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A two-dimensional wake-like compound flow, formed by a low-speed stream
embedded within a high-speed flow, is examined in this article. It is shown that
the range of absolutely unstable flow in parameter space greatly increases when such
a flow is confined within a duct. Parameters studied here are: the density ratio, which
is from 0.1 to 1000; the velocity ratio, which varies from co-flow to counter-flow;
and the ratio of the duct width to the width of the central jet. Absolutely unstable
flows permit perturbations to propagate upstream, and can lead to self-sustained
global oscillations similar to the vortex shedding process which takes place in the
wake of a bluff body. This theoretical situation models the wake-like behaviour of a
two-fluid coaxial injector with a recessed central tube. The aerodynamic destabilizing
mechanism is of primary importance whereas the stabilizing mechanisms, which are
not considered here, are of secondary importance. The conclusions from this analysis
of a ducted compound flow can explain why one observes self-sustained oscillations
in recessed coaxial injectors. The presence of a recirculation bubble in the central
flow, which is the basis of other proposed explanations, is not required.

1. Introduction
The stability of wake-like compound flows is examined in this article. The model

problem features a low-speed stream embedded within a high-speed flow. The effect of
enclosing this two-dimensional compound flow within a duct is examined. The analysis
is theoretical, although it permits an understanding of experimental observations. The
practical situation which motivates this investigation is that of coaxial injectors, which
comprise two tubes, one within the other. This configuration is often used to mix
a slow dense fluid from the central injector with a fast light fluid from the annular
section. The effect of recessing the exit of the central tube within the outer channel is
examined here.

It has been known for some time that recessing the central tube of a coaxial injector
improves mixing of the two streams; Gill (1978). However, no satisfactory mechanism
has yet been proposed. Although the rupture of coaxial jets is complex, an effort is
made here to isolate only one feature: the wake-like behaviour of the central flow.
This is a severe simplification but the effect of recess can be explained uniquely in
terms of this mechanism.

In treating the problem of coaxial injectors, most authors consider only a single
shear layer, which means that they cannot model wake-like behaviour. In addition,
temporal instability analyses are common, which prevents the modelling of transition
to absolute instability. They are also unsuited to this spatial problem. This paper
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Figure 1. Cut-away diagram of a coaxial injector. Left: without recess. Right: with recess.

considers a two-dimensional double shear layer within a duct, with the central stream
at low speed. This exhibits wake-like behaviour. A space–time analysis is performed,
in order to search for absolute instability. The effect of ducting the compound flow
considerably alters its absolutely unstable nature, which has not previously been
recognized. This is examined here over density ratios from 0.1 to 1000 and velocity
ratios varying from co-flow to counter-flow via a stagnant wake. Four particular values
of the ratio of the duct thickness to the thickness of the central flow are examined,
from which the behaviour of other values can be inferred. The axisymmetric situation
is not covered because the mechanism will be equivalent to the two-dimensional case
but mathematically less tractable.

2. Coaxial injectors
2.1. Description of coaxial injection

A coaxial injector comprises two cylindrical tubes, one within the other. The tube
exits are usually in the same plane but in this article the effect of recessing the central
tube is examined. This is shown in figure 1. In many cases a liquid is injected from
the central tube and a high-velocity gas is forced through the annular section. This
configuration, which is also known as an ‘airblast atomizer’, Lefebre (1989), can be
used to ensure a rapid mixing of the fuels in, for example, a rocket engine. The annular
gas stream has a dominant effect when the momentum flux ratio is greater than unity,
as shown for example by Lin & Reitz (1998). This is defined as J ≡ ρgU

2
g /ρlU

2
l and

is equivalent to the dynamic head ratio; ρ denotes density, U velocity, subscript g gas
and l liquid.

2.2. Features observed in the fluid flow from a coaxial injector

The visualizations by Lasheras, Villermaux & Hopfinger (1998) of a liquid jet within
a gaseous annular flow show that perturbations develop on the interface between
the fluids. These primary instabilities deform into flaps or ligaments which peel off.
If the gaseous Weber number, Weg ≡ ρl(Ug − Ul)

2dl/σ , is sufficiently high, these are
atomized further into droplets. Here, dl denotes the diameter of the central tube and
σ is the surface tension. Although atomization is crucial in practical applications it is
not considered here because it is not relevant to the physical mechanism which this
article aims to explain. The reader is referred to Lasheras & Hopfinger (2000) for a
review.

