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Thermo-acoustic combustion instabilities arise from feedback between flow perturbations
and unsteady heat release rate of a flame in a combustion chamber. In the case of a
premixed, swirl stabilized flame, unsteady heat release rate results from acoustic velocity
perturbations at the burner inlet on the one hand; and from azimuthal velocity pertur-
bations, which are generated by acoustic waves propagating across the swirler, on the
other. The respective time lags associated with these flow/flame-interaction mechanisms
determine the overall flame response to acoustic perturbations and therefore thermo-
acoustic stability. The propagation of azimuthal velocity perturbations in a cylindrical
duct is commonly assumed to be convective, which implies that the corresponding
time lag is governed by the speed of convection. We scrutinize this assumption in the
framework of small perturbation analysis and modal decomposition of the Euler equations
by considering an initial value problem. The analysis reveals that azimuthal velocity
perturbations in swirling flows should be regarded as dispersive inertial waves. As a
result of the restoring Coriolis force, wave propagation speeds lie above and below the
mean flow bulk velocity. The differences between wave propagation speed and convection
speed increase with increasing swirl. A linear, time invariant step response solution for
the dynamics of inertial waves is developed, which can be approximated by a concise
analytical expression. This study enhances the understanding of the flame dynamics of
swirl burners in particular, and contributes physical insight on inertial wave dynamics in
general.

1. Introduction

The present study is motivated by observations of the propagation of azimuthal velocity
perturbations in premixed swirl burners. A common assumption in the combustion dy-
namics community is that such perturbations, which determine the overall flame response
to acoustic perturbations and thermo-acoustic stability, are convected by the mean flow.
In several publications, however, propagation speeds approximately 40−50% faster than
the mean bulk flow velocity were reported, without further explanation. In this paper we
explain these unexpected observations by recognizing azimuthal velocity perturbations as
inertial waves, which obey a non-trivial dispersion relation. This introduction, therefore,
starts with background on thermoacoustic combustion instabilities – in particular the
dynamics of swirl flames – and then makes a connection to the literature on inertial
waves.

Thermo-acoustic instabilities arise from feedback between combustion system acoustics
and unsteady heat release rate of the flame. This phenomenon was recognized in the late
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19th century by Rayleigh (1878), and played an important role in the development of
rocket engines in the 1950s and 1960s (Culick 1996; Poinsot 2017). With the introduction
of lean-premixed combustion technology in modern, low-emission gas turbines, thermo-
acoustic combustion instabilities have again become a very active research area.

Modern combustion applications often employ aerodynamic swirl generators, which
generate rotating flow upstream of the flame, in order to enhance flame stabilization and
improve fuel mixing (Candel et al. 2014). Swirlers significantly influence the mean flame
shape and the response of the flame to external perturbations (“flame dynamics”) and
hence the thermo-acoustic stability of the combustion system.

Richards and co-workers (Richards & Yip 1995; Straub & Richards 1999) observed that
the axial position of the swirler in a premix burner had a significant impact on combustion
stability, and put forward an explanation “related to variations in the azimuthal velocity
being convected from the swirl vanes to the end of the nozzle”. These “tentative” (to quote
Richards) arguments were corroborated by Komarek & Polifke (2010) in a study that
endeavored to make explicit the effects of superposition of the respective flame responses
to axial and azimuthal velocity perturbations on the overall flame transfer function. The
burner used was designed such that the axial position of the swirler could be varied
easily. Therefore, it was possible to change the relative phase between the respective
contributions to the flame response. In confirmation of the arguments of Richards and co-
workers it was observed that both gain and phase of the flame transfer function as well as
stability limits† depend in a very sensitive manner on the position of the swirl generator.
The experimental results were supplemented by numerical simulation of the respective
flame responses to axial and azimuthal velocity perturbations and the transport of
azimuthal velocity perturbations from the swirler to the flame base. Phenomenological
low order models formulated in terms of (distributed) time delays for the transport of
perturbations and the flame responses provided additional substantiation. In summary,
Komarek & Polifke (2010) showed that the response of a swirl flame to azimuthal velocity
perturbations generated at the swirler interferes with the response to axial fluctuations.
The swirler position governs the relative phase between these contributions and thus
decides whether superposition is constructive or destructive.

Azimuthal velocity perturbations play a crucial role in the particular acoustic-flow-
flame interaction mechanism outlined in the previous paragraph. A number of studies
(see below) have investigated this mechanism, which can be analyzed in three consecutive
steps (as depicted in Fig. 1): firstly, the generation of azimuthal velocity fluctuations at
the swirler, secondly, the propagation of these “vorticity waves” or “swirl waves” across
the mixing duct to the flame base and finally, modulation of the heat release rate by the
azimuthal perturbations.

The first step can be regarded as an acoustic-convective mode conversion: Acoustic
waves incident on the swirler generate azimuthal velocity fluctuations. This process can
be described by a model that is known in the turbomachinery community as the “actuator
disk theory”, which delivers jump conditions across turbomachinery elements (Kaji &
Okazaki 1970; Greitzer et al. 2004). Palies et al. (2010, 2011a) tailored the actuator disk
model specifically to describe the generation of convective vorticity waves at premix swirl
burner and discuss the implications for thermo-acoustic stability.

The exact mechanism of the third and final step, by which fluctuations of azimuthal
velocity modulate the rate of heat release by the flame, has been a matter of debate
since the seminal paper of Richards & Yip (1995). Indeed, several authors have en-
deavored to identify the governing flow-flame interaction mechanisms and to quantify

† Note that results on the latter were reported only recently by Albayrak et al. (2018b).
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Figure 1. Schematic illustration of the interaction between azimuthal velocity fluctuations and
the heat release rate in three consecutive steps. First, acoustic waves generate azimuthal velocity
fluctuations across the swirler via mode conversion. These fluctuations propagate inside the
mixing duct towards the combustion chamber. Finally, the kinematic distortion in the flow-flame
balance causes the heat release rate modulations.

the flame response to swirl fluctuations. As explained by Acharya & Lieuwen (2014),
the essential difficulty of the matter is that an axisymmetric flame is disturbed only
by velocity components normal to it, thus there is no direct “disturbance pathway”
between azimuthal velocity fluctuations and flame heat release rate. Hirsch et al. (2005)
argue that generation and stretching of azimuthal vorticity along diverging streamlines
represents an indirect disturbance pathway between fluctuating circulation and flame
heat release rate, and build a semi-analytical model based on the vorticity transport
equation and the Biot-Savart law. Palies et al. (2010) observe that fluctuations in swirl
number “give rise to a breathing motion of the central recirculation region resulting in
an angular deflection of the flame”. They comment that “This motion is equivalent to
that which would be induced by perturbations of the burning velocity” and indeed, the
idea that “incident velocity modulations modify the swirl number and effectively change
the turbulent burning velocity” was explored in a follow-up study (Palies et al. 2011c).
Results obtained with numerical simulation of turbulent reacting flows by Acharya &
Lieuwen (2014) show that “azimuthal flow fluctuations generate significant radial and
axial flow fluctuations”, but the precise flow dynamics of this effect is not elaborated.

In contrast to the numerous publications on the first and third steps, a thorough
analysis of the second step, i.e. the propagation of azimuthal velocity perturbations in
the mixing duct, has not yet been carried out. This step is clearly important, because
the time required for propagation from the swirler to the root of the flame governs the
relative phase between the responses to axial and azimuthal velocity fluctuations. In the
majority of publications cited above, the propagation is simply assumed to be convective,
which indeed seems to be an entirely reasonable assumption for convective vortical waves.
In a recent publication Palies et al. (2017) employ the linearized Euler equations to argue
that azimuthal velocity fluctuations propagate with the speed of convection. However,
the analysis relies on merely the radial and azimuthal momentum equations and neglects
the mass conservation and axial momentum equations. We will discuss the shortcomings
of this approach in Sec. 2.3.
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However, in several studies it was mentioned that the assumption of convective prop-
agation of azimuthal velocity perturbations does not agree quantitatively with experi-
mental or computational findings. For example, Komarek & Polifke (2010) report that
a match between a low-order model for the flame transfer function and experiment is
achieved only if the convective velocity is set in an ad-hoc manner to a value that exceeds
the bulk velocity in the burner by approximately 40%. Similarily, Palies et al. (2011b)
report a propagation speed of 4.1 m/s in an experiment with an axial swirl generator,
while the bulk speed is 2.7 m/s. Similar deviations are reported in the computational
study of Acharya & Lieuwen (2014). These observations, which clearly imply that the
propagation of azimuthal velocity fluctuations is not strictly convective, motivate the
present work.

The goal of the present study is to further elucidate the physical characteristics of
the propagation of azimuthal velocity fluctuations in cylindrical flow and to quantify
the speed of propagation. For this purpose, we consider waves in rotating flows, i.e.
inertial waves, also known as Kelvin waves due to the seminal work of Thomson (1880).
Inertial waves are dispersive waves that are driven by the restoring Coriolis force in
swirling flows. Readers may refer standard textbooks for an introduction, e.g. Greenspan
(1968), Saffman (1993). Inertial waves play a role in various fields. Publications by Lessen
et al. (1974), Gallaire & Chomaz (2003b,a) and Parras & Fernandez-Feria (2007) focused
on hydrodynamic stability analysis of vortex cores. In these publications, the objective
was to investigate the linear stability of various vortex types, e.g. Rankine or Batchelor
vortex, and identify a variety of wave modes, including inertial waves. A similar math-
ematical framework was used to study the vortex breakdown phenomenon. Benjamin
(1962) developed the critical swirl state concept to estimate under which circumstances
vortex breakdown may occur. The critical swirl represents the boundary between sub-
critical and supercritical flow states. The former accommodates standing waves, whereas
the latter can only support downstream propagating waves. The occurrence of vortex
breakdown is attributed to the subcritical region. Although not explicitly mentioned
in Benjamin’s papers, these waves correspond to inertial waves. Rusak & Lee (2002)
extended this concept to estimate the impact of compressibility on the critical swirl.
Confirmation was provided by Renac et al. (2007) who derived an analytical asymptotic
solution, where inertial wave dynamics was also identified.

