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Figure 10. Mode shapes (pressure eigenfunctions) of zero group velocity modes in the
following situations: top: in the outer flow in the limit of strong confinement; middle: in
the inner flow in the limit of weak confinement; bottom: in the combined flow at values of
h corresponding to strong interaction between these modes. In each case, we observe that the
combined mode is indeed a combination of the other two modes. (a) Varicose, (b) sinuous
motion.

saddle, sc2 again, has the highest ωi from h =1 to h = 2.18. At h = 1.61, the mode
shapes of s2b and s1a can clearly be seen in the mode shape of the combined mode,
as demonstrated in figure 10(a). Finally, saddle s1a has the highest ωi of the valid
saddle points at large h. Thus, the saddle point with highest ωi goes from being the
fundamental mode of the outer flow to the fundamental mode of the inner flow via
two saddle points with particularly high ωi that arise because of resonance between
the inner and outer flows.

The ki-values of these saddle points (i.e. the wavenumber in the z-direction) are
shown as solid lines in figure 9, where ki(1 + h) is plotted as a function of h. The
saddle point with highest ωi is shown as a bold line whose thickness increases with
the growth rate, ωi . The dotted lines in figure 9 are the ki-values of the waves with
zero group velocity that scale with the outer flow, s2a to s2d , and the inner flow, s1a

to s1d , when uncombined. The combined flow is least stable (or most unstable) when
the ki-value of the combined instability is close to the intersection of these dotted
lines, where the resonance between the two flows is strongly constructive. As shown
in equation (5.1), these occur at h = 0.092, 0.124, 0.192, 0.420, 1.61, 2.79 and 3.98.
Conversely, the flow is most stable at intermediate values of h, where the ki-values of
s2a to s2d fall between those of s1a to s1d . The most extreme example of this is at h =1,
where the two flows are no longer absolutely unstable to varicose perturbations for
any amount of shear.
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Figure 11. Areas of unambiguous absolute instability (dark grey) as a function of shear and
confinement for a varicose motion with density ratio 1. The saddle point responsible for each
transition line is indicated. The light grey region is due to saddle s2a . Its absolute wavenumber,
kr , indicated by the contours 0.1 and 0.05, tends to zero as h tends to infinity. Thus, it is a
region of ambiguous absolute instability described in § 5.4.

We can now understand the features of the map of absolute instability in the
(1/Λ, h) plane shown in figure 11. Confinement, h, is clearly affecting the amount of
shear which is required to generate absolute instability. On the left-hand side of the
figure, where the AI/CI transition line is at Λ ∼ −1, there are local peaks of absolute
instability around h = 0.124, 0.192, 0.420, 1.61, 2.79 and 3.98. This is expected because
there are constructive interactions between zero group velocity modes in the inner
and outer flows at these values of h. Under the symmetry (Λ, h) ↔ (−Λ, 1/h), the
corresponding values of h on the right-hand side of the figure are h = 0.25, 0.36,
0.62, 2.38, 5.21 and 8.06.

5.4. Saddle points with small kr

Eigenvalues with very small values of kr should be discounted on two physical
grounds. First, a fundamental assumption of this analysis is that the base flow
remains unchanged in the x-direction over distances of the order of a wavelength.
Modes with small kr would violate this assumption in any physical situation because
they have very long wavelengths in the x-direction. Secondly, modes with small kr die
away very slowly in the z-direction. Their amplitudes must therefore tend to zero as
kr tends to zero in order to avoid having infinite energy. The cutoff value of kr will
depend on the rate at which the base flow varies in the x-direction and will be of
order h1/L, where L is a characteristic length scale of changes to the average flow in
the x-direction. For the parallel flow assumption to be applicable, h1/L of a physical
configuration must be less than order 1.
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Figure 12. Contours of ωi(k) for varicose perturbations in (a) weakly confined and
(b) unconfined configurations. The relationship between the kr > 0 regions of the two manifolds
is clearly seen in this figure. The saddle point of the inner flow, s1a , is in the same place on both
manifolds. However, the saddle points of the outer flow, which are bunched around the ki-axis
in the confined case, do not exist in the unconfined case. Their wavenumbers, kr , tend to zero
as h tends to infinity. Consequently, saddle s2a must be discounted as h tends to infinity even
though it is the most unstable mathematically valid pinch point. This is explained in detail in
§ 5.4.