At moderate Weg , the primary instabilities have a wavelength which is of the order
of the central jet diameter. Motion on opposite sides of the jet is coordinated, often
in a strong spiral mode. This is fundamentally different from ‘pressure atomization’,
where a single jet discharges into a stagnant gas and the primary instabilities near
the injector have a short wavelength: Hoyt & Taylor (1977), Lefebre (1989) and Lin



Ducted compound flow stability and coaxial injector geometry 259

Figure 2. Visualization of the water jet in a laboratory-scale water/air coaxial injector. Water
velocity: 0.86 m s−1. Air velocity: 15 m s−1. Radius of water jet: 1.3 mm. Thickness of annulus:
2.7 mm. Top: without recess. Bottom: water exit recessed by 10.3 mm.

& Reitz (1998). This highlights a crucial feature of the coaxial injector, which is that
the central fluid behaves like a wake within the annular flow. At high density ratios,
wakes are more unstable than jets to long-wavelength perturbations, as shown for
example by Yu & Monkewitz (1990).

As the Weber number increases, the characteristic wavelength of perturbations on
the central jet decreases by orders of magnitude and coordination from one side of the
jet to the other is lost; Lasheras et al. (1998). Curiously, however, a long-wavelength
helicoidal or sinuous instability occasionally appears, superposed onto the wrinkled
central jet, particularly at density ratios between 1 and 100 as indicated by Rehab,
Villermaux & Hopfinger (1997) and Juniper (2001). This occurs sporadically when
the exit planes of the two injectors are coincident. However, when the central tube
is recessed, this long-wavelength mode is sustained permanently. This effect can also
be observed at lower velocities on a water/air coaxial injector, as shown in figure 2.
Without recess, the central jet is unperturbed. However, when the central jet is
recessed, a self-sustained long-wavelength instability appears.

At very high momentum flux ratios (J > 35), the central jet is truncated and a
recirculating zone exists at its tip, as demonstrated for example by Rehab et al. (1997).
This is similar to observations of Ko & Lam (1985) and is reminiscent of the wake
behind a bluff body with base bleed. This recirculation bubble can also exhibit a
helicoidal instability.

2.3. Mechanisms governing the features observed in coaxial injection

The flow field in the vicinity of a coaxial injector is shown in figure 3. The two streams
are separated by a cylindrical shear layer of thickness δ. Deformation of the interface
depends on the balance between destabilizing and stabilizing mechanisms.

The destabilizing mechanism is aerodynamic, as for wind-generated ripples on a
free liquid surface. A perturbation at the interface causes the gas to accelerate as
it passes a crest, lowering the dynamic pressure at that point. This encourages the
crest to increase in size. Perturbations of wavelength λ affect the flow within a radial
distance of order λ. Consequently this effect is augmented if the annular flow is
confined and has a thickness less than λ, since the gas is increasingly accelerated over
the crests.



260 M. P. Juniper and S. M. Candel

Gas

Gas

Liquid
δ

ρu

Figure 3. Left: sketch of the flow field in the vicinity of a coaxial injector. The shear layer
between the gas and liquid has thickness δ. Right: Velocity and density profiles in the inviscid
approximation, which is used in this article.

There are two possible stabilizing mechanisms. The fist is surface tension which,
if it acts alone, leads to the classical Kelvin–Helmholtz analysis found in Rayleigh
(1896, section 365). This model assumes that the shear layer is infinitely thin. The
second mechanism can be envisaged by considering the stability of a piecewise shear
layer profile, as performed by Rayleigh (1896, section 368). Perturbations of long
wavelength compared with the shear layer thickness, δ, are destabilized by the free-
stream velocities, via the mechanism described above. However, perturbations which
are significantly smaller than δ only experience a constant velocity gradient, which is
not inherently destabilizing. In the limit of an infinitely thin shear layer, this situation
necessarily tends to the classical Kelvin–Helmholtz analysis without surface tension
because the destabilizing mechanism is the same in both cases. This destabilizing mech-
anism is sometimes thought to be inherent to the inflection point in the velocity pro-
file. This, in fact, amounts to the same mechanism, since any smooth velocity profile
between two bulk fluids at different velocities necessarily contains an inflection point.
To confirm this, results presented by Esch (1957) demonstrate clearly that the piecewise
shear model exhibits the same qualitative behaviour as a realistic shear layer profile.