Inertial waves play a role also in turbomachinery applications, e.g. Kerrebrock (1977);
Golubev & Atassi (1998); Tam & Auriault (1998). These authors focused on acoustic
wave modes in rotating duct flows for a range of Mach numbers and swirl strengths and
characterized inertial waves as “nearly-convected waves”.

The above mentioned publications are concerned with asymptotic stability of inertial
wave modes. There are only a few attempts to investigate the spatio-temporal evolution
of inertial waves. Arendt et al. (1997) proposed an initial value problem for a vortex
tube, employing the linearized incompressible Euler equations for the Rankine vortex,
where the flow is perturbed by an axial vortical disturbance as an initial condition. The
time evolution is formed as a discrete superposition of inertial wave eigenmodes.

The present study follows a similar approach, but with important differences. Follow-
ing Kerrebrock (1977), the azimuthal flow profile downstream of the swirler is assumed to
be solid body rotation, which is simpler to investigate than the Rankine vortex considered
by Arendt et al. (1997). The analytical handling of equations is easier and consequently
time-space domain solutions are derived. The resultant solution is sufficiently simple that
it contributes to the understanding of inertial wave dynamics and analytically quantifies
the inertial wave propagation speed. Moreover, we consider an initial condition that
corresponds to a perturbation generated by a plane acoustic wave propagating in the
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downstream direction across a swirler. Therefore, the initial value problem is written
for compressible flows. The solution accounts for the dispersive wave structures, with
propagation speeds that depend on mean flow properties – in particular swirl number –
and may deviate significantly from the speed of convection. This outcome also explains
the unexpected propagation speeds discussed above.

The modal analysis of inertial waves is introduced in Sec. 2. We start with the
compressible set of equations in Sec. 2.1 to analyze the interaction between acoustics and
inertial waves. Moreover, the compressible framework is necessary to identify the acoustic-
convective mode conversion across the swirler. Well-known incompressible inertial wave
modal properties are derived in Sec. 2.2 from the compressible solution in the limit of
the infinite sound speed. The interpretation of both compressible and incompressible
modal analysis results is given in Sec. 2.3, where the corresponding eigenvalues and
eigenmode structures are discussed in detail. Sec. 2.4 compares analytical results with
the numerical solution of linearized Navier–Stokes equations. In Sec. 3 the initial value
problem is proposed, i.e. a step acoustic perturbation is imposed upstream of a swirler in
an annular duct. The spatio temporal evolution of waves after the swirler is analyzed. The
actuator disk theory is revised in Sec. 3.1 to describe the generation of azimuthal velocity
fluctuations from acoustic waves across the swirler. In Sec 3.2, using the actuator disk
theory the initial value conditions are derived for the acoustic step perturbation. Two
different methods are proposed in Sec. 3.3 to solve the initial value problem analytically,
namely a non-dispersive low frequency and low wavenumber model and 2) asymptotic
solution via the method of steepest descent. In Sec. 4, these theoretical solutions are
demonstrated on a swirl stabilized burner that was previously investigated by Komarek
& Polifke (2010). This clarifies the observed deviation in propagation speeds of azimuthal
velocity fluctuations by acknowledging inertial waves. The proposed solution not only
contributes insight of inertial wave dynamics, but also has strong impact on thermo-
acoustic modeling by accurately predicting propagation speeds with only a few inputs,
such as mixing duct diameter and swirler angle.

2. Modal analysis of inertial waves in swirling flow

Inertial waves may be accurately modelled by linearized equations, since fluctuation
amplitudes are small compared to bulk flow velocities (Greenspan 1968). Stability analy-
sis of the linearized equations may be realized by modal decomposition of flow quantities,
e.g. for a variable, q (z, r, t):

q (z, r, t) =

∫ ∞
−∞

∫ ∞
−∞

e−iωt+ikz q̂ (k, r, ω) dωdk , (2.1)

where the Fourier transformation converts time to angular frequency, t → ω, and
similarly axial position to axial wavenumber, z → k. Modal decomposition reduces the
partial differential equations to ordinary differential equations. If simple base flows are
assumed, analytical solutions become feasible, which can contribute insight and physical
understanding of wave mechanisms.

In linear stability analysis, the aim is to determine the imaginary part of the angular
frequency or/and axial wavenumber, which indicates the growth rate of perturbations.
Although the stability properties of inertial waves are not of interest in this work, as
they are known to be stable, a modal approach is also employed here, since it reveals not
only the stability, but also the structures and the velocities of inertial wave eigenmodes.
In the next section, an initial value problem for inertial waves is formulated, where
the eigenmodes are used to characterize the initial perturbation. Moreover, the group
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speed of inertial wave eigenmodes accounts for the deviations in the propagation speed
of azimuthal velocity fluctuations from convection, as discussed in the introduction.

As demonstrated by several authors (Golubev & Atassi 1998; Tam & Auriault 1998;
Renac et al. 2007; Rusak & Lee 2002), the impact of compressibility on inertial waves can
be neglected for low Mach number flows, as they are typically encountered in the mixing
duct of premix burners. Nevertheless, we begin the following subsection with the modal
analysis of compressible flow. The motivation behind this approach is the following: we
shall demonstrate that plane acoustic waves propagating across a swirler generate inertial
waves. The present study is limited to an axisymmetric analysis, since it is assumed that
plane acoustic waves generate axisymmetric inertial wave modes. This assumption is
justified by the observation that non-plane contributions to the perturbation, with mode
orders that correspond e.g. to the number of flow passages of the swirler, decay quickly
downstream of the swirler. To account for the acoustic waves, a compressible framework
is required at this step. However, once inertial waves are generated, their subsequent
evolution can be characterized in an incompressible framework. Therefore, incompressible
inertial wave properties are also derived in Sec. 2.2. Since the incompressible inertial
waves are known in the fluid dynamics community, the derivation is realized as an
asymptotic solution of the compressible equations in the limit of infinite speed of sound,
instead of a traditional derivation starting from incompressible equations.

2.1. Compressible version

The Euler equations are the governing equations for inviscid compressible flow. As-
suming isentropic flow, they are written

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u , (2.2a)

∂u

∂t
+ u ·∇u = −1

ρ
∇p , (2.2b)

where ρ, u and p stand for the density, velocity vector and pressure, respectively. Due
to the isentropic assumption, a transport equation for energy is not required. In order to
facilitate linearization, a simple cylindrical mean flow field in an annulus ri 6 r 6 ro is
considered

ū = [ūz, 0,Kr] , (2.3)

where ūz indicates the uniform axial velocity. The flow is in solid body rotation, such
that the mean azimuthal velocity component ūθ = Kr increases linearly with radius,
where the circulation strength K is – up to a factor 2πr2

o – equal to the circulation of
the flow. The mean pressure and density can be determined via the ideal gas law and
the radial momentum balance, which are written respectively

p̄ =
c2

γ
ρ̄ , (2.4a)

ρ̄
ū2
θ

r
=
∂p̄

∂r
, (2.4b)

where c is the speed of sound and γ is the ratio of specific heats. Note that the isentropic
relation is used in the ideal gas law. The radial profile of mean pressure is obtained as

p̄ (r) = p0 exp

(
γK2r2

2c2

)
, (2.5)
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with reference pressure p0. The mean density profile can be trivially retrieved by substi-
tuting this relation back into the ideal gas law. Given the above mean fields, Eq. (2.2) is
linearized as

1

c2

(
∂p′

∂t
+ ūz

∂p′

∂z

)
= − u′r

∂ρ̄

∂r
− ρ̄

(
∂u′z
∂z

+
∂u′r
∂r

+
u′r
r

)
, (2.6a)

∂u′z
∂t

+ ūz
∂u′z
∂z

= −1

ρ̄

∂p′

∂z
, (2.6b)

∂u′r
∂t

+ ūz
∂u′r
∂z

= −1

ρ̄

∂p′

∂r
+

1

c2ρ̄2

∂p̄

∂r
p′ +

2ūθu
′
θ

r
, (2.6c)

∂u′θ
∂t

+ ūz
∂u′θ
∂z

= −u′r
(

dūθ
dr

+
ūθ
r

)
, (2.6d)

where the isentropic relation, p′ = c2ρ′, is employed to replace ρ′ with p′. The ratio
between the azimuthal velocity at the outer radius ro and the speed of sound c is defined
as the swirling Mach number,

Mas =
Kro
c

. (2.7)

In the limit Mas � 1, the impact of circulation on the mean pressure in Eq. (2.5) is
negligible and the governing equations can be further simplified: uniform radial profiles
of pressure and density may be assumed and the boxed terms in Eq. (2.6) may be
negelected. Nevertheless, note that the set of equations resulting from the assumption
Mas � 1 retains compressibility.

In the following, the condition of small swirling Mach number Mas � 1 is considered
for the compressible flow case. In order to retrieve incompressible equations an additional
assumption of infinitely fast speed of sound c → ∞ is required. This step, which allows
further simplifications, is performed in the next subsection.

