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A Theoretical Approach for
Passive Control of Thermoacoustic
Oscillations: Application
to Ducted Flames
In this paper, we develop a linear technique that predicts how the stability of a thermoa-
coustic system changes due to the action of a generic passive feedback device or a
generic change in the base state. From this, one can calculate the passive device or base
state change that most stabilizes the system. This theoretical framework, based on adjoint
equations, is applied to two types of Rijke tube. The first contains an electrically heated
hot wire, and the second contains a diffusion flame. Both heat sources are assumed to be
compact, so that the acoustic and heat release models can be decoupled. We find that the
most effective passive control device is an adiabatic mesh placed at the downstream end
of the Rijke tube. We also investigate the effects of a second hot wire and a local varia-
tion of the cross-sectional area but find that both affect the frequency more than the
growth rate. This application of adjoint sensitivity analysis opens up new possibilities for
the passive control of thermoacoustic oscillations. For example, the influence of base
state changes can be combined with other constraints, such as that the total heat release
rate remains constant, in order to show how an unstable thermoacoustic system should
be changed in order to make it stable. [DOI: 10.1115/1.4024957]

1 Introduction

In a thermoacoustic system, such as a flame in a tube, heat
release oscillations couple with acoustic pressure oscillations. If
the heat release is sufficiently in phase with the pressure, these
oscillations grow, sometimes with catastrophic results [1]. Predic-
tion and control of these oscillations is one of the most challeng-
ing questions in the design of gas turbine and rocket engines,
particularly because small changes to systems can sometimes
greatly influence their stability. This paper introduces a technique
that identifies the most influential changes to the system and deter-
mines their effect on stability. It is applied here to two simple
thermoacoustic systems. When applied to more realistic systems,
it will help identify strategies for passive control of thermoacous-
tic oscillations.

The technique is based on adjoint sensitivity analysis, which
was proposed for incompressible flows by Hill [2] and developed
further by Giannetti and Luchini [3]. These authors considered the
influence of a passive feedback device (the structural sensitivity),
but Marquet et al. [4] extended this analysis to consider the influ-
ence of a generic change to the system (the base-state sensitivity).
Sipp et al. [5] provide a comprehensive review of sensitivity anal-
ysis for incompressible fluids. Chandler et al. [6] extended this
analysis to low Mach number flows in order to model variable
density fluids and flames. The main goal of this paper is to extend
adjoint sensitivity analysis to thermoacoustic systems, which has
not been attempted before.

The systems studied in this paper are shown in Fig. 1. They are
a Rijke tube containing an electrically heated hot wire [7–9],
shown in Fig. 1(a), and a Rijke tube heated by a diffusion flame
[10–16], shown in Fig. 1(b). Both heat sources are assumed to be
compact, so that the acoustic and heat release models can be

decoupled. Both systems have three base-state parameters in
common: the position of the heat source, xh, the heat-release pa-
rameter, b, and the acoustic damping, f. The electrically heated
Rijke tube has one further parameter: a time delay, s, between ve-
locity fluctuations at the wire and heat release experienced by the
bulk fluid [17,18]. The diffusion flame Rijke tube has three further
parameters, all of which affect the flame shape: the fuel slot width,
quantified by a, the stoichiometric mixture fraction, Zsto, and the
P�eclet number, Pe, which is the ratio of mass diffusion time scale/
convection time scale.

For the structural sensitivity analysis, we investigate two differ-
ent feedback mechanisms: a second heat source placed in another
location along the duct and a local smooth variation of the tube
cross-sectional area (Fig. 5). For the base-state sensitivity analy-
sis, we investigate the influence of the parameters that change the
shape of the flame.

Fig. 1 Schematic of the thermoacoustic system under investi-
gation. (a) Electrically heated Rijke tube: the hot wire is placed
at x 5 xh; (b) ducted diffusion flame: the flame is solved in the
2D domain (n; g) and forces the acoustics at x 5 xh.

1Corresponding author.
Contributed by the Controls, Diagnostics and Instrumentation Committee of

ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER.
Manuscript received June 27, 2013; final manuscript received July 8, 2013;
published online August 21, 2013. Editor: David Wisler.

