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In this theoretical study, a linear spatio-temporal analysis is performed on unconfined
and confined inviscid jet/wake flows in order to determine whether they are absolutely
or convectively unstable. The impulse response is evaluated in the entire outer fluid,
rather than just at the point of impulse, over a wide range of density ratios. This
confirms that the dominant saddle point can validly migrate into the plane of diverging
eigenfunctions. This reveals that, at certain density ratios and shear numbers, the
response can grow upstream in some directions with a cross-stream component, even
though it decays directly upstream of, and at, the point of impulse. This type of
flow is convectively unstable when unconfined, but becomes absolutely unstable when
confined. Other effects of confinement are described in a previous paper. Together,
these articles have important implications for the design of fuel injectors, which often
employ confined shear flows at high Reynolds number and large density ratios to
generate strong mixing in combustion chambers.

1. Introduction
This article examines the stability of unconfined and confined jets and wakes over

a large range of density ratios. It identifies a previously unrecognized region of
this parameter space that has important implications for confined flows. The model
consists of a central sheet of one fluid sandwiched between two identical sheets of
another fluid. If the inner fluid moves faster than the outer fluid, it is a jet flow. If the
outer fluid moves faster than the inner fluid, it is a wake flow. This model is similar
to that studied by Yu & Monkewitz (1990). The impulse response is calculated with a
linear spatio-temporal instability analysis. In a new development for jets and wakes,
the growth rate is calculated in the entire outer fluid, rather than just at the point of
impulse. Particular attention is paid to the shape of the impulse and the group and
phase velocities of the growing eigenmodes.

Juniper (2006) performed a spatio-temporal stability analysis on unconfined jets
and wakes and found that, for certain density and velocity ratios, the eigenmode
with zero group velocity could have a purely imaginary wavenumber. In that paper,
these eigenmodes were discounted on the grounds that they would have infinite
wavelength in the streamwise direction and therefore violate the WKBJ assumption.
However, Healey (2006) found the same type of eigenmode in a rotating disk boundary
layer and showed that they are permissible and that they represent growth and
propagation in the cross-stream direction. One aim of the present paper is to re-
examine unconfined jets and wakes, without discounting these eigenmodes, to discover
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whether the behaviour that Healey discovered in a rotating disk boundary layer also
occurs in jets and wakes.

In related work on confined jets and wakes, Juniper (2006) explained why these flows
are particularly unstable when the inner and outer fluids have similar thicknesses.
This study also predicted that the instability characteristics of confined flows do not
tend to those of unconfined flows, even when the confining plates are very far
away. This matter was not resolved in that paper and the saddle points that
represented the eigenmodes of this instability were called ‘ambiguous’. However,
Healey (2007) found the same type of saddle point in a confined rotating disk
boundary layer and showed that they do have physical significance. A second aim of
the present paper is to re-examine confined jets and wakes and remove the ambiguity
regarding these saddle points in jets and wakes.

For inviscid flow, the theoretical study of Juniper & Candel (2003) has shown
that jets and wakes become absolutely unstable over a wider range of shear when
they are confined. The full background to this problem and its practical implications
are explained in that paper and are not repeated here. The physical reason for this
behaviour has been explained by Juniper (2006). The same technique can be used
to show that a Rankine vortex with axial flow becomes particularly unstable to the
m =1 mode when confined. This is in agreement with the large eddy simulations
of Garcia-Villalba, Fröhlich & Rodi (2006) at a Reynolds number of 81 500. These
simulations show the existence of this large-scale helical mode for a confined flow,
but no large coherent structures in the equivalent unconfined flow. These results are
relevant to fuel injection in rockets and aircraft, where these coherent structures aid
mixing in the combustion chamber and improve combustion efficiency (Barrère et al.
1960).

On the other hand, confinement seems to have a stabilizing effect on viscous flow
at Reynolds numbers between 40 and 140. Experiments by Shair et al. (1963) and
numerical simulations by Chen, Pritchard & Tavener (1995) have shown that vortex
shedding behind a cylinder starts at a higher Reynolds number when the cylinder is
confined within a duct. Furthermore, once vortex shedding has started, Delbende &
Chomaz (1998) show that confinement damps the secondary pairing instability of the
shed vortices.

One of the key features of this analysis is its simplicity. The model described in § 2
contains all the features that need to be examined, but its dispersion relation remains
explicit, which greatly simplifies the subsequent analysis. A further simplification
would be to omit the finite-thickness shear layers between the flows. However, the
finite thickness is required because the associated saddle point provides the selection
criterion for the saddle points associated with the interaction of the two shear layers.
For most of this paper the shear layer is very thin and the exact velocity profile has
little influence on the latter mode. Therefore the piece-wise linear velocity profile is
sufficiently accurate. Even when the shear layer is thick, Esch (1957) demonstrates
that the stability of this piece-wise linear velocity profile is reasonably close to that
of a realistic velocity profile.

A linear spatio-temporal stability analysis is used in § 3 because this is quicker than
a nonlinear analysis but has been shown by Delbende & Chomaz (1998) to be a good
predictor of nonlinear behaviour in similar flows. As in Healey (2006), the growth
of the impulse response is examined in the whole outer fluid, rather than just at the
point of impulse. Although Delbende & Chomaz (1998) have calculated the impulse
response in the outer fluid with direct numerical simulation, the advantage of the
current method is that the stability characteristics of flows can be calculated much
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Figure 1. The model consists of three uniform inviscid flows separated by two shear layers
with linear velocity profiles. The flows have infinite extent in the x-direction and are uniform
in the y-direction. The x-axis is at the interface of fluids 1 and 2. Only varicose and sinuous
perturbations are examined.

more rapidly over a wider range of parameter values. It is particularly interesting to
study a wide range of density ratios.

The advantage of the analytic linear analysis becomes evident in § 4, where saddle
points in the k-plane are easily located and then distinguished by both their physical
relevance and their influence on the impulse response. In § 5, it is shown that one of
these saddle points can legitimately cross the ki-axis, with important consequences for
the shape of the impulse response in the outer fluid. This allows the stability of jets
and wakes to be characterized in terms of density ratio and shear number in § 6. In
one region of this parameter space, the impulse response can grow upstream in some
directions with a cross-stream component, even though it decays directly upstream
of, and at, the point of impulse. This curious behaviour has important implications
for confined flows, as described in § 7.

2. Derivation of the model’s dispersion relation
The model (figure 1) consists of three uniform inviscid incompressible irrotational

flows separated by two shear layers with linear velocity profiles. The inner flow has
density ρ1, velocity U1 and thickness 2h1 in the z-direction. The outer flows both
have density ρ2 and velocity U2. If unconfined, the outer flow extends to infinity in
the z-direction. If confined, it has thickness h2 in the z-direction. The shear layers
both have thickness δ in the z-direction, density ρ2 and linear velocity profiles, taking
values between U1 at the boundary with the inner fluid and U2 at the boundary with
the outer fluid. The flows have infinite extent in the x-direction and are uniform in
the y-direction into the page.

