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With a sufficiently large impulse, a thermoacoustic system can reach self-sustained
oscillations even when it is linearly stable, a process known as triggering. In this
paper, a procedure is developed to find the lowest initial energy that can trigger
self-sustained oscillations, as well as the corresponding initial state. This is known as
the ‘most dangerous’ initial state. The procedure is based on adjoint looping of the
nonlinear governing equations, combined with an optimization routine. It is developed
for a simple model of a thermoacoustic system, the horizontal Rijke tube, and can be
extended to more sophisticated thermoacoustic models. It is observed that the most
dangerous initial state grows transiently towards an unstable periodic solution before
growing to a stable periodic solution. The initial energy required to trigger these self-
sustained oscillations is much lower than the energy of the oscillations themselves and
slightly lower than the lowest energy on the unstable periodic solution. It is shown
that this transient growth arises due to non-normality of the governing equations. This
is analogous to the sequence of events observed in bypass transition to turbulence
in fluid mechanical systems and has the same underlying cause. The most dangerous
initial state is calculated as a function of the heat-release parameter. It is found that
self-sustained oscillations can be reached over approximately half the linearly stable
domain. Transient growth in real thermoacoustic systems is 105–106 times greater
than that in this simple model. One practical conclusion is that, even in the linearly
stable regime, it may take very little initial energy for a real thermoacoustic system to
trigger to high-amplitude self-sustained oscillations through the mechanism described
in this paper.
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1. Introduction
It is well known that the laminar flow in a round pipe becomes turbulent at a

Reynolds number between 1000 and 10 000. It is also well known that this laminar
flow has no unstable eigenvalues at any Reynolds number. How then can small
perturbations grow? The likely mechanism is summarized by Trefethen et al. (1993),
following work by Butler & Farrell (1992) and Reddy & Henningson (1993). It has
become known as bypass transition to turbulence because it bypasses traditional
stability theory’s requirement for an unstable eigenvalue. The mechanism relies on
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the fact that the linear stability operator is non-normal. This means that certain
perturbations can grow transiently even when the system is linearly stable. These then
trigger turbulence through nonlinear mechanisms. A review of this research and more
recent developments in the field can be found in Schmid (2007).

There is an analogous mechanism in thermoacoustics, through which a small
perturbation evolves to high-amplitude self-sustained oscillations even when the
unperturbed system has no unstable eigenvalues. This is known as triggering. It has
been observed in solid rocket motors, liquid rocket motors and laboratory experiments.
It is summarized in Zinn & Lieuwen (2005) (p. 19): ‘Although large-amplitude
disturbances are generally required to initiate unstable oscillations in nonlinearly
unstable systems, a system may be nonlinearly unstable at low-amplitude disturbances
that are of the order of the background noise level. This scenario is somewhat analogous
to the hydrodynamic stability of a laminar Poiseuille flow’. Although flow instability
differs from thermoacoustics and turbulence differs from self-sustained oscillations,
the two situations are both non-normal and nonlinear, which suggests that bypass
transition and triggering could be similar. The broad aim of this paper is to use the
framework of bypass transition in fluid mechanics to provide a stronger link between
studies of non-normality and studies of nonlinearity in thermoacoustics, such as
Balasubramanian & Sujith (2008a) and Ananthkrishnan, Deo & Culick (2005).

1.1. Bypass transition and the failure of linear analysis in hydrodynamics

The stability of a laminar flow is often investigated by calculating the eigenvalues of
small linear perturbations to that flow. If at least one eigenvalue is unstable, then the
flow is linearly unstable. If all eigenvalues are stable, then the flow is linearly stable.
The critical parameter between these two states (usually a Reynolds number) can be
calculated and it might seem sensible to assume that this is the critical parameter for
the onset of turbulence.

Unfortunately, this technique often fails. For instance, Hagen–Poiseuille flow is
linearly stable at all Reynolds numbers but becomes turbulent at Re ≈ 2000. Plane
Poiseuille flow is linearly stable up to Re = 5772 but becomes turbulent at Re ≈ 1000.
Plane Couette flow is linearly stable at all Reynolds numbers but becomes turbulent
at Re ≈ 360. One notable success is Benard convection, which is linearly stable up to
Re ≈ 1708 and becomes turbulent also around Re ≈ 1700.

Eigenvalue analysis fails in the first three flows because their linearized stability
operators are non-normal. It succeeds in the fourth flow because its linearized stability
operator is normal. (A matrix or operator L is normal, or self-adjoint, if it satisfies
L+L= LL+, where L+ is the adjoint of L.) Non-normal stability operators can cause
very high transient growth, typically 104–106 times the initial perturbation energy,
even in situations that are linearly stable (Schmid & Henningson 2001). This transient
growth is a key component of bypass transition in the first three flows.

In flow instability, Schmid & Henningson (2001) divide bypass transition into five
stages. The first stage is initiation of small perturbations to the flow. The second
stage is linear amplification of these perturbations due to non-normal growth. The
third stage is nonlinear saturation towards a new steady or quasi-steady periodic
state. The fourth stage is growth of secondary instabilities on top of this periodic
base flow. The fifth stage is breakdown to turbulence, where nonlinearities and/or
symmetry-breaking instabilities excite an increasing number of scales in the flow. This
idealization provides a useful framework with which to view bypass transition, even
for complicated flows.
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A flow can also be considered as a dynamical system, as in Skufca, Yorke &
Eckhardt (2006) for parallel shear flow and Schneider, Eckhardt & Yorke (2007) and
Duguet, Willis & Kerswell (2008) for pipe flow. A boundary in state space is identified
between trajectories that decay to a laminar solution and trajectories that evolve to
a turbulent solution. Trajectories that are attracted to this boundary from lower
energy states exhibit the transient growth identified in stage 2. Having identified this
boundary, which Skufca et al. (2006) call the ‘edge of chaos’, stage 4 can be described
in more detail. This boundary contains several heteroclinic saddle points and at
least one local relative attractor, each corresponding to a periodic travelling-wave
solution (Duguet, Willis & Kerswell 2008). The state wanders from the vicinity of one
travelling-wave solution to the vicinity of another and so on until it reaches a local
relative attractor, where it either evolves towards the laminar solution or towards
a turbulent solution. Its final state very sensitively depends on its initial state. The
travelling-wave solutions correspond to the quasi-steady periodic state identified in
stage 3 of Schmid & Henningson (2001).

1.2. Triggering and the need for nonlinearity and non-normality in thermoacoustics

In this paper, a similar conceptual framework is applied to thermoacoustic triggering,
which also involves non-normality and nonlinearity. The role of nonlinearity is
summarized by Ananthkrishnan et al. (2005), who show that the system must have
either a subcritical bifurcation or a supercritical bifurcation followed by a fold
bifurcation in order to trigger. This is similar to the requirements for bypass transition
(Henningson & Reddy 1994). In such a system, there are two (or more) stable solutions
to the governing equations. The first is a stable fixed point at zero amplitude and the
second is a stable periodic solution at finite amplitude. When the system is at the
stable fixed point, a sufficiently large impulse can knock it into the basin of attraction
of the self-sustained oscillation. This is triggering. Such systems are sometimes called
‘linearly stable but nonlinearly unstable’ (Zinn & Lieuwen 2005), but it should be
stressed that, from a dynamical systems’ point of view, both solutions are stable.

Noiray et al. (2008) present a practical and novel method to predict whether a
system will be susceptible to triggering. They measure the flame’s OH∗ emission as a
function of forcing frequency and amplitude, from which they interpolate to obtain
a flame describing function (FDF). Then they enter this into a frequency-domain
nonlinear stability analysis to predict the self-excited behaviour of the system. They
validate this against the experimentally observed self-excited behaviour and thereby
account for the nonlinear aspects of triggering, mode switching and hysteresis. In
a system that is susceptible to triggering, an unstable periodic solution sits on the
boundary between the basins of attraction of the stable fixed point and the stable
periodic solution (§ 3.2). This is the steady or quasi-steady periodic state described in
stage 3 of § 1.1. The results in figure 9 of Noiray et al. (2008) show that the system
triggers when its amplitude infinitesimally exceeds that of this unstable periodic
solution, corresponding to stage 4 of § 1.1. Their study, however, freezes harmonics
to the fundamental mode. It will be shown in § 3.4 that this precludes non-normal
transient growth, which means that their method cannot account for the growth
towards the periodic state described in stage 2 of § 1.1. To account for this growth,
non-normality must also be considered.

The role of non-normality in thermoacoustics was first considered by
Balasubramanian & Sujith (2008a) for the Rijke tube, by Balasubramanian &
Sujith (2008b) for a Burke–Schumann flame in a tube and by Nagaraja, Kedia &
Sujith (2009) for a generic n–τ combustion model. These papers show that the
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linearized governing equations are non-normal, which means that their corresponding
eigenvectors are non-orthogonal. This is a general feature of eigenvectors in
thermoacoustics (Nicoud et al. 2007), and means that some initial states are
composed of eigenfunctions with large amplitudes that largely cancel out. If the
eigenfunctions of such states decay at different rates, the states grow initially
even if all the eigenfunctions eventually decay (Schmid 2007). Using linear algebra,
Balasubramanian & Sujith (2008a) found the states that have maximum transient
growth away from the stable fixed point and, using nonlinear time marching, showed
that these states can grow to self-sustained oscillations in a linearly stable system.
This paper examines this process in more detail and, in particular, examines the states
that cause maximum transient growth towards the unstable periodic solution.

1.3. The structure of this paper

This paper examines the simple model of thermoacoustic oscillations in the horizontal
Rijke tube studied by Balasubramanian & Sujith (2008a). Although this model is
much less complex than real thermoacoustic systems, it contains important elements
of real systems, such as a time delay between velocity and heat-release perturbations
as well as a heat-release rate that depends nonlinearly on the velocity. Usually, the
nonlinear governing equations are used but, occasionally, the linear equations are
required. The model and the linearizations are described in § 2.1, together with the
three thermoacoustic systems that are used as examples.

A classical nonlinear analysis is performed in § 3. The systems’ bifurcation diagrams
are plotted as a function of the heat-release parameter. A continuation method is
used to find the periodic solutions, whose stability is determined from their Floquet
multipliers. Careful consideration of the basins of attraction of the periodic solutions
reveals the role that the unstable periodic solution plays in the triggering process.

Previous studies have considered linear transient growth around the stable fixed
point. In § 3.3, linear transient growth is considered around the unstable periodic
solution, which is more relevant to triggering. A linear analysis is limited to the
vicinity of the unstable periodic solution; so, in § 4, a procedure is developed to find
optimal initial states of the nonlinear governing equations. This is used to find the
initial states that trigger to self-sustained oscillations from the lowest possible energy,
which are called the ‘most dangerous’ initial states.

Having found these states, the linear evolution and nonlinear evolution are
compared in § 5 in order to determine whether the transient growth is caused by
non-normality, nonlinearity, or some combination of the two. The triggering process
is then compared with that of bypass transition within the framework introduced in
§ 1.1 and found to be similar but simpler.

In § 6, the procedure is applied over the full range of the heat-release parameter at
which the system is susceptible to triggering. This gives the bound, in terms of the
initial perturbation energy, below which the system can never trigger to self-sustained
oscillations, which is called the ‘safe operating region’. In more complex systems, this
bound will have important engineering significance.

It turns out that the thermoacoustic system in this paper has two stable periodic
solutions. In §§ 3–6, the concepts are described with reference to the first solution. In
§ 7, the second solution is introduced.