More advanced models can be created for fluids with different densities, containing
both stabilizing mechanisms, as exemplified by Li (1996). In practical situations,
which generally correspond to a high Weber number, surface tension only affects
wavelengths much smaller than the size of the shear layer and, consequently, does
not provide the stabilizing mechanism. The wavelength of the primary instabilities,
when not determined by wake-like behaviour, is determined by the thickness of the
shear layer. This is confirmed by the experimental studies of Raynal (1997).

Many theoretical studies, such as those by Rehab et al. (1997), Lasheras et al. (1998)
and Villermaux (1998), consider a single two-dimensional shear layer. However, this
overlooks a critical aspect of the coaxial injector: its wake-like behaviour. In two
dimensions one must consider the interaction of two parallel shear layers, which
can generate an absolute instability in the flow, as indicated by Yu & Monkewitz
(1990). Absolute instability is necessary, although not sufficient, for the existence of
self-sustained global instabilities, as explained further in § 3.1. Furthermore, these
authors show that the qualitative behaviour is not affected by the thickness of the
individual shear layers. This demonstrates that the wake-like behaviour is inherent to
the aerodynamic destabilizing mechanism and interaction of the shear layers. It does
not depend qualitatively on the stabilizing mechanism or the thickness of the shear
layers.

The dispersion relation of this two-dimensional compound flow is relatively easily
derived and solved. An axisymmetric flow is slightly more difficult to handle because it
contains modified Bessel functions; Batchelor & Gill (1962). In this article we analyse
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only the two-dimensional wake, since Monkewitz (1988a) has demonstrated that the
axisymmetric case is likely to be qualitatively similar. Another similar situation is
that of axisymmetric capillary waves on thin annular liquid sheets, which have been
studied by Mehring & Sirignano (2000a, b), although not for a ducted flow.

The recirculation bubble encountered at high momentum flux ratio exhibits a
helicoidal instability reminiscent of a wake flow. This would be predicted by a linear
stability analysis similar to that of Monkewitz (1988a). An alternative mechanism
is proposed by Rehab et al. (1997): disturbances in the shear layers are assumed
to feed back to the origin of the shear layer via the recirculation bubble, causing
self-sustained oscillations. This nonlinear delayed saturation model (NLDS) is applied
piecewise in three dimensions in order to consider the axisymmetric case. Its results are
consistent with those found by the linear stability analysis but the physics behind the
two models is entirely different. Although the NLDS model requires a recirculation
bubble, long-wavelength helicoidal instabilities are observed in experiments when
a bubble does not exist. This suggests that the NLDS model is not relevant, so only
the linear stability analysis is considered in the present article.

2.4. Comparison of a recessed injector to a ducted wake flow

In a recessed coaxial injector, the outer stream is contained within a duct, which
constrains motion in the radial direction. This is modelled by the velocity and density
profiles shown in figure 3. The model has infinite axial extent, which limits its validity
because the recessed region has finite length. The absolute instability in globally un-
stable wakes generally exists only in a small region, usually near its base. This is
nevertheless sufficient to trigger a global instability, so the fact that the recessed region
is small does not contradict this theory. As a final point, the non-recessed situation
would correspond to an unducted wake, where the outer jet is not constrained in the
radial direction.

3. The stability of free and ducted compound flows
3.1. Progression from a convective instability to a global instability

First it is convenient to review some elements in the analysis of shear flow and
wake instabilities. This brief account is based on many recent studies by, for example
Yu & Monkewitz (1990), Huerre & Monkewitz (1990), Huerre (2000) and references
therein. It is shown by Koch (1985) that a region of local absolute instability exists
immediately behind a cylinder in the vortex shedding regime. Mathis, Provansal &
Boyer (1984) and Strykowski (1986) demonstrate experimentally that these vortices
are shed at low Reynolds number as a result of a global instability. For the Ginzburg–
Landau model, the connection between local and global features is analysed further
by Chomaz, Huerre & Redekopp (1988) and Huerre & Monkewitz (1990). Monkewitz
(1988b) shows that the sequence of transitions behind a cylinder wake as the
Reynolds number is increased confirms the scenario described by Chomaz et al.
(1988). This is as follows: transition from stability to convective instability, transition
from convective to local absolute instability and finally transition to a self-sustained
global mode when a sufficiently large portion of the flow has become absolutely
unstable.