Following Drazin & Reid (1981, § 21), normal mode perturbations of the form
u(z) exp(i(kxx + kyy − ωt)) are introduced, where kx and ky are the wavenumbers
in the x- and y-directions and ω is the angular frequency. This three-dimensional
problem is reduced to an equivalent two-dimensional problem by introducing the
wavenumber ξ ≡ (k2

x + k2
y)

1/2.
In the complex kx-plane, ξ has branch points at kx = ±iky and kx = ±∞. The choice

of branch cuts is discussed in the next two paragraphs because it has important
consequences for the subsequent analysis. In § 3, a function will be integrated from
kx = −∞ to kx = +∞ and it is convenient for the integration path to pass continuously
between the branch points at ±iky without encountering a branch cut. There is a
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second set of branch points along the ki-axis (figure 3b). The integration path cannot
be deformed through a branch point so the branch cut from the branch point at iky

must connect to a branch point in the ki > 0 half-plane and the branch cut from the
branch point at −iky must connect to a branch point in the ki < 0 half-plane. The
exact path of the branch cuts is fixed by the choice of the root of (k2

x + k2
y)

1/2 at a
particular value of kx . Conventionally, the branch cuts would lie on the ki-axis, but
in § 5 the lower branch cut will be shifted off this axis.

The bulk flow has zero velocity in the y-direction so, by Squire’s theorem, the most
unstable perturbation is found when ky tends to zero. The wavenumber in the y-
direction has been mentioned in order to emphasize that the integration in the kx-plane
is continuous at kx =0. From now on, the infinitesimally small wavenumber ky will
be omitted and kx will be replaced by k. This means that ξ tends to the positive or
negative root of (k2)1/2. In Juniper (2006), this is written as ±sk, where s is the sign
of Re{k}. However, the sign function pins the branch cuts to the ki-axis and in this
paper, ξ is retained so that the branch cuts can be shifted.

For the two-dimensional problem, perturbation streamfunctions of the form
ψi(x, z, t) =ϕi(z; ξ )ei(kx−ωt) can be defined in each flow such that the perturbation
velocities are ux = ∂ψi/∂z and uz = −∂ψi/∂x. For future equations, e.g. (3.5), it is
important to remember that ϕi is a function of ξ and hence k. However in this
section, where normal modes are considered separately, it becomes a function only
of z because k is held constant. The streamfunctions automatically satisfy continuity.
To satisfy irrotationality they must also satisfy ϕ′′

i − ξ 2 ϕi = 0. Convenient forms for
ϕi in the top three flows are:

ϕ1 = Ae+ξz + Be−ξz, (2.1)

ϕ2 = C cosh ξ (z + δ) + E sinh ξ (z + δ), (2.2)

ϕ3 = F cosh ξ (z + h1 + δ) + G sinh ξ (z + h1 + δ). (2.3)

Flows 4 and 5 do not need to be considered because this paper examines only varicose
disturbances (where F = 0 and the velocity perturbations are symmetric about the
central fluid) and sinuous disturbances (where G =0 and the velocity perturbations
are antisymmetric about the central fluid). Any perturbation can be made up from a
linear combination of a varicose and a sinuous perturbation.

At z = −δ and z =0, the kinematic and dynamic matching conditions between the
flows are:

�

[
ϕ

(U − ω/k)

]
= 0, (2.4)

�[ρ(U − ω/k)ϕ′ − ρU ′ϕ] = 0. (2.5)

There is a further kinematic boundary condition at the top of the outer flow,
but it is more useful to apply this later and to leave an extra parameter A/B in
the dispersion relation for the moment. This allows convergent eigenfunctions and
divergent eigenfunctions to be clearly distinguished, which is important for the rest
of this paper.

For varicose or sinuous perturbations there are five unknowns and four equations.
After long but elementary manipulation, these can be reduced to one equation which
contains the unknown parameter A/B:

D ≡ A × D− + B × D+ = 0, (2.6)
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where, for varicose perturbations:

D− ≡ (V1ξδ(ρ1/ρ2) coth ξh1 + 1) (V2ξδ(cosh ξδ + sinh ξδ) − sinh ξδ)

+ V1ξδ (V2ξδ(cosh ξδ + sinh ξδ) − cosh ξδ), (2.7)

D+ ≡ (V1ξδ(ρ1/ρ2) coth ξh1 + 1) (V2ξδ(cosh ξδ − sinh ξδ) − sinh ξδ)

− V1ξδ (V2ξδ(cosh ξδ − sinh ξδ) + cosh ξδ) , (2.8)

with V1 ≡ (U1 − ω/k)/(U2 − U1) and V2 ≡ (U2 − ω/k)/(U2 − U1). For sinuous pertur-
bations coth ξh1 is replaced by tanh ξh1.

In the confined case, the ratio A/B is equal to − exp(−2ξh2) owing to the boundary
condition of zero z-velocity at z =h2. If ξ is defined as the positive root of (k2)1/2, then
the ratio A/B lies in the range −1 � A/B < 0 and the A-term in (2.1) corresponds
to eigenfunctions that grow in the positive z-direction (divergent eigenfunctions)
and the B-term corresponds to eigenfunctions that decay in the positive z-direction
(convergent eigenfunctions). On the other hand, if ξ is defined as the negative root of
(k2)1/2 then the ratio lies in the range −∞ <A/B � −1 and the A-term corresponds
to convergent eigenfunctions and the B-term corresponds to divergent eigenfunctions.
Neither A nor B can equal zero so the confined solution is always a linear combination
of divergent and convergent eigenfunctions and the dispersion relation (2.6) is always
a linear combination of D− and D+.

In the unconfined case, either A or B must equal zero because, by the previous
argument, any superposition of divergent and convergent eigenfunctions must
correspond to a confined case. With ξ defined as the positive root of (k2)1/2, either
A is set to zero and D+ = 0 is solved on the plane of converging eigenfunctions
(the B-plane) or B is set to zero and D− = 0 is solved on the plane of diverging
eigenfunctions (the A-plane). The physical solution lies on the B-plane because
converging eigenfunctions satisfy the boundary condition of zero z-velocity at z → ∞
and diverging eigenfunctions do not. The opposite is true if ξ is defined as the negative
root of (k2)1/2.

In the rest of this section and in § 3, ξ is defined as the positive root of (k2)1/2. In § 3,
the impulse response is evaluated by integrating solutions of the dispersion relation
from k = −∞ to +∞. The preceding paragraphs have shown why, for the unconfined
case, this integration should be performed over solutions of D+ =0 on the B-plane of
converging eigenfunctions. In § § 4 and 5, it is shown that the integration is easier to
evaluate if the branch cut on the ki-axis is shifted so that the integration path passes
into a small region where Re{ξ} is negative. It is important to note that integration
over this small region of divergent eigenfunctions is not the same as integration over
the A-plane of divergent eigenfunctions because the solutions on the path continue
to satisfy D+ = 0 rather than D− = 0. This process of shifting the branch cut simply
provides an easier way to perform the integral in the B-plane. Integration with D− =0
over the A-plane always remains unphysical. In practice, this process is achieved by
replacing ξ with k and then ensuring that the integration path passes back round the
branch point at −iky .