There is a set of k+/k− pinch points that are always valid because their kr values
are always of order 1. These are called normal saddle points. There is another set
of k+/k− pinch points whose kr values tend to zero as h tends to infinity. This is
demonstrated in figure 12 which plots (a) the confined case with h =10 alongside
(b) the unconfined case at the same density ratio and shear. Although saddle s2a is
a mathematically valid k+/k− pinch point, it has vanishing kr as h tends to infinity
and must be discounted for the reasons described above. This is verified by the fact
that it does not exist at all in the unconfined case, where the only k+/k− pinch point
is saddle s1a . Nevertheless, this pinch point cannot be discounted completely because
it has a significant value of kr when h ∼ 1. We shall see in § 7 that the kr values of
saddle points such as s2a can reach order 1 at different parameter values. These are
called ambiguous saddle points because they are mathematically valid, but must be
discounted below kr of order h1/L for physical reasons.

As an example, when (Λ, h) = (−2, 2), saddle s2a is the only saddle with positive
growth rate and has kr = 0.12. In a physical system, it is ambiguous whether saddle
s2a would cause the flow to be absolutely unstable or whether its long wavelength
would violate the assumption of an unchanging base flow. The region of ambiguous
absolute instability swept out by saddle s2a in the (1/Λ, h)-plane is shown in light
grey in figure 11 together with contours of kr for this mode.
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This type of saddle point has been noticed before. Delbende & Chomaz (1998)
numerically calculate the fully nonlinear impulse responses of a weakly confined
wake flow with (Λ, S, h) = (−1, 1, 12.8). They show that kr at the leading edge of the
unstable wave packet tends to zero (their figure 12). These authors also examine a
confined wake flow with (Λ, S, h) = (−1, 1, 2.4). In this case (their figure 8), the kr

value does not tend to zero. Both of these results concur with the results of this study.

6. Effect of confinement on sinuous perturbations of a double shear layer in a
uniform fluid

Following the same process as that in § 5, we can show that confinement has an
even stronger effect on sinuous perturbations. The dispersion relation for sinuous
perturbations of the double shear layer in a uniform fluid is:

D ≡ (U1 − ω/k)2 tanh(kh1) + (U2 − ω/k)2 coth(kh2) = 0. (6.1)

This can be rearranged to reveal an obvious symmetry under the transformation
h1 ↔ h2, which in non-dimensional terms is h ↔ 1/h:

(U1 − ω/k)2

(U2 − ω/k)2
= − coth(kh1) coth(kh2).

A confined sinuous flow with Λ = − 1 is examined here. When h  1 (strong
confinement), the flow has the same image system as figure 7(c). Thus, the behaviour
is the same as that of the strongly confined varicose flow with Λ = − 1. This can
also be seen in the dispersion relation (6.1) since tanh(kh1) tends to 1, leaving the
coth(kh2) term that is characteristic of varicose disturbances. It was shown in § 5
that the behaviour of the strongly confined varicose flow with Λ = − 1 is the same
as that of the unconfined varicose flow with Λ = + 1. Hence when there is strong
confinement, the modes with zero group velocity that have highest ωi scale with the
outer flow and are saddle points s2a to s2d in figure 4(a). These saddle points lie at
ki,outer = − (1.113+ nπ)/h2, n= 0, 1, 2 etc. As h varies, they trace out the lines s2a,outer

to s2d,outer in figure 13.
When h � 1 (weak confinement), we can use the fact that the dispersion relation is

symmetric under h → 1/h. Thus the weakly confined sinuous flow with Λ = − 1 has
the same eigenvalues as the strongly confined sinuous flow with Λ = − 1 and hence
the same eigenvalues as the unconfined varicose flow with Λ = + 1. The eigenvalues
with zero group velocity are also saddle points s2a to s2d , but the corresponding
eigenfunctions are antisymmetric rather than symmetric. These saddle points scale
with the thickness of the inner flow and lie at ki,inner = − (1.113+mπ)/h1, m =0, 1, 2,
etc. As h varies, they trace out the lines s2a,inner to s2d,inner in figure 13.