This paper describes an idealized situation, in which triggering occurs from a
well-defined initial state in a noiseless system. It could be difficult to create such a
system in the laboratory; so the implications for experiments, in particular the effect
of different types of noise, are discussed in § 8.
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2. The model and its governing equations
2.1. The dimensional governing equations

The thermoacoustic system examined in this paper, a horizontal Rijke tube, is identical
to that studied by Balasubramanian & Sujith (2008a). This is a tube of length L0 in
which a hot wire is placed distance x̃f from one end. A base flow is imposed through
the tube with velocity u0. The physical properties of the gas in the tube are described
by cv , γ , R and λ, which represent the constant volume specific heat capacity, the
ratio of specific heats, the gas constant and the thermal conductivity, respectively. The
unperturbed quantities of the base flow are ρ0, p0 and T0, which represent density,
pressure and temperature, respectively. From these, one can derive the speed of sound
c0 ≡

√
γRT0 and the Mach number of the flow M ≡ u0/c0.

Acoustic perturbations are considered on top of this base flow. In dimensional form,
the perturbation velocity and perturbation pressure are represented by the variables
ũ and p̃, respectively, and distance and time are represented by the coordinates x̃ and
t̃ , respectively. Quantities evaluated at the hot wire’s position, x̃f , have subscript f .

At the hot wire, the rate of heat transfer to the gas is given by ˜̇Q. This heat transfer

is applied at the wire’s position by multiplying ˜̇Q by the dimensional Dirac delta
distribution δ̃D(x̃ − x̃f ). (The subscript D distinguishes the Dirac delta from a small
variation δ in Appendix A.) Acoustic damping, which will be described in § 2.4, is
represented by ζ .

The dimensional governing equations for the perturbation comprise the momentum
equation and the energy equation:

F̃ 1 ≡ ρ0

∂ũ

∂t̃
+

∂p̃

∂x̃
= 0, (2.1)

F̃ 2 ≡ ∂p̃

∂t̃
+ γp0

∂ũ

∂x̃
+ ζ

c0

L0

p̃ − (γ − 1) ˜̇Qδ̃D(x̃ − x̃f ) = 0. (2.2)

The heat release is modelled with a form of King’s law adapted by
Balasubramanian & Sujith (2008a) from Heckl (1990). Surface heat transfer and
subsequent thermal diffusion between the wire and the fluid are modelled by a
constant time delay, τ̃ , between the time when the velocity acts and the time when
the corresponding heat release is felt by the perturbation

˜̇Q =
2Lw(Tw − T0)

S
√

3

(
πλcvρ0

dw

2

)1/2 ( ∣∣∣u0

3
+ ũf (t̃ − τ̃ )

∣∣∣1/2 −
(

u0

3

)1/2)
, (2.3)

where Lw , dw and Tw represent the length, diameter and temperature of the wire,
respectively, and S represents the cross-sectional area of the tube. This contains a
time delay and a simple model for nonlinear attenuation, which are the two most
influential characteristics in more sophisticated flame models (Dowling, 1997, 1999;
Noiray et al. 2008).

2.2. The non-dimensional governing equations

Reference scales for speed, pressure, length and time are taken to be u0, p0γM , L0

and L0/c0, respectively. The inclusion of γM in the reference pressure differs from
Balasubramanian & Sujith (2008a) but simplifies the subsequent analysis because
the acoustic energy is then simply half the 2-norm of the state vector, as will be
described in § 2.5. The dimensional variables, coordinates and Dirac delta can then be
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written as

ũ = u0u, p̃ = p0γMp, x̃ = L0x, t̃ = (L0/c0)t, ˜δD(x̃−x̃f ) = δD(x−xf )/L0, (2.4)

where the quantities without a tilde or subscript 0 are dimensionless.
Substituting (2.4) into the dimensional governing equations (2.1) and (2.2) and

making use of the definition of c0 and the ideal gas law, p0 = ρ0RT0, gives the
dimensionless governing equations

F1 ≡ ∂u

∂t
+

∂p

∂x
= 0, (2.5)

F2 ≡ ∂p

∂t
+

∂u

∂x
+ ζp − β

( ∣∣∣∣13 + uf (t − τ )

∣∣∣∣
1/2

−
(

1

3

)1/2 )
δD(x − xf ) = 0, (2.6)

where

β ≡ 1

p0
√

u0

(γ − 1)

γ

2Lw(Tw − T0)

S
√

3

(
πλcvρ0

dw

2

)1/2

. (2.7)

The system has four control parameters: ζ , which is the damping; β , which
encapsulates all relevant information about the hot wire, base velocity and ambient
conditions; τ , which is the time delay; and xf , which is the position of the wire.
The heat-release parameter, β , is equivalent to k/γM in Balasubramanian & Sujith
(2008a).

2.3. The boundary conditions and the discretized governing equations

When appropriate boundary conditions in x are set, the governing equations (2.5) and
(2.6) reduce to an initial value problem in t . For the system examined in this paper,
∂u/∂x and p are both set to zero at the ends of the tube. These boundary conditions
are enforced by choosing basis sets that match these boundary conditions:

u(x, t) =

N∑
j=1

ηj (t) cos(jπx), (2.8)

p(x, t) = −
N∑

j=1

(
η̇j (t)

jπ

)
sin(jπx), (2.9)

where the relationship between ηj and η̇j has not yet been specified. In this
discretization, which is sometimes known as a Galerkin discretization, all the basis
vectors are orthogonal.

The state of the system is given by the amplitudes of the Galerkin modes that
represent velocity, ηj , and those that represent pressure, η̇j /jπ. These are given
the notation u ≡ (η1, . . . , ηN )T and p ≡ (η̇1/π, . . . , η̇N/Nπ)T . The state vector of the
discretized system is the column vector x ≡ (u; p).

The governing equations are discretized by substituting (2.8) and (2.9) into (2.5)
and (2.6). As described in § 2.4, the damping, ζ , is dealt with by assigning a damping
parameter, ζj , to each mode. Equation (2.6) is then multiplied by sin(kπx) and
integrated over the domain x = [0, 1]. The governing equations then reduce to two
delay differential equations (DDEs) for each mode, j :

F1G ≡ d

dt
ηj − jπ

(
η̇j

jπ

)
= 0, (2.10)
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F2G ≡ d

dt

(
η̇j

jπ

)
+ jπηj + ζj

(
η̇j

jπ

)
· · ·

+ 2β

( ∣∣∣∣13 + uf (t − τ )

∣∣∣∣
1/2

−
(

1

3

)1/2 )
sin(jπxf ) = 0, (2.11)

where

uf (t − τ ) =

N∑
k=1

ηk(t − τ ) cos(kπxf ). (2.12)

2.4. Damping

For the system examined in this paper, p and ∂u/∂x are both set to zero at the
ends of the tube, which means that the system cannot dissipate acoustic energy by
doing work on the surroundings. Furthermore, the acoustic waves are planar, which
means that the system cannot dissipate acoustic energy in the viscous and thermal
boundary layers at the tube walls. Both types of dissipation are modelled by the
damping parameter for each mode:

ζj = c1j
2 + c2j

1/2, (2.13)

where c1 and c2 are the same for each mode. This model was used in
Balasubramanian & Sujith (2008a) and Nagaraja et al. (2009) and was based on
correlations developed by Matveev (2003) from models in Landau & Lifshitz (1959).

2.5. The definition of the acoustic energy norm

For the optimization procedure, it is necessary to define some measure of the size
of the perturbations. Several measures are possible and each could give a different
optimal. The most convenient measure is the acoustic energy per unit volume, Ẽ,
because it is easy to calculate and has a simple physical interpretation (Nagaraja
et al. 2009).

The acoustic energy per unit volume, Ẽ, consists of a kinetic component, Ẽk , and
a pressure potential component, Ẽp . In dimensional form, it is given by

Ẽ = Ẽk + Ẽp =
1

2
ρ0

(
ũ2 +

p̃2

ρ2
0c

2
0

)
. (2.14)

Substituting for ũ and p̃ from (2.4), making use of the ideal gas relation and
defining the reference scale for energy per unit volume to be ρ0u

2
0, the dimensionless

acoustic energy per unit volume, E, is given by

E =
1

2
u2 +

1

2
p2 =

1

2

N∑
j=1

η2
j +

1

2

N∑
j=1

(
η̇j

jπ

)2

=
1

2
xH x =

1

2
‖x‖2, (2.15)

where ‖ · ‖ represents the 2-norm. The rate of change of the acoustic energy with time
is

dE

dt
= u

du

dt
+ p

dp

dt
=

N∑
j=1

ηj

dηj

dt
+

N∑
j=1

(
η̇j

jπ

)
d

dt

(
η̇j

jπ

)
= −

N∑
j=1

ζj

(
η̇j

jπ

)2

−
N∑

j=1

2β

(
η̇j

jπ

)( ∣∣∣∣13 + uf (t − τ )

∣∣∣∣
1/2

−
(

1

3

)1/2 )
sin(jπxf ). (2.16)
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The first term on the right-hand side of (2.16) represents damping and is always
negative. The second term is the instantaneous value of pQ̇ and is the rate at which
thermal energy is transferred to acoustic energy at the wire. It is worth noting that
this transfer of energy can be in either direction.

2.6. The linearized governing equations

Non-normality, which is central to this paper, is a linear phenomenon. It is most easily
examined when the governing equations are linearized around x =0 and expressed in
the form dx/dt = Lx, where x represents the state of the system and L represents the
evolution operator or matrix. Two linearizations are required to express the governing
equations in this form. The first linearization, which is valid for uf (t − τ ) � 1/3, is
performed on the square-root term in (2.6) and (2.11):( ∣∣∣∣13 + uf (t − τ )

∣∣∣∣
1/2

−
(

1

3

)1/2 )
≈

√
3

2
uf (t − τ ). (2.17)

This produces a system of linear DDEs: dx/dt = L1x(t) + L2x(t − τ ), where L1 is a
normal matrix and L2 is a non-normal matrix. It is possible to find the eigenvalues
of this linear DDE system (Selimefendigila, Sujith & Polifke 2010) and to quantify
the non-normality of L2 but, in Balasubramanian & Sujith (2008a) and this paper, a
second linearization is performed on the time delay:

uf (t − τ ) ≈ uf (t) − τ
∂uf (t)

∂t

=

N∑
k=1

ηk(t) cos(kπxf ) − τ

N∑
k=1

kπ

(
η̇k(t)

kπ

)
cos(kπxf ). (2.18)

This linearization is valid only for the Galerkin modes for which τ � Tj , where
Tj = 2/j is the period of the j th Galerkin mode. Equations (2.17) and (2.18) are
substituted into (2.11) to give the linearized governing equations

F1G ≡ d

dt
ηj − jπ

(
η̇j

jπ

)
= 0, (2.19)

F2G ≡ d

dt

(
η̇j

jπ

)
+ jπηj + ζj

(
η̇j

jπ

)
· · ·

+
√

3βsj

N∑
k=1

ηkck −
√

3βτsj

N∑
k=1

kπ

(
η̇k

kπ

)
ck = 0, (2.20)

where sj ≡ sin(jπxf ) and ck ≡ cos(kπxf ). This is a set of linear ordinary differential
equations (ODEs), which can be expressed in the matrix form

d

dt
x =

d

dt

(
u
p

)
=

(
LT L LT R

LBL LBR

)(
u
p

)
= Lx. (2.21)

The rate of change of energy dE/dt can be found either by substituting (2.17) and
(2.18) into (2.16) or by evaluating xT Lx. This gives

dE

dt
= −

N∑
j=1

ζj

(
η̇j

jπ

)2

−
√

3β

N∑
j=1

N∑
k=1

sj ck

(
η̇j

jπ

)
ηk +

√
3βτ

N∑
j=1

N∑
k=1

sj ckkπ

(
η̇j

jπ

)(
η̇k

kπ

)
.