Journal of Engineering for Gas Turbines and Power SEPTEMBER 2013, Vol. 135 / 091604-1
Copyright VC 2013 by ASME

Downloaded From: http://gasturbinespower.asmedigitalcollection.asme.org/ on 09/16/2013 Terms of Use: http://asme.org/terms



The usefulness of this technique is that a single calculation
reveals how the growth rate and frequency of thermoacoustic
oscillations are affected either by all possible passive control ele-
ments in the system (structural sensitivity) or by all possible
changes to its base state (base-state sensitivity). Looking forward,
this technique could quickly reveal, for example, the most impor-
tant components of an acoustic network, the best position for an
acoustic damper, or the optimal change in the flame shape. This
information could be combined with optimization strategies
involving other constraints, such as geometrical constraints and a
given total heat release rate, to reveal the best passive strategies
for stabilization of a thermoacoustic system.

2 Acoustic Model

Both thermoacoustic systems examined in this paper are hori-
zontal Rijke tubes heated by a compact heat source. They are
modeled by two different space domains: the 1D acoustic domain,
in which the flame is regarded as a localized heat source, and the
2D flame domain. The acoustics are modeled in 1D, because the
characteristic acoustic length is much greater than the duct width.
These acoustic vibrations take place on top of a base flow (or bulk
fluid), which, in this model, is constant and therefore does not
enter the governing equations. The base flow only establishes
some characteristic scales of the problem (see Appendix A). The
dimensionless acoustic equations, called the direct equations,
are [8,9]

@u

@t
þ @p

@x
¼ 0 (1)

@p

@t
þ @u

@x
þ fp� b _qdh ¼ 0 (2)

where u, p, and _q are the nondimensional velocity, pressure, and
heat-release rate (scaled by b). The heat source is placed at x ¼ xh

and forces the acoustics as an impulsive term modeled with the
Dirac delta dh � dðx� xhÞ. The acoustic nondimensionalization is
reported in Appendix A.

The acoustic system has three control parameters: f, which is
the damping; b, which encapsulates all relevant information about
heat release; and xh, which is the position of the heat source. The
relevant control parameters of the heat source are described in
Sec. 3. At the ends of the tube, p and @u=@x are both set to zero,
which means that the system cannot dissipate acoustic energy
by doing work on the surroundings. Dissipation and end losses
are modeled with the damping parameter for each mode j,
fj ¼ c1j2 þ c2

ffiffi
j
p

, where c1 and c2 are the damping constants. This
simple damping model was used in Balasubramanian and Sujith
[13], based on correlations developed by Matveev [18].

The numerical discretization is performed with the Galerkin
method, choosing as basis functions the natural acoustic modes of
the system, which are not the eigenfunctions of the system when
the heat source is present (see Appendix B for further details). All
the following results are obtained by considering six acoustic
modes in the discretization. We checked modal convergence, con-
sidering more Galerkin modes. This discretization is convenient
for the current study, because it is simple, but it has several draw-
backs. For example, it does not account for the temperature jump
across the flame and it is not readily extendable to complex acous-
tic networks. In future work, we will combine adjoint sensitivity
analysis with an existing acoustic network model [19] in order to
extend it to realistic systems.

3 Heat-Source Models

The 1D acoustics are excited by the compact heat source. Two
different compact heat-source models are examined in this paper:
an electrically heated hot wire and an infinite-rate chemistry diffu-
sion flame. In this section, these two different models are briefly
described.

3.1 Electrically Heated Hot Wire. A full description of a
Rijke tube heated by an electrically heated hot wire, shown in
Fig. 1(a), is given by Juniper [8], based on the model used by
Balasubramanian and Sujith [7]. Only the dimensionless form is
considered here. The heat-release rate (scaled by b) is modeled as
a nonlinear time-delayed function of the velocity (Heckl [17] and
Matveev [18]),

_q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ uhðt� sÞ

����
����

s
�

ffiffiffiffiffiffiffiffiffiffi
1

3

� �s
(3)

where uh is the nondimensional acoustic velocity at x ¼ xh. The
time delay between the pressure and heat-release oscillations is
modeled by the constant time delay coefficient, s. The hot wire is
placed at x ¼ xh. Note that the resulting nondimensional heat-
release rate is the product b _q. Here, the heat-release parameter b
encapsulates all relevant information about the hot wire, base-
flow velocity, and ambient conditions. By assuming that
juhðt� sÞj � 1 and s� 2=N, where N is the number of Galerkin
modes considered for discretization, the nonlinear time-delayed
heat-release term in Eq. (3) is linearized both in amplitude and
time. This yields

