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It has recently been shown that the instability characteristics of planar jets and wakes
change when the flows are confined between two flat plates. This is due to constructive
interaction between modes with zero group velocity in the inner and outer flows. In
this theoretical study, a linear spatio-temporal analysis is performed on unconfined
and confined round jets and wakes in order to discover whether the same effect is
observed. There are several similarities between the planar case and the round case as
well as some significant differences. Nevertheless, the effect of confinement on round
flows is found to be very similar to that on planar flows and to act via the same
physical mechanism. This paper examines density ratios from 0.001 to 1000 and has
important implications for the design of fuel injectors, which often employ confined
shear flows at high Reynolds numbers and large density ratios to generate strong
mixing in combustion chambers.

1. Introduction
This theoretical study examines the effect of confinement on the stability of non-

swirling round jets and wakes. The results are compared with those of a similar
study (Juniper 2006) on planar jets and wakes. These flows consist of a central fluid
surrounded by an outer fluid, both of which are confined within a duct (figure 1).
If the inner fluid moves faster than the outer fluid, it is a jet flow. If the outer fluid
moves faster than the inner fluid, it is a wake flow.

Unconfined jets and wakes have already been extensively studied. Previous
theoretical and experimental work on these configurations is reviewed by Huerre
& Monkewitz (1990). The theoretical study of Monkewitz & Sohn (1988) and the
experimental study of Sreenivasan et al. (1989) on low-density jets are particularly
relevant to this paper. These flows behave as self-excited oscillators rather than as
amplifiers of extrinsic perturbations, owing to a region of local absolute instability
immediately downstream of the injection plane. By considering the effect of the shear-
layer thickness and viscosity, Yu & Monkewitz (1990) concluded that the transition
to absolute instability is caused by an interaction between the shear-layers on either
side of the central fluid and is not a viscous effect. In this study, this interaction is
examined when the flow is confined.

Confined jets and wakes have received less attention and their behaviour is less well
understood. On the one hand, the experimental study of Shair et al. (1963) concluded
that confinement stabilizes the flow around a cylinder at Reynolds numbers between
40 and 140. On the other hand, the experimental study of Bearman & Zdravkovich
(1978) suggests that confinement increases the strength of absolute instability in a
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Figure 1. Two models are used in this paper. They consist of two coaxial inviscid incompress-
ible flows confined within a duct. The first model has a piecewise linear velocity profile. The
second model has a plug flow velocity profile.

similar flow at Reynolds numbers of 45 000. The theoretical study of Juniper &
Candel (2003) has shown that planar inviscid jets and wakes become absolutely
unstable over a wider range of shear when they are confined. The full background
to this problem and its practical implications for fuel injection are explained in that
paper and are not repeated here. The physical reason for this behaviour has been
explained by Juniper (2006) for planar flows. In summary, when the flows have
similar thicknesses, modes with zero group velocity in the inner flow interact with
those in the outer flow. If these inner and outer modes have similar cross-stream
wavenumbers, the flow is more unstable. If they have very different cross-stream
wavenumbers, the flow is more stable. One aim of the present paper is to determine
whether the same behaviour is found in confined round flows.

Curiously, some planar shear flows that are convectively unstable when unconfined
become absolutely unstable when confined, even when the confining wall is placed far
away from the shear layer. Healey (2007) found this behaviour in the rotating-disk
boundary layer and showed that it is related to the convective instabilities with growth
normal to the shear layer described in Healey (2006). Juniper (2006) found the same
behaviour in planar jets and wakes and, in Juniper (2007), showed that it is due
to the same type of instability as that in the rotating-disk boundary layer. A second
aim of the present paper is to determine whether the same behaviour is found in
non-swirling round jets and wakes.

In this study, a linear spatio-temporal stability analysis is used to determine the
convective/absolute instability of confined jets and wakes as a function of shear,
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density ratio, confinement and azimuthal wavenumber. Linear analyses are very
successful at predicting the onset of global modes, for reasons described in Delbende
& Chomaz (1998), so a nonlinear analysis is not attempted. Contours of angular
frequency, ω, are plotted in the wavenumber, k, plane to reveal the saddle points of
ω(k), which determine the long-time behaviour of the flow. By studying the positions of
these saddle points as the confinement changes, the effect of confinement is explained
physically.

In §2, the round models are described in more detail and the unconfined and
confined dispersion relations are derived for normal mode perturbations. These are
shown to be equivalent to those of the planar model in the limit of small curvature. In
§3, the full impulse response in the outer flow is evaluated and the physical origins of
each saddle point are identified. The effect of the shear-layer thickness on unconfined
jets and wakes is examined in §4 and the effect of the density ratio is studied in §5 over
a higher range of density ratios than in previous studies. The effect of confinement
on uniform density jets and wakes is examined in §6 and explained in terms of the
interaction between the modes with zero group velocity in the inner and outer flows.
Finally, the effect of confinement on non-uniform density jets and wakes is examined
in §7.

2. The models and their dispersion relations
Two models are used in this paper. Both are axisymmetric and assume inviscid,

incompressible flows. The first model, figure 1(a), has a piece-wise linear velocity
profile between an inner flow with velocity U1 and density ρ1 and an outer flow with
velocity U2 and density ρ2. The shear-layer extends from R1 − δ/2 to R1 + δ/2 and
is located entirely in the outer flow. The outer flow has radius R2, which can extend
to infinity. The second model has a plug flow velocity profile with an infinitely thin
shear layer. Both models have infinite extent in the x-direction.

2.1. Analysis common to both models

The models assume a base flow U (r) and normal mode decompositions for the
perturbation fields: pressure, p(r) exp{i(kx +mθ − ωt)}; axial velocity, u(r) exp{i(kx +
mθ − ωt)}; radial velocity, v(r) exp{i(kx + mθ − ωt)} and azimuthal velocity,
w(r) exp{i(kx + mθ − ωt)}. These are substituted into the linearized Euler equations
to give the governing equations:

iku (U − c) + vU ′ = − 1

ρ
ikp, (2.1)

ikv (U − c) = − 1

ρ
p′, (2.2)

ikw (U − c) = − i

ρ

m

r
p, (2.3)

iku + v′ +
v

r
+

i

r
mw = 0, (2.4)

where c ≡ ω/k and prime denotes d/dr . These four ODEs in four unknown functions
can be reduced to one ODE in one unknown function, for example the pressure
perturbation:

[r2p′′ + rp′ − (k2r2 + m2)p] (U − c) − 2r2U ′p′ = 0. (2.5)
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In general, (2.5) has no analytical solution. In the inner and outer fluids, however,
where U ′ = 0, (2.5) reduces to the modified Bessel equation, (2.6), provided that
U �= c, which is always satisfied for complex c:

r2p′′ + rp′ − (k2r2 + m2)p = 0. (2.6)

Equation (2.6) has general solution

p(r; k) = AiIm(ξr) + BiKm(ξr), (2.7)

where Im and Km are modified Bessel functions, m is the azimuthal wavenumber of

each normal mode and ξ ≡ +
√

k2. In this paper, index i is 1 for the inner fluid and
2 for the outer fluid.