(2.22)
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2.7. The systems examined in this paper

The thermoacoustic system examined in this paper has xf = 0.3, c1 = 0.05, c2 = 0.01
and τ = 0.02. These values are typical of a laboratory Rijke tube. (τ is slightly lower
than that found in Heckl (1990), who used τ = 0.05.) For the nonlinear results, the
DDEs (see (2.10)–(2.11)) are integrated from t = 0. This requires information about
uf for t ∈ [−τ, 0) and adds as many degrees of freedom as there are time steps in
this time period. In this paper, uf is set to zero in this period in order to freeze these
degrees of freedom. Although this is artificial, the effect is small because the time
delay, τ =0.02, is very much smaller than the period over which transient growth
takes place, which is of order 2–20.

One advantage of the Galerkin discretization is that concepts can be demonstrated
on a small dimensional system and then readily extended to a large dimensional
system. In this paper, the system is considered with 1, 3 and 10 Galerkin modes,
labelled systems A, B and C, respectively. System A has two degrees of freedom
and exhibits nonlinear characteristics but no non-normal transient growth over one
cycle around the unstable periodic solution. System B has six degrees of freedom
and exhibits both nonlinear and non-normal characteristics. System C is qualitatively
identical to system B but has 20 degrees of freedom and is more representative of an
actual thermoacoustic system.

For direct time marching, (2.10)–(2.11) are integrated with a fourth-order Runge–
Kutta algorithm with δt = 0.005. For adjoint looping, the gradient information is
found by integrating the equations in § B.6 with a first-order Euler algorithm with
δt = 0.00005. These time steps are sufficiently small that the results are not sensitive
to the time step.

3. The lower periodic solutions of the nonlinear governing equations
In § 7 it will be shown that there are two stable periodic solutions to the governing

equations. The lower solution has velocity perturbations with amplitude less than
the mean flow. The higher solution has velocity perturbations with amplitude greater
than the mean flow. For simplicity, §§ 3–6 will consider only the lower solution, as if
the higher solution did not exist. The higher solution will be introduced in § 7.

3.1. The fixed point and periodic solutions on a bifurcation diagram

The bifurcation diagrams for the system with 1, 3 and 10 Galerkin modes are shown
in figure 1. These have been calculated with DDE Biftool (Engelborghs, Luzyanina &
Roose 2002), which uses a continuation method similar to that described in Jahnke &
Culick (1994). Each point on each line corresponds to a periodic solution. The top
frames show the peak to peak amplitude of the first velocity mode, u1, as a function
of the heat-release parameter, β , which is a standard representation. The bottom
frames show the minimum acoustic energy on each periodic solution, for reasons that
will be given in § 4.6. The influence of other bifurcation parameters, such as xf , can
be found in Subramanian et al. (2010).

The bifurcation diagrams are qualitatively similar to each other. At low values of
β , there is a stable fixed point at zero amplitude. At the linear stability threshold, βH ,
there is a subcritical Hopf bifurcation to an unstable periodic solution and an unstable
fixed point. The unstable periodic solution becomes a stable periodic solution at a
saddle node bifurcation at βs . There are no other fixed points or periodic solutions
(apart from the higher solution described in § 7). This is qualitatively similar to figure 6
of Ananthkrishnan et al. (2005), which is for a model with velocity-coupled nonlinear
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Figure 1. Bifurcation diagrams as a function of heat-release parameter, β , for the 1, 3 and
10 Galerkin mode systems (left to right). The top frames show the peak to peak amplitude
of the first velocity mode. The bottom frames show the minimum acoustic energy on the
periodic solutions. The solution with zero amplitude is stable up to β = βH , where there is a
Hopf bifurcation to an unstable periodic solution (dashed line). The unstable periodic solution
becomes a stable periodic solution (solid line) at a saddle node bifurcation, βs .
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Figure 2. The Floquet multipliers, µ, of the unstable periodic solution for system A (which
has N =1, β =1.10), system B (which has N = 3, β = 0.75) and system C (which has N = 10,
β = 0.75). The unit circle is also shown. In each system, one Floquet multiplier is unstable
(|µ| > 1), one is neutral (|µ| = 1), and, for systems B and C, the rest are stable (|µ| < 1).

combustion and second-order gas dynamics. Between the saddle node bifurcation
and the Hopf bifurcation, βs � β � βH , the system is susceptible to triggering. This
configuration is also known as ‘linearly stable but nonlinearly unstable’ (Zinn &
Lieuwen 2005).

For each periodic solution, the Floquet multipliers are calculated in order to
determine whether it is stable (solid line) or unstable (dashed line). One Floquet
multiplier is always equal to 1, corresponding to motion in the direction of the
periodic solution, which neither grows nor decays over a cycle. For the stable periodic
solution, all the other Floquet multipliers have magnitude less than 1, showing
that this periodic solution attracts states from every other direction. For the unstable
periodic solution, the Floquet multipliers are shown in figure 2. One Floquet multiplier
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Figure 3. A cartoon of the boundary (grey surface) between the basins of attraction of the
stable periodic solution (thick solid line) and the stable fixed point (not shown because it lies
inside the surface). The unstable periodic solution (dashed line) is a closed loop on the basin
boundary. This loop repels states away from the basin boundary, is neutral in the direction
of the loop and attracts states in all other directions, as shown by the Floquet multipliers
in figure 2. The most dangerous initial state (black dot) is the point with lowest energy
infinitesimally outside the basin boundary. Its initial evolution (thin solid line) is towards the
unstable periodic solution, closely following the basin boundary. From there, it is repelled
towards the stable periodic solution. (This trajectory is not shown, to avoid complicating the
figure.) If the system is non-normal, the most dangerous initial state (black dot) has lower
energy than the point with lowest energy on the unstable periodic solution (white dot). In the
cartoon, the basin boundary is shown as a two-dimensional surface but, in the model, it has
dimension 2N − 1, where N is the number of Galerkin modes.

has absolute value greater than 1, one is neutral and the remainder have absolute
value less than 1. This means that the unstable periodic solution (i) repels states in
the direction of the eigenvector corresponding to the first Floquet multiplier, (ii) is
neutral in the direction of the periodic solution and (iii) attracts states from every
other direction.

3.2. The basins of attraction of the stable solutions

For β greater than βH , all initial states evolve to the stable periodic solution. For β

less than βs , all initial states evolve to the stable fixed point. For β between these
values, there is a boundary in state space between the basins of attraction of these two
stable solutions. At βH , this basin boundary is a surface enclosing an infinitesimally
small volume around the stable fixed point. As β reduces, the volume inside the basin
boundary increases until, at βs , it contains all of state space. States outside the basin
boundary evolve to the stable periodic solution. States within the basin boundary
evolve to the stable fixed point. States exactly on the basin boundary stay on the
boundary and, because there are no stable fixed points on the boundary, continually
move around it. For illustration, we can think of this boundary as the surface of
a potato, whose centre is the stable fixed point (figure 3). With the proviso about
DDEs noted in § 2.7, the state space has dimension 2N and the basin boundary has
dimension 2N − 1, where N is the number of Galerkin modes.

There is only one other closed loop in state space: the unstable periodic solution.
Points exactly on the unstable periodic solution do not evolve to the stable fixed
point or to the stable periodic solution because they lie on a loop. It is observed that
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Figure 4. The distribution of energy in the Galerkin modes at the lowest energy point on
the unstable periodic solution. The energy in the first mode, which greatly exceeds that in the
other modes, is written on the first bar. The absolute values are significant because this is
derived from a nonlinear analysis. The exact distribution of u, p and E is in table 1.

neighbouring points evolve either to the stable periodic solution or to the stable fixed
point. There are no other stable solutions in this region of state space. Therefore, the
unstable periodic solution lies on the basin boundary. We can imagine the unstable
periodic solution as a loop drawn on the surface of the potato (figure 3). This loop
repels states away from the boundary, either towards the stable fixed point or towards
the stable periodic solution, is neutral in the direction tangential to the loop, and
attracts states in all other directions. Because there are no other periodic solutions or
fixed points on the basin boundary, all points that start exactly on the basin boundary
and near to the unstable periodic solution must be attracted towards the unstable
periodic solution. This solution is known as an unstable attractor (Ashwin & Timme
2005), or a local relative attractor. We can think of these trajectories as lines drawn
on the surface of the potato, spiralling towards the loop, without ever quite reaching
it (figure 3).

Returning to the framework introduced in § 1.1, this basin boundary corresponds to
the boundary that Skufca et al. (2006) call the ‘edge of chaos’ in fluid mechanics. The
unstable periodic solution, which sits on the basin boundary, corresponds to the local
relative attractor in Duguet et al. (2008) or, equivalently, the steady or quasi-steady
periodic state identified in stage 3 of Schmid & Henningson (2001).

3.3. Transient growth around the unstable periodic solutions of systems B and C

One aim of this paper is to find the lowest energy initial state that just evolves to the
stable periodic solution. This is equivalent to finding the lowest energy state on the
basin boundary. The lowest energy state on the unstable periodic solution (figure 4
and table 1) is an obvious starting point because every state that starts exactly on
the basin boundary evolves towards this periodic solution and must pass nearby.
The question is now whether states can evolve towards the unstable periodic solution
from lower energies than this state. In other words, what is the shape of the basin
boundary around the unstable periodic solution? Is it convex or knobbly and does
the lowest energy state on this loop lie at the bottom of a valley or on a slope?

To answer this, we will consider transient growth around the unstable periodic
solution. Beforehand, it is worth reviewing studies that have looked at transient
growth around the stable fixed point, such as Balasubramanian & Sujith (2008a).
To do this, the governing equations are linearized around the fixed point (§ 2.6), and
the linear stability operator, L, is calculated (2.21). The eigenvalues of L describe
the long time behaviour around the fixed point but, if the operator is non-normal,
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Galerkin mode number

1 2 3 4 5 6 7 8 9 10 Total

A u −0.3986
A p 0.0014
A E 0.0794 0.0794

B u −0.3773 0.0615 0.0166
B p −0.0036 0.0034 0.0010
B E 0.0712 0.0018 0.0001 0.0732

C u −0.4897 0.0734 0.0230 −0.0330 −0.0459 −0.0220 0.0097 0.0260 0.0195 0.0000
C p −0.0028 0.0036 0.0014 −0.0017 −0.0033 −0.0020 0.0007 0.0016 0.0009 0.0000
C E 0.1199 0.0027 0.0002 0.0005 0.0010 0.0002 0.0000 0.0003 0.0001 0.0000 0.1253

Table 1. Velocity amplitude, pressure amplitude and energy in each mode for the lowest energy
points on the unstable periodic solution of systems A, B and C. The energy distribution is
graphically shown in figure 4. The total energy is shown in the final column.

there can also be transient growth at intermediate times. This transient growth is
particularly remarkable when all the eigenvalues are stable but is just as strong when
some eigenvalues are unstable, e.g. figure 9 of Reddy & Henningson (1993). The
perturbation that gives maximum transient energy growth over an arbitrary time, T ,
is the first left singular vector of exp(LT ). The maximum transient growth over all
times is given the symbol Gmax and occurs at time Tmax . For system B, Gmax =1.518.
For system C, Gmax = 1.588. We will return to this in § 4. For more sophisticated
models of thermoacoustic systems, Gmax ∼ 106 (Balasubramanian & Sujith 2008b).