_q ¼
ffiffiffi
3
p

2
uhðtÞ � s

@uhðtÞ
@t

� �
(4)

3.2 Infinite-Rate Chemistry Diffusion Flame. An infinite-
rate chemistry model is used for the unsteady 2D coflow diffusion
flame. This assumption implies that the combustion occurs along
an infinitely thin surface, where the fuel, Y, and the oxidizer, X,
are at the stoichiometric ratio. The main assumptions are that the
velocity field of the flame is the acoustic velocity calculated at the
flame position, xh, which is assumed to be uniform within the 2D
combustion domain; the flame at any instant is located at the stoi-
chiometric surface; and the Lewis number is 1.

The stoichiometric mass ratio is s ¼ �xWx=�yWy, where Wx and
Wy are the molar mass (½kg=mole�) and �x and �y (½mole=kg�) are
the stoichiometric coefficients of the oxidizer and fuel, respec-
tively. In order to make this problem easier for numerical treat-
ment, it is useful to define the conservative scalar variable Z, also
known as Schvab-Zel’dovich variable,

Z � Y � X þ Xi

Xi þ Yi
(5)

where X is the oxidizer mass fraction divided by �xWx and Y is the
fuel mass fraction divided by �yWy. The stoichiometric surface,
where the whole reaction occurs, is the locus of points in which Z
assumes the stoichiometric value Zsto ¼ 1=ð1þ /Þ, where
/ � Yi=Xi is the equivalence ratio [20]. The parabolic partial dif-
ferential equation governing the mixture fraction Z, in nondimen-
sional form, is

@Z

@t
þ ð1þ uhÞ

@Z

@n
¼ 1

Pe

@2Z

@n2
þ @

2Z

@g2

� �
(6)

along with the relevant boundary conditions, Zðn ¼ 0; gÞ ¼ 1,
when jgj � a; Zðn ¼ 0; gÞ ¼ 0, when a < jgj � 1; ð@Z=@gÞ
ðn; g ¼ 61Þ ¼ 0; and ð@Z=@nÞðn ¼ Lc; gÞ ¼ 0.

uh is the acoustic velocity evaluated at the acoustic flame loca-
tion, xh, such that juhj � 1; Pe is the P�eclet number, and a is the
nondimensional fuel slot half width. The nondimensional combus-
tion parameters are reported in Appendix A.

The variable Z is split up into two components: Z ¼ �Z þ ez,
where �Z is the analytical steady solution (Appendix C, Eq. (C1)),
and ez is the unsteady field. In fully nonlinear analysis, where no
approximation is made, e ¼ 1. In linear analysis, the unsteady
component is considered to be very small, jej � 1, so that the
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higher order term euh@z=@n � 0 is discarded. The problem linear-
ized about a steady state is, therefore,

@ �Z

@n
� 1

Pe

@2 �Z

@n2
þ @

2 �Z

@g2

� �
¼ 0 (7)

@z

@t
þ @z

@n
� 1

Pe

@2z

@n2
þ @

2z

@g2

� �
þ uh

@ �Z

@n
¼ 0 (8)

Importantly, �Z has the same boundary condition as Z. The
unsteady component z at the inlet, n ¼ 0, must be zero. A detailed
derivation of this equation is given by Refs. [10–16].

3.2.1 Heat Release Rate. In the energy equation, Eq. (2), the
heat release rate acts as a forcing term. The total heat release rate
is given by the integral over the combustion space domain ðn; gÞ
of the total derivative of the sensible enthalpy, namely

_Q ¼
ð

R

dðTb � TiÞ
dt

dndg (9)

where Tb ¼ Ti þ Z, if Z < Zsto, and Tb ¼ Ti þ Zsto 1� Zð Þ=
ð1� ZstoÞ, if Z � Zsto. The nondimensional combustion space do-
main, in which the flame is solved, is R � ½0; Lc� 	 ½�1; 1�. The
steady heat release rate depends on whether the flame is closed
(overventilated), Zsto > a, or open (underventilated), Zsto < a. It is
�Q ¼ 2a and �Q ¼ 2 Zsto=ð1� ZstoÞð Þ 1� að Þ, respectively. For both
cases, the flame tends to assume constant height (infinite length)
in the limit Zsto ! a. Hence, if the flame is open, the length tends
to increase if Zsto increases, and vice versa if the flame is closed
(Fig. 8(a)). For the acoustic energy equation, Eq. (2), we need to
evaluate the fluctuating averaged heat release rate which, with
Galerkin discretization, is given by