Hannemann & Oertel (1989) demonstrate by numerical simulation that only the
region directly behind the bluff body is absolutely unstable. This small region may
trigger a global mode which influences the entire flow. The behaviour is then similar
to a self-excited oscillator. On the theoretical level it is convenient to study the second
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step: transition from convective to local absolute instability in a locally parallel
flow. This is a necessary (but not sufficient) condition for the existence of a globally
unstable mode and it yields useful approximations for the critical parameters leading
to global instability.

In a flow behind a cylinder, transition to convective instability takes place at
Re = 5, according to Monkewitz (1988b). The first local absolute instability appears
at Re = 25, while the experimentally determined onset of vortex shedding occurs
around Re = 45. Thus in bluff-body wakes, transition to a globally unstable
flow occurs for a critical Reynolds number which somewhat exceeds the value
corresponding to the appearance of the first local absolute instabilities.

It is indicated by Huerre & Monkewitz (1990) that this approach is supported by
the work of Triantafyllou, Triantafyllou & Chryssostomidis (1986). These authors
demonstrate that vortex shedding is not caused by flow separation from the bluff-
body surface. The experimental results of Inoue (1985) further indicate that vortex
shedding disappears when the velocity deficit in the wake is reduced below a critical
value. From the last two studies one may deduce that vortex shedding is started by
a sinuous global instability in the velocity profile of the wake behind the object and
not by the object itself.

The above analyses concern vortex shedding behind a cylinder, which is quasi-two-
dimensional. The axisymmetric case behind a bluff body of revolution has also been
investigated. Experiments indicate that vortex shedding is helical, at a well-defined
Strouhal number. Monkewitz (1988a) shows that a region of absolute instability exists
just behind the body. These facts are further evidence that a global mode may be
responsible for the helicoidal instability, which is similar to the sinuous instability of
the two-dimensional wake.

3.2. Development of a dispersion relation for a two-dimensional ducted compound flow

A two-dimensional ducted compound flow can simulate the wake-like behaviour of a
recessed coaxial injector. The fluids are assumed to be inviscid, with uniform velocity
and density. They are bounded above and below by solid walls, as shown in figure 3.
These are classical assumptions. In practical applications, injector tubes are several
centimetres long and a few millimetres in diameter. Consequently, velocity profiles
will be closer to Poiseuille flow initially and then develop into shear layer profiles.
However, as indicated by Yu & Monkewitz (1990), these more complex profiles do
not change the qualitative behaviour of the double shear layer. For this reason, the
classical assumptions are retained. The effect of development of the shear layers is
reconsidered in § 3.6.

The outer fluid is denoted by subscript 2 and the central flow by subscript 1. The
half-width of the central jet h1 is used as a reference length. A reference velocity is
defined as uref = (u2 + u1)/2 and a reference density is ρ2. This leads to the following
non-dimensional variables: k∗ = kh1, c∗ = c/uref , where c = ω/k, frequency divided
by wavenumber. Parameters are the density ratio S = ρ1/ρ2, the velocity difference
Λ = (u1 − u2)/(u1 + u2) and the ratio of annular flow width h3 to the half-width of
the central jet: h∗

3 = h3/h1. If only sinuous and varicose instabilities are considered,
the dispersion relation may be cast in the form

Σ
(1 + Λ − c∗)2

(1 − Λ − c∗)2
= −1, (3.1)

where Σ is the density ratio S weighted by hyperbolic functions of the annular and
inner flow thicknesses, relative to the instability wavelength:
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Σ = S
tanh(k∗)

coth(k∗h∗
3)

(sinuous), Σ = S
coth(k∗)

coth(k∗h∗
3)

(varicose). (3.2)

In the case of the unbounded flow, h∗
3 → ∞. Consequently, coth(k∗h∗

3) → 1 and the
dispersion relation is identical to that found in Yu & Monkewitz (1990) for unducted
compound flows:

S
(1 + Λ − c∗)2

(1 − Λ − c∗)2
+ coth(k∗) = 0 (sinuous). (3.3)

This is similar to an unrecessed coaxial injector, where the annular flow is free to
expand radially into the ambient fluid.