A similar analysis can be applied around the unstable periodic solution (Schmid
2007; § 3.3). The governing equations are linearized around this periodic solution and
the linear monodromy matrix, M , is calculated, which describes the linear evolution
of a perturbation over one cycle. The eigenvalues of this matrix, which are the Floquet
multipliers, describe the behaviour around the periodic solution after many cycles.
The singular values of this matrix describe the maximum possible growth over one
cycle. If the monodromy matrix is non-normal, the largest singular value is larger
than the largest eigenvalue, meaning that there is non-normal transient growth over
one cycle. The perturbation that gives rise to the maximum possible growth over one
cycle is the first singular vector of M .

System A is a special case and is considered in § 3.4. For systems B and C, the
monodromy matrices have been calculated numerically, starting from the lowest
energy point on the unstable periodic solution. The eigenvalues of these matrices are
the Floquet multipliers shown in figure 2 and the eigenvector corresponding to the
largest Floquet multiplier is shown in figure 5 for both systems. For system B, the
largest eigenvalue of M is 1.0136 and the largest singular value is 1.1657. For system
C, the largest eigenvalue of M is 1.0422 and the largest singular value is 1.6058. For
both systems, the largest singular value is greater than the largest eigenvalue, which
means that there can be non-normal transient growth around the unstable periodic
solution. The eigenvectors in figure 5 show the perturbation that grows fastest after
many cycles. They have almost all their energy in the first mode. The first singular
vectors in figure 6 show the perturbations that grow fastest after one cycle. They have
most energy in the first, third and fourth modes (first and third for the three-mode
system). For system C, this shows that the third and fourth modes are particularly
influential in maximizing energy growth around the unstable periodic solution and
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Figure 5. The distribution of energy in the Galerkin modes for the perturbation with
maximum linear energy growth after many cycles around the unstable periodic solution.
This is the eigenvector that corresponds to the largest eigenvalue of the monodromy matrix,
which is the unstable Floquet multiplier in the corresponding frame of figure 2. The percentage
energy in the first mode is 99.7 % for system B and 98.5 % for system C. The absolute value
is not significant because this is derived from a linear analysis but, in these figures, the total
energy is 0.5.
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Figure 6. The distribution of energy in the Galerkin modes for the perturbation with
maximum energy growth after one cycle around the unstable periodic solution. This is the first
singular vector of the monodromy matrix. The percentage energy in the first mode is 79.1 %
for system B and 43.9% for system C. There is considerable energy in the higher modes. As
for figure 5, the absolute value is not significant but, in these figures, the total energy is 0.5.
The exact distribution of u, p and E is in table 2.

that perturbation energy growth of Gcycle = 1.60582 = 2.579 can be achieved in the
first cycle.

We can now determine whether states can evolve towards the lowest energy
state on the unstable periodic solution from even lower energies. Exactly on the
unstable periodic solution, there can be no transient energy growth over a cycle, by
definition of a cycle. Adjacent to the unstable periodic solution, however, the energy
of some trajectories grows transiently, i.e. faster than eigenvalue growth. Assuming
that neighbouring trajectories are nearly parallel, this means that there must be a
state that grows transiently during the first few cycles and is then attracted towards
the unstable periodic solution. This state is on the basin boundary but has lower
energy than the lowest energy state on the unstable periodic solution. The linear
techniques using the monodromy matrix suggest that these states will be found by
adding some amplitude of the singular vectors in figure 6 to the lowest energy points
on the respective unstable periodic solutions in figure 4. The nonlinear techniques in
§ 4 find this state exactly.
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Galerkin mode number

1 2 3 4 5 6 7 8 9 10 Total

B u −0.5074 −0.0787 −0.0910
B p 0.7303 0.0402 0.4392
B E 0.3954 0.0039 0.1006 0.5

C u −0.4461 −0.0028 0.1027 0.1676 0.0186 −0.0625 −0.0501 −0.0113 0.0179 0.0264
C p 0.4895 0.1821 0.5004 0.3360 −0.0228 −0.2018 −0.2042 −0.0587 0.0980 0.1487
C E 0.2193 0.0165 0.1305 0.0705 0.0004 0.0223 0.0221 0.0017 0.0049 0.0114 0.5

Table 2. Velocity amplitude, pressure amplitude and energy in each mode for the SVD of
the monodromy matrix on the unstable periodic solution of systems B and C. The energy
distribution is shown graphically in figure 6. The total energy is not significant because these
results are derived from a linear analysis.

3.4. The special case of system A

System A is a special case. With the proviso about DDEs noted in § 2.7, system A has
only two degrees of freedom: u1 and p1. Its periodic solutions are one-dimensional
loops in two-dimensional state space. This means that the unstable periodic solution
is equivalent to the basin boundary between the stable fixed point and the stable
periodic solution. States must either decay towards the fixed point or towards the
stable periodic solution. Although the energy of states can grow transiently within
a cycle if the basin boundary is elliptic, they cannot grow transiently over one or
more cycles and then subsequently decay because, if they did, trajectories in state
space would cross, which is forbidden. This is why Noiray et al. (2008), who froze the
harmonics to the fundamental mode, could not have predicted transient growth. For a
system to have transient growth, the harmonics must be free to evolve independently.
It must be stressed that the equivalence between the unstable periodic solution and
the basin boundary arises only because system A has two degrees of freedom. Systems
B and C, which have more degrees of freedom, are qualitatively different (Strogatz
2001; § 6.2).

4. Calculation of linear and nonlinear optimal initial states
This section describes a process that finds the initial state that is attracted to the

unstable periodic solution from the lowest initial energy. This state is an infinitesimal
distance from the lowest energy point on the basin boundary in § 3.2 and is labelled
the ‘most dangerous’ initial state. In § 3, we saw that the unstable periodic solution
lies on the basin boundary of the stable periodic solution and, in systems B and C,
that it repels states in one direction, is neutral in one direction and attracts states
in all other directions. We saw that the monodromy matrix is non-normal, meaning
that linear transient growth around the unstable periodic solution is possible. The
linear analysis is, however, valid only in a small region around the unstable periodic
solution, and therefore, does not provide a systematic way to find the most dangerous
initial state of the nonlinear governing equations. In this section, we will start by
considering linear optimal states around the stable fixed point and then move on to a
more general definition of nonlinear optimal states, from which a process is developed
to find the most dangerous initial state.
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Figure 7. The distribution of energy in the Galerkin modes for the perturbation with
maximum energy growth around the stable fixed point. This is the first singular vector of
the stability matrix L. As for figure 5, the absolute value is not significant but, in these figures,
the total energy is 0.5.

4.1. Linear and nonlinear optimization procedures

Of all the possible initial states, x0, one will give the maximum acoustic energy growth,
G(T ), over some arbitrary time T . This is defined as

G(T ) =
max
x0

‖x(T )‖2

‖x0‖2
. (4.1)

The optimal x0(T ) and corresponding G(T ) can be found with an optimization
routine. For the linear system, however, there is a simpler method: G(T ) is the square
of the highest singular value of exp(LT ) and the optimal x0(T ) is the first left singular
vector of exp(LT ), where L is the matrix that represents the linearized governing
equations (cf. (2.21)) (Schmid 2007). In a further optimization, G(T ) can be optimized
over all T . This is denoted by Gmax and occurs at time Tmax . The corresponding initial
state is called the linear optimal initial state around the stable fixed point. This is
shown in figure 7 for systems B and C. It is interesting to note the high amplitudes of
the third and fourth modes in system C, a characteristic shared by the optimal initial
perturbation around the unstable periodic solution shown in figure 6.

For the linear system, the direction of x0 is influential but its magnitude is not.
For the nonlinear system, however, both the direction and the magnitude of x0 are
influential. If the magnitude of x0 is quantified by its energy, E0, then G in (4.1)
becomes a function of T and E0. The singular value decomposition (SVD) cannot
be applied to nonlinear systems and also requires cost functionals to be expressed as
2-norms. To find G(T , E0) or to investigate more elaborate cost functionals, a new
technique is required.

The technique used in this paper is adapted from optimal control (Bewley 2001).
In brief, a cost functional, J, is defined, which may or may not be ‖x(T )‖2/‖x0‖2.
A Lagrangian functional, L, is then defined as the cost functional, J, minus a set
of inner products. These inner products multiply the governing equations by one set
of Lagrange multipliers and the initial state by another set of Lagrange multipliers.
When all variations of L with respect to the Lagrange multipliers, state variables, x,
and initial state, x0, are zero, an initial state has been found that optimizes J and
satisfies the governing equations.

To find this initial state, the direct governing equations are integrated forward for
time T from an initial guess, thus satisfying the requirement that all variations of L

with respect to the Lagrange multipliers are zero. The Lagrangian functional is then
re-arranged so that it is expressed in terms of a different set of inner products. These
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inner products multiply the state variables, x, by a first set of constraints. They also
multiply the initial state, x0, by a second set of constraints. The requirement that all
variations of L with respect to x are zero can be met by satisfying the first constraints.
Half of these, known as the optimality conditions, determine the relationship between
an adjoint state vector, x+, and the direct state vector, x, at time T . The other half,
known as the adjoint governing equations, govern the evolution of x+ for t = [0, T ].
After setting the optimality conditions at t = T , the adjoint governing equations are
integrated backwards to time 0, thus satisfying the requirement that all variations
of L with respect to x are zero. The second set of constraints return the gradient
information ∂L/∂x0 at the initial guess for x0. This is combined with a convenient
optimization algorithm, such as the steepest descent method or the conjugate gradient
method, in order to converge towards the optimal initial state, at which ∂L/∂x0 = 0.

This technique is extremely versatile. It can handle all reasonable cost functionals,
boundary conditions and governing equations, either linear or nonlinear. It also
allows accuracy to be traded for speed by reducing the temporal resolution or the
tolerance of the optimization. The adjoint governing equations, optimality conditions
and gradient information are derived for the nonlinear case with cost functional Jav

in Appendix A. For the other cases, these equations are listed without derivation in
Appendix B.

4.2. The characteristics of different cost functionals

Several cost functionals would be appropriate for the optimization in this paper, each
with slightly different adjoint equations. One is the final energy divided by the initial
energy, JT ≡ E(T )/E0, which is equal to G at optimality. Another is the integrated

rate of energy transfer between the thermal and the mechanical field, JpQ ≡
∫ T

0
pQ̇ dt ,

which is equivalent to JT without including damping. Both of these oscillate with time.
Another is the average energy over some specified time window, which also oscillates
unless the time window happens to be exactly equal to one period. Given that the
solution becomes periodic only once the transient behaviour has died away and that
the period is not necessarily known beforehand, the oscillations cannot, in general,
be removed by using this cost functional. Another is the average acoustic energy over
t = [0, T ] divided by the initial energy: Jav ≡ Eav(T )/E0. This cost functional increases
monotonically with time, which is sometimes a useful feature. The cost functionals
JT and Jav are used in this paper.