Modal decomposition as defined in Eq. (2.1) simplifies the partial differential equa-
tions (2.6) to the following second order ordinary differential equation for ûr

d2ûr
dr2

+
1

r

dûr
dr

+ ûr

(
A2 − 1

r2

)
= 0 . (2.8)

The factor A, which is introduced here for better readability, is defined as

A =

√
(C2 − 4K2)

(
1

c2
− k2

C2

)
, (2.9)

with modal convective operator C

C = ω − ūzk . (2.10)

With impermeability boundary conditions at the inner and outer walls of the annulus,

ûr (ri) = 0 , (2.11a)

ûr (ro) = 0 , (2.11b)

Eq. (2.8) forms a Sturm-Liouville problem. Its closed form analytical solution is written

ûr (r) = κ1 [J1 (Ar) + κ2Y1 (Ar)] , (2.12)

where κ2 and A are found by applying the boundary conditions, while κ1 is to be
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determined via an initial condition. The boundary conditions inserted in the solution
require

J1(Aro)Y1(Ari)− J1(Ari)Y1(Aro) = 0 , (2.13)

where Jm(r) and Ym(r) are the Bessel function of first kind and second kind, respectively.
As a characteristic property of the Sturm-Liouville theorem, this equation has infinitely
many solutions with eigenvalues λn for the variable A. The eigenvalues are ordered as

λ0 < λ1 < ... < λn < ...→∞ . (2.14)

Substitution into Eq. (2.9) yields dispersion relations, which indicate how the frequencies
ωn of the corresponding eigenmodes depend on the wavenumber k and the parameters
K, c that govern the mean flow:

ωn,i = k

ūz ± c√
2

√
L2
n −

√
L4
n −

16K2

k2c2

 , (2.15a)

ωn,a = k

ūz ± c√
2

√
L2
n +

√
L4
n −

16K2

k2c2

 (2.15b)

The inertial modes differ from the acoustic modes through the sign in front of the inner
square root. Here the subindices “i” and “a” indicate inertial and acoustic eigenvalues,
respectively. The nondimensional parameter Ln is written

Ln =

√
1 +

(
λn
k

)2

+

(
2K

ck

)2

. (2.16)

Note that Eq. (2.15) is valid for n 6= 0. For n = 0, i.e. the trivial solution λ0 = 0,
inertial waves do not exist and the well-known plane acoustic wave dispersion relation is
recovered,

w0,a = k(ūz ± c) . (2.17)

For both inertial and acoustic modes there exist two sets of solutions indicated by “±”.
The corresponding eigenmodes are determined by substituting the eigenvalues, λn, in
Eq. (2.6) and written

ûr,n (r) = κ1M1(λnr) , (2.18a)

ûθ,n (r) = −κ1
2Ki

Cn
M1(λnr) , (2.18b)

ûz,n (r) = κ1
ikc2λn

c2k2 − C2
n

M0(λnr) , (2.18c)

p̂n (r) = κ1
iCnρ̄c

2λn
c2k2 − C2

n

M0(λnr) , (2.18d)

where the linear combination of the Bessel functions is employed as

Mm(λnr) = Jm(λnr)−
J1(λnri)

Y1(λnri)
Ym(λnr) . (2.19)

The modal convective operator is trivially extended for the nth eigenmode as

Cn = wn − ūzk . (2.20)
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The interpretation of these results is presented in Sec. 2.3 after the introduction of the
incompressible modal analysis.

2.2. Incompressible version

Since the modal analysis of incompressible inertial waves is readily found in the
literature (Greenspan 1968), we will not repeat it in its traditional form. Instead, we
demonstrate results as an asymptotic approach from the above compressible solution.
This is accomplished by taking the limit of infinite speed of sound for each variable
that is defined for the compressible case. From now on the superscript † is employed to
indicate incompressible variables, i.e.

q† = lim
c→∞

q . (2.21)

In the incompressibility limit, the linearized compressible equations as in Eq. (2.6) reduce
to

∂u′z
∂z

+
∂u′r
∂r

+
u′r
r

= 0 , (2.22a)

∂u′z
∂t

+ ūz
∂u′z
∂z

= −1

ρ̄

∂p′

∂z
, (2.22b)

∂u′r
∂t

+ ūz
∂u′r
∂z

= −1

ρ̄

∂p′

∂r
+

2ūθu
′
θ

r
, (2.22c)

∂u′θ
∂t

+ ūz
∂u′θ
∂z

= −u′r
(

dūθ
dr

+
ūθ
r

)
. (2.22d)

The modal decomposed differential equation for u′r can be written in the same form as
Eq. (2.8)

d2ûr
dr2

+
1

r

dûr
dr

+ ûr

((
A†
)2 − 1

r2

)
= 0 , (2.23)

but the factor A† reduces to

A† =
ik

C

√
(C2 − 4K2) . (2.24)

In the incompressible limit, the propagation of the acoustic waves becomes nonlocal and
thus its dispersion relation drops out and the inertial wave dispersion relation simplifies
to

ω†n,i = k

(
ūz ±

2K

kL†n

)
. (2.25)

Now the nondimensional parameter L†n is written

L†n =

√
1 +

(
λn
k

)2

. (2.26)

Corresponding eigenmodes are in the incompressible limit simplified to

û†r,n (r) = κ1M1(λnr) , (2.27a)

û†θ,n (r) = −κ1
2Ki

Cn
M1(λnr) , (2.27b)

û†z,n (r) = κ1
iλn
k
M0(λnr) , (2.27c)
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p̂†n (r) = κ1
iCnρ̄λn
k2

M0(λnr) . (2.27d)

Since Eq. (2.13), which results from boundary conditions, is identical for the compressible
and incompressible equations, the eigenvalues λn are also identical and hence the dagger
superscript may be omitted for the eigenvalues. Mode shapes are also the same as in the
compressible case, but note that the prefactors are changed.

2.3. Interpretation of modal results

In this section, we interpret the results of modal analysis for both compressible and
incompressible cases. In the literature, several publications present a similar analysis, but
each of them focuses on different aspects. It is instructive to briefly discuss these studies
and juxtapose our work.

For turbomachinery applications, Kerrebrock (1977) employed modal analysis to
demonstrate wave modes in inviscid, compressible, ducted swirling flows. The author
distinguished acoustic and “nearly convective” waves and discussed the stability of
modes. Golubev & Atassi (1998) extended this work by analyzing a variety of azimuthal
velocity profiles, i.e. free vortex ūθ = Γ/r and solid body rotation ūθ = Kr. They
confirmed the existence of acoustic and nearly convective waves by means of asymptotic
analysis and numerical solution of the modal equations with spectral methods. Kousen
(1996) followed a similar numerical approach. These studies mentioned also a third
branch of “purely convective” wave solutions for the free vortex case. Employing an
initial value formulation, Tam & Auriault (1998) confirmed the existence of the acoustic
and nearly convected waves, but showed that the purely convective mode is a spurious
mode, i.e. a numerical artefact.

Note that all of these early studies speak of “nearly convective” waves. This term
indicates that wave propagation is of dispersive character, with speeds close to those of
convection by the mean flow - an order of magnitude slower than acoustic propagation.
However, there were no further attempts to quantify the wave propagation velocities. The
Coriolis force was correctly identified as the driving mechanism of these waves, however,
there was no mention of the literature on inertial waves.

A modal analysis framework was also employed by Rusak & Lee (2002) for a numerical
investigation of vortex breakdown in compressible flows. Based on the concept of critical
swirl introduced by Benjamin (1962), it was shown that vortex breakdown occurs at lower
swirl strength as Mach number increases. Renac et al. (2007) confirmed this numerical
result by analytically deriving the inertial wave dispersion relation. By setting k = 0
and ω = 0 in the dispersion relation, the impact of compressibility on the critical swirl
strength was assessed. Interestingly, the result for the dispersion relation agrees with
Eq (2.15) in nondimensional form, although different assumptions were employed: Renac
et al. (2007) assumed that the product of wavenumber k and Mach number Ma is small
kMa � 1, whereas the present derivation is based on the assumption of small swirling
Mach number, i.e. Mas � 1.

In contrast to prior publications, the present study employs modal analysis in order
to characterize the eigenmode structures and quantify propagation speeds. Our main
objective is to derive a time-space domain solution of an initial value problem (see Sec. 3),
where an initial perturbation of swirling flow results from an acoustic wave that is incident
on a swirler. The dispersion relation is especially important in this context because
propagation speeds of perturbations can be deduced from the group speed, cg = ∂ω/∂k.
The modal analysis is a crucial step before proceeding to the initial value problem,
as initial perturbations are decomposed into eigenmodes. In this regard, the present
analysis follows Arendt et al. (1997), who represent an initial vortical perturbation of
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Figure 2. Structure of first three eigenmodes n = 1, 2, 3 (solid black, dashed red, dotted blue
lines). Left: Profiles of ûθ and ûr as a function of radius. Right: Profiles of ûz and p̂.

an incompressible vortex tube as a superposition of the corresponding inertial wave
eigenmodes. An extensive discussion with respect to this publication is given in Sec. 3.