In the inner fluid, B1 = 0 because Km tends to infinity as ξr tends to zero. In the
outer fluid, if the flow is unconfined, A2 = 0 because Im tends to infinity as ξr tends to
infinity. If the flow is confined, however, the boundary condition of zero r-velocity at
r = R2 fixes A2/B2 = −K′

m(ξR2)/I
′
m(ξR2). Therefore, the pressure perturbations are:

p1(r; k) = A1Im(ξr), (2.8)

p2(r; k) = B2Km(ξr) when unconfined, (2.9)

p2(r; k) = B2 {Im(ξr)K′
m(ξR2) − Km(ξr)I′

m(ξR2)} when confined. (2.10)

Choosing ξ as the positive root of k2 ensures that the argument of the Bessel
functions is always positive. This is required when the flow is unconfined because p2

in (2.9) must tend to zero as r tends to infinity. It is not strictly required when the
flow is confined, however, because p2 in (2.10) is invariant under the transformation
ξ ↔ −ξ . Consequently, equations that relate to the confined case are unchanged if ξ

is replaced with k.
There is one kinematic and one dynamic matching condition at each fluid interface:

�

[
p′

ρ(U − c)2

]
= 0, (2.11)

�p = 0. (2.12)

It remains to apply these matching conditions between the fluids, which is where the
models differ.

2.2. Analysis specific to the piece-wise linear velocity profile

In the piece-wise linear model, there are no velocity discontinuities at the fluid
interfaces so the matching conditions reduce to:

p′

ρ2

=
p′

1

ρ1

, p = p1 at r = R1 − δ/2, (2.13)

p′ = p′
2, p = p2 at r = R1 + δ/2 , (2.14)

where p without a subscript is the pressure perturbation within the shear layer. By
substituting from (2.8), (2.9) and (2.10), these matching conditions can be expressed
as:

p′

p
= k

ρ2

ρ1

I′
m(ξ (R1 − δ/2))

Im(ξ (R1 − δ/2))
, (2.15)

at R1 − δ/2, and one of the following expressions at R1 + δ/2:

p′

p
= ξ

K′
m(ξ (R1 + δ/2))

Km(ξ (R1 + δ/2))
when unconfined, (2.16)
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p′

p
= ξ

I′
m(ξ (R1 + δ/2))K′

m(ξR2) − K′
m(ξ (R1 + δ/2))I′

m(ξR2)

Im(ξ (R1 + δ/2))K′
m(ξR2) − Km(ξ (R1 + δ/2))I′

m(ξR2)
when confined. (2.17)

Equation (2.5) is then solved numerically subject to boundary condition (2.15) and
either (2.16) if unconfined or (2.17) if confined. This eigenvalue problem can be
expressed as:

Xp̃ = cYp̃, (2.18)

where p̃ is a vector of the pressure values at N Chebyshev-spaced points between
R1 − δ/2 and R1 + δ/2. Matrices X and Y represent the operations:

X = Ur2 d2

dr2
+ Ur

d

dr
− U (k2r2 + m2) − 2r2U ′ d

dr
, (2.19)

Y = r2 d2

dr2
+ r

d

dr
− (k2r2 + m2), (2.20)

and (2.18) can also be expressed as:

D(k, ω) ≡ det|X − cY| = 0. (2.21)

The top and bottom rows of X and Y, which correspond to the points r = R1 − δ/2
and r = R1 + δ/2 are replaced by boundary conditions (2.15) and either (2.16) or
(2.17). The matrix eigenvalue problem is solved using Matlab’s eig function. For
each value of k, there are two physically relevant eigenvalues for ω. In this paper,
N is usually 21, although this is increased around the branch cut near the kr -axis in
figure 2.

2.3. Analysis specific to the plug flow velocity profile

In the plug flow model, the inner and outer fluids can be matched directly with (2.11)
and (2.12). This leads to the analytic dispersion relation:

D(k, ω) ≡ A2D
− + B2D

+ = 0, (2.22)

where D− ≡ ρ1(U1 − c)2Im(ξr)I′
m(ξr) − ρ2(U2 − c)2Im(ξr)I′

m(ξr), (2.23)

and D+ ≡ ρ1(U1 − c)2Im(ξr)K′
m(ξr) − ρ2(U2 − c)2Km(ξr)I′

m(ξr). (2.24)

The boundary condition on the outer flow yields either A2 = 0 if the outer flow is
unconfined, or A2/B2 = −K′

m(ξR2)/I
′
m(ξR2) if it is confined. For each value of k, there

are two eigenvalues for ω, which are the same as those found for the piece-wise linear
profile in the limit δ → 0.

2.4. Non-dimensionalization

It is convenient to introduce a non-dimensional framework and the following reference
scales: velocity, Uref ≡ (U1+U2)/2; length, R1; density, ρ2. The dimensionless variables
are ω∗ ≡ ωR1/Uref and k∗ ≡ kR1. The dimensionless parameters are Λ ≡ (U1 −
U2)/(U1 + U2), S ≡ ρ1/ρ2 and R ≡ R2/R1. The dispersion relations for unconfined
and confined perturbations of the plug flow model are, respectively,

D∗ ≡ S
(1 + Λ − c∗)2

(1 − Λ − c∗)2
− Km(ξ ∗)I′

m(ξ ∗)

Im(ξ ∗)K′
m(ξ ∗)

= 0, (2.25)

D∗ ≡ S
(1 + Λ − c∗)2

(1 − Λ − c∗)2
−

I′
m(ξ ∗)

(
Im(ξ ∗)K′

m(ξ ∗R) − Km(ξ ∗)I′
m(ξ ∗R)

)
Im(ξ ∗)

(
I′
m(ξ ∗)K′

m(ξ ∗R) − K′
m(ξ ∗)I′

m(ξ ∗R)
) = 0. (2.26)
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In the rest of this paper the non-dimensional framework will be used and the
asterisks will be dropped. It is conventional to use Λ as the shear parameter. However,
the parameter 1/Λ is used for figures in this paper because this allows absolutely
unstable regions to be plotted as single regions in parameter space. In the planar
problem, the confinement, h, is defined as the ratio of the thickness of the outer flow to
half the thickness of the inner flow. Its counterpart in the round case is (R2 − R1)/R1,
which is R − 1 in non-dimensional terms. This is also given the symbol h.

