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At high Reynolds numbers, wake flows become more globally unstable when they are
confined within a duct or between two flat plates. At Reynolds numbers around 100,
however, global analyses suggest that such flows become more stable when confined,
while local analyses suggest that they become more unstable. The aim of this paper
is to resolve this apparent contradiction by examining a set of obstacle-free wakes. In
this theoretical and numerical study, we combine global and local stability analyses
of planar wake flows at Re = 100 to determine the effect of confinement. We find
that confinement acts in three ways: it modifies the length of the recirculation zone if
one exists, it brings the boundary layers closer to the shear layers, and it can make
the flow more locally absolutely unstable. Depending on the flow parameters, these
effects work with or against each other to destabilize or stabilize the flow. In wake
flows at Re = 100 with free-slip boundaries, flows are most globally unstable when
the outer flows are 50 % wider than the half-width of the inner flow because the first
and third effects work together. In wake flows at Re = 100 with no-slip boundaries,
confinement has little overall effect when the flows are weakly confined because the
first two effects work against the third. Confinement has a strong stabilizing effect,
however, when the flows are strongly confined because all three effects work together.
By combining local and global analyses, we have been able to isolate these three
effects and resolve the apparent contradictions in previous work.
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1. Introduction
In this theoretical and numerical paper, we describe the effect of confining a viscous

planar wake between two flat plates at Re = 100. In particular, we examine how
the destabilizing effect of confinement is influenced by the boundary layers that are
generated by the confining walls. Unlike our previous analyses, this one combines
a local stability analysis with a global stability analysis over a wide range of
confinements and shear ratios. This provides more information than can be obtained
with independent local and global analyses.

Confined wake flows are frequently found in industry and in model problems.
Our previous research into the effect of confinement has been motivated partly by
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FIGURE 1. Streamlines of two of the confined wake flows studied in this paper. Both flows
have inverse shear ratio ⇤�1 = �1.2 and confinement parameter h = 1. (a) Free slip at the
boundaries; (b) no slip at the boundaries.

instabilities that appear in paper manufacturing, (Lundell, Söderberg & Alfredsson
2011; Tammisola et al. 2011), and partly by instabilities that appear in rocket and
aircraft engines (Juniper & Candel 2003).

The above flows tend to be at high Reynolds numbers, for which confinement
increases global instability. This is seen particularly clearly in the experimental study
of Richter & Naudascher (1976). They examined the fluctuating forces on a confined
circular cylinder at 104 < Re < 106 and found that the fluctuating cross-stream force,
which arises from sinuous vortex shedding, increases markedly as the flow is confined.
The same effect was observed in a numerical study by Kim, Yang & Senda (2004),
and by Bearman & Zdravkovich (1978) and Hwang & Yao (1997) for the half-
confined case. Confinement destabilizes wake flows at intermediate Reynolds numbers
as well, as is seen, for example, in Davis, Moore & Purtell (1983) at Re = 750.

For the rotating-disk boundary layer, Healey (2007) showed that confinement has a
singular effect on waves that both propagate and grow in the cross-stream direction.
The presence of confining walls, however far away, sets up standing waves that can
make a confined flow absolutely unstable even when the equivalent unconfined flow is
convectively unstable. This analysis was later extended to jets and wakes by Juniper
(2007). In the current study, however, there are no waves that both propagate and
grow in the cross-stream direction in the equivalent unconfined flow, so the mechanism
described in Healey (2007) is not active.

The effect of confinement is less well understood at low and moderate Reynolds
numbers. In this paper, we examine viscous wake flows, such as those shown in
figure 1, at Re = 100. Two incompressible flows with uniform viscosity are injected
through the left boundary: a fast-moving outer flow and a slow-moving inner flow.
When the inner flow is sufficiently slow-moving, a recirculation zone forms just
downstream of the injection plane. The whole flow is confined between two flat plates.
The ratio of the width of the outer flow to the half-width of the inner flow, which is
labelled h, turns out to have a strong influence on the flow’s stability.

Local stability analyses of jets and wakes with piecewise-linear velocity profiles,
such as in Juniper (2006, 2007), show that inviscid flows become more absolutely
unstable when confined. Co-flow inviscid planar jets are convectively unstable at all
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h but they become marginally absolutely unstable to a varicose mode at h = 2.79.
Co-flow inviscid planar wakes are convectively unstable at large h but they become
absolutely unstable to a sinuous mode at h = 2.79 and reach maximum absolute
instability at h = 1, when the outer flow has exactly half the width of the inner flow.
This result is exploited in cryogenic rocket engines in order to enhance break-up of
the slow-moving liquid oxygen stream by the fast-moving hydrogen stream; Juniper &
Candel (2003).