A Taylor expansion can be performed on (2.7) and (2.8) in the thin shear-layer
limit, ξδ → 0. Retaining the second-order terms, D− and D+ tend to:

D− ≡ ρ1(U1 − ω/k)2 coth(ξh1) − ρ2(U2 − ω/k)2, (2.9)

D+ ≡ ρ1(U1 − ω/k)2 coth(ξh1) + ρ2(U2 − ω/k)2. (2.10)
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In the confined case, where A/B = −exp(−2ξh2), the dispersion relation becomes:

D ≡ ρ1(U1 − ω/k)2 coth(ξh1) + ρ2(U2 − ω/k)2 coth(ξh2) = 0. (2.11)

These are the same as the dispersion relations derived via a different method by
Juniper (2006).

It is convenient to introduce a non-dimensional framework and the following
reference scales: velocity, Uref ≡ (U1 +U2)/2; length, h1; density, ρ2. The dimensionless
variables are ω∗ ≡ ωh1/Uref , k∗ ≡ kh1 and ξ ∗ ≡ ξh1. The dimensionless parameters are
Λ ≡ (U1 − U2)/(U1 + U2), S ≡ ρ1/ρ2, h ≡ h2/h1 and δ∗ ≡ δ/h1. The dispersion relations
for unconfined and confined varicose perturbations when ξ ∗δ∗ tends to zero are,
respectively:

D+∗ ≡ S(1 + Λ − ω∗/k∗)2 coth(ξ ∗) + (1 − Λ − ω∗/k∗)2 = 0, (2.12)

D∗ ≡ S(1 + Λ − ω∗/k∗)2 coth(ξ ∗) + (1 − Λ − ω∗/k∗)2 coth(ξ ∗h) = 0. (2.13)

In the rest of this paper the non-dimensional framework will be used and the asterisks
will be dropped. It is conventional to use Λ as the shear parameter. However, the
parameter 1/Λ is used for figures in this paper because this allows absolutely unstable
regions to be plotted as single regions in parameter space.

3. Spatio-temporal instability analysis in the outer fluid
Most spatio-temporal instability analyses examine the response at a point in space

to an impulse at the same point in space. If this response grows in time, then the
flow is absolutely unstable. If it decays, then the flow is either convectively unstable
or stable. In this paper, the response is examined throughout the outer fluid. When
a perturbation develops and grows at the shear layer, it also propagates and grows
in the outer fluid. However, it is important to point out that this propagation and
growth is merely a kinematic response to the perturbation at the shear layer.

The case with real k is quite familiar, consisting of travelling waves with constant
amplitude in the x-direction and waves with exponentially decaying amplitude in the
z-direction. The case with complex k is less familiar, consisting of travelling waves
with constant amplitude at an angle to the x-axis and exponential decay perpendicular
to this angle. Examination of the modes that propagate and grow in the outer fluid
gives a much clearer picture of the impulse response than examination simply at the
point of impulse.

The aims of this section are to show how the impulse response is calculated in the
outer fluid, to describe the shape of the impulse that excites all modes equally, to
explain why its response is equivalent to that of a point source impulse and briefly to
describe the characteristics of the response by considering the group velocity in the
outer fluid.

3.1. The one-dimensional response

A conventional analysis, such as that in Huerre (2000), is performed in one spatial
dimension. The (x, t)-dependence of the perturbation streamfunction defined in § 2 is
expressed as the double Fourier integral of its normal mode perturbations:

ψi(x, t) =
1

(2π)2

∫
Fk

∫
Lω

ψ̂i(k, ω)ei(kx−ωt) dω dk. (3.1)

By substituting for k and ω, the dispersion relation D(k, ω) can be expressed as
a differential operator that relates the perturbation streamfunction ψi(x, t) to the
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forcing Si(x, t):

D

(
−i

∂

∂x
, i

∂

∂t

)
ψi(x, t) = Si(x, t). (3.2)

The forcing can also be expressed as the double Fourier integral of its normal modes:

Si(x, t) =
1

(2π)2

∫
Fk

∫
Lω

Ŝi(k, ω)ei(kx−ωt) dω dk. (3.3)

Substituting (3.1) and (3.3) into (3.2) gives the governing equation in spectral space:

ψ̂i(k, ω)D(k, ω) = Ŝi(k, ω). (3.4)

If the forcing streamfunction is Si(x, t) = δ(x)δ(t) then Ŝi(k, ω) = 1 and ψ(x, t) is the
impulse response. It is evaluated by substituting (3.4) into (3.1) and following the
procedure described in § 3.4.

3.2. The two-dimensional response

The full impulse response is evaluated in two spatial dimensions. Each mode of
the perturbation streamfunction is of the form ψi(x, z, t) =ϕi(z; ξ )ei(kx−ωt), where the
functions ϕi(z; ξ ) are given by (2.1) to (2.3). The full streamfunction, evaluated at all
values of z, is the double Fourier integral of the normal mode perturbations in (3.1)
multiplied by the mode shapes ϕi(z; ξ ):

ψi(x, z, t) =
1

(2π)2

∫
Fk

∫
Lω

ψ̂i(k, ω)ϕi(z; ξ )ei(kx−ωt) dω dk. (3.5)

If the forcing excites all modes equally at (x, t) = (0, 0) then the full forcing is the
double Fourier integral of the normal modes in (3.3) multiplied by the same mode
shapes:

Si(x, z, t) =
1

(2π)2

∫
Fk

∫
Lω

Ŝi(k, ω)ϕi(z; ξ )ei(kx−ωt) dω dk. (3.6)

The response and the forcing are still related by (3.2) at z = 0. Substituting (3.5)
and (3.6) into this equation gives the same spectral governing equation as the one-
dimensional case (3.4), whether or not the z-dependence is included. Therefore the
response in two dimensions is also evaluated by substituting (3.4) into (3.5) and
following the procedure described in § 3.4.

3.3. The two-dimensional impulse

If the impulse is concentrated at a point in the x-direction, then Ŝi(k, ω) = 1. However,
this impulse is not restricted to a point in the z-direction because it has been forced to
satisfy ∇2Si = 0 through the imposition of the mode shapes ϕ(z; ξ ) in (3.6). Substituting
(2.1) with A= 0 into (3.6) gives the shape of this impulse in the outer fluid:

S1(x, z, t) =
1

(2π)2

∫
Fk

∫
Lω

e−ξzei(kx−ωt) dω dk

=
δ(t)

2π

∫ 0

−∞
ekzeikx dk +

δ(t)

2π

∫ ∞

0

e−kzeikx dk

=
δ(t)

π

z

x2 + z2
.