4.3. Local optimization of the nonlinear governing equations

The local optimization procedure consists of an adjoint looping algorithm and a line
maximization algorithm nested within a conjugate gradient algorithm. The adjoint
looping algorithm provides gradient information to the conjugate gradient algorithm.
This procedure finds local maxima of J from an initial guess for x0. Two versions of
the procedure are used. In the first version, no constraints are placed on the initial
state. In the second version, the energy of the initial state, E0, is specified. The second
version (or some variant of it) is required when the linear governing equations are
being optimized so that the solution does not grow to infinity or decay to zero.
Although the initial energy is irrelevant to the linear solution, allowing it to grow or
decay without constraint can lead to numerical problems. The second version is also
useful in the global optimization procedures described in § 4.5.



Triggering in the horizontal Rijke tube 289

4.3.1. The conjugate gradient algorithm

Step 1: Starting from an initial guess for x0, the gradient ∂J/∂x0 at that point is
calculated via the adjoint looping algorithm in § 4.3.2. The direction of steepest ascent
of J is supplied to step 2.

Step 2: The initial state x0 is incremented by δx0 in the given direction until
a maximum is reached. The maximum along this path is found accurately with
a line maximization routine that assumes that the peak is locally parabolic. This
requires several integrations of the governing equations but no integration of the
adjoint governing equations. If the initial energy has been specified, then this path is
constrained to the surface of the 2N-dimensional sphere with radius

√
2E0.

Step 3: Step 1 is repeated to find the direction of steepest ascent of J at the new
initial state.

Step 4: A new direction is calculated with the conjugate gradient algorithm (Press
et al. 1992). This is usually close to the line of steepest ascent of J but uses information
about the previous direction in order to avoid zig-zagging, particularly along ridges.

Step 5: Steps 2–4 are repeated until the initial state x0 has converged sufficiently
closely to a local maximum of J.

Step 6: The exact maximum is found to a greater tolerance by carrying out the
parabolic convergence of step 2 for each component of x0.

4.3.2. The adjoint looping algorithm

Step 1: Starting from an initial state, x0, the discretized governing equations (§ B.3)
are integrated forward for the required time, T , with a first-order Euler or fourth-order
Runge–Kutta algorithm with constant time step δt . At each time step, the state, x(t),
and all the intermediate variables are stored for use during the backward integration
with the adjoint governing equations.

Step 2: At t = T , the optimality conditions (§ B.7) are applied, which initializes the
adjoint variables at t = T .

Step 3: The discretized adjoint governing equations (§ B.6) are integrated backwards
to t = 0 with an algorithm identical to that in step 1. This uses the state and the
intermediate variables that were stored during the forward calculation.

Step 4: The gradients of J with respect to the initial conditions, ∂J/∂x0, are
calculated (§ B.8). This gives the direction of steepest ascent of J, which is returned
to the conjugate gradient algorithm.

4.4. A demonstration of the local optimization procedure

The horizontal Rijke tube with one Galerkin mode is a convenient system on which
to demonstrate the optimization procedure because its two degrees of freedom can
be represented on a plane. Figure 8(a) shows contours of JT as a function of (u1, p1)
for system A evolving to T = 2 with the linearized governing equations. The arrows
show the gradient calculated with the adjoint looping algorithm in § 4.3.2, and it is
easy to check that these lie perpendicular to the contours of J.

The white dot is the starting point for the optimization process and the small black
dots are the steps taken during the line maximization process. In this case (figure 8a),
E0 has been constrained; so all these points lie on the white circle. The optimal point
x0max

is given by the big black dot and is identical to the SVD solution, which is given
by the black line. In the linear case, the amplitude is irrelevant, which means that the
contours of constant J are straight lines radiating from x0 = 0. This also means that
J at x0max

is equal to J at −x0max
, which becomes useful in § 4.5.
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Figure 8. Contours of cost functional, J(u1, p1), for system A for: (a) J = JT evolving to T = 2
with the linear governing equations; (b) J = Jav evolving to T = 2 with the linear governing
equations; (c) J = JT evolving to T = 2 with the nonlinear governing equations; (d ) J = Jav

evolving to T =2 with the nonlinear governing equations. The arrows show the gradients
calculated with the adjoint looping algorithm in § 4.3.2. The path of the optimization process
described in § 4.3.1 is shown from the initial guess (white dot) to the optimal point (big black
dot). In (a) and (b) the initial energy is fixed. In (c) and (d ) it is unconstrained.

The optimal point can be found to any specified tolerance, although there is a
trade-off between the time taken and the accuracy. In the Rijke tube system, for
which the linear governing equations can be represented by a small matrix (e.g. 20 ×
20 for system C), the SVD method is around three orders of magnitude faster than
the adjoint looping method. In systems that are represented by a large matrix (greater
than 1000 × 1000), such as that studied by Balasubramanian & Sujith (2008b), the
adjoint looping method is faster than the SVD method.

The remaining frames of figure 8 show the same information for (b) cost functional
Jav with the linearized governing equations, (c) cost functional JT with the nonlinear
governing equations for unconstrained E0 and (d ) cost functional Jav with the
nonlinear governing equations for unconstrained E0. The linear cases are qualitatively
similar to each other, showing that both cases have unique optimal starting points,
x0max

, whether the cost functional be JT , which can be analysed with the SVD method,
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or Jav , which cannot. The nonlinear cases are also qualitatively similar to each other
but do not have the simple structure of the linear cases. In particular, they each have
two local maxima, the consequences of which will be discussed in § 4.5.

4.5. Global optimization of the nonlinear governing equations

The conjugate gradient algorithm combined with line maximization and adjoint
looping is an efficient way to find local maxima of J. In the linear case, there is a
single maximum. In the nonlinear case, however, there are several local maxima. This
can be seen in figures 8(c) and 8(d ) for system A. In systems B and C, there are many
more local maxima.

In this paper, the global maximum is found with a simulated annealing process.
Once a local maximum has been found, random perturbations are added to the state
vector and new local maxima are sought from these points. Most of these converge
to the original local maximum but, occasionally, a new local maximum is found in
a new area. This process continues, with progressively smaller random perturbations
until the global maximum is found. The simulated annealing process is robust but
slow, and it is highly likely that a more efficient global optimization procedure can
be found.

4.6. Efficient convergence to the most dangerous initial state

The global optimization procedure in § 4.5 can find the initial states with maximum
possible transient growth, G(T , E0), over a wide range of T and E0 (Juniper 2010).
The aim of the current paper, however, is to find the state with the lowest initial
energy, E0, that can reach sustained oscillations. This is the state with lowest energy
on the basin of attraction of the stable periodic solution. This point can be found
by using the global optimization procedure with cost functional JT = E(T )/E0 over
a long time window with unconstrained E0 but this is time-consuming (Juniper &
Waugh 2010).

A different procedure is used here. We know from § 3 that all states very close to
the basin boundary start by evolving towards the unstable periodic solution. This
means that the optimization needs to be performed only on the first few time units,
during which transient growth to the unstable periodic solution takes place. After
this period, the evolution from all initial states near the boundary is similar. An
optimization time of T =10 has been found to be sufficient but T =20 is used in
this paper, corresponding to 10 periods of the first mode’s natural frequency. If the
optimization period is too short, the initial state with highest transient growth can be
one that subsequently decays very quickly.

The optimization procedure starts from the lowest energy point on the unstable
periodic solution because this is the lowest energy point on the basin boundary that
can be found with the continuation method. There is no transient growth around the
cycle when starting from this point. The global optimization process then finds a state
that has the same initial energy but that maximizes transient growth over 20 time
units. Its amplitude is then reduced incrementally and the evolution calculated well
beyond the period of transient growth. This is repeated until the initial energy is found
at which the state evolves to the unstable periodic solution but then neither grows
nor decays over several hundred time units. This point is extremely close to the basin
of attraction of the stable periodic solution and has lower energy than the previous
point but is not necessarily the most dangerous initial state. The optimization process



292 M. P. Juniper

Galerkin mode number

1 2 3 4 5 6 7 8 9 10 Total

B u −0.3715 −0.0040 −0.0331
B p −0.0356 0.0112 0.0005
B E 0.0696 0.0001 0.0005 0.0702

C u −0.4334 −0.0321 −0.1298 −0.0596 −0.0009 −0.0035 0.0146 0.0063 0.0025 0.0301
C p −0.0813 0.0191 0.0021 −0.0353 −0.0004 −0.0025 0.0006 0.0072 −0.0178 −0.0101
C E 0.0972 0.0007 0.0084 0.0024 0.0000 0.0000 0.0001 0.0000 0.0001 0.0005 0.1096

Table 3. Velocity amplitude, pressure amplitude and energy in each mode for the most
dangerous initial state of systems B and C. The energy, E, is shown graphically in figure 9.
The total energy is shown in the final column. It is significantly lower than the energy of the
lowest energy point on the unstable periodic solution in table 1.
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Figure 9. The distribution of energy in the Galerkin modes for the most dangerous initial
states for systems B and C, found with the optimization procedure in § 4. The absolute values
are significant because this is derived from a nonlinear analysis. The exact distribution of
u, p and E is in table 3. These states lie just within the basin of attraction of the stable
periodic solution. As expected from the first singular value of the monodromy matrix in
figure 6, system B has significant energy in the third mode and system C has significant energy
in the third and fourth modes in order that these initial states can maximize their energy
growth around the unstable periodic solution.

and the energy reduction process are repeated in sequence until any further reduction
in the energy is less than 10−4.

5. Transient growth and triggering from the most dangerous initial state
The procedure in § 4 is used to find the most dangerous initial states for systems

B and C. These initial states are shown in figure 9 and table 3. The evolution from
them is shown in figures 10 and 11, in which frames (a) and (b) show the same data
on different time scales. In both systems, the most dangerous state grows transiently
around the unstable periodic solution for a few cycles, and then follows the unstable
periodic solution for a few hundred time units before growing towards the stable
periodic solution. Although not shown here, if the amplitude of the initial state is
reduced very slightly, it evolves along a neighbouring trajectory but then decays to
the zero solution. This is qualitatively identical to, but much simpler than, the process
seen in bypass transition to turbulence described in § 1.1.

The question now arises as to whether this transient growth towards the unstable
periodic solution arises due to non-normality. In hydrodynamics, this is simple to
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Figure 10. Evolution with the nonlinear governing equations from the most dangerous initial
state of system B (grey line). The energy of the system grows transiently over the first few cycles,
then follows the unstable periodic solution (dashed line) for several cycles, before growing to
the stable periodic solution.
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Figure 11. As for figure 10 but for system C. The transient growth is stronger in system C.
Although this state evolves to the stable periodic solution earlier than system B, this is not
significant because the time spent around the unstable periodic solution is extremely sensitive
to tiny variations in the amplitude of the initial state.

answer because the nonlinear terms conserve energy, meaning that any energy growth
must be due to linear terms and, if all eigenvalues are linearly stable, must therefore be
due to non-normality. In thermoacoustics, however, the nonlinearity does not conserve
energy and could cause transient growth even in the absence of non-normality.