Although the effect of confinement is clear for inviscid flows, our previous studies
of viscous flows at Re ⇠ 102 seem to contradict each other. On the one hand, a
local stability analysis of viscous planar wakes without boundary layers (Rees &
Juniper 2010) shows that the destabilizing effect of confinement persists down to
Re = 10, although it becomes attenuated at lower Reynolds numbers because the
instability itself becomes attenuated by viscosity. This destabilizing effect, attenuated
by viscosity, is also seen at Re = 500 and Re = 100 in the nonlinear direct numerical
simulations (DNS) of Biancofiore, Gallaire & Pasquetti (2011). On the other hand,
linear global stability analyses of confined viscous planar wakes with boundary layers
(Tammisola et al. 2011) show that wakes at Re = 100 become more globally stable
when confined. This is observed both for the linear global modes and in nonlinear
DNS. At first sight, these results seem to contradict those of Rees & Juniper (2010)
because stronger absolute instability should imply a stronger global instability. In this
paper, we examine these confined flows in more detail in order to explain this apparent
contradiction and to highlight the influence of the boundary layers, which was not
considered in detail in Rees & Juniper (2010).

2. Methodology
We perform two types of analysis on two types of flow. The first type of flow has

free slip at the confining walls; the second has no slip at the confining walls. In the
second type of flow, the boundary layers affect the stability of the shear layers and
also block the flow near the wall, which shortens the recirculation bubble by forcing
the flow to speed up near the centreline. By considering both flows with both analyses,
we can separate the effect of confinement from the two effects caused by the boundary
layers.

The properties of each flow are characterized by the conditions on the left boundary,
where the inner flow has velocity U⇤

1 and width h⇤
1 and the outer flow has velocity

U⇤
2 and width h⇤

2 and ⇤ denotes dimensional variables. The shear between the
two flows is quantified by the inverse shear ratio ⇤�1 ⌘ (U⇤

1 � U⇤
2)/(U

⇤
1 + U⇤

2).
The confinement is quantified by the ratio h ⌘ h⇤

2/h⇤
1. (In Rees & Juniper 2010,

it was quantified by hRJ ⌘ (h⇤
2 � h⇤

1)/(h
⇤
2 + h⇤

1) = (h � 1)/(h + 1).) The viscosity
is quantified by the Reynolds number, which is defined as Re ⌘ U⇤

2 h⇤
1/⌫

⇤ where
⌫ is the kinematic viscosity. (In Rees & Juniper 2010, it was quantified by
ReRJ ⌘ (U⇤

1 + U⇤
2)(h

⇤
1 + h⇤

2)/(2⌫⇤) = (1 + h)/(1 � ⇤)Re.) For each type of flow we
vary ⇤�1 at h = 1 in order to test the effect of ⇤�1 and then we vary h at ⇤�1 = �1.2
in order to test the effect of h.

Our first type of analysis is a linear global stability analysis (Tammisola et al. 2011).
The Navier–Stokes equations are linearized about the steady but unstable base flow
and small perturbations are assumed of the form ũ(x, z) exp(�i!gt). The evolution
operator for the perturbations is discretized and expressed as a matrix acting on the
discretized state vector ũ(x, z). The global modes of the linearized system are the
eigenmodes of this matrix. Each eigenmode consists of an eigenvalue, !g, which
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describes the frequency and growth rate, and an eigenvector, ũ(x, z), which describes
the mode shape. The procedure for finding the eigenmodes of this matrix is described
in § 3.

Our second type of analysis is a linear local stability analysis (Huerre & Monkewitz
1990). As for the global analysis, the Navier–Stokes equations are linearized about
the steady but unstable base flow. The WKBJ approximation is applied, i.e. the base
flow is assumed to be locally parallel and small local perturbations are assumed of
the form û(z) exp{i(kx � !t)}. The absolute frequency !0 is calculated at each slice
and the frequency and growth rate of the linear global mode, !g, are estimated by
analytical continuation into the complex x-plane. The response of each slice at !g is
then calculated and the WKBJ approximation is inverted in order to obtain the mode
shape ũ(x, z). This procedure is described in § 4.

3. The global analysis
3.1. Construction of the global analysis

The flow is assumed to be governed by the Navier–Stokes (N–S) equation and the
incompressibility condition:

@U
tot

@t
+ U

tot

·rU
tot

= �rP
tot

+ 1
Re

r2U
tot

, (3.1)

r ·U
tot

= 0. (3.2)

Following our previous studies, the flow is assumed not to vary in the spanwise
direction, y. The total velocity and pressure fields are divided into steady and time-
varying components:

U
tot

(x, z, t) = U(x, z) + u(x, z, t), (3.3)
P
tot

(x, z, t) = P(x, z) + p(x, z, t). (3.4)

The steady base flow (U(x, z), P(x, z)) is the solution to the N–S equations (3.1)–(3.2)
without time derivatives. The unsteady perturbation is assumed to take the form

u(x, z, t) = ũ(x, z) exp
��i!gt

�
. (3.5)

The N–S equations are linearized around the base flow by ignoring quadratic terms in
perturbation quantities, to give the linearized N–S equations (LN–S):

�U@xû � V@zû � û@xU � v̂@zU � @xp̂ + 1
Re

�
@xxû + @zzû

� = �i!gû, (3.6)

�U@xv̂ � V@zv̂ � û@xV � v̂@zV � @zp̂ + 1
Re

�
@xxv̂ + @zzv̂

� = �i!gv̂, (3.7)

@xû + @zv̂ = 0. (3.8)

The LN–S equations (3.6)–(3.8) constitute a two-dimensional eigenvalue problem for
!g. This set of equations is satisfied only for certain eigenvalues, !g, which give the
growth rates and frequencies of the linear global modes. (We call !g the complex

frequency.) Each !g has an associated eigenfunction ũ(x, z), which describes the shape
of the global mode.