2.5. Limits of negligible curvature

If the azimuthal curvature is negligible relative to the axial curvature, then the
dispersion relations are the same as the planar dispersion relations found in Juniper
(2006). When ξ 
 |m2 − 1/4|, the modified Bessel functions are approximately:

Im(ξ ) ≈

√
1

2πξ
eξ , (2.27)

Km(ξ ) ≈
√

π

2ξ
e−ξ , (2.28)

I′
m(ξ ) ≈

√
1

2πξ
eξ , (2.29)

K′
m(ξ ) ≈ −

√
π

2ξ
e−ξ . (2.30)

Substituting into (2.25) and (2.26) gives

D ≡ S
(1 + Λ − c)2

(1 − Λ − c)2
+ 1 = 0 when unconfined, (2.31)

D ≡ S
(1 + Λ − c)2

(1 − Λ − c)2
+ coth(ξh) = 0 when confined. (2.32)

In this limit, the unconfined round shear layer behaves like an unconfined planar
single shear layer. Similarly, the confined round shear layer behaves like a single
planar shear layer placed a distance h from a wall, which in turn behaves like a
varicose unconfined double shear layer of width 2h when the image shear layer is
taken into account. In this paper, the azimuthal curvature is negligible only in the
strongly confined case or at large radii.

2.6. Integration in the plane of diverging eigenfunctions

This section briefly summarizes integration in the plane of diverging eigenfunctions.
More detail can be found in Healey (2007) and Juniper (2007).

In the complex k-plane, the function ξ has branch cuts up and down the ki-axis, with
branch points at ±εi, where ε → 0. In the unconfined case, the boundary condition
(2.16) and the dispersion relation (2.25) are non-analytic at these branch cuts. These
branch cuts therefore persist when contours of ωi are plotted in the k-plane for the
unconfined case. In the confined case, however, the combined boundary conditions
(2.15) and (2.17), as well as the dispersion relation (2.26), are invariant under the
transformation ξ ↔ −ξ . This means that these functions are analytic at these branch
cuts and therefore that these branch cuts are absent when contours of ωi are plotted
in the k-plane for the confined case.

The branch cuts that arise in the unconfined case are then dealt with as follows. In
§3, the impulse response is evaluated by integrating solutions of the dispersion relation
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from k = −∞ to k = +∞. The integration path is deformed from the real k-axis and it
is possible to evaluate the integral entirely on the plane of converging eigenfunctions,
which is where Re{ξ} > 0. The integral is sometimes easier to evaluate, however, by
shifting the branch cut off the ki-axis and integrating over a small region in the plane
of diverging eigenfunctions, where Re{ξ} < 0. It is important to point out that this is
not the plane of diverging eigenfunctions that was rejected when A2 was set to zero
between (2.7) and (2.9); along the integration path, A2 remains zero and the dispersion
relation remains D = D+ in (2.24). In the plane of diverging eigenfunctions, saddle
points that lie on the integration path correspond to areas of the wavepacket that are
growing in the cross-stream direction. In other words, for that area of the wavepacket,
the growth rate along a ray at slightly larger r/t is greater than that along a ray at
sightly smaller r/t . These areas are permissible because they are localized within the
wavepacket and, at high r/t , all eigenfunctions become convergent.

3. Spatio-temporal stability analysis
The analysis in this section closely follows that in §3 of Juniper (2007) so that

the round case studied in this paper can be compared directly with the planar case
studied in that paper. In particular, figures 2 and 3 are at the same parameter values
as figures 3 and 4 of Juniper (2007).

3.1. Development of an expression for the full impulse response

Each mode of the pressure perturbation is of the form P (x, r, θ, t) = p(r; k) exp{i(kx+
mθ − ωt)}, where p(r; k) is given by (2.8) to (2.10) within fluids 1 and 2 and by the
relevant eigenfunction of (2.18) within the shear layer. The impulse response is
evaluated in the (x, r)-plane at θ = 0 and the θ-dependence can be inferred from the
azimuthal wavenumber, m, which from now on is treated as another parameter in
the model. The pressure perturbation is expressed as the double Fourier integral of
its normal mode perturbations, with the r-dependence included:

P (x, r, t) =
1

(2π)2

∫
Fk

∫
Lω

p̂(k, ω)p(r; k)ei(kx−ωt)dω dk. (3.1)

The dispersion relation D(k, ω) can be associated with a differential operator
D(−i∂/∂x, i∂/∂t) that relates the pressure perturbation P (x, r, t) to a forcing S(x, r, t)
by DP(x, r, t) = S(x, r, t), as in Huerre (2000). If the forcing is an impulse that excites
all modes equally at (x, t) = (0, 0) then S(x, r, t) takes the form:

S(x, r, t) =
1

(2π)2

∫
Fk

∫
Lω

Ŝ(k, ω)p(r; k)ei(kx−ωt)dω dk, (3.2)

where Ŝ(k, ω) = 1. Although this impulse is not localized, the response is the same
as that from a point impulse on the shear layer, as shown for the planar case in
Juniper (2007). By substitution, the equation of motion in spectral space is then
simply p̂(k, ω)D(k, ω) = Ŝ(k, ω) = 1.