We know, however, from § 3.3 that the monodromy matrix of the unstable periodic
solution is non-normal and that this causes linear transient growth around the
unstable periodic solution. Furthermore, the linear perturbations that cause the highest
transient energy growth have highest amplitudes in the first, third and fourth modes
(in the first and third modes for system B). This characteristic is shared by the
nonlinear most dangerous initial states. This strongly suggests that transient growth
in the nonlinear system is also due to linear non-normality. Further evidence is
provided in figure 12. This shows the evolution from the most dangerous initial state
for system C, using the governing equations linearized around the stable fixed point
(see (2.19)–(2.20)). The first point to note, by comparing this linear evolution with
the unstable periodic solution (dashed line), is that the initial energy growth of the
linear evolution exceeds that of the unstable periodic solution. Put together with the
results from the monodromy matrix, this shows that transient growth arises from
the linear part of the evolution operator, whether this operator is linearized about
the stable fixed point or around the unstable periodic solution. The second point to
note, by comparing the linear evolution (solid line in figure 12) with the nonlinear
evolution (solid line in figure 11), is that the nonlinear system has larger transient
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Figure 12. Evolution with the linear governing equations from the optimal initial point of
system C (black line), showing transient growth at the very beginning but then decay to the
stable fixed point at zero, which is the only solution of the linear governing equations. This
shows that the linear transient growth from this point exceeds that which is achieved from
starting at the minimum energy point of the unstable periodic solution (dashed line).

growth than the linear system. This shows that, around the unstable periodic solution,
both nonlinearity and non-normality contribute to transient growth. The same result
has been found for transient growth around the stable fixed point (Juniper 2010). On
this feature, thermoacoustic systems differ from hydrodynamic systems.

It is worth pointing out that the linear optimal state around the stable fixed
point, shown in figure 7, differs significantly from the most dangerous initial state.
Although, for system C, both have high energies in the third and fourth modes, the
most dangerous initial state has much higher energy in the first mode in order for it
to start near the unstable periodic solution. At the energies required for triggering,
the linear optimal around the stable fixed point has little transient growth. This is
described in detail in Juniper (2010).

In summary, the most dangerous initial state has been found by embedding
nonlinear adjoint looping within a conjugate gradient algorithm. This is a brute force
approach that makes no assumptions about the mechanisms of transient growth. It is
seen that this initial state exploits linear transient growth around the unstable periodic
solution in order to be attracted initially towards the unstable periodic solution and,
from there, towards the stable periodic solution. This is directly analogous to stages
2–4 in bypass transition to turbulence (§ 1.1). There are, however, some differences
between triggering in thermoacoustics and bypass transition in hydrodynamics.
Firstly, nonlinearity (as well as non-normality) contributes to transient growth in
thermoacoustics. Secondly, at least in this simple thermoacoustic model, the basin
boundary contains only one unstable periodic solution while, in hydrodynamics, it
contains several.

6. The ‘safe operating region’ of this model
In an industrial situation, it would be acceptable to operate a system that is ‘linearly

stable but nonlinearly unstable’ as long as the system could never be perturbed
sufficiently to reach the stable periodic solution. The most dangerous initial states
give the upper bound of this ‘safe operating region’. These have been calculated at
several values of β for systems B and C. The results are shown in figure 13. This shows
the lowest energy on the unstable periodic solution (dashed line), the lowest energy on
the stable periodic solution (solid line) and the energy of the most dangerous initial
states (dotted line). (For system A, the dotted line would coincide with the dashed
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Figure 13. The minimum energy on the stable periodic solution (solid line) and unstable
periodic solution (dashed line) for systems B and C. The dotted line corresponds to the energy
of the most dangerous initial states, found with the optimization procedure. These states reach
the stable periodic solution. The region below the dotted line and to the left of βs corresponds
to the ‘safe’ operating region of the Rijke tube. It is smaller than that which would be predicted
from a nonlinear but normal analysis.

line in figure 1(a) because the most dangerous initial state is equivalent to the lowest
energy point on the unstable periodic solution.)

In system B, the most dangerous initial states can have up to 5.4 % less energy than
the lowest energy on the unstable periodic solution. For comparison, typical values
(calculated at β = 0.75) for linear transient growth of this system are Gmax =1.518
when linearized around the stable fixed point and Gcycle = 1.359 when linearized
around the unstable periodic solution. In system C, the most dangerous initial states
have up to 12.5 % lower energy than the unstable periodic solution. Typical values
are Gmax = 1.588 and Gcycle =2.579 at β = 0.75. The values of Gmax and Gcycle give
a rough indication of the gap between the dashed and dotted lines in figure 13. For
more elaborate thermoacoustic models, such as that in Balasubramanian & Sujith
(2008b), Gmax is of order 106 and Gcycle has yet to be determined. It is likely that
the most dangerous initial states of these systems will have significantly lower energy
than that on the unstable periodic solution.

A linear analysis would predict the safe operating region to be all regions to the left
of βH . A nonlinear but normal analysis, such as Noiray et al. (2008), would predict
the safe operating region to be all regions to the left of βs and all regions below
the lowest energy on the unstable periodic solution (dashed line) between βs and βH .
The nonlinear and non-normal analysis in this paper shows that the safe operating
region between βs and βH is smaller than that predicted by a normal analysis. A
nonlinear and non-normal analysis of more elaborate thermoacoustic systems, which
have higher linear transient growth, is likely to reveal that the safe operating region
between βs and βH is even smaller.

7. The higher periodic solutions of the nonlinear governing equations
The periodic solutions presented so far correspond to perturbation velocities that

have smaller magnitude than the mean flow. This means that the net flow is always
in the downstream direction. The system can also support periodic solutions with
perturbation velocities that have larger magnitude than the mean flow. This means
that the net flow can reverse. The model in this paper does not support nonlinear
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Figure 14. The minimum energy on the stable periodic solution (solid lines) and unstable
periodic solution (dashed lines) for systems B and C. The dotted lines correspond to the energy
of the most dangerous initial states, found with the optimization procedure. These states reach
the stable periodic solution above them.
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Figure 15. As for figure 10 but for the higher periodic solutions of system B. The distribution
of energy in the Galerkin modes is shown at the start (t = 0), on the upper unstable periodic
solution (t = 20 and dashed line) and on the upper stable periodic solution (t =1000). On the
bar charts, the vertical axes are scaled to 25 % of the amplitude of the first mode.

acoustics, which may well be influential in this range. Nevertheless, these results are
worth reporting, even if they are only qualitatively correct.

The second pair of periodic solutions, one unstable and one stable, are shown in
figure 14 for systems B and C. Log scales are used because the energy is much higher
than that of the first pair of periodic solutions. The most dangerous initial states
that can reach these periodic solutions (dotted line) lie at significantly lower energy
than that of the unstable periodic solution. Figures 15 and 16 show time evolutions
from the most dangerous initial conditions at β = 0.75. They start from low energies
(E0 = 0.6013 for system C and E0 = 0.7026 for system C), grow transiently over
5–10 time units, are attracted towards the unstable periodic solutions for around
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Figure 16. As for figure 15 but for system C.

100 time units (E = 0.98 for system B and E = 1.28 for system C) and then
grow to the stable periodic solution at high energies (E = 35.78 for system B and
E = 29.74 for system C). An inspection of the distribution of energy shows that the
most dangerous initial states have significant energy in the higher order Galerkin
modes, particularly the third mode, while the periodic solutions do not. Qualitatively,
this evolution is identical to that seen for the first pair of periodic solutions at lower
energy. Quantitatively, however, the transient energy growth is considerably larger.
At β =0.75, the most dangerous initial states have around 50 % of the minimum
energy on the unstable periodic solution and around 1 % of the minimum energy on
the stable periodic solution.

8. Conclusions
It is well known that some linearly stable thermoacoustic systems can trigger to

self-sustained oscillations when perturbed with a sufficiently large impulse (Zinn &
Lieuwen 2005). The most important characteristic of such systems is a subcritical
bifurcation (Ananthkrishnan et al. 2005), which cannot be identified with a linear
stability analysis. Triggering can occur in the region that is sometimes known as
‘linearly stable but nonlinearly unstable’, which is between βs and βH in figure 1. In
this region, there are two (or more) stable solutions to the governing equations: a
stable periodic solution and a stable fixed point (§ 3.1).

Triggering is usually caused by large-amplitude disturbances, such as a bomb placed
within a combustion chamber. This is easy to explain: the large-amplitude impulse
pushes the system from the basin of attraction of the stable fixed point to that
of the stable periodic solution. Triggering can also be caused by small-amplitude
disturbances, of the order of the background noise level (Zinn & Lieuwen 2005).
In this paper, this is explained by drawing an analogy with bypass transition to
turbulence in hydrodynamics.
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Bypass transition in hydrodynamics explains the mechanism through which small
perturbations can lead to turbulence in linearly stable flows. In many flows, the
linear stability operator around the laminar solution is non-normal, which means that
some initial states grow transiently even when the system is linearly stable. These
states evolve towards periodic or quasi-periodic travelling-wave solutions, which are
unstable and which then lead to turbulence (§ 1.1).

In this paper, it is shown that thermoacoustic systems evolve in a similar way. In
brief, there is an unstable periodic solution between βs and βH , which plays a role
similar to that of the unstable periodic travelling-wave solutions in hydrodynamics
(§ 3.2). Initial states can be found that grow transiently around this unstable periodic
solution before being repelled towards the stable periodic solution. These initial
states have lower energy than both periodic solutions. In this paper, it is shown that
these states initially exploit non-normal linear transient growth around the unstable
periodic solution and then exploit the nonlinear dynamics to grow from there to
the stable periodic solution. The latter process can be predicted with a nonlinear
normal analysis (Noiray et al. 2008), but the former process cannot. In other words,
non-normality describes the start of the journey, while nonlinearity describes the end.

In more detail, the monodromy matrix around the unstable periodic solution has
one unstable eigenvalue, as required, but is also non-normal (§ 3.3). This means that,
over one cycle, some perturbations around the unstable periodic solution grow faster
than the perturbation in the direction of the unstable eigenvector. The perturbation
that has maximum linear growth over one cycle is found from the SVD of the
monodromy matrix (figure 6 and table 1). This information is useful but is limited
because it comes from a linear analysis. In this paper, a procedure is developed (§ 4)
that uses the nonlinear governing equations to find the lowest energy initial state that
evolves to the stable periodic solution (figure 9 and table 3). This is called the ‘most
dangerous’ initial state. It is broadly similar to a combination of the lowest energy
point on the unstable periodic solution (figure 4 and table 1) and the optimal linear
perturbation found from the monodromy matrix (figure 6 and table 2). In particular,
it has high amplitudes in the first, third and fourth modes. It is different from the
state with maximal transient growth around the stable fixed point (figure 7), which
has been found in previous studies (Balasubramanian & Sujith 2008a), but which
does not lead to triggering from the lowest possible initial energy (Juniper 2010).
It is also found that nonlinearity contributes as much as non-normality to transient
growth, which differs from hydrodynamics, in which the nonlinear terms conserve
energy. Furthermore, in this model, the boundary between states that decay to the
zero solution and states that grow to a stable periodic solution is much simpler than
that found in fluid mechanical systems. The evidence for this is that states from a
broad range of initial conditions grow transiently to one of two unstable periodic
solutions, rather than several unstable periodic solutions, before growing to one of
two stable periodic solutions or decaying to the stable fixed point.

The most dangerous initial states have been calculated between βs and βH in order
to determine the perturbation energy below which all states decay to the stable fixed
point (figure 13). This is called the ‘safe operating region’. It is found to be much
smaller than would be predicted by a linear analysis and slightly smaller than would
be predicted by a nonlinear normal analysis. More realistic models of thermoacoustic
systems have much higher non-normality than the model used in this paper; so it is
likely that the safe operating region between βs and βH is smaller still.