_q � _Q� �Q ¼
ðLc

0

ð1

�1

hðZ > ZstoÞ
�1

1� Zsto

� �
@z

@t
dndgþ uh

�Q

(10)

where hðZ > ZstoÞ is the step function, which is 1 in the fuel side
Z > Zsto and 0 otherwise. We emphasize that the above expression
is valid for both closed and open flames. Numerical treatment of
this flame is outlined in Appendix B and, in a slightly different
formulation, in Balasubramanian and Sujith [13]. Magri and Juni-
per [14] and Magri et al. [16] will contain further details. The non-
dimensionalization of the flame-domain parameters is reported in
Appendix A.

4 Adjoint Operator

In this section, the adjoint operator is defined. Let H be a par-
tial differential operator of order M acting on the function
f ðx1; x2;…; xK ; tÞ, where K is the space dimension, such that
Hf ðx1; x2;…; xK ; tÞ ¼ 0. We refer to the operator H as the direct
operator and the function f as the direct variable. The adjoint
operator Hþ and adjoint variable fþ are defined via the general-
ized Green’s identity (see Magri and Juniper [9]),

ðT

0

ð
V

fþ
Hf � f Hþfþ
� �


dVdt

¼
ðT

0

ð
S

XK

i¼1

@

@xi
Fi f ; fþ
ð Þ

� 	
nidSdtþ

ð
V

Fi f ; fþ
ð ÞjT0 dV (11)

where i ¼ 1; 2;…;K and Fiðf ; fþ
Þ are functions that depend
bilinearly on f , fþ
, and their first M�1 derivatives. The complex-
conjugate operation is labeled by 
. The domain V is enclosed by
the surface S, for which ni are the projections on the coordinate

axis of the unit vector in the direction of the outward normal
to the surface dS. The time interval is T. The adjoint boundary
conditions and initial conditions of the function fþ are defined as
those that make the RHS in Eq. (11) vanish identically on S,
t ¼ 0, and t ¼ T.

The adjoint equations can either be derived from the continuous
direct equations and then discretized (CA, discretization of the
continuous adjoint) or be derived directly from the discretized
direct equations (DA, discrete adjoint). For the CA method, the
adjoint equations are derived by integrating the continuous direct
equations by parts and then applying Green’s identity from
Eq. (11). They are then discretized with the Galerkin method. For
the DA method, the adjoint system is simply the negative Hermi-
tian of the direct matrix: Uij ¼ �C
ji [9].

In Magri and Juniper [9], a comparison between the numerical
truncation errors of the two above methods is illustrated. For the
thermoacoustic systems considered in this paper, the DA method
is more accurate and easier to implement. We use both the CA and
DA methods for the first thermoacoustic system, an electrically
heated Rijke tube, while we use only the DA method for the sec-
ond thermoacoustic system, a ducted diffusion flame. However,
the continuous adjoint equations CA of the latter system will be
available in Magri and Juniper [14].

The continuous adjoint equations of the electrically heated
Rijke tube, Eqs. (1), (2), and (4), are

@uþ

@t
þ @pþ

@x
þ

ffiffiffi
3
p

2
b pþh þ s

@pþh
@t

� �
dh ¼ 0 (12)

@uþ

@x
þ @pþ

@t
� fpþ ¼ 0 (13)

These adjoint equations govern the evolution of the adjoint
variables, which can be regarded as Lagrange multipliers from a
constrained optimization perspective. Hence, uþ is the Lagrange
multiplier of the acoustic momentum equation, Eq. (1). Physi-
cally, it reveals the locations where the system is most sensitive to
a given force acting on the acoustic momentum. Likewise, pþ is
the Lagrange multiplier of the energy equation, Eq. (2). Physi-
cally, it reveals the locations where the system is most sensitive to
a given heat injection.

5 Optimal Passive Control via Adjoint Structural

Sensitivity

We define a passive device to be an object that causes feedback
between the state variables and the governing equations at the
position where it is placed. In the language of active control, the
sensor and actuator are colocated and there is a fixed relationship
between the observation (which is derived from the state variables
at that point) and the actuation (the forcing terms in the governing
equations). For example, the flame holder of an unlit afterburner
can be thought of as a passive device in which the drag exerts a
force on the fluid in the opposite direction to the velocity at that
point.