A finite number of the most unstable modes can approximate the dynamics of the
flow, as described in Schmid (2007). In most of the cases presented in this paper, there
is only one mode with positive growth rate, which dominates the dynamics after the
initial transients have died away. In this paper, we focus only on this global mode.
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3.2. Solution of the global analysis
The base flow is obtained from DNS using a Legendre polynomial-based spectral-
element method (SEM) implemented in the code nek5000 (Fischer 1997). The inlet
velocity has a slightly smoothed top-hat profile with slower velocity in the inner flow:

U(0, z > 0) = 1
⇡

h
arctan(500(h + 1 � z)) + ⇡

2

i

+ 2
⇡(⇤�1 � 1)

h
arctan(500(1 � z)) + ⇡

2

i
. (3.9)

A symmetry condition is imposed along the centreline, z = 0. For these base flows, all
the unstable modes are antisymmetric, which means that the DNS converges naturally
to the steady (but antisymmetrically unstable) solution.

At the wall boundary (z = h + 1), we set either a no-slip condition or a free-slip
condition (figure 1). At the downstream boundary, we set a homogeneous Neumann
condition for the velocities and a homogeneous Dirichlet condition for the pressure.
The possible influence of the downstream boundary condition is eliminated by using
substantially longer domains for the base flow than are used in the stability problem.
For more details about the code and base flow computations, see Tammisola et al.

(2011).
To calculate the linear global modes, (3.6)–(3.8) are discretized in space using

Chebyshev polynomials in both the streamwise and cross-stream directions:

û(x, z) ⇡
NxX

i=1

NzX

j=1

cij�
i(x)�j(z) (3.10)

where �k is the kth Chebyshev polynomial. The values of the unknown coefficients
cij are obtained by requiring the discretized equations to be satisfied exactly at the
Nx ⇥ Nz collocation points. The domain is linearly transformed from [�1, 1] ⇥ [�1, 1]
to [0, L] ⇥ [0, h1 + h2]. For the calculations, L = 80 or 120, but only the upstream
region is plotted in this paper. There are Nx = 200 gridpoints for L = 120 and
the eigenvalues are independent of grid spacing to the fourth decimal place. The
Chebyshev distribution of gridpoints is not optimal for this problem but was retained
for convenience. Further details about the numerics and convergence can be found in
Tammisola et al. (2011).

For all base flows, whether they have free slip or no slip at the confining walls, we
set a no-slip condition for the perturbation:

û(x, h + 1) = 0, v̂(x, h + 1) = 0. (3.11)

For the wake flows in this paper, it is sufficient to consider only antisymmetric
modes:

û(x, 0) = 0, @zv̂(x, 0) = 0, p̂(x, 0) = 0. (3.12)

The truncation of the domain in the streamwise direction is problematic because the
only natural streamwise boundary condition for unstable global modes is to decay at
infinity. We impose a Dirichlet condition at the inlet and a Neumann condition at the
outlet:

û(0, z) = 0, v̂(0, z) = 0, (3.13)
@xû(L, z) = 0, @xv̂(L, z) = 0. (3.14)
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We check that these boundary conditions do not affect the stability by ensuring
that the most unstable eigenvalue is not sensitive to the domain length and that
the upstream influence of the Dirichlet condition is small (Tammisola et al. 2011).

Using these techniques, the eigenvalue problem of a continuous operator (3.6)–(3.8)
with boundary conditions (3.13)–(3.14) is transformed into a generalized matrix
eigenvalue problem:

Aq = !gBq, (3.15)

where q = (û, v̂, p̂) is the eigenvector and !g the eigenvalue. The number of elements
of the left-hand side matrix A grows as 9N2

x N2
z (compared to N2

z in the local analysis)
and the required memory increases correspondingly. To handle this, the matrix is built
in parallel and the eigenvalue problem solved using parallel versions of the Arnoldi
algorithm, with linear algebra operations from ScaLAPACK (Tammisola et al. 2011).

4. The local analysis
4.1. Construction of the local analysis

As for the global analysis, the velocity and pressure fields are decomposed into a
steady base flow, (U(x, z), P(x, z)), and a small perturbation, (u(x, z, t), p(x, z, t)). For
the local analysis, however, we assume that the flow exhibits two well-separated
length scales: an instability wavelength, �, and a length scale that characterizes the
streamwise non-uniformity of the base flow, L. The ratio �/L, which must be small for
a local analysis to be rigorously valid, is labelled ✏.