The manifold of the confined sinuous flow has similar general features to that of
the confined varicose flow and will not be described here. In figure 13, which has
exactly the same scale as figure 9, the ki-values of the relevant saddle points are
shown as functions of h. The most unstable saddle point is shown in bold, with the
line thickness increasing with ωi . As h increases, the most unstable saddle point goes
from being the fundamental mode of the outer flow, s2a,outer , to the fundamental mode
of the inner flow, s2a,inner , via two saddle points at much higher ωi: sc2 and sc1. These
saddles arise because of resonance between the inner and outer flows. This is the same
process as that observed in the confined varicose flow with Λ = − 1 but, as can be
seen by comparing the thickness of the lines in figures 9 and 13, the confined sinuous
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Figure 13. Solid lines: z-wavenumber, ki , of the significant saddle points of a confined sinuous
wake flow with (Λ, S) = (−1, 1). The line thickness increases with the absolute growth rate ωi .
Dotted lines: z-wavenumber, ki , of the zero group velocity modes in the inner flow, s2a,inner to
s2d,inner , and the outer flow, s2a,outer to s2d,outer . The combined flow has higher ωi at values of h
where the zero group velocity modes in the inner and outer flows have the same z-wavenumber.
The most unstable flow arises when the two fundamental modes s2a,outer and s2a,inner coincide.
The scale is identical to that in figure 9, revealing that the sinuous motion at (Λ, S) = (−1, 1)
is considerably more unstable than the varicose motion.

flow with Λ = −1 is more unstable. At this value of S, there are no ambiguous saddle
points.

Constructive interaction between the the inner flow and the outer flow is expected
when ki,inner = ki,outer , which occurs at:

⇒ h ≡ h2

h1

=
1.113 + nπ

1.113 + mπ
=0.106, 0.151, 0.262, 1.00, 3.82, 6.65, 9.46 . . .

From inspection of figures 13 and 14, we can see that these points do indeed
correspond to local instability maxima around Λ = − 1. The strongest instability is
when the two fundamentals interact constructively at h =1. As for the varicose case,
this interaction can clearly be seen in the mode shapes in figure 10(b).

7. Effect of shear, density ratio and confinement on varicose and sinuous
perturbations

The analysis in § § 5 and 6 can be repeated at different density ratios, S. The
manifold defined by D(ω, k; Λ, S, h) = 0 has the same general features as the case
with S = 1. The chief difference is that the k− branches that scale with the outer
flow have width kr ∼ 1/(Sh), while those that scale with the inner flow have width
kr ∼ 1. Hence as the density of a flow increases, the widths of that flow’s associated
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Figure 14. Areas of unambiguous absolute instability (dark grey) as a function of shear and
confinement for a sinuous motion with density ratio 1. The saddle point responsible for each
transition line is indicated. The scale is the same as that in figure 11.

k− branches increase relative to those of the other flow, causing its corresponding
saddle points to become more unstable. Thus, the convective/absolute transition tends
to be more influenced by the denser flow than by the lighter flow.

Figure 15 shows the effect of shear, density ratio and confinement on varicose
perturbations. The top left-hand figure shows the effect of shear and density ratio on
the unconfined case and is a repeat of figure 6. The remaining seven figures, which
are slices through the top left-hand figure, show the effect of shear and confinement at
different density ratios. The dark grey regions are absolutely unstable – they are swept
out by normal saddle points such as sc2 and have wavenumbers kr ∼ (1+h). The light
grey regions are ambiguously absolutely unstable – they are swept out by ambiguous
saddle points such as s2a that are described in § 5.4. Contours of the wavenumber, kr ,
are shown for these saddle points. The white regions are convectively unstable.

The behaviour at a density ratio of S = 0.001 can be explained in four parts. (i) As
h → ∞ the inner flow dominates the behaviour and the dark grey region of absolute
instability matches that of the unconfined case. The light grey region of ambiguous
absolute instability is caused by saddle s2a , a mode that corresponds to the outer
flow. Its wavenumber tends to zero and it must be discounted owing to the physical
argument in § 5.4. (ii) In the range 1 <h< 2, the ambiguous saddle has a wavenumber
of around 0.4 and can probably not be discounted on physical grounds (this depends
on the value of the cutoff wavenumber described in § 5.4). If valid, the ambiguous
saddle will dominate the behaviour, except around Λ = 1 where the combined mode
sc2 dominates. (iii) In the range 0.35 <h< 1, the combined mode sc1 dominates.
(iv) As h → 0, the outer flow dominates the behaviour. The outer flow is both denser
and slower so the dark grey region of unambiguous absolute instability is larger than
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Figure 15. Absolute instability for varicose motion of a confined shear flow as a function
of shear, density ratio and confinement. The top left-hand figure is the unconfined case. The
remaining figures are in the (1/Λ, h)-plane at given density ratios. Regions of unambiguous
absolute instability are shown in dark grey. Regions of ambiguous absolute instability are in
light grey, showing contours of kr . Zero net mass flux, ρ1U1 +ρ2U2 = 0, is shown by the dotted
line. Note that the scales on the horizontal axes differ.
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when the inner flow dominates the behaviour. There is no ambiguously absolutely
unstable region for h < 1 at this density ratio.