5.1 Structural Sensitivity to a Generic Feedback Device.
By working out the four components of the structural sensitivity
tensor, we can calculate the effect of any passive feedback device
and thereby identify the device that is most effective at changing
the frequency or growth rate of the system. In this section, the
direct and adjoint eigenfunctions are computed by considering a
hot wire as a heat source. The parameters are such that the first
acoustic mode is the most unstable, but the analysis can be
repeated for the cases when second or higher modes are most
unstable [9]. An analytical formula for the structural sensitivity
tensor is obtained as follows:
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• Consider an eigenvalue problem by inserting the
following transformations into the direct and adjoint equa-
tions, Eqs. (1), (2), and (12), (13), respectively:

uðx; tÞ ¼ ûðx;rÞert; uþðx; tÞ ¼ ûþðx;rÞe�r
t (14)

pðx; tÞ ¼ p̂ðx;rÞert; pþðx; tÞ ¼ p̂þðx;rÞe�r
t (15)

Consequently, the direct eigenvalue problem is

rûþ @p̂

@x
¼ 0 (16)

rp̂þ @û

@x
þ fp̂�

ffiffiffi
3
p

2
b ûh � srûhð Þdh ¼ 0 (17)

while the adjoint eigenvalue problem becomes

� r
ûþ þ @p̂þ

@x
þ

ffiffiffi
3
p

2
b p̂þh � sr
p̂þh
� �

dh ¼ 0 (18)

� r
p̂þ þ @ûþ

@x
� fp̂þ ¼ 0 (19)

• Perturb the direct equations, Eqs. (16) and (17) by a generic,
constant, small, localized feedback mechanism dCdc propor-
tional to the state variables, where dC is represented by a
2	 2 matrix

• Assume that the perturbation is small enough for the new
thermoacoustic configuration, such that rnew ¼ rþ dr,
p̂new ¼ p̂þ dp̂, and ûnew ¼ ûþ dû, where dr � er, dp̂ � ep̂,
and dû � eû with jej � 1 and where terms of order e2 are
sufficiently small to be neglected. Therefore, only terms
� Oðe1) or smaller are retained. Accordingly, the perturbed
direct eigenvalue problem is governed by the following
equations:

rdûþ @dp̂

@x
¼ �drûþ dC11dcûþ dC12dcp̂ (20)

rdp̂þ @dû

@x
�

ffiffiffi
3
p

2
bð1� rsÞdûhdh þ fdp̂

¼ dC21dcûþ dC22dcp̂� drp̂�
ffiffiffi
3
p

2
bsûhdrdh (21)

• Multiply Eqs. (20) and (21) by ûþ
 and p̂þ
, respectively;
multiply the complex conjugate of the adjoint eigenvalue
problem in Eqs. (18) and (19) by dû and dp̂, respectively;
and sum together. By integrating over the duct length

(nondimensionalized, such that it is unitary), we obtain an
explicit formula for the structural sensitivity tensor,
Sij ¼ dr=dCij, which is

S � dr
dC
¼ ½ûþ
; p̂þ
�T � ½û; p̂�Tð1

0

ðûûþ
 þ p̂p̂þ
Þdxþ
ffiffiffi
3
p

2
bsûhp̂þ
h

(22)

The direct and conjugate adjoint eigenfunctions are arranged as

column vectors ½û; p̂�T and ½ûþ
; p̂þ
�T , respectively. In general, a
structural perturbation to the thermoacoustic operator can be rep-

resented by a 2	 2 tensor, which acts on ½û; p̂�T . Each component
of this structural perturbation tensor quantifies the effect of a feed-
back mechanism between the jth eigenfunction and the ith govern-
ing equation. The four components of S quantify how a feedback
mechanism that is proportional to the state variables affects the
growth rate and frequency of the system. They are shown in Fig. 2
as a function of x, which is the location where the passive device
(structural perturbation) sits. They are explained physically
below.