Fig. 2 shows radial profiles of the first three eigenmodes n = 1, 2, 3 as defined in
Eq. (2.18) and Eq. (2.27). The left plot shows profiles of radial and azimuthal velocities ûr
and ûθ, while the right plot shows axial velocity ûz and pressure p̂. The radial coordinate
is normalized as r∗ = (r − ri) / (ro − ri). The profiles are normalized with the respective
maximum values, i.e.M∗n(λnr

∗) = Mn (λnr
∗) /max (Mn (λnr

∗)). Note that the respective
normalized profiles of the incompressible and the compressible cases agree with each
other, thus the figure represents both cases. Obviously, the eigenmodes become more
oscillatory with increasing order n.

Fig. 3 shows the dependence of inertial wave group speed on axial wavenumber. In
these plots, reduced group speeds cg − ūz are shown, i.e. the speed of convection is not
taken into account. The wavenumber is normalized by the first eigenvalue, k∗ = k/λ1.
The left plot represents the first three eigenmodes n = 1, 2, 3 of the incompressible case.
For each eigenmode, two values of the group speed are found, corresponding to the ± sign
in the dispersion relations (2.15) and (2.25) for the compressible and the incompressible
case, respectively. The opposite signs of the reduced group speeds cg − ūz imply that
inertial waves propagate at speeds above as well as below that of base flow convection.
The deviation of the group speeds from the convective velocity increases with circulation
strength K, but diminishes with increasing order n and with increasing axial wavenumber
k∗, indicative of dispersive wave propagation. In the low axial wavenumber limit, group
speeds are the highest and are written

lim
k→0

c†g − ūz = ±2K

λn
. (2.28)

These values are shown on the ordinate of the plot.
These results provide an explanation for the unexpected experimental results on

the propagation speed of azimuthal velocity perturbations that were discussed in the
introduction. The 40 − 50% deviation in the propagation speed from convection is
attributed to dispersive inertial wave propagation. In Sec. 3, an initial value problem
is proposed for a detailed analysis and quantification of the inertial wave propagation.

The right plot in Fig. 3 shows the fast propagating group speed of the first eigenmode
n = 1 for values of the swirling Mach number Mas = 0, 0.3, 0.8, where the value of zero
Mach number is represented by the solution for the incompressible case. The reduced
group speeds are normalized c∗g = (cg − ūz)λ1/K, such that the maximum group speed
in the incompressible limit is lim

c→∞
c∗g = 2. Obviously, the impact of compressibility on
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Figure 3. Inertial wave group speeds cg vs. normalized axial wavenumber k∗. Left:
Incompressible case, reduced group speed c†g − ūz of the first three eigenmodes n = 1, 2, 3 (solid
black, dashed red, dotted blue lines). Right: Comparison of incompressible (solid black line) and
compressible normalized reduced group speeds c∗g for swirling Mach numbers Mas = 0.3 (dashed
red) and Mas = 0.8 (dotted blue). Only first fast propagating group speed is considered.

inertial wave propagation is marginal even for Mas = 0.8, which shows only a slight
decrease in the group speed at small wavenumbers. This decrease can be quantified in
the low wavenumber limit as

lim
k→0

cg − ūz =
2Kc√

λ2
nc

2 + 4K2
. (2.29)

Note that this solution implicitly confirms the compressibility dependency of the critical
swirl state discussed by Rusak & Lee (2002). The subcritical swirl state requires upstream
propagating waves. By observing the above solution, this is satisfied for the following
critical circulation strength as

Kc =
ūzλnc

2
√
c2 − ū2

z

. (2.30)

This condition agrees with the result of Renac et al. (2007), i.e. 1/
√

1−Ma2 in nondi-
mensional form. The value Mas = 0.8 seems incompatible with the assumption of small
swirl Mach number, but note that this large value was selected to demonstrate that
the change in the group speed is negligible. Also note that Renac et al. (2007) provide
a comparison against numerical solutions where the low Mach number assumption is
relaxed. A good match is achieved, which confirms the validity of the results obtained
with Mas = 0.8.

As mentioned in the introduction, Palies et al. (2017) employed linearized Euler
equations to show that the propagation of azimuthal velocity perturbations is entirely
convective. However, instead of using the complete set of Euler equations (2.6), only the
radial and azimuthal momentum equations are taken into account (see Eqs. (A1) and
(A2) in Palies et al. (2017)), while mass conservation and the axial momentum equation
are neglected. In the light of the present analysis, we argue that this incomplete set
of equations is not capable of correctly describing inertial wave propagation, and that
conclusions based upon these equations are invalid.
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2.4. Comparison of inviscid theory against modal linearized Navier–Stokes equations

In this section, analytical results for the inviscid case are compared against numerical
modal analysis based on the linearized incompressible Navier–Stokes equations. This
comparison serves not only as validation, but also allows us to investigate the effects of
viscosity on inertial waves. We employ an approach used previously in stability/sensitivity
analysis (see Juniper (2012); Juniper et al. (2014)). In a flow that is not absolutely un-
stable, there is a convenient and reasonably-accurate mapping between the temporal and
spatial analysis at a given wavenumber or angular frequency (see Gaster (1962)). Here,
we perform a temporal analysis. The Chebyshev spectral collocation technique proposed
by Khorrami et al. (1989) is employed. 50 grid points are used for the discretization. The
simplified flow field described in Eq. (2.3) is also employed for this numerical study. Slip
wall boundary conditions are used to match the analytical inviscid approach accurately:

ûr = ûθ =
∂ûz
∂r

=
∂p̂

∂r
= 0 for r = ri, ro . (2.31)

In Fig. 4, the eigenfrequencies ωn of the first three modes n = 1, 2, 3 are represented
in terms of the respective phase speeds and growth rates for three values of axial
wavenumbers k. The Reynolds number is selected as Re = ūzDH/ν = 18000 to match
with the experimental configuration of Komarek & Polifke (2010), where DH is the
hydraulic diameter and ν is the kinematic viscosity. Similarly, the swirl number is chosen
as S = KDH/ūz = 1.6. However, owing to the non-dimensionalization described below,
the results in Fig. 4 are independent of both these parameters.

The phase speed cp = ωr/k depends on the real part ωr of the angular frequency. The
abscissa of the plot corresponds to a normalized reduced phase speed, i.e. c∗p = (cp −
ūz)λ1/K, i.e. again the plot represents the deviation from the speed of convection. The
ordinate corresponds to the normalized decay rate, ω∗i = ωiReDH/ūz, i.e. the imaginary
part of the angular frequency. Negative values indicate that the mode amplitude decays
in time. Round markers represent eigenvalues calculated by the linearized Navier–Stokes
equations. Solid lines are used to track eigenvalues for varying axial wavenumber. Squares
represent analytical eigenvalues determined from the incompressible dispersion relation
via Eq. (2.25). For a better visualization, the analytical eigenvalues are plotted only for
k∗ = 0.1. On the right part of the figure, azimuthal velocity profiles of the eigenmodes
are shown. Since analytical inviscid eigenmode profiles, which are shown in Fig. 2,
are in perfect agreement with the numerical approach for the linearized Navier-Stokes
equations, only a single mode profile is plotted. The arrows indicate which eigenmode
corresponds to which set of eigenvalues. For each eigenmode, two eigenvalues exist,
one being faster and the other being slower than the convection speed. Therefore, the
eigenvalues are numbered as pairs. Inviscid phase speeds are also in perfect agreement
with the numerical viscous approach. The obvious mismatch in decay rates is expected,
since the inviscid analysis does not account for viscous dissipation.

The first pair of eigenvalues, i.e. n = 1, decays slowest and deviates most from the
convective speed. With increasing mode order n or wavenumber k, the phase speeds
approach the convection speed. These statements were also confirmed in the previous
section for the inviscid approach. More importantly, modes are more strongly damped
with increasing n and k. This trend in decay rates suggest that the low wavenumber
region is more relevant for the propagation of a perturbation, with the first mode as the
leading term, while high order modes decay more rapidly. We shall use these findings to
interpret the inertial wave propagation in thermo-acoustic systems, see Sec. 4.
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3. Inertial wave step response to acoustic perturbation

In this section, the time evolution of inertial waves is discussed in terms of an initial
value problem. The methodology used here is inspired by Arendt et al. (1997), who inves-
tigated the temporal evolution of inertial waves observed in a vortex tube. In that study
an initial value problem was formulated by introducing various perturbations in vorticity
components on the linearized incompressible Euler equations. Although no closed form
expressions in the time-space domain were derived, snapshots of instantaneous vorticity
fields were demonstrated. By interpreting these results, the dynamics of inertial waves in
the time domain was elucidated.

The approach followed in the present study is different in several regards. Firstly, a
simpler base azimuthal velocity profile is considered, i.e. solid body rotation instead of
the Rankine vortex. Hence, we are able to provide a closed form analytical solution in
the time-space domain, which provides a better understanding. The choice of a simpler
base flow profile is justified by the fact that the flow after a swirler is very close to
solid body rotation (Kerrebrock 1977). Since the flow in most combustion applications
is highly turbulent, Ekman layers, i.e. boundary effects, are neglected and the rotation
profile approaches to the solid body rotation as it is a stable state for rotating flows.

Secondly, Arendt et al. (1997), chose a Gaussian distribution in the axial direction as
the initial perturbation of vorticity, with a width equal to the radius. This assumption
introduces a cut-off in axial wavenumber, i.e. waves with a wavelength shorter than the
width of the Gaussian profile are not resolved. This can be also interpreted as an arbitrary
initial dispersion. However, such an assumption is not suitable in the present context,
since the proposed initial perturbation is a plane acoustic wave, which is non-dispersive
in nature. Therefore, we employ a Heaviside step function for the initial perturbation.
This can be physically interpreted as a sudden jump (”step perturbation”). Unlike the
Gaussian distribution, the Heaviside function covers the entire frequency spectrum and
thus describes non-dispersive plane acoustic waves. Moreover, entire wavelengths for
inertial waves are resolved and more detailed results are obtained. The corresponding
solution is formally called the “step response”, which is commonly used in control theory.
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The reader may consult standard control theory textbooks for further details. One other
benefit of the step response is that it can be directly connected in an acoustic network
model (Munjal 2014), which is the state-of-art modeling approach to predict thermo-
acoustic instabilities.