The integral in ω is evaluated with the residue theorem. For each value of k, two
values of ω satisfy D(k, ω) = 0 so there are two separate integrals of the form:

P (x, r, t) = − i

2π

∫
Fk

pi(r; k)

∂D/∂ω[k, ω(k)]
e−i(ω−kx/t)tdk. (3.3)

In a conventional spatio-temporal stability analysis, pi(r; k) is dropped and (3.3) is
evaluated in the long-time limit at x/t = 0. This type of analysis is used in §§4 to 7.
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Figure 2. Contours of the growth rate, gi , in the complex k-plane along the ray
(x/t, r/t) = (0.2, 0.1) for m = 0 perturbations of the piecewise linear model with (1/Λ, S) =
(1.1, 0.1) and shear-layer thickness (a) δ = 0.5 and (b) δ = 0.05. The integration path (white
line) passes over saddle s1 and one or more of the s2 saddles. Branch cuts are shown as dotted
lines. In (a) the branch cut has been shifted off the ki-axis to reveal the integration path in
the plane of diverging eigenfunctions. The top part of this is magnified in (c) to show how the
integration path passes via a well in this plane. (d) shows a magnification of (b) around the
top two saddle points, where it can be seen that s2a is higher than s2b .

For both unconfined and confined flows, the response can also be evaluated easily
along rays x/t = constant. When the flow is unconfined, however, a further analysis is
possible in which the impulse response is evaluated along rays of constant (x/t, r/t)
in the entire outer fluid, as in Healey (2006) for the rotating-disk boundary layer and
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Figure 3. Contours of the growth rate, gi , in the (x/t, r/t)-plane for the same parameter
values as figure 2 with (a) δ = 0.5 and (b) δ = 0.05. The dominant saddle point is shown
as a thick solid line, subdominant saddles as thin solid lines and saddle points that have
moved off the integration path are thin dashed lines. The s1 saddle dominates at the centre of
the wavepacket. It has the highest growth rate, but is not absolutely unstable. The s2 saddle
dominates at the back of the wavepacket and is absolutely unstable.

Juniper (2007) for jets and wakes. All three analyses use the same technique, which
is described in the next section.

3.2. Evaluation of the impulse response in the entire outer fluid

Equation (3.3) is usually evaluated in the long-time limit. If it is evaluated on rays
of constant r/t at large times then r is also large. In the limit of large kr , the
eigenfunction in the outer fluid (2.9) can be simplified by substituting (2.28). The
eigenfunction p(r; k) can then be absorbed into the exponential in the integrand of
(3.3):

P (x, r, t) = − i

2π

∫
Fk

B2

∂D/∂ω[k, ω(k)]

√
π

2ξr
e−ig(k)tdk

where g(k) ≡ {ω(k) − iξr/t − kx/t}. (3.4)

This is evaluated in the complex k-plane from k = −∞ to k = +∞. The integration
path is shifted from the positive kr -axis, without passing over any poles or branch
points of g(k), such that the maximum value of gi along the whole path is as low
as possible. In the long-time limit, the integral is dominated by the contribution
from this maximum value of gi . The path follows lines of constant gr so that all
contributions to the integral have the same phase (i.e. to avoid oscillations due to the
exp(−igr ) term). The manifold g(k) is hyperbolic everywhere so these maxima of gi
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Figure 4. Absolutely unstable regions as a function of shear, Λ, and density ratio, S, for (a)
a single shear layer, (b) m = 0 perturbations with δ = 0.1, (c) m = 0 with δ = 0.05 and (d)
m = 0 with δ = 0.01. The absolutely unstable region of the s1 saddle is light grey and that of
the s2a saddle is dark grey. The boundaries of the s2a region are continued on one side by
the dashed line, which shows the boundary where the s2a saddle becomes absolutely unstable,
and on the other side by the dot-dashed line, which shows the boundary where the s2a saddle
moves off the integration path.

are saddle points of g(k). In general, saddle points do not have the same value of gr ,
so the paths over adjacent saddles are joined at strongly negative values of gi , where
the contribution to the integral is negligible.

For instance, contours of gi in the k-plane are shown in figure 2(a) for the
m = 0 perturbation with (1/Λ, S, δ) = (1.1, 0.1, 0.5) and (x/t, r/t) = (0.2, 0.1). The
integration path passes between two branch points either side of k = 0, into a trough
around k = −0.12 − 0.32i, over saddle point s2a , into another trough at the bottom
left of the figure, over saddle point s1, into another trough that lies through the
branch cut near the real axis, back round the branch point at k = 3.42 − 0.45i and
eventually back onto the kr -axis as kr → ∞ (not shown). In this figure, the branch
cut has been shifted off the ki-axis, as described in §2.6, so that the path can pass
through a small region of the plane of diverging eigenfunctions.

For comparison, the same situation is shown in figure 2(b) with a shear-layer that
is ten times thinner. Note that the axes have been scaled up by a factor of ten. The
integration path now passes over a family of s2 saddle points before passing over
the s1 saddle point and following a similar path to the previous case. As δ decreases
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further, saddle s1 moves to higher kr and the integration path passes over more of the
s2 saddles. Consequently, the position of saddle s1 dictates which of the s2 saddles
lie on the integration path. In figures 2(a) and 2(b), the dominant contribution in
the long-time limit comes from saddle s2a because it is the highest point along the
integration path. However, saddle s1 dominates at some other parameter values and
on other rays (x/t, r/t).

In figure 3, contours of the growth rates of the s1 and s2a saddles are shown
in the (x/t, r/t)-plane for the same parameter values as figures 2(a) and 2(b). For
each contour, the dominant saddle point is shown as a thick solid line, subdominant
saddles are shown as thin solid lines and saddles that have moved off the integration
contour are shown as thin dashed lines. The flow is dispersive, so the different Fourier
components of the response travel at different group velocities, (x/t, r/t), and are
eventually found at different places. As for the planar case in Juniper (2007), the s1
saddle dominates around the centre of the wavepacket and the s2a saddle dominates
at the back of the wavepacket.

Physically, saddle s1 is associated with the instability of the shear layer and
has a wavelength that scales with the thickness of the shear layer. The s2 saddles
are associated with the motion of the entire flow, which is the longer wavelength
axisymmetric bulging for m = 0, helical spiralling for m = 1, double-helical spiralling
for m = 2 etc. In counter-flow, when |1/Λ| < 1, the s1 saddle usually dominates at
the point of impulse and causes the flow to be absolutely unstable. This is detailed in
§4. In co-flow, when |1/Λ| > 1, the s1 saddle point is never absolutely unstable, but
the s2 saddle points can be.