This is a doublet. At z = 0 it is equal to δ(x)δ(t), but at z �= 0 it is spread out, although
it still integrates to 1 in the x-direction. The response from this doublet impulse is
the same as the response from a point impulse, as demonstrated below.
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In the bulk of the fluid, z �= 0, the response ψi(x, z, t) is related to the forcing
Si(x, z, t) by the two-dimensional equivalent of (3.2):

D ψi(x, z, t) = Si(x, z, t) for z �= 0. (3.7)

The only constraints on the fluid are that it is irrotational and incompressible. There
are no dynamic constraints because the pressure perturbation is unconstrained, except
at z = 0. The operator D is therefore equal to ∇2 for z �= 0.

If the forcing is an impulse at t = 0, then the response in the bulk fluid at t > 0
is governed by ∇2ψi = 0. There is no time dependence in the operator and therefore
the solution at t > 0 depends only on the kinematic boundary conditions of the bulk
fluid. In other words, at t > 0, the bulk fluid has no memory of the impulse that
was in the bulk fluid, except through the impulse’s effect on the shear layer at z =0.
However, the response at the shear layer, z = 0, depends only on the forcing at z =0,
as shown in § 3.2.

This means that the response from a point impulse S(x, z, t) = δ(x)δ(z)δ(t) will be
the same as that from any impulse that satisfies S(x, 0, t) = δ(x)δ(t). The doublet
impulse satisfies this condition so its response is the same as that from a point
impulse.

As an aside, if the doublet impulse were applied away from the shear layer, it would
still excite every mode Ŝ(k, ω) at the shear layer, although not with equal amplitude.
This would not matter in this paper because the rest of this analysis is concerned
with growth rates of normal modes rather than their absolute amplitudes. This is
unlike the point impulse which, within the restrictions of the current model, would
not excite any modes if it were applied inside the bulk fluid.

3.4. Evaluation of the double Fourier integral

The residue theorem is applied to (3.5) in order to perform the integration in ω (thus
eliminating the functions that are excited by the impulse, but that do not satisfy
D(k, ω) = 0). For each value of k, two values of ω satisfy D(k, ω) = 0 so there are two
separate integrals:

ψi(x, z, t) = − i

2π

∫
Fk

ϕi(z; ξ )

(∂D/∂ω)[k, ω1(k)]
exp(i[kx − ω1(k)t]) dk

− i

2π

∫
Fk

ϕi(z; ξ )

(∂D/∂ω)[k, ω2(k)]
exp(i[kx − ω2(k)t]) dk. (3.8)

The solutions are symmetric under the transformation Re{ω1, k1} ↔ −Re{ω2, k2},
which results in the integration paths and the ω-planes being mirror images of
each other in the ki- and ωi-axes. Consequently, the integrals from −∞ � k � ∞
are identical and the impulse response can be found by evaluating just one of the
integrals in (3.8).

The response in the outer fluid is evaluated by substituting (2.1) into (3.8), as
performed by Healey (2006) for the rotating disk boundary layer. Following the
argument in § 2, the integral is calculated on the B-plane, where A= 0:

ψ1(x, z, t) = − i

2π

∫
Fk

B

(∂D/∂ω)[k, ω(k)]
e−igt dk where g ≡ [ω(k) − iξz/t − kx/t].

(3.9)

The response is best visualized by plotting contours of the growth rate, gi , in the
(x/t, z/t)-plane. The procedure is described in § 4. These contours are shown in
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Figure 2. Examples of the impulse responses in the outer fluid of an unconfined flow, shown
as contours of the growth rate of the most unstable saddle for varicose perturbations of (a)
a convectively unstable flow at (1/Λ, S, δ) = (

√
2, 0.5, 0.05), for which gi(0, 0) < 0 and (b) an

absolutely unstable flow at (1/Λ, S, δ) = (1.1, 0.1, 0.05), for which gi(0, 0) > 0. The mode that
dominates at each point in the wavepacket has group velocity (x/t, z/t) and phase velocity
parallel to the contours of constant gi , as shown by the arrows on selected contours.

figure 2. Examination of the response in the entire outer fluid of an unconfined flow
gives more information than examination just at the point of impulse. This turns out
to be crucial for the flows described in §§ 5 and 6.

3.5. Group velocity, divergent eigenfunctions and phase velocity

The flow is dispersive, which means that the different Fourier components of the
response travel at different group velocities and, after some time, are found at
different places. The mode observed in the vicinity of an observer who travels at
constant x/t and z/t corresponds to the eigenmode with group velocity (x/t, z/t).
This eigenmode has a growth rate, gi , and an associated eigenfunction ϕi(z). It is
important to note that this eigenmode does not occupy all space. In § 5, it will
be shown that the eigenfunction is convergent (i.e. the amplitude decreases with
increasing z) if the eigenmode at slightly higher z/t has a smaller growth rate and
that the eigenfunction is divergent (i.e. the amplitude increases with increasing z) if
the eigenmode at slightly higher z/t has a higher growth rate. At this stage it should
be noted that a wavepacket can contain regions of divergent eigenfunctions without
violating the boundary condition at z = ∞, as long as the eigenfunctions along its top
perimeter are convergent.

As an aside, the direction of the wavevector is easily found. The dominant
eigenmode at each point in the wavepacket consists of a series of wavecrests that
travel in one direction and that grow and decay exponentially in the perpendicular
directions. Consequently, the wavecrests’ direction of travel (the direction of the phase
velocity) lies parallel to the lines of constant growth rate in figure 2. This can be
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verified by considering the complex wavenumber, k, of a mode at (x/t, z/t). At a given
t , and taking ξ = k, the growth rate, g is equal to ω − ikz/t − kx/t and the response
is therefore proportional to eik(x+iz). This has constant amplitude when kix + krz is
constant and constant phase when krx − kiz is constant. These are parallel to rays
(z/t)/(x/t) = −ki/kr and (z/t)/(x/t) = kr/ki , respectively. The wavecrests’ direction of
travel calculated via this method is shown on selected contours in figure 2 and does
indeed run parallel to lines of constant gi .

4. Evaluation of the integral and distinction between saddle points
The aims of this section are to show how the integral (3.9) is evaluated, to distinguish

between the two types of saddle point that contribute to its behaviour and to introduce
a quick method of evaluating the integral when the shear-layer thickness tends to
zero.

The integration (3.9) is performed in the complex k-plane from k = −∞ to +∞. The
integration path originally lies on the real axis but the integration is easier to evaluate
if the path is shifted, without crossing any poles or branch points of g(k), which lie at
the same positions as those of ω(k). The integral can be evaluated numerically along
any such path, which has the advantage that the plane of diverging eigenfunctions
can be avoided if so desired. However, a more common approach is to consider the
long time limit, where the dominant contribution comes from the neighbourhood of
the highest value of gi on the integration path.