This paper describes the mechanism through which perturbations with small
amplitudes can reach stable periodic solutions with large amplitudes. The analysis,
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however, assumes that a perfectly defined impulse can be imposed onto a perfectly
quiet system, which is unrealistic. It is more realistic to examine the effect of continuous
noise on a non-normal system. In Waugh & Juniper (2010), noise with spectral
characteristics similar to the most dangerous initial state is imposed onto the model
used in this paper. The noise amplitude is increased until the system triggers to
the stable periodic solution. The triggering process follows exactly that which is
expected from this paper: the system starts around the stable fixed point, then jumps
to the unstable periodic solution and then grows to the stable periodic solution.
This compares well with experimental results of low-amplitude triggering such as
figure 15(b) of Lieuwen (2002).

From an engineering point of view, it is important to know whether non-normality
and transient growth are likely to be influential in triggering self-sustained oscillations
in real thermoacoustic systems. Real thermoacoustic systems have transient growth
that is several orders of magnitude higher than that in a Rijke tube. With sufficient
computing power, the techniques presented in this paper could be used to calculate
the safe operating regions of more accurate models of thermoacoustic systems. Even
without this step, however, one practical conclusion of this study is that, in systems
that are linearly stable, one must look for nonlinear self-sustained oscillations because
it may take surprisingly little initial energy for the system to find a way to reach them.
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Appendix A. Constrained optimization
In this appendix, the equations for constrained optimization are derived for

the continuous nonlinear governing equations with cost functional Jav ≡ Eav/E0.
Appendix B contains all other variations of these equations: for linear and nonlinear
governing equations; in continuous and discrete form; and for cost functionals Jav

and JT .

A.1. Definitions

The following inner products are defined:

〈g, h〉 ≡ 1

X

∫ X

0

gh dx, (A 1)

{g, h} ≡ 1

T

∫ T

0

gh dt, (A 2)

[g, h] ≡ 1

XT

∫ X

0

∫ T

0

gh dt dx. (A 3)
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The cost functional is defined as the mean acoustic energy during time T divided by
the initial acoustic energy:

J ≡ Eav

E0

=
[u, u] + [p, p]

〈u0, u0〉 + 〈p0, p0〉 . (A 4)

The variation of J with respect to variation in u, for instance, is defined as[
∂J

∂u
, δu

]
≡ lim

ε→0

J(u + εδu) − J(u)

ε
. (A 5)

A.2. The direct governing equations in continuous form

The delayed velocity v(x, t) ≡ u(x, t − τ ) is introduced into the governing equations
(2.5) and (2.6) in order to separate the time delay term from the nonlinear term. This
is not strictly necessary but it makes the derivation easier to present. The governing
equations for u(x, t) and p(x, t) and the initial conditions for u(x, 0) and p(x, 0) are
written in terms of functions that equal zero:

F1(x, t) ≡ ∂u

∂t
+

∂p

∂x
= 0, (A 6)

F2(x, t) ≡ ∂p

∂t
+

∂u

∂x
+ ζp − β

( ∣∣∣∣13 + vf

∣∣∣∣
1/2

−
(

1

3

)1/2 )
δD(x − xf ) = 0, (A 7)

F3(x, t) ≡ v − u(t − τ ) = 0, (A 8)

G1(x) ≡ u(0) − u0 = 0, (A 9)

G2(x) ≡ p(0) − p0 = 0. (A 10)

Equations (A 9) and (A 10) are not necessary for the derivation of the adjoint
equations but are included so that it is easier to extract the change in the cost
functional with respect to changes in the initial conditions.

A.3. Definition and re-arrangement of the Lagrangian functional

The cost functional J is to be maximized subject to the constraints (A 6)–(A 10). To
achieve this, a Lagrangian functional, L, is defined with Lagrange multipliers a(x, t),
b(x, t), c(x, t), d(x) and e(x):

L ≡ J − [a, F1] − [b, F2] − [c, F3] − 〈d, G1〉 − 〈e, G2〉. (A 11)

At optimality, the variations of L with respect to variations in all of the variables
must be zero.

The variations of L with respect to variations in a, b, c, d and e are automatically
zero if the governing equations (A 6)–(A 8) are satisfied for x = [0, X] and t = [0, T ]
and if the initial conditions (A 9)–(A 10) are satisfied for x = [0, X] at t = 0.

The variations of L with respect to variations in u, p, v, u0 and p0 are calculated
by re-arranging the terms on the right-hand side of (A 11). The contributions of the
nonlinear terms in (A 11) are considered first.

One nonlinear term arises from J. Following the definition (A 5), the variations in
J with respect to variations in u, p, u0 and p0 are[

∂J

∂u
, δu

]
=

1

ε

(
1

XT

∫ T

0

∫ X

0

(u + εδu)2

2E0

dx dt − 1

XT

∫ T

0

∫ X

0

u2

2E0

dx dt

)

=
1

XT

∫ T

0

∫ X

0

2u

2E0

δu dx dt =

[
u

E0

, δu

]
, (A 12)
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∂J

∂p
, δp

]
=

[
p

E0

, δp

]
, (A 13)[

∂J

∂u0

, δu0

]
=

[
−u0Eav

E2
0

, δu0

]
, (A 14)[

∂J

∂p0

, δp0

]
=

[
−p0Eav

E2
0

, δp0

]
, (A 15)

where 2E0 ≡ 〈u0, u0〉 + 〈p0, p0〉 and 2Eav ≡ [u0, u0] + [p0, p0].
Another nonlinear term arises from [b, F2]. The contribution to L of this term,

which is briefly labelled K, is

K ≡ −
[
b, −βδD(x − xf )

(∣∣ 1
3

+ vf

∣∣1/2 −
(

1
3

)1/2
)]

. (A 16)

The variation of K with respect to variations in v(x, t) is to be calculated, using the
fact that (

1
3

+ (vf + εδvf )
)1/2

=
(

1
3

+ vf

)1/2
+ 1

2

(
1
3

+ vf

)−1/2
εδvf , (A 17)

for infinitesimal ε, where δvf is the variation of v evaluated at the hot wire position:

δvf ≡
∫ X

0

δv δD(x − xf ) dx. (A 18)

As a reminder, δ represents a small variation and δD represents the Dirac delta. For
vf � −1/3, the variation of K is[

∂K

∂v
, δv

]
≡ lim

ε→0

K(v + εδv) − K(v)

ε

= −
[
b, −βδD(x − xf )

1

2

(
1

3
+ vf

)−1/2

δvf

]

=
1

XT

∫ X

0

∫ T

0

βbδD(x − xf )
1

2

(
1

3
+ vf

)−1/2

δvf dt dx

=
1

XT

∫ T

0

βbf

1

2

(
1

3
+ vf

)−1/2

δvf dt

=
1

XT

∫ T

0

βbf

1

2

(
1

3
+ vf

)−1/2 ∫ X

0

δv δD(x − xf ) dx dt

=
1

XT

∫ T

0

∫ X

0

βbf

1

2

(
1

3
+ vf

)−1/2

δv δD(x − xf ) dx dt

=

[
βbf

1

2

(
1

3
+ vf

)−1/2

δD(x − xf ), δv

]
. (A 19)

For vf < −1/3, the gradient changes sign due to the modulus in (A 16). To handle this,
a sign function, σ , is placed in front of β in (A 19) such that σ =+1 for vf � −1/3
and σ = −1 for vf < −1.3. There are no more nonlinear terms.

The contributions of the linear terms in (A 11) are considered next. The inner
products in terms of a, b, c, d and e are expanded, integrated by parts, re-arranged



302 M. P. Juniper

and expressed as inner products in terms of u, p, v, u0 and p0:

− [a, F1] = − 1

XT

∫ X

0

∫ T

0

a
∂u

∂t
dt dx − 1

XT

∫ X

0

∫ T

0

a
∂p

∂x
dt dx

= − 1

XT

∫ X

0

(a(T )u(T ) − a(0)u(0)) dx +
1

XT

∫ X

0

∫ T

0

u
∂a

∂t
dt dx · · ·

− 1

XT

∫ T

0

(p(X)a(X) − p(0)a(0)) dt +
1

XT

∫ X

0

∫ T

0

p
∂a

∂x
dt dx

= −
〈

a(T )

T
, u(T )

〉
+

〈
a(0)

T
, u(0)

〉
+

[
∂a

∂t
, u

]
· · ·

−
{

a(X)

X
, p(X)

}
+

{
a(0)

X
, p(0)

}
+

[
∂a

∂x
, p

]
. (A 20)

− [b, F2] = −
〈

b(T )

T
, p(T )

〉
+

〈
b(0)

T
, p(0)

〉
+

[
∂b

∂t
, p

]
· · ·

−
{

b(X)

X
, u(X)

}
+

{
b(0)

X
, u(0)

}
+

[
∂b

∂x
, u

]
− [ζb, p], (A 21)

− [c, F3] = − [c, v] + [c, u(t − τ )], (A 22)

−〈d, G1〉 = −〈d, u(0)〉 + 〈d, u0〉, (A 23)

−〈e, G2〉 = −〈e, p(0)〉 + 〈e, p0〉. (A 24)

The last term in (A 22) needs to be expressed in terms of u(t), rather than u(t − τ ),
before it can be combined with the other terms. This is achieved with a change of
variable t ′ ≡ t − τ and a change in the limits of the time integration:

[c, u(t − τ )] =
1

XT

∫ T

0

∫ X

0

c(t)u(t − τ ) dx dt

=
1

XT

∫ T −τ

−τ

∫ X

0

c(t ′ + τ )u(t ′) dx dt ′

=
1

XT

∫ 0

−τ

∫ X

0

c(t ′ + τ )u(t ′) dx dt ′ +
1

XT

∫ T −τ

0

∫ X

0

c(t ′ + τ )u(t ′) dx dt ′

= [c(t + τ ), u]0−τ + [c(t + τ ), u]T −τ
0 + [0, u]TT −τ . (A 25)

The boundary conditions for pressure require that p(X) = p(0) = 0 and the boundary
conditions for adjoint pressure require that b(X) = b(0) = 0; so the terms in curly
braces in (A 20) and (A 21) are zero.