The development in this paper follows Monkewitz, Huerre & Chomaz (1993),
which is summarized pedagogically in Huerre & Monkewitz (2000, § 4). The LN–S
equations for the small perturbation contain terms that scale with ✏0, terms that scale
with ✏1 and terms, which are neglected, that scale with higher orders of ✏. The ✏0

terms represent a streamwise succession of locally parallel problems, which are solved
with the technique described in § 4.2. The complex frequency, !g, of the linear global
mode and the position of the wavemaker region, Xs, are calculated with the technique
described in § 4.3. The corresponding global mode shape is calculated in § 4.4 by
integrating

u(x, z, t) ⇠ A0(X)û±(z; X) exp
✓

i
✏

Z X

0
k±(X0; !) dX0 � !gt

◆
, (4.1)

where, at the X-position of each slice, k+ is the local wavenumber downstream of
Xs, k� is the local wavenumber upstream of Xs, and û±(z; X) is the corresponding
eigenfunction. The ✏1 terms of the LN–S equations describe the evolution of the
slowly varying amplitude A0(X). In this paper, we assume that A0 is uniform. In § 5.1,
we conclude that the influence of this assumption is much smaller than the influence
of the inaccuracies in k±.

4.2. Solution of the locally parallel problem
The planar LN–S equations for the perturbation are expressed as three PDEs in
three primitive variables, (u, v, p). At each X-position, the perturbations are expressed
as Fourier modes such as u(x, z, t) = û(z) exp{i(kx � !t)}, which converts the three
PDEs into three ODEs. The ODEs are discretized on a Chebyshev-spaced grid in the
z-direction, which produces a generalized matrix eigenvalue problem of the form

A(k)� = !B(k)� (4.2)
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FIGURE 2. The base flow (a), local stability properties (b–d) and global modes (e,f ) of
a confined planar wake with h = 1, ⇤�1 = �1.2, Re = 400 and free-slip boundaries. (a)
Streamlines; (b) absolute growth rate, !0i; (c) spatial growth rates, k+

i (+) and k�
i (�),

calculated with the local analysis, compared with ki (—) extracted from the global analysis
(the latter is noisy at the upstream end because the amplitude is small); (d) as for (c) but
for the real spatial wavenumbers, k±

r ; (e) ṽ(x, z) of the first eigenmode calculated with the
global analysis; (f ) ṽ(x, z) of the first eigenmode calculated with the local analysis. For these
calculations, the streamwise length equals 120, but only the upstream region is shown.

where � is a column vector representing the discretized values of û, v̂ and p̂. This is
satisfied for certain (!, k) pairs and represents the dispersion relation for this slice of
the flow. In this paper, 108 Chebyshev-spaced points are used between the centreline
and top wall, which is sufficient that the eigenvalues change by ⇠10�5 when the
resolution is increased.

A temporal stability analysis is performed on a slice near the entry plane to find
the maximum temporal growth rate, which corresponds to the growth rate of the
centre of the impulse response in a parallel flow (Juniper 2007). A spatio-temporal
stability analysis is then performed by finding the saddle points of !(k) that are
also k+/k� pinch points. (In a flow with mean mass flux in the positive x-direction,
the perturbation with maximum temporal growth rate lies on the k+ branch and the
algorithm used in this paper finds all the k� branches that pinch with it.) In wake
flows such as those studied here, there can be up to three such k+/k� saddles (Juniper
2006). The highest saddle is labelled the dominant saddle point. These saddle points
are then followed as the base flow changes. The absolute complex frequency of
the dominant saddle, !0, as a function of streamwise distance, X, is stored for the
algorithm in § 4.3. An example of !0i(X) is shown in figure 2(b).

4.3. Calculating the frequency and growth rate of the linear global mode
It is assumed that the absolute complex frequency !0(X) can be continued analytically
into the complex X-plane. The complex frequency of the linear global mode, !g, is
given at leading order in ✏ by the saddle point of !0(X), which is labelled !s(Xs)
(Chomaz, Huerre & Redekopp 1991). In this paper, the position of the saddle point
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Xs is estimated by selecting the region of !0(X) around the maximum of !0i(X)
and then fitting Padé polynomials to these values. (Padé polynomials take the form
Pn(x)/Qm(x), where Pn(x) and Qm(x) are polynomials of order n and m respectively.)
Padé polynomials have two advantages over standard polynomials: they can fit !0(X)
accurately at relatively low order, and they are better behaved in the complex plane
(Cooper & Crighton 2000).

Initially, the saddle position, Xs, is found for n = m = 2 by considering a small
region around the maximum of !0i(X). The saddle is then followed as n and m are
increased to 8 and the threshold value of !0i is lowered until the polynomials fit a
wide range of !0(X) around the absolutely unstable region. This gives the complex
frequency !g of the global mode and the position of the wavemaker region Xs. If n
and m are increased further, there is no systematic change in the saddle position but
its variance around the value at n = m = 8 increases. From this, we conclude that,
for larger n and m, the saddle position becomes unduly influenced by small errors in
!0(X), without becoming more accurate.