Firstly (S11 ¼ ûûþ
), we consider a force in the momentum
equation that is proportional to the velocity at a given point. For
example, this could be the (linearized) drag force about an obsta-
cle in the flow. This type of feedback greatly affects the growth
rate but hardly affects the frequency. It has most influence when it
is at the entrance or exit of the duct. This is because (i) the veloc-
ity eigenfunction is maximal there and (ii) the adjoint velocity,
which is a measure of the sensitivity of the momentum equation,
is also maximal there (shown in Magri and Juniper [9]). The real
part of S11 is positive for all values of x, which means that, what-
ever value of x is chosen, the growth rate will decrease if the forc-
ing is in the opposite direction to the velocity. This tells us that
the drag force about an obstacle in the flow will always stabilize
the thermoacoustic oscillations but is most effective if placed at
the upstream or downstream end of this duct. Furthermore, by
inspection of the amplitudes of the black lines in Fig. 2, we see
that this is the most effective passive device.

Secondly (S22 ¼ p̂p̂þ
), we consider a feedback mechanism that
is proportional to the pressure and that forces the energy equation.
The pressure-coupled heat release described in Chu [21], which
arises in solid rocket engines, is an example of this type of feed-
back. For this feedback, the system is most sensitive around the
center of the duct. As for S11, this feedback greatly affects the
growth rate but hardly affects the frequency and is positive for all
values of x. If the heat release increases with the pressure, as it
does for most chemical reactions, this feedback mechanism is
destabilizing. But if a fuel could be found with the opposite

Fig. 2 Structural sensitivity tensor. Each component quantifies the effect of a feedback
mechanism on the linear growth rate (solid line/left scale) and angular frequency (dashed line/
right scale) of the oscillations. c1 5 0:01, c2 5 0:001, s 5 0:01, b 5 0:39, xh 5 0:25.
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behavior, then it would most stabilize the oscillations if placed at
the center of the duct.

Thirdly (S12 ¼ p̂ûþ
), we consider feedback from the pressure
into the momentum equation and (S21 ¼ ûp̂þ
) feedback from the
velocity into the energy equation. These types of feedback hardly
affect the growth rate but greatly affect the frequency. A control
hot wire with s � 0 causes this type of feedback (S21), so this
analysis shows that it will be relatively ineffective at stabilizing
thermoacoustic oscillations.

5.2 Structural Sensitivity to a Control Hot Wire. In
Sec. 5.1, we showed that the components of the structural sensitiv-
ity tell us the effect of any passive control device, as long as we
know how the device affects the flow around it. In this section, we
illustrate this for a second hot wire, denoted with the subscript c,
even though it is a relatively ineffective device. We compare the
structural sensitivity results with those calculated using the
Rayleigh index and then demonstrate numerically that this can
restabilize an unstable thermoacoustic system.

The feedback from the control wire is proportional to the veloc-
ity perturbation and perturbs the energy equation. The
structural perturbation tensor therefore has only one component:
dC21 ¼ dbcð1� rscÞ. The sensitivity to the presence of a control
hot wire placed at x ¼ xc is given by the following formula:

dr
dbc

¼ p̂þ
c ûc 1� rscð Þð1

0

ðûûþ
 þ p̂p̂þ
Þdxþ
ffiffiffi
3
p

2
bsûhp̂þ
h

(23)

It has long been known that, if pressure and heat-release fluctu-
ations are in phase, then acoustic vibrations are encouraged. More
precisely, the Rayleigh criterion [22] states that the energy of
the acoustic field grows over one cycle of oscillation ifÞ

T

Ð
D p _qdDdt exceeds the damping, where D is the flow domain

and T is the period. It is particularly informative to plot the spatial
distribution of þ

T

p _qdt (24)

which is known as the Rayleigh index. This reveals the regions of
the flow that contribute most to the Rayleigh criterion and there-
fore gives insight into the physical mechanisms that alter the
amplitude of the oscillation. To examine the effect of the control
wire, we substitute the approximate expressions p ¼ p̂ expðritÞ
and _q ¼ _̂q expðritÞ into Eq. (24) and integrate over a period
2p=ri, where ri ¼ ImðrÞ. (The approximation arises because the

growth rate over the cycle has been ignored.) As expected, the
sign of the Rayleigh index (bottom frames in Fig. 3) matches that
of the structural sensitivity (top frames in Fig. 3), and the shape is
similar.

