such elaborate behaviour has recently
been observed in plane Couette flow (Gibson, Halcrow & Cvitanović 2009).
Gibson et al. (2009) mention that, once a system’s invariant solutions have been
determined, the next step is to determine how the system dynamics interconnects the
neighbourhoods of these invariant solutions. The unstable attractors of a system play
a pivotal role in these interconnections.
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7. Routes to chaos
If a nonlinear system exhibits chaotic dynamics, it is natural to ask how this

chaotic behaviour emerges as a parameter is varied. By the early 1980s, three routes
to chaos in nonlinear dynamical systems had been discovered: the period-doubling,
Ruelle–Takens–Newhouse and intermittency routes (Eckmann 1981). Since then,
several more routes have been discovered (Ott 2002). We have identified two routes
to chaos in this study: the period-doubling and the Ruelle–Takens–Newhouse routes.

7.1. Period-doubling route
Feigenbaum in 1978 discovered a route to chaos via a cascade of period-doubling
bifurcations and identified a self-similar structure of the bifurcation diagram (Argyris,
Faust & Haase 1993). Period-doubling transitions have been observed in electrical
circuits, population dynamics and convective flows, for example in experiments on
Rayleigh–Bénard convection (Gollub & Benson 1980; Libchaber 1987).

Figure 14 shows the period-doubling cascade as the flame position is changed. In
figure 14(a) is the bifurcation diagram and in figure 14(b) are the power spectra at the
flame location just after each period-doubling bifurcation. The first period-doubling
bifurcation from period-1 to period-2 oscillations is subcritical (the unstable branch
is not shown here). The arrows at xf = 0.308 show that the transition to period-2
oscillations is abrupt. The subsequent bifurcations occur at xf = 0.301 (period 2–4)
and xf = 0.296 (period 4–8) and are supercritical. The power spectra show the
introduction of the first subharmonic of the lowest frequency at each period-doubling
bifurcation, ultimately leading to chaotic oscillations with a broadband spectrum
and a few peaks at xf = 0.2861. The length of the time series used to obtain these
spectra is 300 non-dimensional units; therefore the subharmonics below f /8 were not
well resolved. Furthermore, the lengths along the parameter axis (x axis) between
subsequent period-doubling bifurcations decreases rapidly, and this makes resolving
higher period-2k bifurcations difficult. The characteristics of the strange attractor at
xf = 0.2861 will be discussed in § 7.3.

7.2. Ruelle–Takens–Newhouse route
Ruelle & Takens (1971) proposed a theory that challenged the mechanism of
turbulence generation proposed by Landau, which required an infinite number
of Hopf bifurcations. This mechanism was improved and came to be known as
the Ruelle–Takens–Newhouse route to chaos (Newhouse, Ruelle & Takens 1978;
Bergé et al. 1986). They proved that three successive Hopf bifurcations, producing
three independent frequencies, generate a 3-torus that can become unstable and be
replaced by a strange attractor (Eckmann 1981). The time-dependent behaviour is not
quasi-periodic with three frequencies, but is distinctly chaotic. They, however, did
not predict how and when the strange attractor close to the 3-torus comes into being.
Sometimes the 3-torus can lead to a period-k periodic state before the transition to
chaos. The exact sequence of steps in this route is still debated (Thompson & Stewart
2002). The Ruelle–Takens–Newhouse route, however, is similar to but not the same
as another route to chaos directly from a 2-torus to a period-k state to chaos, without
a third frequency, called the phase-locked transition (Bergé et al. 1986).

The Ruelle–Takens–Newhouse route to chaos has been observed in hydrodynamic
systems: Rayleigh–Bénard convection (Gollub & Benson 1980; McLaughlin & Orszag
1982), circular Couette flow (Gollub & Swinney 1975; Fenstermacher, Swinney &
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FIGURE 14. (Colour online) The period-doubling route to chaos observed in the xf range
of 0.285–0.31 (Lf /ML0=2.0). (a) Bifurcation diagram constructed using the troughs of the
time series of velocity perturbations at the flame position, uf . A series of period-doubling
bifurcations occur at xf = 0.307 (period 1–2), xf = 0.301 (period 2–4) and xf = 0.296
(period 4–8). (b) Power spectra of velocity at the flame showing the emergence of
subharmonics (panel 2, f /2; 3, f /4; 4, f /8) at the above-mentioned values of xf , finally
leading to chaotic oscillations at xf = 0.288 in panel 5. The power spectral density (PSD)
is on a logarithmic scale.