The integration can be visualized by plotting contours of gi in the complex k-plane
(figure 3) and then choosing the path that has the lowest maximum value of gi .
The surface g(k) is hyperbolic everywhere so this path always passes over one or
more saddle points, which have the highest local values of gi . Lines of constant
gr are followed across each saddle in order to avoid oscillations from the exp(igr t)
term. In general, the saddles do not have the same values of gr , so the paths over
adjacent saddles are joined at strongly negative values of gi so that there is negligible
contribution from these oscillating terms. The long time behaviour of the impulse
response can then be inferred from the behaviour of the highest saddle on the
integration path.

In figures 3(a) and 3(b), which are for varicose pertubations, the integration path
passes over one saddle point, s1, at large kr and one or more saddle points, s2, near
the ki-axis. The shear-layer thickness in figure 3(b) is ten times smaller than that in
figure 3(a). The physical significance of these saddle points will be described shortly.
As δ decreases, saddle s1 moves to higher kr and the integration path passes over
more of the s2 saddles. Consequently, the position of saddle s1 dictates which of the s2

saddles lie on the integration path. In this respect, it is similar to the saddle associated
with surface tension in figure 3 of Juniper (2006). In figures 3(a) and 3(b), the long
time behaviour is dominated by saddle s2a because it has the highest value of gi .
However, saddle s1 dominates at other parameter values and on other rays (x/t, z/t).

Figure 3(c) is a magnification of figure 3(a) around k = 0. The branch points
at ±iky have been shifted slightly so that the integration path can be seen to pass
between these branch points, down to a region of very low gi , where gr changes, and
then over saddle s2a . The path can also be shifted off the negative kr -axis, although
this is not important because gi is always negative on this axis.

In figures 4(a) and 4(b), contours of the growth rates of the s1 and s2a saddles
are shown in the (x/t, z/t)-plane for the same parameter values as figures 3(a) and
3(b). The contours of figure 4(b) are presented separately in figure 5 so that the
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Figure 3. Contours of growth rate, gi , in the complex k-plane along the ray (x/t, z/t) =
(0.2, 0.1) for varicose perturbations of an unconfined low-density jet flow, (1/Λ, S) = (1.1, 0.1)
with shear-layer thickness (a) δ = 0.5 and (b) δ = 0.05. The integration path (white line) passes
over saddle s1 and one or more of the s2 saddles. In the long time limit, saddle s2a dominates
because it has the highest growth rate on the integration path. (c) is a magnification of (a)
around the origin. Branch points are shown as white circles. In (a) and (c) the branch cuts have
been shifted to show that the integration path passes between the branch points infinitesimally
close to the origin (they are displaced by ±0.01 so that the path can be seen) and then follows
lines of constant gr over the saddle points, changing to other values of gr only when gi is
strongly negative.

contributions from the s1 and s2a saddles can be distinguished. It can be seen that
the s1 saddle contributes around the centre of the wavepacket and the s2a saddle
contributes to the bulge at the back. The s2b, s2c etc. saddles are never dominant at
the values of δ in figures 4(a) and 4(b).

Physically, saddle s1 is associated with the instability of each individual shear layer.
A single shear layer (without surface tension) is never absolutely unstable to co-flow
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Figure 4. Contours of growth rate, gi , in the (x/t, z/t)-plane for the same parameter values
as figure 3 with (a) δ = 0.5, (b) δ = 0.05 and (c) δ → 0. In (a) and (b) the dominant saddle is
shown as a thick solid line, subdominant saddles are shown as thin solid lines and saddles that
have moved off the integration path are shown as thin dashed lines. The individual contours
of (b) are broken down in figure 5 so that the contributions of saddles s1 and s2a can be
distinguished. In (c) the thick lines show the growth rate of the s2a saddle, the thin lines show
the (subdominant) contours of the s2b , s2c etc. saddles, the solid black region shows where the
s1 saddle dominates and the grey region shows where the s2b , s2c , s2d etc. saddles dominate.

(|1/Λ| > 1) so the contribution from saddle s1 is a region of growth that convects
away from the source. For an infinitely thin shear layer, all wavelengths are unstable
and their growth rates scale with k. For a finite-thickness shear layer, wavelengths
lower than order δ are stabilized, so the highest growth rate scales with 1/δ, as can
be seen by the fact that the maximum value of gi in figure 4(b) is ten times greater
than that in figure 4(a).

Physically, s2 saddles are associated with the varicose motion of the two interacting
shear layers. The varicose mode of saddle s2a is responsible for the bulge that
propagates and grows upstream at the back of the wavepacket. The growth rates
and wavenumbers of this varicose mode are small but, nevertheless, cause absolute
instability. As δ tends to zero, the growth rate contours asymptote to constant
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Figure 5. Breakdown of the contours in figure 4(b). At low gi , saddle s2 dominates at the
back of the wavepacket and makes the flow absolutely unstable. This saddle is associated with
the varicose motion of the interacting shear layers. At high gi , saddle s1 dominates, creating a
region of strong convective instability at the centre of the wavepacket. This saddle is associated
with the instability of each individual shear layer. The points at which the s2a saddle exchanges
dominance with the s1 saddle can be seen at the intersection of their respective lines.

positions in (x/t, z/t)-space because the s2 saddles asymptote to constant values
of (ω, k). Along some rays, e.g. (x/t, z/t) = (0.2, 0), both saddle points lie on the
integration path and the response is a superposition of the short wavelength s1 saddle
and the long wavelength s2a saddle.

Equation (2.8) becomes difficult to resolve numerically as δ tends to zero and
generation of figures such as 4(b) becomes time-consuming. However, a quicker
method can be used to generate a close approximation that is sufficiently accurate for
this paper. An example is shown in figure 4(c). The unstable region of the s1 saddle in
(x/t, z/t)-space can be estimated by the region enclosed by its gi =0 contour, ignoring
interactions with the s2 saddles. This region asymptotes to a constant position as δ

tends to zero and in this paper it is calculated for δ = 0.001 using (2.8). This is
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Figure 6. Contours of growth rate gi representing the impulse response in the outer fluid
for varicose perturbations of a flow with (1/Λ, S) = (1.35, 0.03). Only the s1 and s2a saddle
points are shown. This flow is convectively unstable, but on the line x/t = 0 the wavepacket
has positive growth rate for z/t between 0.0379 and 0.4003 and maximum growth rate at
z/t = 0.1771.

the black region. The growth rate contours of the s2a saddle asymptote to constant
values as δ tends to zero and these are calculated for δ = 0 using (2.10). This saddle,
shown by the thick black lines, dominates at the back and around the outside of the
wavepacket. The s2b, s2c, s2d etc. saddles dominate in the grey region and contribute to
the integral (but do not dominate it) just upstream of this region. The exact structure
of the contours in the grey region depends on δ: as δ decreases, higher-order s2

saddles contribute to the integral and the complexity increases. The grey region does
not have any influence on the effect being examined in this paper, so the simplified
wavepacket in figure 4(c), without the grey region, is used.