The Rayleigh index physically explains the effect of adding the
control hot wire to the Rijke tube: for xc ¼ 0–0:54, the pressure
and heat-release eigenfunctions are sufficiently in phase that the
contribution to growth over a cycle is positive; and for
xc ¼ 0:54–1, they are out of phase, so their contribution to growth
over a cycle is negative. It is interesting to note that this system
becomes more unstable when the control wire is placed at
0:5 < xc < 0:54. This is in the second half of the tube and, in the
absence of the first hot wire, a control wire placed here would be
stabilizing. The reason for this is that the main hot wire, at xh,
causes the eigenfunctions to distort from the acoustic modes of
the duct. In particular, the features of the û and p̂ eigenfunctions
shift down the duct to higher values of xc. This shifts downstream
the region in which the control wire is destabilizing.

We demonstrate the suppression of thermoacoustic oscillations
using a control wire placed at the optimal location, as predicted
by the structural sensitivity analysis. We use the parameters in
Fig. 3, which shows that, in order to reduce the growth rate
most effectively, the control wire should be placed at xc ¼ 0:8.
We integrate the nonlinear time-delayed governing equations,
Eqs. (1)–(3) forward in time with a fourth order Runge–Kutta
algorithm. When the control wire is absent, the growth rate is
rr ¼ 1:91	 10�5 (near the Hopf bifurcation point) and the angu-
lar frequency is ri ¼ 3:309. We set the heat-release parameter for
the control wire to be bc ¼ b=10 ¼ 0:039, which is small enough
to fulfill the linear assumptions. When the control wire is present,
the growth rate is rr ¼ �2:15	 10�4 and the angular frequency
is ri ¼ 3:292. The difference between these values matches that
predicted by the structural sensitivity analysis, for which
dr¼ bc	dr=dbc� 0:039	ð�0:01528�0:425iÞ ¼�5:79	10�4

�0:0166i at xc¼ 0:8.
Figure 4(a) shows the pressure as a function of time in the

nonlinear simulations. The control wire is introduced at t ¼ 1000.
The behavior is as predicted: there is stable nonlinear oscillation
until t ¼ 1000 and exponential decay afterwards. Figures 4(b)
and 4(c) show the fast Fourier transform. These figures
confirm the frequency shift and stabilization predicted by the
structural sensitivity analysis but at much greater numerical
expense.

5.3 Structural Sensitivity to Smooth Cross-Sectional Area
Variation. For smooth variations of the cross-sectional area, the
nondimensional energy equations, Eqs. (2)–(4) can be rewritten
[23–25] as

Fig. 3 Top frames: structural sensitivity of the growth rate, Re(dr=dbc), and of the angular
frequency, Im(dr=dbc ), when a control hot wire is placed at position xc . Bottom frames: Rayleigh
index for a control wire placed at xc . System parameters as in Fig. 2.
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þ @u

@x
þ fp�

ffiffiffi
3
p

2
b uh � s

@uh

@t

� �
dh ¼ �u

1

c
@c
@x

(25)

with c � AðxÞ=A0, where AðxÞ is the area at location x of height
hðxÞ and A0 is the area at the mouth of the duct of height h0, as
sketched in Fig. 5. If c varies, the RHS of Eq. (25) shows that a
change in the area can be interpreted as a forcing term, propor-
tional to �u, acting on the energy equation. We assume that the
area of the duct is constant, except at location x ¼ xc, where there
is a small smooth change in the area. The structural perturbation
is proportional to the acoustic velocity, �uc, and affects the
energy equation, which becomes

@p

@t
þ @u

@x
þ fp�

ffiffiffi
3
p

2
b uh � s

@uh

@t

� �
dh ¼ �uc

1

c
@c
@x

hc (26)

where hc is one at x ¼ xc and zero elsewhere. A “local smooth
cross-sectional area variation” is defined such that @c=@xhc is
finite. The structural sensitivity is provided by the negative of S21

in Eq. (22). Therefore, the eigenvalue drift caused by this feed-
back mechanism is dr ¼ �ð@c=@xÞS21ð1=cÞ. This means that,
where a control hot wire has a stabilizing effect, a positive change
in area in the same location has a destabilizing effect and vice
versa.