Examination of the full impulse response in the outer fluid reveals whether or not
there are perturbations that grow in the cross-stream direction, which are associated
with saddle points that cross the ki-axis. These cause some flows that would be
convectively unstable when unconfined, to be absolutely unstable when confined by a
distant boundary. In the non-swirling round case studied in this paper, the dominant
saddle point never crosses the ki-axis (although some subdominant saddles do). This
means that the wavepacket always decays in the cross-stream direction and therefore
that a flow that is convectively unstable when unconfined remains convectively
unstable when confined by a distant boundary. Having used the full impulse response
in the outer fluid to confirm this, a conventional spatio-temporal stability analysis
is used in the rest of this paper. It is worth noting that the approximation (2.28) is
required only when calculating the response in the outer fluid. It is not required for
the conventional analysis in the rest of this paper.

4. Effect of the shear-layer thickness
As the shear-layer thickness decreases, saddle s1 moves to higher kr and the s2

saddles stay in the same places. It is useful to trace out the absolutely unstable region
that is caused by the shear layer alone (i.e. saddle s1) in the limit δ → 0. In this
limit, saddle s1 is no longer affected by the curvature of the shear layer and therefore
its position can be found with a planar analysis. The region of absolute instability
of this saddle as a function of shear and density ratio is shown in figure 4(a). The
most important point to note is that the s1 saddle point is never absolutely unstable
in co-flow. A secondary point is that, because the shear layer is located entirely in
fluid 2, the absolutely unstable region is not symmetric under the transformation
(ρ1, U1) ↔ (ρ2, U2), which in non-dimensional terms is (1/Λ, S) ↔ (−1/Λ, 1/S).
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The position of saddle s1 determines whether or not the s2a saddle point lies on the
integration path. If saddle s2a lies on the path and has positive growth rate, then the
flow is absolutely unstable to the s2a saddle. Figures 4(b) to 4(d) show the absolutely
unstable regions of both the s1 (light grey) and s2a (dark grey) saddles for the m = 0
mode of round jets/wakes at shear-layer thicknesses (b) δ = 0.1, (c) δ = 0.05 and
(d) δ = 0.01. In the area between the two dark grey regions, the integration path
passes only over the s1 saddle point, so the s2a saddle does not lie on the path. This
area shrinks as the shear-layer thickness decreases and the absolutely unstable regions
of the s2a saddles nearly join up. The absolutely unstable regions due to the other s2
saddles (s2b, s2c, . . .) occur within that of the s2a saddle and are not shown here.

The positions of the s2 saddles, which are associated with the confined jet/wake
behaviour, depend on the configuration: they differ between planar and round flows,
between jets and wakes, and between confined and unconfined flows. The position of
the s1 saddle, which is associated with the shear layer, is the same in all configurations
when the shear layer is thin. This paper is concerned with the effect of confinement
and therefore with the s2 saddles. Apart from the saddle selection described in the
previous paragraph, there is little interaction between the s1 and s2 saddle points
when the shear layer is very thin. In the rest of this paper, the s1 and s2 saddle
points are considered separately. The absolutely unstable region due to the s1 saddle
is calculated with the planar model of Juniper (2007) and the absolutely unstable
region due to the s2a saddle is calculated with the analytic dispersion relation derived
from the plug flow model shown in figure 1(b). The piece-wise linear model in figure
1(a) is used to determine whether or not the s2 saddle points found with the plug
flow model lie on the integration path. This reduces computational time without loss
of accuracy. In this approximation, figure 4(d) becomes figure 6(c).

5. Effect of shear and density ratio on unconfined jets and wakes
The positions of the s2 saddle points for varicose and sinuous motions of a planar

jet are compared with those of the m = 0 and m = 1 motions of a round jet in figure 5.
It was shown in § 2 that the combination of Bessel functions found in the dispersion
relation (2.26) tends to coth(kh) for large k and therefore that the round case behaves
like the planar case in this limit. Figure 5 shows that the manifolds and mode shapes
of the planar varicose case (figure 5a) and the round m = 0 case (figure 5c) are broadly
similar. Likewise, those of the planar sinuous case (figure 5b) and the helical m = 1
case (figure 5d) are broadly similar. The shapes of the manifolds ω(k) are described
in detail by Juniper (2006) for the planar case. The round manifolds have the same
topology, although the branch points have different positions along the ki-axis.

Figure 6 shows the regions of absolute instability for planar flows (figure 6a, b) and
round flows (figure 6c–f ) as a function of shear and density ratio. Although there are
some similarities between the varicose and m = 0 modes and between the sinuous
and m = 1 modes, as suggested by the manifolds, there are also clear differences.

In the planar plug flow case, the dispersion relation is symmetric under the
transformation (sinuous, 1/Λ, S) ↔ (varicose, −1/Λ, S). Consequently, the regions
of parameter space in which the s2a saddle has positive growth rate are symmetric
under this transformation. This saddle, however, does not always lie on the integration
path. Consequently, the regions that are absolutely unstable to the s2a saddle are not
symmetric, owing to the saddle selection criteria imposed by the s1 saddle, which
corresponds to the non-symmetric shear layer. This symmetry of the s2a saddle in the
planar plug flow case does not carry over into the round plug flow case. On the one
hand, the s2a saddle of the round m = 0 mode (figure 6c) is absolutely unstable over
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Figure 5. Contours of ωi(k) for uniform density unconfined wake flows with (Λ, S) = (1, 1),
showing the s2 saddles. The configurations are: (a) planar varicose (b) planar sinuous (c) m = 0
(d) m = 1. The mode shapes are shown in the inset figures, in which the shaded region
corresponds to the inner flow.

a larger region of parameter space than that of the planar varicose mode (figure 6a).
On the other hand, the s2a saddle of the round m = 1 mode (figure 6d) is absolutely
unstable over a smaller region of parameter space than that of the planar sinuous
mode (figure 6b). This is particularly evident for wake flows at moderately high
density ratio, S.

In these configurations, all saddle points except one have k ∼ 1. The exception is
the saddle point that causes absolute instability of the m = 0 mode at large 1/Λ,
which has a very small wavenumber when S � 1. The model assumes that the flow
varies over an axial length scale much greater than 1/k. Consequently, this saddle
point may not accurately predict the behaviour of real flows at this extreme density
ratio. Nevertheless, the model is sufficiently accurate at moderately low density ratios
as shown by the fact that self-sustained global modes have been observed in helium
jets, where S = 0.14 (Sreenivasan et al. 1989).