This model has no stabilizing mechanism, which violates causality for reasons
described by Huerre (1987). In practice, this does not cause a problem as long as the
analysis is restricted to small wavenumbers, which is the constraint which was identi-
fied physically in § 2.3.

3.3. Geometrical approach to the identification of absolute instability

The instability characteristics of a flow are most easily demonstrated by considering
its response to an impulse, as indicated for example by Huerre & Monkewitz (1990)
and Huerre (2000). If the resulting perturbation dies away everywhere, the flow
is stable. On the other hand if it is amplified a further distinction is necessary.
Convectively stable flows give rise to wave packets which move away from the source
and ultimately leave the medium in its undisturbed state. Absolutely unstable flows
by contrast are gradually contaminated everywhere by a point-source impulse. This
distinction is determined by the contribution of the absolute wavenumber, k0, defined
as the wavenumber with zero group velocity: ∂ω/∂k = 0. The associated absolute
frequency ω0 = ω(k0) has an absolute growth rate ω0i . If this is negative, the instability
is convective. If it is positive, the instability is absolute, subject to fulfilment of the
‘pinch’ criterion which is defined below.

There is a convenient geometrical approach to this problem. Let D(ω, k; P ) = 0
represent the dispersion relation, where P denotes all control parameters. The partial
derivatives ∂ω/∂k and ∂D/∂k are related via

∂ω

∂k

∣
∣
∣
∣
P

∂D

∂ω

∣
∣
∣
∣
P,k

+
∂D

∂k

∣
∣
∣
∣
P,ω

= 0. (3.4)

Thus ∂ω/∂k = 0 when ∂D/∂k = 0, subject to ∂D/∂ω �= 0. The surface D = 0 can
be traced in the complex k-plane. Saddle points of D = 0 in the complex k-plane
satisfy ∂D/∂k = 0. Consequently, by equation (3.4), they are points of zero group
velocity: (ω0, k0). The paths of these saddle points can be followed in (ω, k) space as
the control parameters P are varied. By this method, regions of convective instability
(ω0i < 0) and absolute instability (ω0i > 0) are determined in parameter space.

There is a further criterion for absolute instability: the regions of unstable flow
must propagate into both the x > 0 and the x < 0 half-planes. This condition can be
visualized as the pinching of a k+ and a k− branch at a saddle point. The k+ branch
is defined as the path of D = 0 in the complex k plane which moves into the ki > 0
half-plane as ωi is increased. The k− branch always remains in the ki < 0 half-plane
as ωi is increased. This is the previously mentioned ‘pinch’ criterion.

A flow that is convectively unstable in one reference plane may become absolutely
unstable in another. Consequently, these concepts become relevant only when a
reference frame is chosen, which in this case is the exit plane of the central tube.
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Figure 4. Contours of ωi = constant in the complex k-plane. In both diagrams, the k+ branch
pinches with two k− branches in this range, forming two saddle points, which are marked •.
The dispersion relation is that of the unbounded wake. The velocity parameter, Λ, is equal
to −1, corresponding to a static central fluid. (a) The density ratio S is equal to 1; (b) S = 830.

3.4. Convective/absolute instability transition in a free wake flow

The geometrical approach is demonstrated in this section for sinuous disturbances of
the unducted compound flow, which is somewhat simpler than the ducted compound
flow. The dispersion relation is (from this point, the superscript ∗ is dropped from
dimensionless variables)

D ≡ S
(1 + Λ − c)2

(1 − Λ − c)2
+ coth(k) = 0. (3.5)

The procedure is similar to that used by Loiseleux, Chomaz & Huerre (1998)
where, starting from an approximate solution, saddle points of D = 0 are found
numerically by solving the nonlinear simultaneous equations D = 0 and ∂D/∂k = 0.
It is instructive to study an overall map of the dispersion relation (3.5) in the complex
k-plane. The function coth(k) is periodic, repeating in strips of width πi in the ki-
direction. It has simple poles at k = nπi and zeros at k = (n + 1/2)πi; n ∈ �. These
poles and zeros determine the positions of saddle points. Contours of ωi in the
complex k-plane are shown in figure 4(a) for a density ratio of 1 and in figure 4(b)
for a density ratio of 830, which corresponds to water/air at atmospheric pressure.
The contours at higher ωi than the saddle points are k+ or k− branches. There is
a k− branch associated with the pole/zero pair in each strip. Since there is a single
k+ branch, one expects an infinite number of k+/k− saddle points, one in each strip
nπi > ki > (n − 1)πi. These saddle points, which scale with h1, are labelled R, 2R,
3R . . . . When S is large, a large value of coth(k) is required for D = 0 to be satisfied,
which tends to bunch contours around poles. At large S, saddles are closer to poles
than they are at small S.