Gollub 1979) and DNS of converging–diverging channel flow (Guzman & Amon 1994,
1996). Recently this has also been observed in experiments in thermoacoustics by
Kabiraj et al. (2012).

Figure 15 shows the Ruelle–Takens–Newhouse route as the natural acoustic
frequency of the duct, Lf /ML0, is changed by varying the length of the duct, L0.
The Poincaré sections show that the quasi-periodic state (2-torus) in figure 15(a)
develops corrugations on its surface (figure 15(c–f )) as it undergoes a secondary
Hopf bifurcation to a 3-torus. The wrinkling of the surface of the attractor followed
by the breakdown of the torus (figure 15(g–i)) is characteristic of the twofold
operation of stretching and folding that ultimately leads to a strange attractor (Bergé
et al. 1986). The states shown in figure 15(k) and (l) are chaotic. The power spectra
of acoustic velocity at the flame position in figure 16 show the emergence of a third
frequency (figure 16( f –h)) that is incommensurate with the two frequencies of the
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FIGURE 15. (Colour online) The Ruelle–Takens–Newhouse route to chaos observed in the
Lf /ML0 range of 1.88–2.15 (xf = 0.4). Panels (a–l) show the Poincaré sections of phase
portraits of the final state of the system at each operating point (varying Lf /ML0). The
stable quasi-periodic state (2-torus) in panel (a) develops corrugations on its surface due
to stretching and folding (see panels (c–f )). This is followed by torus breakdown (see
panels (g–i)) to chaos (panels (j–l)).

quasi-periodic state (marked f1 and f2 in figure 16a). This is a characteristic of the
Ruelle–Takens–Newhouse route to chaos.

7.3. Characterizing chaos
Chaotic oscillations are characterized by non-integer correlation dimensions and
positive maximal Lyapunov exponents. Figure 17 shows the correlation sum
and its local slope as functions of the Euclidean distance, and the correlation
dimension as a function of embedding dimension, for chaotic oscillations: (a) at
the end of the period-doubling cascade (figure 14b5) and (b) at the end of the
Ruelle–Takens–Newhouse route to chaos (figure 15l). The correlation dimension in
panel (a) is 2.7± 0.2 and in panel (b) is 3.6± 0.15, which are not integers. Therefore
the oscillations are chaotic. Non-integer dimensions represent geometrical objects that
show structure on all scales and quantifies the self-similarity of strange attractors
(Kantz & Schreiber 2000).

Figure 18 shows the average divergence of trajectories of neighbouring points in
phase space as a function of temporal separation. This is found using the algorithm
by Kantz (1994), available online in the TISEAN package (Hegger et al. 1999).
For reliable convergence we use up to eight embedding dimensions. In figure 18(a)
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FIGURE 16. (Colour online) The Ruelle–Takens–Newhouse route to chaos observed in the
Lf /ML0 range of 1.88–2.15 (xf = 0.4). Panels (a–l) show the power spectra of the velocity
at the flame position for these states (corresponding to the same panels in figure 15). The
power spectral density is on a logarithmic scale. This route to chaos is characterized by
the emergence of a third frequency (marked f3 in panels ( f –h)) that is incommensurate
with the two frequencies of the quasi-periodic state (marked f1 and f2 in panel (a)).