At density ratios of S = 0.1 and 0.316 the behaviour of the normal saddle points
is similar to that at S =0.001. However, the ambiguous saddle points have more
curious behaviour. On the left-hand side of the dotted line, the ambiguous saddle
point’s wavenumber tends to zero as h tends to infinity, as before. However, on
the right-hand side of the dotted line, there are now several saddle points and the
wavenumber of the most unstable does not tend to zero as h tends to infinity. For
example, the envelope of saddle points at S = 0.316 tends to a minimum value of
kr = 0.2 as h tends to infinity because there is a corresponding saddle point at kr = 0.2
in the unconfined case. Furthermore, the ambiguous saddle point on the right-hand
side of the dotted line when S = 0.001 changes smoothly into a normal saddle point
as S increases to 1000. This is curious behaviour and a precise description of these
ambiguous saddle points remains to be determined. Finally, the behaviour at S > 1
can be found from the symmetry (Λ, S, h) ↔ (−Λ, 1/S, 1/h).

Figure 16 shows the effect of shear, density ratio and confinement on sinuous
perturbations. At S = 0.001, we observe the increased instability of the combined
saddle sc1 around h =1, where the fundamental modes of the inner and outer flows
have the same wavenumber. As S increases, saddle sc1 becomes extremely unstable and
extends the absolutely unstable region far to the left. This means that for density ratios
S � 1, confined wakes are absolutely unstable, even with strong co-flow. However, as
the density ratio increases, sc1 changes smoothly into an ambiguous saddle point. Its
wavenumber tends to zero and it must eventually be discounted on physical grounds.
Again this depends on the value of the cutoff wavenumber described in § 5.4. The
symmetry transform in the sinuous case is (Λ, S, h) ↔ (Λ, S, 1/h), which can clearly
be seen in the figures.

8. Conclusions, implications and further work
This work has examined the effect of confinement on the convective/absolute

transition of two-dimensional jets and wakes. The analysis locates the modes of zero
group velocity via a geometrical method. Distinct modes exist in both the inner and
outer streams in the limit of weak and strong confinement. When the flows have
similar thicknesses, modes in the inner flow interact constructively with modes in the
outer flow if their z-wavenumbers, ki , are similar. This makes the combined flow more
unstable than the individual flows would be without any confinement. The results
presented here show the level of confinement, h, that leads to the strongest absolute
instability over a large range of density ratios. However, in some flow regimes, the
wavenumber of the most unstable mode tends to zero and it must be discounted on
physical grounds. This study cannot determine the cutoff wavenumber at which the
mode ceases to be active, so cannot determine the exact region of absolute instability
in these particular flow regimes.

This study implies that by confining parts of a wake or a jet one can create regions
of local absolute instability surrounded by regions of local convective instability. This
has some scientific implications. For instance Pier & Huerre (2003) have shown
numerically that the frequency of a global mode in a smoothly developing wake
flow is dictated by the frequency of the upstream point of absolute instability. An
experiment or a numerical analysis of a partly confined wake could generate several
such pockets of absolute instability, each with different local frequencies. It would be
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Figure 16. As for figure 15, but for sinuous motion.
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interesting to see whether the global mode corresponded to the most upstream pocket
or whether it could be made to respond to a downstream pocket.

It has consistently been found through trial and error that confined shear injectors
are a good configuration for industrial injection systems which require good mixing
with a low pressure drop. It is likely that this is because they stimulate an unstable
global shear mode whose large-scale flapping or spiralling motion enhances mixing.
This article presents useful first-order design rules for such injectors, such as the
optimum configuration for a given density ratio. More useful design rules will emerge
from axisymmetric models.

This work can be extended to the axisymmetric confined configuration. When there
is no swirl, the manifold for perturbations with zero azimuthal wavenumber, m, is
very similar to the two-dimensional varicose manifold. Likewise, the manifold with
m = 1 is very similar to the two-dimensional sinuous manifold. Higher azimuthal
wavenumbers are always more stable than m =0 and m =1 with the exception of
m = 2 at a very specific value of confinement and shear. Thus, the regions of absolute
instability in the axisymmetric confined configuration are very similar to those in
the two-dimensional confined configuration. However, when the flows also have an
azimuthal velocity, the resultant centrifugal modes interact with the Kelvin–Helmholtz
modes and the behaviour becomes quite different, as shown by Loiseleux, Chomaz &
Huerre (1998). The results of the axisymmetric configuration will be reported in a
future paper.
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