5. Divergent eigenfunctions and saddle points that cross the ki-axis
In § 4, it was shown that the long time behaviour of the impulse response can be

determined from the behaviour of the saddle points in the k-plane. The aims of this
section are to show that this remains the case when the s2a saddle migrates into the
plane of diverging eigenfunctions and to show that this does not violate Brigg’s pinch
criterion.

Figure 6 shows the impulse response for varicose perturbations of a flow with
(1/Λ, S) = (1.35, 0.03) as δ tends to zero. Along the thick dashed line at the back
of the wavepacket, the s2a saddle crosses the ki-axis. Above this line, this saddle lies
on the plane of converging eigenfunctions (ξr > 0) and the growth rate and amplitude
of the impulse response decrease as z increases. Below this line, this saddle lies on
the plane of diverging eigenfunctions (ξr < 0) and the growth rate and amplitude of
the impulse response increase as z increases. The dashed line therefore corresponds
to the point of maximum growth rate for a given x/t . For varicose perturbations
in some low-density jets and sinuous perturbations in some high-density wakes this
point lies off the x/t axis. Figure 6 is an example of such a flow. For instance, on the
line x/t = 0 in figure 6, the wavepacket grows for z/t between 0.0379 and 0.4003, and
the maximum growth rate is found at z/t = 0.1771.

It is unconventional to allow a saddle point to cross the ki-axis, although Healey
(2006) has shown that this is legitimate. For reassurance, the same result can be
achieved without involving the plane of diverging eigenfunctions. In figure 7(a),
contours of gi are plotted in the k-plane for the ray (x/t, z/t) = (0, 0) at the same
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Figure 7. Contours of gi in the k-plane for the flow in figure 6. (a) For the ray (x/t, z/t) = (0, 0)
on the plane of converging eigenfunctions (ξr > 0), which has a branch cut down the ki-axis.
A possible integration path is shown just to the right of this branch cut. (b) For the
ray (x/t, z/t) = (0, 0), moving the branch cut to allow the integration path to pass over
saddle s2a , which has migrated into the plane of diverging eigenfunctions. (c) For the ray
(x/t, z/t) = (0, 0.1771), which corresponds to the ray with highest growth rate on the line
x/t =, 0 because saddle s2a lies on the ki-axis.
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Figure 8. The impulse response in the plane x/t = 0 represented by the normalized pressure
perturbation for the unconfined flow in figures 6 and 7. This has been calculated by integrating
numerically over the path in figure 7(a), which is restricted to the plane of converging
eigenfunctions. The centre of the wavepacket is at z/t = 0.1771.

parameter values as figure 6. There is a branch point near the origin at −iky and the
branch cut from this point is normally placed along the negative ki-axis, as described
in § 2. The integration path is taken over the series of s2 saddles and then the s1

saddle. These are not shown in this figure, but can be seen in figure 3 for similar
parameter values. If the path is to remain in the plane of converging eigenfunctions,
it must take the path shown in figure 7(a) and pass over the ridge around k = −0.3i,
where the growth rate is positive.

This integration can be evaluated numerically and the impulse response can be
represented conveniently by the normalized pressure perturbation p(z, t) at x = 0 at
successive times t . In this paper, 1000 points are taken on the path in the range
−1.57 <ki < 0, which encompasses all of the path that has positive gi . The pressure
perturbation is found from (5.1), which is the discrete form of the integral (3.9) at
x = 0:

p(z, t) =
∑ p(z; ξ )

(∂D/∂ω)[k, ω(k)]
e−iω(k)t δk. (5.1)

The results are shown in figure 8. The wavepacket grows for z/t between 0.0379 and
0.4003, and has maximum growth rate at z/t = 0.1771, as expected from figure 6.
Figure 6 was created using the procedure described next, which allows saddle s2a to
cross the ki-axis.

The integration can be evaluated more easily by shifting the branch cut from the
ki axis, as shown in figure 7(b). This reveals saddle s2a , which has migrated into the
plane of diverging eigenfunctions. The integration path is deformed onto this saddle
point, which is the highest saddle point on the integration path at these parameter
values. This saddle point has negative gi , which indicates that the response decays
at (x/t, z/t) = (0, 0). However, it is in the plane of diverging eigenfunctions, which
indicates that the eigenfunction along the adjacent ray at higher z/t will have a
higher growth rate. Both these features are in accordance with the previous numerical
integration. It is important to note, however, that the present integration is not
performed over the plane of divergent eigenfunctions that was eliminated in § 2 (the
A-plane) because solutions on the path continue to satisfy D+ = 0, rather than D− =0.
The present process simply provides an easier method of performing the integral in
the B-plane.

The same procedure is followed for non-zero (x/t, z/t), moving into the plane
of diverging eigenfunctions if necessary. The ray (x/t, z/t) = (0, 0.1771) should
correspond to the most highly amplified part of the wavepacket at x/t = 0. Contours
of gi are shown in figure 7(c) for this ray and, as anticipated, the s2a saddle lies on
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the ki-axis. The phase velocity of this mode is in the z-direction and it is an example
of a convective instability with growth normal to the shear layer, described by Healey
(2006) for the rotating disk boundary layer.

5.1. The k+/k− pinch criterion in the plane of diverging eigenfunctions

At first sight, saddles in the plane of diverging eigenfunctions seem to violate the k+/

k− pinch criterion of Briggs (1964). This requires that, for ωi greater than the
maximum temporal growth rate, the hill to one side of a saddle is confined to the
ki > 0 half-plane and the hill to the other side is confined to the ki < 0 half-plane. For
example, saddle s2a in figure 7(b) is pinched between two hills that are both confined
to the ki > 0 half-plane at high ωi and seems to be an invalid k+/k+ pinch point. The
same result is found for the rotating disk boundary layer in saddle B of figure 5(a) in
Healey (2006).

This potential complication is resolved by noticing that all branches behind the
branch cut that usually lies on the negative ki-axis have to be k− branches, even if
they move into the ki > 0 half-plane at high ωi and therefore look like k+ branches. To
be more specific, if the Fk integration in (3.5) is performed before the Lω integration,
the poles that are enclosed in the bottom half of the k-plane correspond to solutions
for x < 0 and are called k− branches. Similarly, the poles that are enclosed in the
top half of the k-plane correspond to solutions for x > 0 and are called k+ branches.
This is a more general definition than examination of the behaviour of the hills on
either side of the saddle. By definition, all saddle points on the integration contour
are pinched between a k− branch and a k+ branch. When the integration path is
deformed through the branch cut on the negative ki-axis, as in figure 7(b), a k+ branch
hits a saddle point on the plane of diverging eigenfunctions. The branch on the other
side of the saddle point must be a k− branch because it is always closed in the bottom
half of the k-plane, even if the branch moves into the ki > 0 half-plane as ωi increases.

In conclusion, examining the hills on either side of a saddle does not safely indicate
the validity of a saddle point in the plane of diverging eigenfunctions and it is better
to consider the whole integration path.