and (b) a linear trend is seen at temporal separation between 1 and 7, and the dashed
line shows a linear fit to this trend. The slope of the linear fit gives the maximal
Lyapunov exponent, which is 0.078± 0.03 in panel (a) and 0.15± 0.01 in panel (b).
Note that these values are small because the non-dimensional temporal separation
is used in the calculation. For a system with fundamental acoustic frequency at
100 Hz, the corresponding dimensionalized values for the Lyapunov exponents are
2.57± 0.97 s−1 in panel (a) and 4.95± 0.33 s−1 in panel (b). The exponent is positive
in both cases, confirming that the oscillations are chaotic. All motions on a strange
attractor are unstable. The maximal Lyapunov exponent measures the instability of
chaotic solutions, i.e. rate of divergence of neighbouring trajectories in the strange
attractor (Kantz & Schreiber 2000). Hence it measures the ‘strength of chaos’.

8. Conclusions

In this study a reduced-order model of a ducted premixed flame is simulated and
analysed using techniques from nonlinear time-series analysis and dynamical systems
theory.
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m. (a) Chaotic oscillations in the period-doubling route to chaos, figure 14(b5). (b) Chaotic
oscillations in the Ruelle–Takens–Newhouse route to chaos, figure 15(l).
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The bifurcations of this system for three control parameters are examined: (i) the
flame position in the duct, (ii) the flame aspect ratio and (iii) the length of duct.
Depending on the flame position in the duct, the system has not only period-1
oscillations but also period-2, period-k, quasi-periodic and chaotic oscillations.
The transitions to these types of oscillation are via Hopf, Neimark–Sacker and
period-doubling bifurcations. Some of these bifurcations are subcritical, so the state
that the system reaches changes abruptly even with a smooth change in the control
parameter. In certain regions of control parameter space, more than one stable state
exists, and the state reached depends on the initial conditions. Therefore, there is
hysteresis and so mode switching is possible. Varying the flame aspect ratio shows
that chaotic oscillations are more likely in systems with short flames than with long
flames because they have sharper cusps at lower amplitudes of oscillation. Varying
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the duct length shows that quasi-periodic and chaotic oscillations are more likely in
systems with long ducts, whereas period-1 limit cycles are more likely in systems
with short ducts. This is because short ducts have high natural acoustic frequencies
and their higher acoustic modes are strongly damped. This shows that parameters that
affect either the flame or the acoustics can influence the system’s nonlinear behaviour.

The influence of the number of coupled acoustic modes on the bifurcations and
nonlinear behaviour of the system is analysed. It is shown that, when there is
only one mode in the acoustics, which is similar to a frequency-domain analysis
assuming harmonic oscillations, the system is either stable or has period-1 oscillations.
Furthermore, the oscillation amplitude is under-predicted in large regions of parameter
space and the bifurcations and multi-stability seen in the multi-modal case are not
captured. The heat release rate is highly nonlinear but, because the acoustic velocity
and pressure are assumed to be harmonic, the higher and subharmonics of the heat
release rate cannot interact with acoustics. The multi-modal simulations show rich
behaviour because (i) the highly nonlinear unsteady heat release rate can excite
several modes simultaneously, which results in nonharmonic velocity perturbations
that, in turn, cause elaborate flame wrinkling, and (ii) more than one mode may be
linearly unstable and the energy transfer between them due to nonlinear interactions
affects the transient and steady-state behaviour of the system.

Instantaneous flame images show the influence of cusp formation, their advection
along the flame surface, their destruction by flame propagation normal to itself, and
pinch-off and rapid burning of pockets of reactants in generating a heat release rate
that is a highly nonlinear function of velocity perturbations. Furthermore, within an
acoustic model of the duct, it is shown that several modes are required to capture the
influence of this highly nonlinear unsteady heat release rate on the acoustics and the
interactions between the acoustic modes via the unsteady heat release rate. Both of
these are required to simulate the rich dynamics seen in experiments. Instantaneous
flame images also reveal that the wrinkles on the flame surface and the pinch-off
of flame pockets are regular for periodic oscillations, while they are irregular and
have multiple time and length scales for aperiodic oscillations. This is because the
magnitude and shape of the acoustic velocity at the flame position, which creates
wrinkles by perturbing the flame surface, are different for different types of oscillation.
For example, in the period-2 case, the acoustic velocity perturbation in one cycle has
a smaller amplitude than in the other; therefore, the cusp formed on the flame surface
and the pocket that pinches off in the first cycle are smaller than the corresponding
features in the second cycle. The source of nonlinearity is the flame, but such
nonharmonic velocity waveforms are possible because the acoustics responds at
several frequencies. Our model captures this behaviour because it consists of several
coupled nonlinear oscillators that are simultaneously excited by a highly nonlinear
unsteady heat release rate from a realistic flame model.