The initial value problem employs Laplace transformation for time and Fourier trans-
formation for the axial direction. For a variable q (z, r, t),

q (z, r, t) =

∫ ∞
−∞

∫ ∞
0

e−st+ikz q̂ (k, r, s) dsdk . (3.1)

This transformation is similar to the modal decomposition as defined in Eq. (2.1), however
Laplace transformation for time additionally requires an initial value for each quantity,
e.g. u′θ(t = 0). The simplified linearized compressible Euler equations as defined in
Eq. (2.6) are written after transformation as

1

c2
[−iCp̂− p′ (k, r, t = 0)] = −ρ̄

(
ikûz +

∂u′r
∂r

+
u′r
r

)
, (3.2a)

−iCûz − u′z (k, r, t = 0) = − ik

ρ̄
p̂ , (3.2b)

−iCûr − u′r (k, r, t = 0) = −1

ρ̄

∂p̂

∂r
+

2ūθûθ
r

, (3.2c)

−iCûθ − u′θ (k, r, t = 0) = −ûr
(

dūθ
dr

+
ūθ
r

)
. (3.2d)

Similar to the modal decomposition, these equations can be algebraically manipulated
into a second order ordinary differential equation for ûr as

d2ûr
dr2

+
1

r

dûr
dr

+ ûr

(
A2 − 1

r2

)
=

(
k2

C2
− 1

c2

)
[2Ku′θ (k, r, t = 0)− iCu′r (k, r, t = 0)]

+
k

C

∂u′z (k, r, t = 0)

∂r
+

1

ρ̄c2
∂p′ (k, r, t = 0)

∂r
. (3.3)

The right-hand-side of this equation describes initial value conditions. The homogeneous
part of this equation is very similar to the modal decomposed Eq. (2.8) as described
in the previous section. The only difference is the modal convective operator, which is
redefined here as

C = is− kūz . (3.4)

For the incompressible flow, Eq. (3.3) reduces to

d2ûr
dr2

+
1

r

dûr
dr

+ ûr

((
A†
)2 − 1

r2

)
=
k2

C2
[2Ku′θ (k, r, t = 0)− iCu′r (k, r, t = 0)]

+
k

C

∂u′z (k, r, t = 0)

∂r
. (3.5)

In order to solve this inhomogeneous ordinary differential equation, the initial condi-
tions should be defined. Note that these equations are written for a general case, i.e. any
kind of perturbation can be defined at this point. In this paper, we focus on thermo-
acoustic applications. Therefore, the initial perturbation is assumed to originate from
an acoustic wave, which is propagating across a swirler in the downstream direction.
As discussed in the introduction, this acoustic wave generates a azimuthal velocity
perturbation across the swirler at its downstream side, which should be regarded as
an initial condition. In the next subsection, this mode conversion process is derived via
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Figure 5. Schematic illustration of the swirler inside an annular mixing duct. Grey planes
indicate initial perturbations of downstream propagating acoustic waves as denoted by f -waves.
The base flow vectors are shown with solid black vectors. Right after the swirler, the mode
conversion process is illustrated. Corresponding dashed red flow vectors indicate perturbed
velocities resulting from actuator disk theory. The dashed red box indicates the domain for
the initial value problem.

the actuator disk theory. Jump conditions across the swirler by Palies et al. (2011a) are
revisited by respecting the Coriolis force in the radial momentum balance.

3.1. Mode Conversion: Actuator disk theory

The mode conversion process across a swirler from incident plane acoustic waves to
azimuthal velocity fluctuations was modelled via actuator disk theory by Cumpsty &
Marble (1977) and revised by Palies et al. (2011a) for thermo-acoustic applications.
Here, we briefly introduce actuator disk theory and the setup that we use for the initial
value problem. The swirler is modelled as a thin disk that generates azimuthal momentum
instantly. The jump condition across the swirler is schematically illustrated in Fig. 5. Solid
black and dashed red arrows indicate the base and perturbed flow quantities, respectively.
Grey planes represent upstream perturbations in downstream propagating plane acoustic
waves.

To derive jump conditions for small fluctuating quantities, Palies et al. (2011a) in-
troduced several simplifications, which are also employed here: The flow is assumed
to be isentropic, while the pressure drop across the swirler is neglected. Moreover, the
swirler is assumed to be acoustically transparent, which means that the incident plane
acoustic waves are transmitted loss-less across the swirler. Under these assumptions,
jump conditions are written as

f |down = f |up , (3.6a)

u′θ|down = u′z|up tan (φ) , (3.6b)

where f indicates the downstream propagating plane acoustic wave (see Rienstra &
Hirschberg (2018) for a formal definition). The second equation is derived via the Kutta
condition, which states that the flow angle follows the solid angle at the trailing edge,
as illustrated by the flow vectors in Fig. 5. Since the swirler is acoustically transparent,
the downstream axial velocity perturbation is the same as the upstream acoustic velocity
perturbation. At the same time, the flow direction, which is indicated by ū, should not
change. Hence, this should be fulfilled via a perturbation in the azimuthal velocity.

In summary, plane acoustic waves incident on a swirler generate azimuthal velocity
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perturbations with a strength that depends on the swirler blade angle. From this point
onward, mere convective transport of azimuthal velocity perturbations (also referred to as
”vorticity waves”) has been taken for granted (Cumpsty & Marble 1977; Richards & Yip
1995; Komarek & Polifke 2010; Palies et al. 2011a). Signal propagation times observed
in experiments and simulations do not support this assumption, however as discussed in
the introduction, and no further attempts have been made until now to characterize the
subsequent propagation of azimuthal velocity perturbations.

Another important point is that the Coriolis force has not been taken into consider-
ation. Indeed, Palies et al. (2011a) simply used the 1-d plane acoustic wave solution,
i.e.

f = 0.5

(
p′

ρ̄c
+ u′z

)
, (3.7a)

g = 0.5

(
p′

ρ̄c
− u′z

)
. (3.7b)

By construction, the g-wave propagating in the upstream direction is neglected by setting
g = 0. Corresponding jump conditions for pressure and axial velocity fluctuations reduce
to

u′z|down = f |up , (3.8a)

p′|down = ρ̄c f ′|up . (3.8b)

However, the Coriolis force in the radial momentum balance introduces an extra term in
the pressure fluctuation, which is inertial wave related. Although no explicit expression
was proposed, the impact of the Coriolis force on the pressure was also recognized by Ker-
rebrock (1977); Kousen (1996); Tam & Auriault (1998). Taking this into consideration,
we redefine the pressure jump condition as

p′|down = ρ̄c f ′|up + 2Kρ̄

∫
u′θ|down dr . (3.9)

This additional term is crucial for the compressible initial value problem (see Eq. (3.3)),
but does not play a role in the incompressible case (see Eq. (3.5)). These assertions will
be explained further in the next section.

3.2. Initial perturbation

To pose an initial value problem for inertial wave propagation, a step perturbation is
introduced, as discussed in the previous sub-section. This condition is written mathe-
matically

u′z (z, r, t = 0)|up = εaH (−z) , (3.10a)

p′ (z, r, t = 0)|up = εaρ̄cH (−z) , (3.10b)

where εa is a small number that indicates the acoustic perturbation amplitude. The
Heaviside function is H(−z), where the minus sign indicates that the initial perturbation
is valid for z < 0. By employing actuator disk conditions from the previous section, the
initial perturbation for the azimuthal velocity is written

u′z (z, r, t = 0)|down = εaH (−z) , (3.11a)

u′r (z, r, t = 0)|down = 0 , (3.11b)

u′θ (z, r, t = 0)|down =

( ∞∑
n=1

αnM1 (λnr)

)
H (−z) , (3.11c)
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p′ (z, r, t = 0)|down =

(
εaρ̄c− 2Kρ̄

∞∑
n=1

αn
λn
M0 (λnr)

)
H (−z) , (3.11d)

where the second term in the pressure initial condition is from the linearized radial
momentum balance. Terms with a summation operator correspond to inertial waves.
Since inertial wave eigenmodes are orthogonal to each other, this initial azimuthal velocity
perturbation can be decomposed into eigenmodes. The corresponding modal coefficients
are determined in the general case as

αn =

∫ ro
ri
fθ (r)M1 (λnr) dr∫ ro
ri
M2

1 (λnr) dr
, (3.12)

with an arbitrary radial profile of azimuthal velocity fluctuations fθ(r). Here we employ
the Kutta condition result, c.f. Eq. (3.6a). Since the upstream acoustic axial velocity
condition is uniform, the corresponding azimuthal velocity perturbation is also assumed
to be uniform,

fθ (r) = εa tan (φ) . (3.13)

This also confirms that only the axisymmetric inertial wave modes are generated.
The substitution of these initial conditions into the ordinary differential equation (3.3)

for the compressible case yields

d2ûr
dr2

+
1

r

dûr
dr

+ ûr

(
A2 − 1

r2

)
=
k2

C2

(
2K

∞∑
n=1

αnM1 (λnr)

)(
πδ (k) +

i

k

)
. (3.14)

Note that the direct impact of plane acoustic waves does not enter the equation for u′r,
since first radial derivatives of p′ and u′z are zero. This is an important result, which
indicates that plane acoustic waves do not introduce a direct force in the radial velocity
component.