6. Effect of density ratio on varicose perturbations of unconfined shear flows
The aim of this section is to use the processes developed in previous sections to

characterize the behaviour of unconfined jets and wakes over large variations of
the density ratio and shear number. The impulse response is evaluated for varicose
perturbations of a low-density jet. The equivalent region for sinuous perturbations
can be evaluated directly under the transformation (var,1/Λ,S) ↔ (sin,−1/Λ,1/S).

The boundaries of absolute and convective instability in the (1/Λ, S)-plane are
shown at the centre of figure 9. This figure is calculated in the same way as figure 6
of Juniper (2006) and figure 2 of Yu & Monkewitz (1990). However, saddle points
are allowed to cross the ki-axis and this provides the correct characterization below
the dashed line. The dashed line corresponds to the points where the s2a saddle lies
on the ki-axis for the ray at (x/t, z/t) = (0, 0). The impulse response in the outer fluid
is shown at selected points in the surrounding figures. The impulse responses all have
the features described in § 4: the s1 saddle dominates in the centre of the wavepacket
(black region), corresponding to the instability of each individual shear layer, and the
s2a saddle dominates at the back of the wavepacket, corresponding to the varicose
instability of the interacting shear layers. As S decreases, the bulge at the back of
the wavepacket becomes more distinct and as 1/Λ increases, the wavepacket shifts
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Figure 9. Central figure: absolutely unstable (dark grey) and convectively unstable (light grey
and white) regions of the (1/Λ, S)-plane for varicose perturbations of a low-density unconfined
coflow jet. Surrounding figures: impulse responses in the outer fluid, using the same scales as
figures 3 and 6. Only the contributions of the s1 and s2a saddles are shown, except in the top
left-hand figure where the region affected by the s2b saddle is also shown.

downstream with little change in shape. There are five distinct regions of the plane,
distinguished by the behaviour along the rays with x/t = 0 of the impulse responses
(i.e. the z/t axes).

Region 1 is convectively unstable because the growing wavepacket propagates
downstream and all the eigenmodes with zero group velocity in the x-direction decay.
Above the dashed line, the mode with highest growth rate and with x/t = 0 also has
z/t = 0. Below the dashed line, the mode with highest growth rate and with x/t = 0
has positive z/t . However, this has no consequence in region 1 because all modes on
rays with x/t =0 decay.

Region 2 is absolutely unstable because the eigenmode with zero group velocity,
(x/t, z/t) = (0, 0), grows. Above the dashed line, the mode with highest growth rate
and with x/t = 0 is found at z/t = 0. Below the dashed line, the mode with highest
growth rate and with x/t = 0 is found at z/t > 0. However, this has little consequence in
region 2 because the flow is always absolutely unstable. The wavepacket in figure 3(c),
with (1/Λ, S) = (1.1, 0.1) is in region 2.

Region 3 is similar to region 2, but is also absolutely unstable to the s2b saddle.
The wavepacket looks like that in region 2, but is shifted upstream so that the s2b

saddles contribute at the point of impulse rather than just downstream of this point.
Region 4, which has not been recognized previously, contains the type of impulse

response described in § 5. It is convectively unstable because the mode with zero
group velocity, (x/t, z/t) = (0, 0), decays. However, parts of the growing wavepacket
propagate upstream, at an angle to the flow direction, and this has important
consequences for confined flows, as described in § 7. This region extends up to
1/Λ =

√
2, a result derived in the Appendix.

Region 5 is not shown in figure 9, but lies in the region of counter flow, for
which −1 < 1/Λ < 1. In this region, saddle s1 can have positive growth rate at
(x/t, z/t) = (0, 0) and the individual shear layers can be absolutely unstable. In other
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words, the black region can extend either side of the point of impulse. The varicose
interacting mode can also be absolutely unstable, and these regions are shown in
figure 6 of Juniper (2006), but this mode always has lower growth rate than the s1

saddle.
This concludes the first aim of the present paper: to re-examine unconfined jets

and wakes without discounting eigenmodes with negative kr .

7. Implications for confinement
The second aim of the present paper is to re-examine the effect of confinement

on inviscid jets and wakes. This can now be fully understood by considering the
characteristics of the regions defined in § 6. In region 4 of figure 9, flows are
convectively unstable when unconfined and absolutely unstable when confined, even as
h tends to infinity. This can be explained both mathematically, by consideration of the
ωi contours in k-space for the ray (x/t, z/t) = (0, 0), and physically, by consideration
of the shape of the growing wavepacket. In both cases, it is only necessary to consider
the case with infinitely thin shear layers because all the relevant behaviour is due
to the s2a saddle. In this section, the wavepacket shown in figure 6 is considered
with the confining wall placed at h = 100.

Mathematically, confinement introduces a factor of coth ξh into the dispersion
relation, as seen by comparing (2.12) with (2.13). This creates a series of branch
points and poles on the ki-axis, as described by Juniper (2006) for jets and wakes
and by Healey (2007) for the rotating disk boundary layer. These poles create a series
of saddle points with kr of order 1/h, over which the integration contour must pass
(figure 10). If, in the unconfined case, the ωi =0 contour crosses the ki-axis then,
in the confined case, at least one of the new series of saddle points must have
ωi greater than zero. This means that the confined flow is absolutely unstable, even
though the equivalent unconfined flow is convectively unstable. This remains true as h

tends to infinity because the branch points become closer together on the ki-axis. The
branch cut cannot be deformed away from the ki-axis, as it was for the unconfined
case, owing to this series of branch points on the ki-axis. Healey (2007) found this
behaviour in the confined rotating disk boundary layer and, in the current paper,
the same behaviour is found in confined jets and wakes. In figure 10, the pressure
eigenfunction of the most unstable saddle point is shown in the inset. It has a positive
growth rate.

Physically, this can be understood by considering the shape of the growing
wavepacket in figure 6 and remembering that a flow is defined as absolutely or
convectively unstable only in the long time limit. Although the mode with zero group
velocity, at (x/t, z/t) = (0, 0), decays, the wavepacket contains growing eigenmodes
along rays with x/t = 0 and positive z/t . These cause the growth away from the shear
layer that is seen in figure 8. The wavepacket travels in the positive z-direction and,
for the confined flow, reflects off the wall and travels back in the negative z-direction.
This eventually sets up a standing wave in the x = 0 plane, as can be seen in figure 11,
which is calculated in the same way as figure 8. Of course, the shape of the standing
wave is that of the most unstable saddle point in the k-plane (figure 10), which gives
the behaviour in the long time limit. This standing wave, like its component waves,
has positive growth rate and is therefore absolutely unstable.