These results can be compared with those from other local analyses. For the steady
but unstable flow behind a cylinder at Re = 50, Pier (2002) found the real part of !g to
be 0.78, while Giannetti & Luchini (2007) found !g = 0.779 + 0.09i. The process used
in this study finds !g = 0.789 + 0.0918i for the same flow. Given that the calculated
value of !g varies slightly with n and m and with the streamwise extent of !0(X) that
is sampled, this is sufficiently close for us to have confidence in the procedure.

These results can also be compared with those from global analyses (§ 3). Giannetti
& Luchini (2007) compared a linear global analysis with a linear local analysis of the
flow behind a cylinder at 15 < Re < 100 and showed that the local analysis always
over-predicts !

gi

. At Re = 50, their global analysis predicts !g = 0.747 + 0.0125i,
showing that their local analysis over-predicts !

gi

by 0.08. At Re = 100, which is the
value used for most of the results in this paper, their local analysis over-predicts !

gi

by
0.059. Given that the flows in this paper are very similar to the flow behind a cylinder,
we expect a similar over-prediction in this paper.

4.4. Calculating the two-dimensional global mode shape
The two-dimensional global mode shape is calculated by investigating how the flow
responds to an oscillation with complex frequency !g, so that the integral (4.1) can
be evaluated. To do this, the values of k that satisfy (4.2) when ! = !g are calculated
and the two that correspond to the k+ and k� branches in the X-plane are selected.
The global mode is estimated from (4.1) by integrating the k� branch upstream of Xs

and the k+ branch downstream of Xs. The z-dependence is obtained by multiplying the
result by the eigenfunction of the k� branch upstream of Xs and that of the k+ branch
downstream of Xs.

5. Comparison of local and global results
In this section, results from the global analysis are compared with those of the local

analysis for two wake flows: one at Re = 400 and the other at Re = 100.

5.1. Re = 400
Figure 2 shows local and global results for a confined wake flow at Re = 400 with
h = 1, ⇤�1 = �1.2 and a free-slip condition at the walls. There is a recirculation
zone between 2.36 < X < 22.29. Taking the distance to the end of this recirculation
zone as a characteristic streamwise evolution length scale, Le, we obtain Le ⇡ 20.
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FIGURE 3. As for figure 2(c–f ) but with k± calculated at the complex frequency of the global
analysis, !g(glob), rather than that of the local analysis, !g(loc).

The absolutely unstable region lies between 0.06 < X < 28.42. Continuing !0

analytically into the complex X-plane, the complex global frequency is found to be
!g(loc) = 0.6547 + 0.1306i. The k+ and k� branches are calculated at !g(loc) and are
plotted in figure 2(c,d) alongside the complex local wavenumber, k, extracted from the
global analysis. This is extracted by assuming that ũ(x, z) in (3.5) is locally of the
form û(z) exp(ikx) such that k = (�i/û) dû/dx. This is calculated from the v-velocity
eigenfunction at z = 0 with no further treatment. The complex local wavenumber, k,
closely follows the k� branch upstream of the wavemaker region and the k+ branch
downstream, as expected.

The global analysis gives a complex global frequency of !g(glob) = 0.6659 +
0.1133i, which is slightly more stable than that of the local analysis, as expected
from § 4.3. (Being at Re = 400, the flow is more locally parallel and the difference
is therefore smaller than at Re = 100.) The global analysis gives the two-dimensional
eigenfunction in figure 2(e), while, by integrating (4.1), the local analysis gives the
two-dimensional eigenfunction in figure 2(f ), which is very similar. The slightly higher
growth rate in the local analysis causes the centre of its global mode to be slightly
further upstream. This is a general feature of the global mode predicted by the local
analysis. Having calculated the k± branches and the mode shapes, we can estimate that
� ⇡ 5.0, which means that ✏ ⇡ 0.25. The local analysis works well at this value of ✏.

Figure 3 shows the k+ and k� branches and the two-dimensional eigenfunctions
calculated using the local analysis, but at the complex frequency calculated by the
global analysis, !g(glob). Frames (c) and (d) are almost identical, which shows that it
is accurate to assume that A(X) is uniform and that the only significant defect of the
local analysis is its over-prediction of !

gi

and the consequent error in k±.
In summary, the global analysis gives the more accurate prediction of the absolute

frequency and the two-dimensional eigenfunctions because it does not make the
parallel flow assumption. However, the local analysis gives the more useful qualitative
information about the flow. For instance it shows that, although the global mode has
a maximum amplitude at X = 28.36, it is actually driven by a wavemaker region at
X = 12.43, which arises from the absolutely unstable region between 0.06 < X < 28.42,
which is centred on the recirculation zone. The flow downstream of the recirculation
zone is simply responding to the forcing from this region.
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FIGURE 4. As for figure 2, but for Re = 100.