At given parameter values (S, Λ), each saddle point has position (ω0, k0). The
saddle with the highest value of ω0i causes a local absolute instability if that ω0i > 0.
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Figure 5. Convective/absolute instability transition line for instabilities of an unducted
compound flow. Vertical axis: log of the density ratio S. Horizontal axis: non-dimensional
velocity ratio, Λ. A co-flow wake is represented by −1 < Λ < 0. For Λ < −1 it is counter-flow.
The square and circular symbols represent conditions in typical coaxial injectors. (a) Sinuous
instabilities, (b) varicose instabilities. The absolutely unstable domain of sinuous instabilities
extends further than that of varicose instabilities.

In this study, saddle points were followed over a wide range of parameter space and the
results presented here apply to a wide variety of wake flows. The convective/absolute
(CI/AI) transition line can be calculated for each saddle point. Saddle R always
has the highest ω0i so only its contribution is shown in figure 5(a). This fits exactly
the results of Yu & Monkewitz (1990) but is extended here to a higher density
ratio. The configuration is more stable in this range, which is not evident in that
reference. For comparison, the transition line for the varicose instability is shown in
figure 5(b).

The operating point of the coaxial injector in a rocket engine is marked by a
circle. It lies close to the absolute instability transition line, which suggests that the
flow will be marginally globally stable. Huerre & Monkewitz (1990) demonstrate that
marginally globally stable flows behave like slightly damped linear oscillators. An
impulse can set off an instability very similar to the global mode but it dies away
after sufficient time. This behaviour is observed experimentally; Juniper (2001).

3.5. Convective/absolute instability transition in a ducted wake flow

For sinuous disturbances in the ducted wake, the coth(k) term in the disperion relation
is replaced by coth(k) coth(kh3). Before tackling this case, it is useful to consider the
shape of the dispersion relation with coth(k) replaced with simply coth(kh3). This is
shown in figure 6(a) for h3 = 7. As before, there is a saddle associated with each k−

branch and there is a k− branch associated with each pole/zero pair. The poles and
zeros are at nπi/h3 and (n+1/2)πi/h3. As expected, the map is qualitatively identical
to that for coth(k) but with the saddles closer together. The saddle points, which scale
with h3, are labelled 1L, 2L, 3L. The CI/AI transition line in (S, Λ) space is identical
to that for coth(k).

When the dispersion relation contains the term coth(k) coth(kh3), there are crucial
interactions where poles or zeros associated with coth(k) are close to those associated
with coth(kh3). This happens, for example, around the first zero of coth(k) at
k = − π i/2 and where the two poles coincide at k = 0. This is shown in figure 6(b).

Let us examine the effect around k = −πi/2 first. This concerns the interaction
between saddle 3L and saddle R. Saddle 3L has become more unstable and has a
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Figure 6. Contours of ωi = constant in the complex k-plane when S = 1, Λ = −1, h3 = 7. In
(a), the second term in the dispersion relation (3.5) is coth(kh3). The k+ branch pinches with
three k− branches in this range, forming saddle points 1L, 2L and 3L, which are marked •. In
(b), the second term in the dispersion relation (3.5) is coth(k) coth(kh3), which corresponds to
the bounded wake flow. The 1R pole of figure 4(a) is now ‘superimposed’ onto the landscape
of (a). The zero of coth(k) lies close to the third pole of coth(kh3), having a strong effect on
the contours. With this interaction, saddle 3L is more unstable and has a higher wavenumber.
It should also be noted that saddle R has become a k−/k− saddle point. The saddle point
close to the central poles at k = 0 is the most affected. This is less visible at S = 1 than at
S � 1.

higher ω0i as well as a higher wavenumber. In addition, saddle R has become a k−/k−

saddle point.
The effect around the pole at k = 0 is more significant, although it is less evident at

the density ratio of unity shown in figure 6(b). The associated saddle point is denoted
C, in order to distinguish it from the L and R family of saddles. Its position changes
considerably, particularly at high S, when saddle points approach poles. This effect is
most pronounced when h3 = 1, as can be seen from the CI/AI line in (S, Λ) space,
figure 7(a). The bounded wake is absolutely unstable over a much wider range of
parameter space. This is the key result of this analysis.