In Juniper (2006) the saddle points shown in figure 10 were called ‘ambiguous’ at
large h and were discounted because they have small k and do not predict the same
behaviour as the unconfined case when h tends to infinity. However, the mathematical
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Figure 10. Contours of gi in the k-plane for varicose perturbations of a confined flow with
(1/Λ, S, h) = (1.35, 0.03, 100), which is at the same shear and density ratio as the unconfined
flow in figure 7(a). Poles and branch points on the ki-axis prevent the integration path from
crossing the ki-axis as in figure 7(b) and the path traverses a series of saddle points near this
axis (inset figure). The most unstable saddle point has positive growth rate and its mode shape
is shown.

and physical arguments in this section and in Healey (2007) demonstrate why these
saddles should not, in fact, be discounted. Under the conditions in region 4 of
figure 9, a jet flow will be linearly convectively unstable when unconfined and linearly
absolutely unstable when confined. Furthermore, the flow is always absolutely unstable
to saddle s1 in region 5, where −1 < 1/Λ < + 1. Although Juniper (2006) shows that
‘ambiguous’ saddles exist at these values of 1/Λ, they are more stable than the s1

saddles and their effect on absolute/convective transition in the flow can be ignored.
Regions 1, 2 and 3 in figure 9 do not contain this type of saddle point and the

confined case with h tending to infinity gives the same result as the unconfined
case. However, confinement with h ∼ 1 has a strong effect on these flows when the
z-wavenumbers, ki , of modes with zero group velocity in the outer flow match those
of the inner flow. This is described in Juniper (2006).
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Figure 11. The impulse response in the plane x/t = 0 represented by the normalized pressure
perturbation for the confined flow in figure 10. The top series is similar to figure 8, which
represents the equivalent unconfined flow. The subsequent plots show how the impulse response
reflects off the boundary and sets up a standing wave with the mode shape of the most unstable
saddle point in figure 10.

As a final point, the behaviour of a weakly confined flow (i.e. large h) is unlikely
to be predicted well by this analysis when the flow evolves in the x-direction more
quickly than order h. This is because the apparent wave propagation in the z-direction
in the outer fluid, which is the origin of this curious behaviour, is simply a response to
the perturbation at the shear layer. Consequently, it is reasonable to expect that the
response at z = h receives contributions from a region of the shear layer of streamwise
length of order h. If the base flow evolves more quickly than this, the response at
z = h is likely to be inaccurate.

8. Conclusions
A linear spatio-temporal stability analysis is performed on a simple model jet/wake

flow in order to discover whether it has similar characteristics to the rotating disk
boundary layer studied by Healey (2006). The impulse response is evaluated by
integrating over a path in the complex k-plane. Particular attention is paid to this
path and to the positions of branch cuts in the k-plane. The first set of conclusions
concerns this process. In the unconfined case, the contribution from the plane of
diverging eigenfunctions (the A-plane) must be zero. However, when integrating over
the plane of converging eigenfunctions, it is legitimate to pass into a small region of
diverging eigenfunctions. This integration is not the same as that over the plane of
diverging eigenfunctions that was previously rejected. For reassurance, the same result
can be derived by integrating numerically over the plane of converging eigenfunctions
alone.

The impulse response for unconfined flows is evaluated throughout the outer fluid,
rather than just at the point of impulse. The second set of conclusions concerns this
full impulse response. The impulse in this paper is centred at (x, z, t)= (0, 0, 0), but
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excites all eigenfunctions equally, rather than being concentrated at the shear layer,
z = 0. Although this impulse takes the form of a doublet, the response is the same as
that of a point source at z =0. This is because of the constraints of incompressibility
and irrotationality. There is no dynamic constraint in the outer flow so, at t > 0, the
outer flow has no memory of the initial impulse except through its kinematic response
to the shear layer, which is affected only by the impulse at z =0. The response consists
of eigenmodes propagating at different group velocities. Eigenmodes with diverging
eigenfunctions are permitted and simply correspond to regions of the wavepacket for
which the growth rate increases as z increases. These regions arise when the dominant
saddle point lies on the plane of diverging eigenfunctions mentioned in the previous
paragraph. This demonstrates that the unconfined jet/wake flow behaves in a similar
manner to the unconfined rotating disk boundary layer studied by Healey (2006).
These regions are all associated with the interaction of the two shear layers rather
than the behaviour of each individual shear layer.

By examining the response in the whole outer fluid, rather than just at the point
of impulse, a set of conclusions can be drawn for unconfined jet/wake flows. The
absolutely unstable region of the (1/Λ, S)-plane is bigger than previously thought (it
includes the bottom half of region 2 in figure 9). There is a region of the (1/Λ, S)-
plane where parts of the wavepacket propagate and grow upstream, even though the
response decays at the point of impulse (region 4 in figure 9). The impulse response
has a similar shape over a wide range of 1/Λ and S, although the region with
diverging eigenfunctions becomes larger as S becomes further from 1.

Considering the impulse response for unconfined flows reveals a further set of
conclusions for confined flows. Confinement has little effect on the stability of most
flows unless the inner and outer flows have comparable widths (h ∼ 1) (Juniper 2006).
However, flows in region 4 of figure 9 are convectively unstable when unconfined and
absolutely unstable when confined. This is because, even though the response decays
initially at the point of impulse, part of the wavepacket propagates and grows in the
z-direction, reflects off the confining wall and then sets up a growing standing wave
in the outer fluid.

This paper demonstrates that confinement can destabilize inviscid jets and wakes
in the same way that it destabilizes the rotating disk boundary layer in Healey (2007).
Together with Juniper (2006), this paper reveals the full influence of the density ratio
combined with confinement. It is particularly significant for fuel injection systems,
which often involve confined shear flows at high Reynolds numbers and large density
ratios.

Appendix. Evaluating the boundary of region four
On the boundary of region 4 in figure 9, the contour with ωi = 0 on the k+ branch

just touches the ki-axis. Consequently, the parameter values that define this boundary
can be found by searching for a two-fold degenerate root to ωi = 0 on the negative
ki-axis.

Equation (2.12) can be re-arranged so that ω is an explicit function of k:

ω

k
= 1 + Λ

1 + f

1 − f
where f ≡ ±

(
− tanh k

S

)1/2

. (A 1)

The wavenumber, k, is given by k = −iki , where ki is a positive real number. The
function f can then be expressed as f ≡ ± (i)1/2g, where g is the real number
(tan ki/S)1/2. The fourth power of f is a real number and (A 1) can be rearranged
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such that the denominator is real and the numerator contains all the imaginary
components:

ω

−iki

= 1 + Λ
1 + 2f + 2f 2 + 2f 3 + f 4

1 − f 4
. (A 2)

The real part of the right-hand side of (A 2) must be zero because ωi = 0. The real
components of f , f 3 and f 4 can be substituted into (A 2) to give:

g4(1 − Λ) + (g − g3)Λ
√

2 + (1 + Λ) = 0, (A 3)

which has solutions:

g = −1 ± i√
2

, g =
−1 ±

√
2Λ2 − 1√

2(Λ − 1)
. (A 4)

When Λ = 1/
√

2, there is a two-fold degenerate solution with g = 1+
√

2 = 2.4142. At
this value of Λ, the k+ branch with ωi = 0 just touches the ki-axis at ki = tan−1(gS).
This marks the boundary of region 4.
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