In the incompressible limit Eq. (3.14) reduces to

d2ûr
dr2

+
1

r

dûr
dr

+ ûr

((
A†
)2 − 1

r2

)
=
k2

C2

(
2K

∞∑
n=1

αnM1 (λnr)

)(
πδ (k) +

i

k

)
. (3.15)

It is remarkable that the inhomogeneous part is the same as for the compressible case.
This is achieved by cancellation of two terms in Eq. (3.3), i.e. the coefficient of the
initial value for azimuthal velocity perturbation reduces and, at the same time, the initial
condition in the pressure perturbation drops out. In combination, these two effects yield
the same inhomogeneous part.

3.3. Solution

Eq. (3.14) can be solved via the method of undetermined coefficients, which is a
standard methods to solve inhomogeneous ordinary differential equation. The resulting
expression, ûr, is then substituted in Eq. (3.2) to obtain other components, which are
written

ûr (k, r, s) = 2Kc2k2

(
πδ (k) +

i

k

)
×
∞∑
n=1

αnM1 (λnr)

C4 − (c2 (λ2
n + k2) + 4K2)C2 + 4K2c2k2

, (3.16a)
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ûθ (k, r, s) = iC

(
πδ (k) +

i

k

) ∞∑
n=1

(
C2 − c2

(
λ2
n + k2

)
− 4K2

)
αnM1 (λnr)

C4 − (c2 (λ2
n + k2) + 4K2)C2 + 4K2c2k2

, (3.16b)

ûz (k, r, s) =

(
πδ (k) +

i

k

)[
iεa

C − ck

− 2Kik

∞∑
n=1

(
C2 − c2λ2

n − 4K2
)
αnM0 (λnr)

λn (C4 − (c2 (λ2
n + k2) + 4K2)C2 + 4K2c2k2)

]
(3.16c)

p̂ (k, r, s) =

(
πδ (k) +

i

k

)[
icρ̄εa
C − ck

− 2KiCρ̄

∞∑
n=1

(
C2 − c2λ2

n − 4K2
)
αnM0 (λnr)

λn (C4 − (c2 (λ2
n + k2) + 4K2)C2 + 4K2c2k2)

]
. (3.16d)

Before performing the inverse transformations to retrieve the solution in the time-
space domain, some important features of the solution can be analyzed in the frequency
and axial wavenumber domain. Similar to initial conditions, the inertial wave solution is
also decomposed into eigenmodes. Moreover, plane acoustic waves are not influenced by
inertial waves, i.e. the first terms in square brackets of ûz and p̂ correspond to the 1D
plane acoustic wave solution. Hence, the solution of inertial waves is separated from that
of acoustic waves. Note that roots of the denominator in the above equation correspond
to the dispersion relation as defined in Eq. (2.15). The dispersive propagation nature of
inertial waves is therefore indicated implicitly in these equations.

To the authors’ knowledge, an inverse transform in both time and space of the above
equations cannot be found in an analytical manner. One possible simplification is to
assume a low frequency and low axial wavenumber, s → 0 and k → 0. This limit
illustrates characteristic features of the inertial wave propagation, because as indicated
in Fig. 3, group speeds deviate most from the convective speed in the low wavenumber
region. Moreover, decay rates calculated from the linearized Navier-Stokes equations as
shown in Fig. 4 also suggest that mode damping increases with increasing wavenumber.
Although no mode damping can be captured in the inviscid solution, this numerical
observation justifies the low wavenumber simplification. This assumption is also relevant
for thermo-acoustic applications, because the flame response is by nature a low pass
filter. This means that flames barely respond to perturbations at high frequencies. Under
the low wavenumber and low frequency assumption, both inverse Laplace and Fourier
transformations can be performed analytically. The simplified time-space domain solution
is written

u′r (z, r, t) ≈ −0.5

∞∑
n=1

c√
c2λ2

n + 4K2
αnM1 (λnr)

×

[
δ

(
z − 2Kct√

c2λ2
n + 4K2

)
− δ

(
z +

2Kct√
c2λ2

n + 4K2

)]
, (3.17a)

u′θ (z, r, t) ≈ 0.5

∞∑
n=1

αnM1 (λnr)

×

[
2−H

(
z − 2Kct√

c2λ2
n + 4K2

)
−H

(
z +

2Kct√
c2λ2

n + 4K2

)]
, (3.17b)
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u′z (z, r, t) ≈ εa [1−H (z − ct)]− 0.5

∞∑
n=1

√
c2λ2

n + 4K2

cλn
αnM0 (λnr)

×

[
H

(
z − 2Kct√

c2λ2
n + 4K2

)
−H

(
z +

2Kct√
c2λ2

n + 4K2

)]
, (3.17c)

p′ (z, r, t) ≈ εaρ̄c [1−H (z − ct)]− ρ̄K
∞∑
n=1

αnM0 (λnr)

λn

×

[
2−H

(
z − 2Kct√

c2λ2
n + 4K2

)
−H

(
z +

2Kct√
c2λ2

n + 4K2

)]
. (3.17d)

One important outcome of these results is that inertial waves become non-dispersive,
which can also be justified by taking the low wavenumber limit of the dispersion relation
in Eq. (2.15)

lim
k→0

wn,i = k

(
ūz ±

2cK√
c2λ2

n + 4K2

)
. (3.18)

(This relation was also introduced as the low wavenumber limit of the group speed, see
Eq. (2.29) in Sec. 2.1).

In most combustion applications, low Mach number flow is considered. At the same
time, for thermo-acoustic applications, acoustic waves are also relevant. Therefore, an
accurate and reasonable approximation is to keep the acoustic wave solution as it is and
to neglect compressibility effects on inertial waves. This assumption further simplifies the
solution to

u′r (t, z, r) ≈ −0.5

∞∑
n=1

αnM1 (λnr)

λn

×
[
δ

(
z − ūzt−

2Kt

λn

)
− δ

(
z − ūzt+

2Kt

λn

)]
, (3.19a)

u′θ (t, z, r) ≈ 0.5

∞∑
n=1

αnM1 (λnr)

×
[
2−H

(
z − ūzt−

2Kt

λn

)
−H

(
z − ūzt+

2Kt

λn

)]
, (3.19b)

u′z (t, z, r) ≈ εa [1−H (z − ūzt− ct)] + 0.5

∞∑
n=1

αnM0 (λnr)

×
[
H

(
z − ūzt−

2Kt

λn

)
−H

(
z − ūzt+

2Kt

λn

)]
, (3.19c)

p′ (t, z, r) ≈ εaρ̄c [1−H (z − ūzt− ct)]−Kρ̄
∞∑
n=1

αnM0 (λnr)

λn

×
[
2−H

(
z − ūzt−

2Kt

λn

)
−H

(
z − ūzt+

2Kt

λn

)]
. (3.19d)

In this solution, incompressible inertial wave dynamics are recovered by taking the limit,
c → ∞. There are two differences compared to the compressible solution. One is the
inertial wave propagation speed, which is slightly faster in the incompressible case. This
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can be demonstrated by taking the incompressible limit for the propagation speed, i.e.

lim
c→∞

2Kc√
c2λ2

n + 4K2
=

2K

λn
. (3.20)

The other difference is that the inertial wave amplitude for axial velocity component, u′z,
decreases in the incompressible limit. Similarly, this can be shown by taking the limit for
the amplitude as

lim
c→∞

√
c2λ2

n + 4K2

cλn
= 1 . (3.21)

Note that these differences depend on Mach number and are therefore negligible for
subsonic flows.

In terms of flame dynamics, the solution in Eq. (3.19) reveals the importance of
inertial waves for flame front kinematics. Fleifil et al. (1996) demonstrated that any flow
perturbation normal to the flame surface disturbs the kinematic balance between flow
and flame speeds and hence causes unsteady heat release rate. The flow perturbation due
to plane acoustic waves at the flame front is one of the major contributions to thermo-
acoustic instabilities and is investigated extensively in the literature (see Schuller et al.
(2003), Blumenthal et al. (2013) and Steinbacher et al. (2019)). Similarly, axial and
radial velocity perturbations resulting from inertial waves, respectively u′z and u′r in
Eq. (3.19), play an important role in flame dynamics by modulating the flame surface.
This is further discussed in the authors’ recent publication (Albayrak et al. 2018a).

As discussed above, the time-space domain solution results from a simplified approach.
The inertial wave dispersion effects are not present, but important properties such as
propagation speeds and eigenmode structures are revealed. For comparison purposes, we
also repeat the step response solution that results from the convective assumption for
azimuthal velocity perturbations. This solution is equivalent to the solution proposed
by Palies et al. (2011a) and is written as

u′r (t, z, r) = 0 , (3.22a)

u′θ (t, z, r) = εa tan (φ) [1−H (z − ūzt)] , (3.22b)

u′z (t, z, r) = εa [1−H (z − ūzt)] , (3.22c)

p′ (t, z, r) = εaρ̄c
2 [1−H (z − ūzt)] . (3.22d)

Note that this solution does not capture the inertial wave eigenmode structures and
correct propagation speeds. Indeed, previous analyses that employed the convective speed
assumption needed ad-hoc correction factors to account for the deviation in propagation
speeds, see e.g. Komarek & Polifke (2010); Palies et al. (2011a); Acharya & Lieuwen
(2014). In the next subsection, a more accurate asymptotic solution is obtained with the
method of steepest descent.