5.2. Re = 100

Figure 4 shows results for a confined wake flow at Re = 100 with h = 1, ⇤�1 = �1.2
and a free-slip condition at the walls. There is a recirculation zone between
0.91 < X < 5.57. Taking the distance to the end of this recirculation zone as a
characteristic streamwise evolution length scale, Le, we obtain Le ⇡ 6. The absolutely
unstable region lies between 0.17 < X < 6.69. From this, the complex global frequency
is found to be !g(loc) = 0.6538 + 0.08594i. The k+ and k� branches are calculated at
!g(loc) and are plotted in figure 4(c,d) alongside the complex local wavenumber, k,
extracted from the global analysis. The complex local wavenumber, k, follows the k�
branch upstream of the wavemaker region and the k+ branch downstream, but is not as
close as it was in the Re = 400 case.

The global analysis gives a complex global frequency of !g(glob) = 0.6613 +
0.02665i, which is 0.059 more stable than that of the local analysis, as expected from
§ 4.3. The global analysis gives the two-dimensional eigenfunctions in figure 4(e),
while the local analysis gives the two-dimensional eigenfunctions in figure 4(f ). The
agreement is reasonable but not excellent. Again, the higher growth rate in the local
analysis causes the centre of its global mode to be slightly further upstream. Having
calculated the k± branches and the mode shapes, we can estimate that � ⇡ 5.1, which
means that ✏ ⇡ 0.8. This is too large to expect the WKBJ analysis to be accurate.

Figure 5 shows the k+ and k� branches and the two-dimensional eigenfunctions
calculated with the local analysis, but at the complex frequency calculated with
the global analysis, !g(glob). This gives a more accurate prediction of the two-
dimensional eigenfunction than was obtained with !g(loc). This shows that, for this
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flow, the inaccuracy in the local analysis lies in the prediction of !g, rather than in
the calculation of the k± branches downstream. This is because the local analysis is
less accurate in the upstream regions, which determine !g, because the flow is locally
non-parallel there. By contrast, the local analysis is accurate in the downstream regions
because the flow is nearly locally parallel there.

Given that the inaccuracy of the local analysis lies in the prediction of !g, it is
reasonable to ask whether adding O(✏) corrections would be beneficial, as in (6.1)
of Monkewitz et al. (1993). We do not attempt to answer that question because
the calculations are tortuous and may not be conclusive without considering O(✏2)
and O(✏3) corrections as well, which would be unfeasible. Nevertheless, our results
show that the inaccuracy in the prediction of !g increases as ✏ increases, which
is consistent with the idea that adding higher-order corrections would be beneficial.
In detail: for the Re = 400 case, ✏ ⇡ 0.25 and the inaccuracy in !g, defined as
abs{!g(loc) � !g(glob)}, is 0.021; for the Re = 100 free-slip case, ✏ ⇡ 0.8 and the
inaccuracy in !g is 0.059; and for the Re = 100 no-slip case (table 1, ⇤�1 = �1.20),
✏ ⇡ 1.5 and the inaccuracy in !g is 0.160.

6. E�ect of shear ratio
The growth rate and frequency of the linear global mode are plotted in figure 6

and table 1 for flows with Re = 100, h = 1 and varying ⇤�1. The top frames show
flows with free slip at the boundaries. The bottom frames show flows with no slip at
the boundaries. As the co-flow increases (as ⇤�1 becomes more negative), the global
modes become more stable and oscillate at higher frequencies. We will use the local
analysis to find the physical origin of these trends.

There is a nearly systematic offset between the complex frequencies calculated with
the local analysis and those calculated with the global analysis, very similar to that
found by Giannetti & Luchini (2007). The real part of this offset is smaller for the
free-slip case, for which ✏ ⇡ 0.8, than it is for the no-slip case, for which ✏ ⇡ 1.5,
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because the free-slip case is closer to being locally parallel. The imaginary part of this
offset is always around 0.059.

The streamlines, the absolutely unstable regions (light grey), and the wavemaker
region (dark grey) are shown in figure 7(a) for the case with free slip and in
figure 8(a) for the case with no slip. The local absolute growth rate, !0i, and the
local k+

i and k�
i branches are shown in figures 7(b) and 8(b).

For low co-flow (bottom frames) the region of absolute instability creates a globally
unstable flow, whose wavemaker region lies just downstream of the centre of the
recirculating zone. As the co-flow increases (i.e. as ⇤�1 becomes more negative), the
recirculating zone becomes smaller and the flow becomes more stable.

The cases with no slip have smaller recirculation zones than the corresponding cases
with free slip. This is the first reason why the cases with no slip are more globally
stable than the cases with free slip, but it is not the only reason.

In the case with free slip, the absolutely unstable region extends into the co-flow
region on both sides of the recirculation zone, similar to the results of Pier (2002)
for an unconfined flow behind a cylinder. In the case with no slip, however, the
absolutely unstable region does not extend into the co-flow region downstream of the
recirculation zone. We can conclude that the second reason that the cases with no
slip are more globally stable than the cases with free slip is that the proximity of the
boundary layer to the shear layer makes the shear layer less locally unstable.