Similar effects can be seen for h3 = 2.1 and h3 = 7 in figures 7(b) and 7(c). There
is one CI/AI line per saddle point. As h3 increases, saddle C is unstable over a
wide range of velocity ratio but only at high density ratio. The absolutely unstable
wavelength that it predicts becomes very large. At lower density ratios, saddle R and
the nearby L-saddles are more unstable. As h3 → ∞, saddle C affects only infinitely
high density ratios and all L-saddles collapse to the ki-axis, where they have zero
wavenumber. The family of R-saddles becomes the most unstable as h3 → ∞ and the
behaviour of the unbounded wake is retrieved. The behaviour at h′

3 < 1 is identical
to the behaviour at h3 > 1, where h′

3 ≡ 1/h3. It is also worth mentioning that the
varicose instability becomes entirely convective as h3 → 1.
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Figure 7. Convective/absolute instability transition lines for sinuous instabilities of a ducted
compound flow at different values of h∗

3, which is the ratio of the annular width to the
inner-flow half-width: (a) h∗

3 = 1, (b) 2.1, (c) 7. For comparison, the sinuous and varicose
transition lines of the unducted flow are shown in (a). The letter next to each line in (b) and
(c) denotes the saddle point associated with the line. The square and circular symbols denote
typical operating points of coaxial injectors. Ducting the flow causes both operating points to
become absolutely unstable to sinuous perturbations.

3.6. Consequences for the geometry of coaxial injectors

The model presented here is only valid when the shear layers are infinitely thin. With
thicker shear layers the flow has the same qualitative behaviour, Yu & Monkewitz
(1990), although the region of absolute instability in parameter space is smaller. In
a spatially evolving shear layer, this means that an absolutely unstable region only
extends up to a critical shear layer thickness, if it exists at all. Although the critical
thickness is not calculated here, it is larger for a ducted compound flow with h3 ∼ 1
because sinuous instabilities are absolutely unstable over a larger region of parameter
space than for the unducted flow. For the operating point shown as a circle in figures 5
and 7, this suggests that the region of local absolute instability (in physical space)
extends much further into the ducted flow than into the unducted flow, as illustrated
in figure 8. This would encourage transition to a wake-like global mode, causing
self-sustained oscillations.

It is likely that the same effect occurs for an axisymmetric compound flow. The
region at the base of the flow is most influential in promoting a global instability.
Recessing a coaxial injector is equivalent to ducting this particular region and in
practical situations, h3 ∼ 1. This suggests that recess lengthens the absolutely unstable
region of the flow and therefore encourages transition to a wake-like global mode.



268 M. P. Juniper and S. M. Candel

Absolutely
unstable region

Absolutely
unstable
region

(b)(a)

Figure 8. Illustrative sketch of regions of absolute instability in a coaxial injector at typical
injection conditions. (a) Without recess. (b) With recess. When the injector is recessed, the
larger region of absolute instability is likely to trigger a global mode. This is characterized
by self-sustained sinuous or helicoidal oscillations and will cause better mixing of the central
jet. Under certain injection conditions an absolutely unstable region might not exist in the
non-recessed case.

This is self-sustained and therefore appears permanently, unlike the unrecessed case
which is marginally globally stable and where the mode only appears sporadically.
The nonlinear development of this flow remains to be determined.

4. Conclusions
It has been observed experimentally that recessing the central tube of a coaxial

injector leads to self-sustained wake-like instabilities of the central stream. On
the other hand, in an un-recessed injector, these instabilities are only observed
intermittently. In this article, a simple model is proposed which contains the necessary
physics to simulate the wake-like behaviour of a recessed coaxial injector. It is a two-
dimensional wake flow enclosed within a duct. It is shown that this configuration
exhibits absolute instability over a much wider range of parameter space than the
unducted wake flow. This suggests that the base of a recessed coaxial injector has
a much larger absolutely unstable region than that of an unrecessed injector. While
the unrecessed injector is marginally globally stable, the recessed injector is globally
unstable. This accounts for the experimentally observed behaviour and can aid both
the modelling and the design of coaxial injectors in practical applications.
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