6. Effect of shear and confinement on uniform density round jets and wakes
6.1. Effect of confinement on the image system and on positions of saddle points

The image system of the confined round flow is shown in figure 7(a). The outer
wall is replaced by an image shear layer with radius R2

2/R1. The image system gives
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Figure 6. Regions of absolute instability for unconfined jets and wakes as a function of shear
and density ratio. The configurations are: (a) planar varicose, (b) planar sinuous, (c) m = 0,
(d) m = 1, (e) m = 2 and (f ) m = 3. The absolutely unstable region of the s1 saddle is light
grey and that of the s2a saddle is dark grey. The m = 0 mode, like the varicose mode, is
most unstable to low-density jets. The m = 1 mode, like the sinuous mode, is most unstable
to high-density wakes. Nevertheless, there are significant differences between the unconfined
planar flows and the unconfined round flows.

a useful indication of how the flow will behave at different confinements. At weak
confinement (figure 7b), the behaviour is similar to that of the unconfined case, as
would be expected from the fact that when ξR → ∞, (2.26) reduces to (2.25). At
strong confinement (figure 7c) the shear layer and its image become so close that
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The strong confinement case is similar to the planar varicose case with the flows swapped
over.
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Figure 8. (a) Contours of ωi(k) for the m = 1 mode of a uniform density unconfined round
wake flow with (1/Λ, S,m) = (−0.9, 1, 1). (b) Contours of ωi(k) for the varicose mode of a
uniform density unconfined planar jet flow with (1/Λ, S) = (0.9, 1). All saddles are type s2, as
defined in figure 2.

their curvature can be neglected. This means that perturbations with any azimuthal
wavenumber, m, behave like varicose perturbations of the planar double shear layer,
described in Juniper (2006), under the transformation U1 ↔ U2 and reference length
scale h1 = (R2 − R1).

The effect of confinement is demonstrated here on the m = 1 mode of a flow
with (1/Λ, S) = (−0.9, 1), which is a counterflow wake with uniform density. At
weak confinement, the behaviour is similar to the unconfined round configuration,
the saddle points of which are shown in figure 8(a). There are s2 saddle points
at ki = −1.38, −4.90, −8.12, −11.30 and −14.46. For kr 
 |m2 − 1/4|, the Bessel
functions that form the mode shape take the form exp{±kr}. The ki value therefore
represents the wavenumber of oscillations in the r-direction, a feature which is
retained qualitatively at lower kr . In this configuration, the characteristic length
is the radius of the inner flow, R1, so these s2 saddle points lie at wavenumbers
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Figure 9. Rescaled images of figures 8(a) (left) and 8(b) (middle), compared with figure 10
(right) in the limit of strong confinement (h = 0.1, top frames) and weak confinement (h = 10,
bottom frames). The features of the unconfined flows in the left and middle frames can be seen
to carry through into the confined flows on the right. Intermediate confinements are shown in
figure 10.

ki = (−1.38, −4.90, −8.12, −11.30, −14.46)/R1 in dimensional terms. They represent
the zero group velocity modes that scale with the inner flow (labelled 1 in figure 1)
and are shown by the dotted lines 1a, 1b etc. in figure 11(d).

At strong confinement, the behaviour is similar to the varicose unconfined planar
configuration with the parameters (−1/Λ, 1/S), which is shown in figure 8(b)
as contours of ωi in the complex k-plane. There are s2 saddle points at
ki = −1.13, −4.25, −7.41, −10.57 and −13.72. The mode shapes take the form
exp{±kr}, without approximation, so the ki value also represents the wavenumber of
oscillations in the r-direction. In this configuration, the characteristic length is the
thickness of the outer fluid, R2 − R1, so these s2 saddle points lie at wavenumbers
ki = (−1.13, −4.25, −7.41, −10.57, −13.72)/(R2 − R1) in dimensional terms. They
represent the zero group velocity modes that scale with the outer flow (labelled 2 in
figure 1) and are shown by the dotted lines 2a, 2b etc. in figure 11(d).

At intermediate confinement, modes with zero group velocity in the inner flow
interact with those in the outer flow. This can be seen through the interaction of the
saddle points in figure 10, which shows contours of ωi in the k-plane at twelve values
of confinement. The axes of these figures have been multiplied by (1 + h) so that
approximately the same number of saddle points appear in each figure.

Figures 9(a)–9(c) show ωi(k) in the strong confinement limit (h � 1). The s2 saddle
points that scale with the inner flow, 1a, 1b and 1c, can be identified. Their positions
in figure 8(a) should be multiplied by (1 + h) = 1.1 to obtain their approximate
positions in figure 10(a). Similarly, an s2 saddle point that scales with the outer flow,
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2a, can be identified. Its position in figure 8(b) should be multiplied by (1+h)/h = 11
to obtain its approximate position in figure 10(a). At strong confinement, the highest
value of ωi is held by saddle 2a, which is the fundamental mode of the outer flow.

Figures 9(d)–9(f ) show ωi(k) in the weak confinement limit (h 
 1). The s2 saddle
points that scale with the outer flow, 2a, 2b and 2c can be identified. Their positions
in figure 8(b) should be multiplied by (1 + h)/h = 1.1 to obtain their approximate
positions in figure 10(l). Similarly, an s2 saddle point that scales with the inner flow,
1a, can be identified. Its position in figure 8(a) should be multiplied by (1 + h) = 11
to obtain its approximate position in figure 10(l). At weak confinement, the highest
value of ωi is held by saddle 1a, which is the fundamental mode of the inner flow.

At intermediate confinement (h ∼ 1), there is strong interaction between the inner
and outer flows. As h increases from 0.1 to 10, the saddle point with highest ωi swaps
from the fundamental mode of the outer flow, 2a, to the fundamental mode of the
inner flow, 1a, via two saddle points with particularly high ωi , labelled c1 and c2.
These combined modes arise owing resonance between the inner and outer flows.