The transient and steady-state behaviours of the system are analysed using power
spectra of time series, phase portraits reconstructed from time series and Poincaré
sections of phase portraits and by calculating correlation dimensions of the different
attractors of the system. They show that the trajectory of the system from the steady
base state to its ultimate oscillatory state is elaborate and involves transient attraction
and repulsion by one or more unstable attractors before the system tends towards
a stable state. Therefore, the unstable attractors strongly influence the system’s
pathways.

Bifurcation diagrams and Poincaré sections are used to establish two routes to
chaos in this system: the period-doubling route and the Ruelle–Takens–Newhouse
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route. These are corroborated by analyses of the power spectra of the acoustic
velocity. The system tends towards strange attractors via these routes, and these
attractors are characterized by computing their correlation dimensions and maximal
Lyapunov exponents. These routes to chaos have been observed in experiments on a
similar thermoacoustic system (Kabiraj et al. 2012).

Despite using a simple acoustic model that does not account for the temperature
change across the flame, we find that this model captures much of the elaborate
behaviour seen in experiments, where more realistic effects such as temperature
changes, three-dimensional flow behaviour and area changes are all present
(Gotoda et al. 2011, 2012; Kabiraj et al. 2012; Kabiraj & Sujith 2012a,b). This
provides confidence that the elaborate nonlinear dynamics seen here is not because
of the configuration chosen in this study. Furthermore, the power spectra of the
quasi-periodic and chaotic states sometimes show strong response at frequencies that
are not aligned with the frequencies of eigenmodes, which suggests that there is more
to the underlying nonlinear dynamics than just perfect spectral overlap between the
higher harmonics of the heat release rate and eigenmodes of the duct.

The methods from dynamical systems theory illustrated in this study are superior
to both frequency-domain approaches commonly used in nonlinear thermoacoustics
and time-domain approaches with simple flame models used in previous studies. This
study complements recent experiments on a ducted laminar premixed flame through
the detailed analysis of a reduced-order model of a similar system, with approximately
5000 degrees of freedom, that behaves qualitatively similarly. This system behaves
similarly to low-dimensional chaotic dynamical systems, and several techniques from
nonlinear time-series analyses and dynamical systems theory have proved useful in
characterizing and interpreting its behaviour. Time-series analysis is computationally
expensive because it requires simulations that contain many cycles. It is a powerful
way, however, to obtain quantitative information about aperiodic oscillations. The
next step is to apply continuation analysis, because it is a fast and efficient way to
find periodic oscillations and their bifurcations over a large parameter space relatively
quickly. This has been shown to be successful for a similar system in recent work
by Waugh (2013).

Finally, we note that the influence of turbulent fluctuations, which may be modelled
as high-dimensional stochastic noise as a first approximation, tends to smooth out
sharp flame features in the ensemble average even when the instantaneous flame
surface itself is highly wrinkled (Shin & Lieuwen 2013). In a thermoacoustic system,
however, the instantaneous flame shape is tightly coupled to the macro-system’s
behaviour. Because the system is nonlinear, the ensemble-averaged dynamics of the
fully coupled thermoacoustic system can be very different from the ensemble-averaged
flame dynamics coupled to the acoustics. In nonlinear systems, noise can greatly
modify the deterministic dynamics and the effect of stochastic forcing on coupled
nonlinear systems can be elaborate: (i) noise can shift bifurcations in parameter space;
(ii) noise can trigger transitions between attractors in multi-stable regimes; (iii) noise
can stabilize unstable states and create new stable states that have no deterministic
counterpart; (iv) noise can also stabilize unstable periodic orbits of chaotic attractors,
making the system’s behaviour ordered in regions where the deterministic (noise-free)
system is chaotic; and (v) noise can cause stochastic phase locking (or stochastic
resonance), which depends on the amplitude and time scales of the noise and the
inherent dynamics of the system. This can trigger behaviour that is absent in the
noise-free system and even enhance the response of a nonlinear system to external
signals (Longtin 2003). Given the non-trivial effects of stochastic noise on nonlinear
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dynamical systems, detailed simulations of a coupled fully nonlinear thermoacoustic
system with stochastic forcing terms are needed to understand the effect of stochastic
noise on nonlinear thermoacoustic oscillations.