230
M

.P.Juniper,O
.Tam

m
isola

and
F.L

undell

Perfect slip No slip
⇤�1 !g(loc) !g(glob) !g(loc) !g(glob)

�1.00 0.6026 + 0.163657i 0.5961 + 0.091515i 0.6621 + 0.200105i 0.7597 + 0.044896i
�1.15 0.6418 + 0.104847i 0.6468 + 0.043247i 0.7307 + 0.101872i 0.8385 � 0.012174i
�1.20 0.6538 + 0.085942i 0.6613 + 0.026651i 0.7482 + 0.071893i 0.8606 � 0.035369i
�1.25 0.6641 + 0.066963i 0.6748 + 0.009889i 0.7632 + 0.042795i 0.8807 � 0.059537i
�1.30 0.6742 + 0.047717i 0.6873 � 0.006971i 0.7805 + 0.018816i 0.8992 � 0.084329i
�1.35 0.6839 + 0.029651i 0.6985 � 0.023865i 0.7936 � 0.007261i 0.9159 � 0.109491i

TABLE 1. Data in figure 6.
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FIGURE 8. As for figure 7 but for the no-slip case. The same effect is seen at the upstream
end of the recirculation bubble but the flow quickly becomes convectively unstable at the
downstream end due to the boundary layers.

The eigenfunctions from the local analysis are compared with those from the global
analysis in figure 9 (free slip) and 10 (no slip). They have the same qualitative
structure and behaviour but there are some quantitative differences. When compared
with the corresponding eigenfunction of the global analysis, each eigenfunction of
the local analysis always has a slightly longer wavelength, more rapid growth at the
upstream end, more rapid decay at the downstream end, and a centre that is further
upstream. This is because each eigenfunction from the local analysis has a lower kr(X)
and a higher ki(X) than the corresponding eigenfunction from the global analysis. This
is exactly the trend seen in figure 4. and, when figure 4 is compared with figure 5,
it is seen that this arises because the local analysis over-predicts the global growth
rate (see figure 6). When the local analysis is repeated using the complex frequency
derived from the global analysis, as in figure 5, the eigenfunctions from the local
analysis are almost identical to those from the global analysis. As already mentioned,
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FIGURE 10. As for figure 9 but for the no-slip cases.

this over-prediction is a common feature of wake flows at this Reynolds number
(Re ⇠ 100) (Giannetti & Luchini 2007). This defect of the local analysis arises because
the flow is locally non-parallel. The local analysis becomes more accurate as the
Reynolds number increases because the flow becomes more locally parallel.

7. E�ect of confinement
The growth rate and frequency of the linear global mode are plotted as a function

of h in figure 11 and table 2 for flows with ⇤�1 = �1.2 and Re = 100 with free
slip and no slip at the boundaries. For the free-slip cases, the flow is most unstable
when h ⇡ 1.5. For the no-slip cases, the flow is barely affected by confinement when
h > 2 but is strongly stabilized when h < 2. We will use the local analysis to find the
physical origin of these trends.

The streamlines, the absolutely unstable regions, and the position of the wavemaker
region are shown in figure 12(a) for the case with free slip and in figure 13(a) for the



Stability
of

confined
planar

w
akes

at
interm

ediate
R

eynolds
num

ber
233

Perfect slip No slip
h !g(loc) !g(glob) !g(loc) !g(glob)

1.000 0.6538 + 0.085942i 0.6613 + 0.026651i 0.7482 + 0.071893i 0.8606 � 0.035369i
1.220 0.6383 + 0.104380i 0.6562 + 0.041594i 0.7286 + 0.087469i 0.8426 � 0.013077i
1.350 0.6318 + 0.111333i 0.6537 + 0.045078i 0.7155 + 0.092530i 0.8311 � 0.003578i
1.500 0.6242 + 0.112461i 0.6523 + 0.046319i 0.7017 + 0.093950i 0.8183 + 0.004457i
1.670 0.6189 + 0.110243i 0.6523 + 0.045606i 0.6907 + 0.091285i 0.8049 + 0.010542i
1.860 0.6163 + 0.107583i 0.6541 + 0.043574i 0.6847 + 0.091329i 0.7918 + 0.014624i
2.330 0.6192 + 0.102644i 0.6624 + 0.037869i 0.6692 + 0.093271i 0.7678 + 0.017788i
4.000 0.6311 + 0.099269i 0.6874 + 0.028373i 0.6520 + 0.094551i 0.7350 + 0.016713i
9.000 0.6367 + 0.096425i 0.7030 + 0.024166i 0.6400 + 0.096620i 0.7143 + 0.021059i

10.000 0.6370 + 0.096776i 0.7036 + 0.023956i 0.6395 + 0.096926i 0.7129 + 0.021374i

TABLE 2. Data in figure 11.
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case with no slip. The local absolute growth rate, !0i, and the k+
i and k�

i branches are
shown in figures 12(b) and 13(b).
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When the confining walls are far away (h � 1), the recirculation zone of the case
with free slip is almost the same size as that for the case with no slip and, as would
be expected, the flows are equally unstable. As the flows become more confined, the
recirculation zone of the case with free slip lengthens, while that of the case with no
slip shortens. This is the first reason why the cases with free slip are more globally
unstable than those with no slip. It is identical to the first reason in § 6. If this first
effect acted alone, confinement would destabilize flows with free slip but stabilize
flows with no slip.