6.2. Physical interpretation of the effect of confinement

The ki values of the saddle points in figure 10 are shown as solid lines in figure 11(d)
as a function of h. At each value of h, the saddle point with the highest growth rate,
ωi , is shown as a bold line whose thickness increases with ωi . The dotted lines are
the ki values of the saddle points that scale with the inner and outer flows when
uncombined, as described at the start of §6.1. The combined flow is most unstable
when the solid line is close to the intersection of two dotted lines. This is at values of
h where the ki value of the combined mode is close to the ki value of a mode in the
inner flow and a mode in the outer flow. At these points, the interaction between the
inner and outer flows is strongly constructive. Conversely, the flow is more stable at
intermediate values of h, where the ki values of the inner modes lie between those of
the outer modes.

This explains the features on the left of the map of absolute instability in the
(1/Λ, S) plane shown in figure 12(d). The regions that are absolutely unstable to
the s2 saddle points are shown in dark grey. Confinement, h, affects the amount of
shear that is required for the s2 saddles to be absolutely unstable. When h is such
that the modes with zero group velocity in the inner and outer flows have similar
wavenumbers in the r-direction, less shear is required for absolute instability because
there is constructive interference between the modes in each flow. This occurs, for
example, around h = 0.8 for the m = 1 case. The region that is absolutely unstable
to the s1 saddle is shown in light grey.

The m = 0, m = 2 and m = 3 modes have been analysed in the same way and
the results are shown in the other frames of figures 11 and 12. They have the same
features as the m = 1 mode. The planar results are shown for comparison. The
behaviour of the confined m = 0 mode is similar to the confined planar varicose
case and the behaviour of the confined m = 1 mode is similar to the confined planar
sinuous case. The modes at higher m are always more stable, except for a small region
around (1/Λ, h) = (−1, 0.3), where the m = 2 mode is most unstable.

6.3. Saddle points that cross the ki-axis

The dark grey regions of figures 6 and 12 correspond to absolute instability of the
s2 saddles in the unconfined and confined situations. When weakly confined (e.g.
figure 12(c) with h = 10), the dark grey region extends over a larger range of shear
than in the corresponding unconfined case (figure 6(c) with S = 1). This is due to
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Figure 10. Contours of ωi(k) for the m = 1 mode of a confined wake flow with (1/Λ, S,m) =
(−0.9, 1, 1). Horizontal axis: kr (1 + h). Vertical axis: ki(1 + h). At strong confinement (small
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confinement, there is strong interaction between the inner and outer flows, which produces
combined modes (c1, c2) that have particularly high growth rates.
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Figure 11. Solid lines: the radial wavenumbers, ki , of the significant saddle points of confined
wake flows with (1/Λ, S) = (−1, 1). The line thickness increases with the absolute growth rate
ωi and has the same scale on all figures. Dotted lines: the radial wavenumbers of the saddle
points in the inner flow, 1a, 1b, . . . , and the outer flow, 2a, 2b, . . . . The figures represent (a)
varicose, (b) sinuous, (c) m = 0, (d) m = 1, (e) m = 2 and (f) m = 3. The flows have higher
absolute growth rates at values of h when the saddle points (i.e. modes with zero group
velocity) in the inner and outer flows have the same radial wavenumber, which is at the
intersections of the dotted lines.

subdominant s2 saddles crossing the ki-axis in the unconfined case, as summarized
here. Full details can be found in Healey (2007) and Juniper (2007).

At some parameter values in the unconfined case, an s2 saddle point on the integ-
ration path crosses the ki-axis into the plane of diverging eigenfunctions, as described
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Figure 12. Regions of absolute instability as a function of shear and confinement for uniform
density jets and wakes. The configurations are: (a) varicose, (b) sinuous, (c) m = 0, (d) m = 1,
(e) m = 2 and (f) m = 3. The absolutely unstable region of the s1 saddle is light grey and
that of the s2 saddles is dark grey. The triangular markers correspond to the unconfined and
strongly confined limits. Despite the difference between the unconfined cases (figure 6), the
m = 0 mode behaves similarly to the varicose mode, and the m = 1 mode behaves similarly to
the m = 1 mode when the confinement is varied. (b) is a corrected version of figure 16(e) of
Juniper (2007): the dark grey region at h = 1 extends only to 1/Λ = 0.62, and the contributions
from all the subdominant s2 saddles have been included.

in § 2.6 (see figure 7 of Juniper (2007) for an example). There can be situations in
which the k+ branch of this saddle point has positive growth rate when it crosses
the ki-axis, even though the saddle itself has negative growth rate. In the confined
case, saddle points cannot cross the ki-axis, so in these situations the k+ branch
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pinches with a series of saddle points that have positive growth rate and sit just
to the right of the ki-axis. The top saddle point in the confined case has positive
growth rate, even though the saddle point in the corresponding unconfined situation
has negative growth rate. When this is the dominant saddle point (the highest on
the integration path), this causes the flow to be absolutely unstable when weakly
confined, even though it is convectively unstable when unconfined. Physically, this
arises because, in these situations, parts of the wavepacket contain eigenfunctions
that grow in the radial direction, even though the wavepacket is decaying at the point
of impulse. When unconfined, these parts of the wavepacket can propagate away to
infinite radius without affecting the point of impulse. When confined, however, they
reflect off the confining wall and return to the point of impulse, eventually setting
up a standing wave that grows at the point of impulse and therefore makes the flow
absolutely unstable in the long-time limit.

In non-swirling round jets and wakes, this situation arises only in counterflow, in
which the s1 saddle is already absolutely unstable and dominant. This means that
the s2 saddles that cross the ki-axis, and their counterparts in the confined case, are
always subdominant and therefore that they do not enlarge the region of parameter
space that is absolutely unstable. They do, however, enlarge the region of parameter
space that is absolutely unstable to the s2 saddles. This is why the dark grey region of
the round weakly confined case is larger than that of the corresponding unconfined
case.

In this respect, round jets and wakes behave differently from planar jets and wakes.
In the planar case, s2 saddles that cross the ki-axis can be dominant. This means
that the entire absolutely unstable region of the weakly confined planar case (not just
the region due to the s2 saddles) is larger than that of the corresponding unconfined
case.

7. Effect of density ratio, shear and confinement
The analysis in §6 has been repeated at different density ratios. Figure 13 shows the

absolutely unstable region of (1/Λ, h)-space at seven values of S for the round m = 0
mode. The light grey region is absolutely unstable to the s1 saddle and the dark grey
region is absolutely unstable to the s2 saddles. This can be compared directly with
figure 15 of Juniper (2006), which shows the same plots for the s2 saddles of the
planar varicose mode.