Acknowledgements

This work was supported through funding from the European Research Council
via the project ALORS 2590620, from the EPSRC and Rolls Royce via the Dorothy
Hodgkin Postgraduate Award and from the IMechE.

REFERENCES

ARGYRIS, J., FAUST, G. & HAASE, M. 1993 Routes to chaos and turbulence: a computational
introduction. Phil. Trans. R. Soc. Lond. A 344 (1671), 207–234.

ASHWIN, P. & TIMME, M. 2005 Unstable attractors: existence and robustness in networks of oscillators
with delayed pulse coupling. Nonlinearity 18 (5), 2035–2060.

BAILLOT, F., DUROX, D. & PRUD’HOMME, R. 1992 Experimental and theoretical study of a premixed
flame. Combust. Flame 88 (2), 149–168.

BALACHANDRAN, R., DOWLING, A. P. & MASTORAKOS, E. 2008 Non-linear response of turbulent
premixed flames to imposed inlet velocity oscillations of two frequencies. Flow Turbul.
Combust. 80 (4), 455–487.

BALASUBRAMANIAN, K. & SUJITH, R. I. 2008 Non-normality and nonlinearity in combustion–
acoustic interaction in diffusion flames. J. Fluid Mech. 594, 29–57.

BERGÉ, P., POMEAU, Y., VIDAL, C. & TUCKERMAN, L. 1986 Order Within Chaos: Towards a
Deterministic Approach to Turbulence. Wiley.

BIRBAUD, A., DUROX, D. & CANDEL, S. 2006 Upstream flow dynamics of a laminar premixed
conical flame submitted to acoustic modulations. Combust. Flame 146 (3), 541–552.

BOUDY, F., DUROX, D., SCHULLER, T. & CANDEL, S. 2013 Analysis of limit cycles sustained by
two modes in the flame describing function framework. C. R. Méc. 341 (1), 181–190.

BOYER, L. & QUINARD, J. 1990 On the dynamics of anchored flames. Combust. Flame 82 (1),
51–65.

CULICK, F. E. C. 1971 Non-linear growth and limiting amplitude of acoustic oscillations in
combustion chambers. Combust. Sci. Technol. 3 (1), 1–16.

DOWLING, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346 (1),
271–290.

DOWLING, A. P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394 (1), 51–72.
DUCRUIX, S., DUROX, D. & CANDEL, S. 2000 Theoretical and experimental determination of the

flame transfer function of a laminar premixed flame. Proc. Combust. Inst. 28 (1), 765–773.
DUROX, D, SCHULLER, T & CANDEL, S 2005 Combustion dynamics of inverted conical flames.

Proc. Combust. Inst. 30 (2), 1717–1724.
ECKHARDT, B., SCHNEIDER, T. M., HOF, B. & WESTERWEEL, J. 2007 Turbulence transition in

pipe flow. Annu. Rev. Fluid Mech. 39, 447–468.
ECKMANN, J. P. 1981 Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53

(4), 643–654.
FENSTERMACHER, P. R., SWINNEY, H. L. & GOLLUB, J. P. 1979 Dynamical instabilities and the

transition to chaotic Taylor vortex flow. J. Fluid Mech. 94 (1), 103–128.
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