3.3.1. Asymptotic Solution: Method of steepest descent

In this section, we derive the asymptotic time-space domain solution by the method
of steepest descent. For details of this method, the reader may consult Bender & Orszag
(1999). The asymptotic analysis here merely focuses on the incompressible inertial wave
solution. Note that the same analysis can also be performed for the compressible case.
However, as discussed in the previous section, plane acoustic waves are decoupled from
the inertial wave solution at low Mach numbers. Moreover, the impact of compressibility
on the inertial wave solution is negligible. This means that the analysis with compressible
equations does not introduce additional aspects to the solution. In the incompressible
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limit, Eq. (3.16) reduces to

ûr (k, r, s) = −2Kk2

(
πδ (k) +

i

k

) ∞∑
n=1

αnM1 (λnr)

C2 (λ2
n + k2)− 4K2k2

, (3.23a)

ûθ (k, r, s) = iC

(
πδ (k) +

i

k

) ∞∑
n=1

(
λ2
n + k2

)
αnM1 (λnr)

C2 (λ2
n + k2)− 4K2k2

, (3.23b)

ûz (k, r, s) = −2Kik

(
πδ (k) +

i

k

) ∞∑
n=1

λnαnM0 (λnr)

C2 (λ2
n + k2)− 4K2k2

, (3.23c)

p̂ (k, r, s) = −2KiCρ̄

(
πδ (k) +

i

k

) ∞∑
n=1

λnαnM0 (λnr)

C2 (λ2
n + k2)− 4K2k2

. (3.23d)

Note that the plane acoustic wave solution can be superposed into the above equation as
they are decoupled. However, it is neglected here for ease of presentation. By performing
the inverse Laplace transformation, the time domain solution is recovered as

ûr (k, r, t) =
k

2
e−iktūz

(
πδ (k) +

i

k

) ∞∑
n=1

αnM1 (λnr)
e
− 2Kikt√

λ2n+k2 − e

2Kikt√
λ2n+k2√

λ2
n + k2

, (3.24a)

ûθ (k, r, t) =
1

2
e−iktūz

(
πδ (k) +

i

k

) ∞∑
n=1

αnM1 (λnr)

[
e
− 2Kikt√

λ2n+k2 + e

2Kikt√
λ2n+k2

]
, (3.24b)

ûz (k, r, t) =
i

2
e−iktūz

(
πδ (k) +

i

k

) ∞∑
n=1

λnαnM0 (λnr)
e
− 2Kikt√

λ2n+k2 − e

2Kikt√
λ2n+k2√

λ2
n + k2

, (3.24c)

p̂ (k, r, t) = −Kρ̄e−iktūz

(
πδ (k) +

i

k

) ∞∑
n=1

λnαnM0 (λnr)

× e
− 2Kikt√

λ2n+k2 + e

2Kikt√
λ2n+k2

λ2
n + k2

. (3.24d)

The pure convection process acts as a Doppler shift with the exponential term, e−iktūz .
The inertial wave propagation is governed by exponential functions inside the summation,
where fast and slow propagating waves are indicated by the negative and positive sign
in the exponential function, respectively. The denominator of the exponential function,√
λ2
n + k2, is the reason for the dispersive propagation. At this point, no closed form

solution for the inverse Fourier transform exists. Similar to the previous section, one can
seek the solution at low wavenumbers, i.e. k → 0. This leads exactly to the inertial wave
solution as described in Eq. (3.19). Instead, we continue with the method of steepest
descent. Here, for simplicity only the fast propagating solution of the azimuthal velocity
ûθ is presented. Other components may be derived in a similar manner. Moreover, only
the nth mode is considered, so that the summation is not required. The convection process
is neglected and terms that do not depend on k are not included. However, in the final
expression, Eq. (3.28), the most general form of the solution is presented. Under these
conditions, the integral for the inverse Fourier transformation is written

I(z) =

∫ ∞
−∞

f(k)ezg(k) =

∫ ∞
−∞

(
πδ(k) +

i

k

)
e
z

(
ik− 2iKk

η

√
λ2n+k2

)
dk , (3.25)



Propagation speed of inertial waves in cylindrical swirling flows 23

where η = z/t. Real and imaginary parts of the exponent function, g(k), are shown in
Fig. 6 as contour plots. Columns correspond to the real and imaginary part, respectively.
Darker colors indicate lower values. The singularities are marked with red circles at
k = ±λn. Corresponding branch cuts are on the imaginary axis, i.e k > iλn and k < −iλn.
Dashed blue contours indicate constant levels of imaginary part, =(g(k)).

Saddle points, ∂g/∂k|k=k0
= 0, are determined as

k0 = ±λn

√(
2K

ηλn

) 2
3

− 1 . (3.26)

Observing the form of saddle points, three different branches are recognized as η >
2K/λn, η = 2K/λn and η < 2K/λn. The first branch is shown in the first row of Fig. 6.
Two non-degenerate saddle points marked with red crosses are located on the imaginary
axis. Similarly, there exists two saddle points for the branch, η < 2K/λn, which is shown
in the last row. The saddle points lie on the real axis. For η = 2K/λn, there exist a single
degenerate saddle point at the origin.

For each branch, the initial integral path, k = (−∞,∞) is constructed by additional
paths from the steepest descent method. Cauchy’s integral theorem is employed, which
states that the integral along a closed path with no singularities is zero. The closed
integral paths are indicated with the green color (solid lines with arrows). As an example,
only the first branch is discussed in detail. The closed integral path is written∫

Γ1

+

∫
Γ2︸ ︷︷ ︸

I(z)

+

∫
Γ3

+

∫
Γ6︸ ︷︷ ︸

C(z)

+

∫
Γ4

+

∫
Γ5︸ ︷︷ ︸

S(z)

= 0 , (3.27)

where S(z) is the contribution by steepest descent path, which follows the constant
level of =(g(k)). Note that the saddle point in the negative imaginary axis is a local
minimum and does not define a steepest descent path. Thus, only the saddle point in
the positive imaginary axis is employed. The circular paths, C(z), enclose the contour
so that Cauchy’s integral theorem can be employed. As the radius of the circular path
grows to infinity, its contribution vanishes, C(z) = 0. Hence, the integral, I(z), can be
related to the steepest descent integral, I(z) = −S(z). Similar arguments apply for the
other two branches of η. The leading term for steepest descent integral results into the
general expression for azimuthal velocity perturbations as

u′θ(t, z, r) ≈
∞∑
n=1

αnMr,n

×
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λn(ūzt−z)

) 1
3

cos

(
λnc

3
2
m

)
−sin

(
λnc

3
2
m

)
2
√

3πλnc
3
4
m

, if ūz − 2K
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Figure 6. Contour plots of real (left) and imaginary (right) parts of g(k). From top to bottom,
three branches are plotted, η > 2K/λn, η = 2K/λn and η < 2K/λn. Circles and crosses indicate
poles of g(k) and zeros of g′(k), respectively. Dashed blue and solid green (with arrows) lines
indicate constant levels of contours and closed integral paths for the steepest descent path,
respectively.
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where

cp =

(
2Kt

λn

) 2
3

− (z − ūzt)
2
3 , (3.29)

cm =

(
2Kt

λn

) 2
3

− (ūzt− z)
2
3 . (3.30)

In Fig. 7, three snapshots of the spatio-temporal development of azimuthal velocity
fluctuations after a step perturbation are presented. The color raster plots show velocity
values ranging from 0 (blue) to 1 (yellow) in the z-r plane, i.e. the annulus between
inner radius ri and outer radius ro. In the printed version darker colors correspond to
lower values. For simplicity, only the first mode n = 1 with a radial profile corresponding
to the first eigenmode of azimuthal velocity M1 (λ1r) is presented here. Corresponding
results for other modes or multiple modes can be generated without difficulty. Below
each surface plot, axial profiles of perturbation amplitude are shown. Solid black lines
indicate the numerical inverse fast Fourier transformation of Eq. (3.24). Dotted blue
lines indicate the simplified non-dispersive solution (see Eq. (3.19)) developed in the
previous section. Dashed red lines indicate the asymptotic solution in Eq. (3.28). By
inspecting this equation, the solution can be divided into regions: The first region, η <
ūz − 2K/λn, converges exponentially to 1. For the non-dispersive solution, this region
is estimated as 1 without an exponential term. Similarly, the last region, η > ūz −
2K/λn, decays exponentially to 0. Again, the non-dispersive solution estimates only a
constant value of 0. The second region and third regions, ūz − 2K/λn > η > ūz +
2K/λn, correspond to the dispersive region of inertial propagation, where oscillations
around 0.5 are observed. The asymptotic solution captures the oscillations accurately via
the combination of trigonometric functions. Like a chirp function, oscillations becomes
squeezed as they approach the convective line η = ūz. In other works, near the convective
region, high axial wavenumbers are observed. This is also confirmed in Fig. 3, where the
group speed is shown as a function of the axial wavenumber. As the axial wavenumber
increases, the propagation of inertial waves converges to the convection speed. The non-
dispersive solution, as its name suggests, cannot capture these oscillations and estimates
a constant value of 0.5. Note that the asymptotic solution diverges close to the boundaries
η = ūz − 2K/λn and η = ūz + 2K/λn, since saddle points move in the complex plane
abruptly (see regions in Fig. 6). Exactly at these boundaries, the asymptotic solution
yields 5/6 and 1/6, respectively. These points are indicated in Fig. 7 by circles. The
non-dispersive solution estimates step changes at these locations.