With the exception of S = 0.001, the plots for the confined m = 0 mode are very
similar to those of the confined planar varicose mode, despite the differences that
exist when unconfined. The plots are identical for h � 1 because the round case
tends towards the planar case in this limit, as described in §6. Confinement enhances
the transition to absolute instability at some values of h, but inhibits this transition
at other values of h. The latter effect is less pronounced in the round case than in
the planar case. At low density ratios, the unconfined round m = 0 mode is more
unstable than the unconfined planar varicose mode. This effect carries over into the
confined case and is clearly related more to the density ratio than to the confinement.

When S = 0.001, the dark grey region at 1/Λ < 1 is bounded by the envelope of
several s2 saddles, not by the single s2 saddle that is seen in the equivalent figure of
the planar case in Juniper (2006). If the planar model had included a stabilization
mechanism, the same effect would have been seen in that figure. Hence, at S = 0.001
as at other density ratios, the behaviour of the round m = 0 mode is similar to that
of the planar varicose mode.
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Figure 13. Regions of absolute instability for the m = 0 mode of confined jets and wakes as
a function of shear, density ratio and confinement. The absolutely unstable region of the s1
saddle is light grey and that of the s2 saddles is dark grey. The top left figure is the unconfined
case and the remaining figures are in the (1/Λ, h)-plane at different density ratios. This figure
can be compared directly with figure 15 of Juniper (2006).
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Figure 14. As for figure 13 but for the m = 1 mode, which can be compared with figure 16
of Juniper (2006).
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Figure 15. As for figure 13 but for the m = 2, m = 3 and m = 4 modes at three density
ratios.

Figure 14 shows the same plots for the round m = 1 mode. This can be compared
with figure 16 of Juniper (2006), which shows the planar sinuous mode. The effect
of confinement on the m = 1 mode is similar to that on the sinuous mode. At high
density ratios, the unconfined m = 1 mode is more stable than the unconfined sinuous
mode. This effect also carries over into the confined case.

Figure 15 shows the effect of confinement on the round m = 2, m = 3 and m = 4
modes. It is qualitatively identical to its effect on the m = 0 and m = 1 modes. There
is little further comment to make on these modes, except that the m � 2 modes are
almost always more stable than the m = 0 and m = 1 modes.

8. Conclusions
In this paper, the effect of confinement has been investigated on the

convective/absolute transition of non-swirling round jet/wake flows. Two model
flows are examined, one with a piece-wise linear radial velocity profile and one with
a plug flow profile. Both models are inviscid and incompressible. A spatio-temporal
stability analysis is performed on both models while varying the following parameters:
shear number, density ratio, confinement and the azimuthal wavenumber. In the limit
of large axial wavenumber, the dispersion relation of the plug flow model tends to
that of the equivalent planar jet/wake flow.



Confined round jets and wakes 251

The long-time response is calculated in the entire outer fluid, rather than just at
the point of impulse. The s1 saddle points, which are associated with the shear layer,
are distinguished from the s2 saddles, which are associated with the jet/wake motion.
When the shear layer is thin, the s1 saddle has the same behaviour in all flows. The
s2 saddles are the main focus of this paper because their behaviour differs between
the different types of jet/wake flows.

In the planar jets and wakes studied by Juniper (2007), this approach revealed that,
at certain parameter values, parts of the back of the wavepacket can grow upstream
even though the response decays at the point of impulse. This occurs if a dominant
s2 saddle point (i.e. the highest saddle on the integration path) crosses the ki-axis and
has both negative growth rate and a k+ branch that has positive growth rate where
it intersects the ki-axis. This causes some flows that are convectively unstable when
unconfined to become absolutely unstable when weakly confined. In the round case,
this behaviour is only seen when the s1 saddle is already dominant. The s2 saddles
that cross the ki-axis are always subdominant and, consequently, round flows that
are convectively unstable when unconfined always remain convectively unstable when
confined.

In terms of its motion, the round m = 0 mode is analogous to the planar varicose
mode and the round m = 1 mode is analogous to the planar sinuous mode. When
unconfined, the s2 saddles of the planar varicose mode have the same instability
behaviour as those of the planar sinuous mode under the transformation (1/Λ, S) ↔
(−1/Λ, 1/S). In other words, the s2 saddles of the two modes are equally unstable,
although in different regions of parameter space. The unconfined round m = 0 mode,
however, is absolutely unstable over a larger region of parameter space than the
planar varicose mode. In contrast, the unconfined round m = 1 mode is absolutely
unstable over a smaller region of parameter space than the planar sinuous mode,
particularly for dense wakes. There are significant differences between the unconfined
round case and the unconfined planar case and there is no equivalence between the
m = 0 mode and the m = 1 mode.

Nevertheless, the effect of confinement on the round m = 0 mode is very similar
to the effect of confinement on the planar varicose mode, despite the differences that
exist between the two modes when unconfined. Similarly, the effect of confinement
on the round m = 1 mode is very similar to the effect on the planar sinuous mode.
The effect of confinement on higher-order round modes is similar, but these modes
are almost always more stable than the m = 0 and m = 1 modes.

When weakly confined, the long-time behaviour of round flows is dominated
by the normal modes with zero group velocity that are in the inner fluid. When
strongly confined, the long-time behaviour of the round flows is dominated by the
normal modes with zero group velocity that are in the outer fluid. At intermediate
confinements, the modes with zero group velocity that are in the inner fluid interact
with those that are in the outer fluid. This can be observed through the interaction
of saddle points in the wavenumber plane. Flows are particularly unstable when
these modes’ wavenumbers in the radial direction match. Flows are more stable when
their wavenumbers are far apart. This behaviour is the same as that seen in planar
jet/wake flows.

Confined shear injectors are consistently used in industrial injection systems that
require good mixing with a low pressure drop. It is likely that this is because they
stimulate an unstable global shear mode whose large-scale bulging (m = 0), spiralling
(m = 1) or flapping (combined m = 1 and m = −1) motion enhances mixing. This
paper confirms that unconfined light jet flows are more unstable than unconfined
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dense wake flows. It goes on to show that, for both types of flow, confinement can
increase or decrease their instability, depending on the value of the confinement
parameter. This paper presents useful design rules for such injectors, such as the
optimum confinement for a given density ratio.
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