For the linear terms, the variations can be written down by inspection. (For example,
in (A 20) u is simply replaced with δu.) Gathering together all the contributions from
(A 12)–(A 15) and (A 19)–(A 25) gives[

∂L

∂u
, δu

]
=

[(
u

E0

+
∂a

∂t
+

∂b

∂x
+ c(t + τ )

)
, δu

]T −τ

0

+

[(
u

E0

+
∂a

∂t
+

∂b

∂x

)
, δu

]T

T −τ

· · ·

+ [c(t + τ ), δu]0−τ −
〈

a(T )

T
, δu(T )

〉
+

〈(
a(0)

T
− d

)
, δu(0)

〉
, (A 26)

[
∂L

∂p
, δp

]
=

[(
p

E0

+
∂b

∂t
+

∂a

∂x
− ζb, δp

)]T

0

−
〈

b(T )

T
, δp(T )

〉
+

〈
b(0)

T
− e, δp(0)

〉
,

(A 27)
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∂L

∂v
, δv

]
=

[
σβbf

1

2

(
1

3
+ vf

)−1/2

δD(x − xf ) − c, δv

]T

0

, (A 28)〈
∂L

∂u0

, δu0

〉
=

〈
d − u0Eav

E2
0

, δu0

〉
, (A 29)〈

∂L

∂p0

, δp0

〉
=

〈
e − p0Eav

E2
0

, δp0

〉
. (A 30)

A.4. The adjoint governing equations in continuous form

At optimality, (A 26)–(A 30) must equal zero for any δu, δp and δv. This leads to the
optimality conditions, which will be presented in the next section, and the adjoint
governing equations, which must be satisfied for x = [0, x] and t =[0, T ]:

bf = 0, for t = [0, τ ], (A 31)

F +
1 ≡ ∂a

∂t
+

∂b

∂x
+

u

E0

+ σβbf (t + τ )
1

2
· · ·

×
(

1

3
+ uf (t)

)−1/2

δD(x − xf ) = 0, for t = [0, T − τ ], (A 32)

F +
1 ≡ ∂a

∂t
+

∂b

∂x
+

u

E0

= 0, for t = (T − τ, T ], (A 33)

F +
2 ≡ ∂b

∂t
+

∂a

∂x
+

p

E0

− ζb = 0, for t =[0, T ]. (A 34)

A.5. The optimality conditions at t = 0 and t = T

Similarly, the requirement that (A 26)–(A 30) must equal zero for any δu, δp and δv

leads to the optimality condition at t = T :

a(T ) = 0, b(T ) = 0, (A 35)

which can be thought of as the initialization of the adjoint variables It also leads to
an optimality condition at t = 0, which is later used to find gradient information:

d =
a(0)

T
, e =

b(0)

T
. (A 36)

A.6. Gradient information

The gradient information ∂L/∂u0 and ∂L/∂p0 is found by combining (A 29) and
(A 30) with (A 36):

∂L

∂u0

=
a(0)

T
− Eav

E2
0

u0, (A 37)

∂L

∂p0

=
b(0)

T
− Eav

E2
0

p0. (A 38)

If (A 31)–(A 35) are satisfied, then ∂J/∂u0 = ∂L/∂u0 and ∂J/∂p0 = ∂L/∂p0, subject
to the constraints, which means that (A 37) and (A 38) give gradient information
about J with respect to the initial conditions u0 and p0. This information is used in
a convenient optimization routine in order to find the point where ∂J/∂u0 = 0 and
∂J/∂p0 = 0, subject to the constraints, which is the optimal point.
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Appendix B. Catalogue of all the equations required for optimization
This appendix contains the direct governing equations, adjoint governing equations,

optimality conditions and gradient information for the Rijke tube in the following
cases: linear and nonlinear; continuous and discrete; cost functionals Jav and JT .

B.1. Definitions

Inner products:

〈g, h〉 ≡ 1

X

∫ X

0

gh dx, {g, h} ≡ 1

T

∫ T

0

gh dt, [g, h] ≡ 1

XT

∫ X

0

∫ T

0

gh dt dx.

(B 1)

Cost functionals:

Jav ≡ Eav

E0

=
[u, u] + [p, p]

〈u0, u0〉 + 〈p0, p0〉 , JT ≡ ET

E0

=
〈u, u〉 + 〈p, p〉

〈u0, u0〉 + 〈p0, p0〉 . (B 2)

Basis sets for discretization:

u =

N∑
j=1

ηj cos(jπx), p = −
N∑

j=1

(
η̇j

jπ

)
sin(jπx). (B 3)

The variables a and b, respectively, represent the adjoint velocity and pressure and
have the same boundary conditions as u and p, respectively. They are discretized in
a way similar to u and p:

a =

N∑
j=1

(
ξj

jπ

)
cos(jπx), b = −

N∑
j=1

νj sin(jπx). (B 4)

The following abbreviations are defined: sj ≡ sin(jπxf ) and cj ≡ cos(jπxf ).

B.2. Direct governing equations in continuous form

Nonlinear:

F1 ≡ ∂u

∂t
+

∂p

∂x
= 0, (B 5)

F2 ≡ ∂p

∂t
+

∂u

∂x
+ ζp − β

( ∣∣∣∣13 + uf (t − τ )

∣∣∣∣
1/2

−
(

1

3

)1/2 )
δD(x − xf ) = 0. (B 6)

Linear:

F1 ≡ ∂u

∂t
+

∂p

∂x
= 0, (B 7)

F2 ≡ ∂p

∂t
+

∂u

∂x
+ ζp − β

√
3

2

(
uf − τ

∂uf

∂t

)
δD(x − xf ) = 0. (B 8)

B.3. Direct governing equations in discrete form

Nonlinear:

F1G ≡ d

dt
ηj − jπ

(
η̇j

jπ

)
= 0, (B 9)
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F2G ≡ d

dt

(
η̇j

jπ

)
+ jπηj + ζj

(
η̇j

jπ

)
+ 2β

(∣∣∣∣13 + uf (t − τ )

∣∣∣∣
1/2

−
(

1

3

)1/2
)

sj = 0,

(B 10)

where uf (t − τ ) =
∑N

k=1 ηk(t − τ )ck .
Linear:

F1G ≡ d

dt
ηj − jπ

(
η̇j

jπ

)
= 0, (B 11)

F2G ≡ d

dt

(
η̇j

jπ

)
+ jπηj + ζj

(
η̇j

jπ

)
+

√
3βsj

N∑
k=1

ηk(t)ck

−
√

3βτsj

N∑
k=1

kπ

(
η̇k

kπ

)
ck = 0. (B 12)

B.4. Adjoint governing equations in continuous form

Nonlinear, with cost functional Jav:

bf = 0, for t = [0, τ ], (B 13)

F +
1 ≡ ∂a

∂t
+

∂b

∂x
+

u

E0

+ σβbf (t + τ )
1

2
· · ·

×
(

1

3
+ uf (t)

)−1/2

δD(x − xf ) = 0, for t = [0, T − τ ], (B 14)

F +
1 ≡ ∂a

∂t
+

∂b

∂x
+

u

E0

= 0, for t =(T − τ, T ], (B 15)

F +
2 ≡ ∂b

∂t
+

∂a

∂x
+

p

E0

− ζb = 0, for t =[0, T ]. (B 16)

Linear, with cost functional Jav:

F +
1 ≡ ∂a

∂t
+

∂b

∂x
+

u

E0

+

√
3

2
β

(
bf + τ

∂bf

∂t

)
δD(x − xf ) = 0, for t =[0, T ], (B 17)

F +
2 ≡ ∂b

∂t
+

∂a

∂x
+

p

E0

− ζb = 0, for t =[0, T ]. (B 18)

When the cost functional is JT , the u/E0 and p/E0 terms are dropped.

B.5. Derivation of the adjoint governing equations in discrete form

The discretized adjoint governing equations can be derived in two ways. The first
way is to derive the continuous adjoint equations, as in § B.4, and then discretize
them with (B 4). This is known as ‘optimize then discretize’ (OTD) in Bewley (2001)
and ‘finite difference of adjoint’ in Sirkes & Tziperman (1997). The second way is to
discretize the direct governing equations, as in § B.3, and then derive the adjoint of
the discretized equations. This is known as ‘discretize then optimize’ (DTO) in Bewley
(2001) and ‘adjoint of finite difference’ in Sirkes & Tziperman (1997). To achieve this,
Lagrange multipliers ξj/(jπ) should be used for the series of F1G equations and νj

for the series of F2G equations.
OTD has the advantage that the continuous adjoint equations are relatively easy

to derive and that, once they have been derived, any discretization scheme can
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be applied to them. This advantage is not useful in this paper because only one
discretization scheme is considered. However, it has the disadvantage that the adjoint
discretization can differ from the direct discretization, which leads to inaccurate
gradient information.

DTO has the advantage that the direct discretized equations and the adjoint
discretized equations share the same discretization scheme and therefore share
the same truncation errors. In other words, this route provides perfect gradient
information for a set of imperfect equations. In the linear case, this adjoint is given
by (L+ = −LH ), which makes the linear code easy to implement.

The two routes described above, OTD and DTO, do not necessarily give the same
discretized adjoint governing equations, although the solutions of these equations
should approach each other as the resolution of the discretization increases. For
the governing equations in this paper, both routes give the same discretized adjoint
governing equations for the nonlinear case but different discretized adjoint governing
equations for the linear case. For the linear case, DTO is chosen.

B.6. Adjoint governing equations in discrete form

Nonlinear, with cost functional Jav , through both OTD and DTO:

bf = 0, for t =[0, τ ], (B 19)

F +
1G ≡ d

dt

(
ξj

jπ

)
− jπνj +

ηj

E0

+ σβbf (t + τ )

∣∣∣∣13 + uf (t)

∣∣∣∣
−1/2

cj = 0,

for t = [0, T − τ ], (B 20)

F +
1G ≡ d

dt

(
ξj

jπ

)
− jπνj +

ηj

E0

, for t = (T − τ, T ], (B 21)

F +
2G ≡ d

dt
νj + jπ

(
ξj

jπ

)
− 1

E0

(
η̇j

jπ

)
− ζjνj = 0, for t =[0, T ], (B 22)

where

uf (t) =

∞∑
j=1

ηj (t)cj , bf (t + τ ) = −
∞∑

j=1

νj (t + τ )sj . (B 23)

Linear, with cost functional Jav , through DTO:

F +
1G ≡ d

dt

(
ξj

jπ

)
− jπνj +

ηj

E0

+
√

3βcj

N∑
k=1

νksk = 0, (B 24)

F +
2G ≡ d

dt
νj + jπ

(
ξj

jπ

)
− 1

E0

(
η̇j

jπ

)
− ζjνj −

√
3jπβτcj

N∑
k=1

νksk = 0. (B 25)

When the cost functional is JT , the ηj/E0 and (η̇j /jπ)/E0 terms are dropped.

B.7. Optimality conditions

Optimality conditions at t = T for the cost functional Jav in continuous form,

a(T ) = 0, b(T ) = 0, (B 26)

and in discrete form,

ξj (T ) = 0, νj (T ) = 0. (B 27)
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Optimality conditions at t = T for the cost functional JT in continuous form,

a(T ) =
2T

E0

u(T ), b(T ) =
2T

E0

p(T ), (B 28)

and in discrete form,

ξj (T )/(jπ) =
2T

E0

ηj (T ), νj (T ) =
2T

E0

η̇j (T )/(jπ). (B 29)

These apply to both the linear and the nonlinear governing equations.

B.8. Gradient information

Gradient information at t = 0 for the cost functional Jav in continuous form,

∂L

∂u0

=
a(0)

T
− Eav

E2
0

u0,
∂L

∂p0

=
b(0)

T
− Eav

E2
0

p0, (B 30)

and in discrete form,

∂L

∂η0j

=
1

T

(
ξj (0)

jπ

)
− Eav

E2
0

η0j
,

∂L

∂(η̇0j
/jπ)

=
νj (0)

T
− Eav

E2
0

(
η̇0j

jπ

)
. (B 31)

Gradient information at t = 0 for the cost functional JT in continuous form,

∂L

∂u0

=
a(0)

T
− 2

ET

E2
0

u0,
∂L

∂p0

=
b(0)

T
− 2

ET

E2
0

p0, (B 32)

and in discrete form,

∂L

∂η0j

=
1

T

(
ξj (0)

jπ

)
− 2

ET

E2
0

η0j
,

∂L

∂(η̇0j
/jπ)

=
νj (0)

T
− 2

ET

E2
0

(
η̇0j

jπ

)
. (B 33)

These apply to both the linear and the nonlinear governing equations.
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