The other components of the fluctuation field are shown in subsequent figures. Fig. 8
presents axial velocity. Perturbations decay to zero for both the first and the last regions.
This means that the axial velocity perturbations are constrained to the second and third
region, where dispersive oscillations around the value of −0.5 are present. The non-
dispersive solution estimates a constant value of −0.5 for the oscillatory region. The
mode shape corresponds to M0 (λ1r).

In Fig. 9 the radial velocity fluctuation is shown. No step changes are observed, and
the solution oscillates around zero for the second and third region. Note that the non-
dispersive solution estimates only Dirac delta functions for at η = ūz − 2K/λn and
η = ūz + 2K/λn, indicated at ±0.5 by blue circles.

Fig. 10 presents pressure fluctuations, normalized by 2ρ̄K. An analogous argument
to that for the azimuthal velocity applies but the amplitude is negative, i.e. the first
region converges to −1. As discussed previously, the initial perturbation in pressure
does not show up as an initial condition for the incompressible equations due to the
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Figure 7. Three snapshots of the azimuthal velocity fluctuation field developing after a step
perturbation by a downstream propagating acoustic wave. Only the first eigenmode is considered,
thus the radial profile u′θ(r) ∝ M1(λnr). Color raster plots were generated via the inverse fast
Fourier transformation of Eq. (3.24). Axial profile plots compare that solution (solid black
line) with the non-dispersive solution Eq. (3.19) (dotted blue line) and the asymptotic solution
Eq. (3.28) obtained with the steepest descent method (dashed red line).
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ūz +

2K
λn

)−1

− 1
2

− 1
6

0

z

u
′ z

Figure 8. Three snapshots of the axial velocity fluctuation field developing after a step
perturbation by a downstream propagating acoustic wave. Only the first eigenmode is considered,
thus the radial profile u′z(r) ∝ M0(λnr). Color raster plots were generated via the inverse fast
Fourier transformation. Axial profile plots compare that solution (solid black line) with the
non-dispersive solution Eq. (3.19) (dotted blue line).
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Figure 9. Three snapshots of the radial velocity fluctuation field developing after a step
perturbation by a downstream propagating acoustic wave. Only the first eigenmode with radial
profile u′r(r) ∝ M1(λnr) is considered. Color raster plots were generated via the inverse
fast Fourier transformation. Axial profile plots compare that solution (black line) with the
non-dispersive solution Eq. (3.19) (blue line). Note that the Dirac delta function is represented
by the circles at ±0.5.
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ūz +

2K
λn

)−1
− 5

6

− 1
2

− 1
6

0

z

p
′

Figure 10. Three snapshots of the pressure fluctuation field developing after a step
perturbation by a downstream propagating acoustic wave. Only the first eigenmode radial
profile p′(r) ∝ M0(λnr) is considered. Color raster plots were generated via the inverse fast
Fourier transformation. Axial profile plots compare that solution (solid black line) with the
non-dispersive solution Eq. (3.19) (dotted blue line).
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elliptic continuity equation. However, the initial azimuthal velocity perturbation induces
also pressure fluctuations as seen in the solution due to the Coriolis force in the radial
momentum balance. Although it does not play a role in the incompressible equations, it
should be included for the compressible equations because they shown up in the equations
as an initial condition. Therefore, this term is introduced in the actuator disk theory (see
Eq. (3.11)) for the consistency of inertial waves.

4. Inertial wave propagation speed in a premix swirl burner

In this section, we revisit the premix swirl burner investigated by Komarek & Polifke
(2010). The principal objectives of that study were to make explicit the effects of
superposition of flame responses to axial and azimuthal velocity perturbations, respec-
tively, on the overall transfer function of a swirl flame. Thus the burner was designed
such that the distance between the axial swirler and the burner exit could be easily
varied by approximately half a convective wavelength. With such a configuration it was
possible to alternate between constructive and destructive superposition of the respective
contributions to the swirl flame dynamics, and indeed it was observed that both gain and
phase of the flame transfer function depend in a very sensitive manner on the position
of the swirl generator (while the mean flame shape was almost unaffected).

The experimental results were corroborated by numerical simulation and supplemented
with low order models based on distributed time delays for the respective flame responses
to axial and azimuthal velocity perturbations. An important parameter in the sub-model
for the response to azimuthal velocity perturbations is the time required for propagation
from the swirler to the root of the flame, which should depend on the ratio of the distance
between swirler and burner exit, and the velocity of propagation. Komarek & Polifke
(2010) reported that a match between the model for the flame transfer function and
experiment was achieved if that velocity was set to a value that exceeds the bulk velocity
in the burner by approximately 40%. This observation, which suggested that propagation
of azimuthal velocity fluctuations was not strictly convective, was subsequently confirmed
in follow-up studies (Palies et al. 2011b; Acharya & Lieuwen 2014) and motivated the
present work.

With the results of the present study, the speed of propagation of azimuthal velocity
fluctuations can be estimated in a simple manner: We only consider the first inertial
wave mode in the limit of low axial wavenumber resulting from Eq. (2.28). For cases
where more detailed experimental data are available, or where the flow physics is more
complicated, more sophisticated treatment based on Eq. (3.28) might be necessary.

For the case considered with power rating 30kW, the Reynolds number in the annular
duct with inner and outer radii of ri = 8mm and ro = 20mm is Re = 18000, with
corresponding bulk velocity ūz = 11.3m/s. Following Kerrebrock (1977), we assume
that the azimuthal velocity profile downstream of the swirler quickly develops towards
stable solid body rotation. For a design point swirl angle φ = 45◦, this redistribution of
azimuthal momentum ∫ ro

ri

2πrūz tan(φ)dr →
∫ ro

ri

2πrKrdr, (4.1)

implies a design point circulation strength K = 760s−1. We proceed with the first inertial
wave mode n = 1, as according to the discussion in Sec. 2.4 it is the least damped
eigenmode. By employing the boundary condition for eigenmodes Eq. (2.13), the first
eigenvalue is computed as λ1 = 270m−1. The highest deviation in the propagation speed
is observed in the limit of low axial wavenumber. The relative deviation in inertial wave
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propagation speed from bulk velocity is computed from the group speed at this limit (see
Eq. (2.28)),

2K/λ1

ūz
× 100 ≈ 50% . (4.2)

Komarek & Polifke (2010) employed a propagation speed model, which is approximately
40% above the convection speed. Given the fact that this deviation is obtained from
a quite simplistic flame response model parameter “time lag” to match experimental
results, the agreement with our analysis is indeed very satisfactory. Obviously, application
of this analysis to other configurations is straightforward, provided that duct dimensions,
bulk velocity and swirl angle are known.

5. Summary and Conclusions

The propagation of azimuthal velocity perturbations downstream of a swirl generator
is an important factor for the dynamic response of swirl flames to acoustic perturbations
and their thermo-acoustic stability. It has been reported repeatedly that the velocity of
propagation of such perturbations exceeds the speed of convection by 40−50% (Komarek
& Polifke 2010; Palies et al. 2011b; Acharya & Lieuwen 2014). A fundamental, physics-
based justification of this deviation has not been proposed until now, and it was not
possible to predict the propagation speed as a function of mean flow parameters.

This study argues that azimuthal velocity perturbations generated across a swirler
are not simply convected by the mean flow, but instead should be regarded as inertial
waves, which propagate at speeds governed by a non-trivial dispersion relation. This
dispersion relation was obtained by considering inertial wave solutions of the linearized
Euler equations. It was found that the dispersive behaviour of the inertial waves generates
two families of waves, one propagating faster and the other slower than the speed of
convection. The latter family has not been observed or discussed previously.

In order to describe the spatio-temporal evolution of inertial waves downstream of a
swirl generator that is exposed to incident, plane acoustic waves, an initial value problem
was formulated by imposing a sudden increase of azimuthal velocity on the downstream
side of the swirler. The corresponding step response solution was derived firstly in the
limit of low wavenumber. Both compressible and incompressible cases were discussed.
These simplified solutions were found to be nondispersive. A more rigorous asymptotic
solution was developed by employing the method of steepest descent.

The results of the present analysis compare favorably with the experimental observa-
tions of Komarek & Polifke (2010), and we conclude that inertial wave propagation can
account for the reported differences between the speeds of convection and propagation
of azimuthal velocity fluctuations. The proposed solution also describes the dependency
of the deviation on the circulation strength, i.e. the observation that with increasing
circulation propagation speeds deviate more strongly. This behavior can be approxi-
mated by a concise analytical expression for the convection speed, derived from modal
decomposition of the linearized Euler equations as an initial value problem. The result
can be incorporated into reduced order models of thermoacoustic systems in order to
model this effect.

Since the seminal paper of Richards & Yip (1995), the exact mechanism by which
fluctuations of azimuthal velocity modulate the rate of heat release by the flame has been
a matter of debate. As discussed in the introduction, several authors have endeavored
to identify the governing flow-flame interaction mechanisms and to quantify the flame
response to swirl fluctuations. The present paper makes an important contribution to
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this discussion, because it characterizes not only the propagation speed, but also the
structure of inertial waves. In particular, the eigenmode analysis shows that inertial
waves comprise velocity perturbations in all directions. The perturbations in the axial
and radial directions can perturb directly the kinematic balance at the flame front and
thus modify the position, shape, surface area and heat release rate of the flame. These
effects were explored by Albayrak et al. (2018a) in a first attempt to model analytically
the response of a laminar swirl flame to inertial waves.
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