When the confining walls become closer (h decreasing), the absolutely unstable
region extends further downstream of the recirculation zone in the case with free slip
but not in the case with no slip. This shows that the boundary layer velocity profile
makes the shear layer less locally unstable, as seen in § 6. If this second effect acted
alone, confinement would slightly destabilize flows with free slip but stabilize flows
with no slip.

When the confining walls are close (h < 2), the absolutely unstable region upstream
of the recirculation zone extends far into the co-flow region. This is the effect
of confinement described by Rees & Juniper (2010). (In that paper, h is defined
differently, such that h in this paper equals (1 + h)/(1 � h) in that paper.) The global
instability reaches a maximum (figure 11) around h = 1.5, which matches exactly the
value of h = 0.2 at which Rees & Juniper (their figure 8d) predict that the absolute
instability is maximal. If this third effect acted alone, confinement would destabilize
flows with free slip (until h ⇡ 1.5) and also destabilize flows with no slip, probably to
a similar value of h.

Through the local analysis, we can now explain the effect of confinement on the
stability of viscous wake flows and explain the results in figure 11, which is the
main aim of this paper. In the case with free slip, the three effects described above
work together: confinement increases the size of the recirculation zone, extends the
absolutely unstable region downstream of the recirculation zone and also extends it
upstream of the recirculation zone, until h ⇡ 1.5. This explains the increased instability
at h ⇡ 1.5 seen in figure 11(a). In the case with no slip, the first two effects work
against the third: confinement decreases the size of the recirculation zone, slightly
reduces the absolutely unstable region downstream of the recirculation zone but also
extends it upstream of the recirculation zone, probably also until h ⇡ 1.5. At the
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Reynolds number studied here, these effects almost exactly cancel out until h ⇡ 1.5,
at which point all effects become stabilizing. In the local analysis of the no-slip case,
there is a slight peak around h = 1.5 but this is not seen in the global analysis.

The eigenfunctions from the local analysis are compared with those from the global
analysis in figures 14 (free slip) and 15 (no slip). The behaviour is the same as
that seen in figures 9 and 10 and the difference arises because the flow is locally
non-parallel. This is most noticeable in the no-slip cases at smaller values of h because
the flow is more non-parallel for these flows than it is at larger values of h.

8. Conclusions
Confined wake flows are frequently found in industry and in model problems. Our

previous work at high Reynolds numbers shows that confinement is destabilizing.
Our previous work at medium to low Reynolds numbers, however, seems to give
contradictory results. The aim of this paper is to resolve the apparent contradiction.
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We consider, at Re = 100, two types of confined wake flows: one with free slip at
the walls and one with no slip. We perform two types of analysis: a local stability
analysis and a global stability analysis. These show that the global instability is caused
by an absolutely unstable region centred on the recirculation zone. The local analysis
always slightly over-predicts the global growth rate, as expected from previous work,
but provides useful qualitative information about the effect of confinement on the flow.

We find that confinement acts in three ways: (i) it modifies the length of the
recirculation zone, (ii) it brings the boundary layers closer to the shear layers, which
changes their stability and (iii) it makes the flow more locally absolutely unstable
when the confinement ratio, h, is around 1.5. Depending on the flow parameters, these
effects can work with or against each other to destabilize or stabilize the flow.

In a flow with free slip, in which effect (ii) does not play a role, confinement
lengthens the recirculation zone and also makes the flow more absolutely unstable
around h = 1.5, both of which are destabilizing effects. Effects (i) and (iii) therefore
work with each other to make the flow most globally unstable around h = 1.5, as seen
in figure 11(a).

In a flow with no slip, confinement shortens the recirculation zone and brings the
boundary layers closer to the shear layers, both of which are stabilizing. For h > 1.5,
effects (i) and (ii) work against effect (iii) and confinement has little overall effect on
the stability. For h < 1.5, effects (i) and (ii) work with effect (iii) and confinement has
a strongly stabilizing effect. This can be seen in figure 11(c).

Rees & Juniper (2010) used a local analysis analysis to consider the third effect
in isolation, while Tammisola et al. (2011) used a global analysis to consider all
three effects together. These studies had contradictory results. By combining local and
global analyses, we have been able to isolate the three effects described above and
therefore resolve the apparent contradiction in our previous work. This shows the value
of a combined local and global approach to shear flow instabilities, in which a global
analysis gives accurate results, while a local analysis gives physical insight.
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