6 Base-State Sensitivity

The structural sensitivity gives the effect of adding a passive
feedback device to the system. The base-state sensitivity gives the
effect of altering the thermoacoustic system without adding any
passive devices. This is likely to be more interesting in practice.
The base-state sensitivity is calculated directly from the discre-
tized governing equations (the DA method). There are four stages
in this method: (1) calculate the perturbation matrix dC, by impos-
ing an arbitrarily small perturbation on the base-state parameter;
(2) calculate the eigenvectors of the direct matrix, C, and adjoint
matrix, U; (3) apply the formula in Eq. (27) to find the eigenvalue

drift; and (4) divide the eigenvalue drift by the small perturbation
used to produce dC at step 1. It can be shown (see, for instance,
Ref. [3]) that the eigenvalue drift due to a perturbation of the dis-
cretized direct system is given by

dr ¼ n̂
  dCv̂ð Þ
n̂
  v̂

(27)

The column vector v̂ is the eigenvector of the direct matrix C,
while n̂ is the eigenvector of the adjoint matrix Uij ¼ �C
ji. Here,
we demonstrate the base-state sensitivity for the electrically
heated Rijke tube and the ducted diffusion flame.

6.1 Electrically Heated Hot Wire. The top frames of Fig. 6
show how a variation in the heat-release parameter, b, affects the
growth rate, ReðrÞ, and the angular frequency, ImðrÞ � x, for
different hot wire positions, xh. The bottom frames of Fig. 6 show
how a variation in the time-delay coefficient, s, affects the same
quantities. These are calculated via the DA method, and the result
is checked against the exact solution, which is obtained by finite
difference.

We see that small variations in b have a much greater effect on
the frequency than on the growth rate, while small variations in s
have a much greater effect on the growth rate than on the
frequency. In other words, the growth rate is extremely sensitive
to the time delay in the model. This is a well-known result, and
the reasons for this are discussed in Ref. [9]. Its value here is in
the successful demonstration of the method.

6.2 Infinite-Rate Chemistry Diffusion Flame. In this sec-
tion, the base-state sensitivity analysis is used to calculate how the
flame shape affects the growth rate and frequency of the thermoa-
coustic oscillations. This is a particularly interesting application
because combustion technologists have some control over the
flame shape. In this model, the flame shape is determined by the
P�eclet number, Pe, the stoichiometric mixture fraction, Zsto, and
the duct width, a. Here, the heat-release parameter is fixed at
b ¼ 0:67=2 and the flame position at xh ¼ 0:25, at which point
this thermoacoustic system is marginally stable when Pe ¼ 35,
Zsto ¼ 0:8, and a ¼ 0:35 [26]. Maps of the base-state sensitivity
are shown in Fig. 7 with a ¼ 0:35, which correspond to overventi-
lated (i.e., closed) flames, because Zsto > a. In the left frames, the
color scale shows the rate of change of growth rate with Zsto (top
left) and with Pe (bottom left) as a function of the base-state val-
ues of Pe and Zsto. In the right frames, the color scale shows the
rate of change of the angular frequency with Zsto (top right) and
with Pe (bottom right). These have been checked against the exact
solutions obtained (expensively) via finite difference and agree to
a tolerance of 10�9. Further details on the parameters used and the
numerical treatment will be available in Magri and Juniper [14].

Fig. 5 An infinitesimal variation of the cross-sectional area
AðxÞ of the Rijke tube is regarded as a localized feedback
mechanism for passive control

Fig. 4 Stabilization with a control wire introduced at t 5 1000 and placed at optimal
position xc 5 0:8 predicted by adjoint analysis. System parameters as in Fig. 2,
bc 5 b=10.
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Fig. 7 Diffusion flame as heat source: sensitivity to base-state modifications of Zsto and Pe

Fig. 6 Hot wire as heat source: sensitivity to base-state modifications. System
parameters as in Fig. 2.

Fig. 8 Flame shape, represented by the stoichiometric curve, as a function of Zsto

(a) and Pe (b). In the top frame, Pe 5 60; in the bottom frame, Zsto 5 0:8.
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Figure 7 shows that the stability of the system is much more
sensitive to the stoichiometric mixture fraction, Zsto, than to the
P�eclet number. The sensitivities show that, around these operating
points: (i) at a given Pe, small increases of dZsto, which tend to
shorten the flame (Fig. 8(a)), make the system more stable when
the unperturbed flame is sufficiently short (light colors, Fig. 7(a))
and increase the oscillation frequency, regardless of the flame
length (Fig. 7(b)); (ii) at a given Zsto, small increases of dPe,
which tend to lengthen the flame (Fig. 8(b)), make the system
more stable when the flame is long (light colors, Fig. 7(c)) but
decrease the angular frequency in any case (Fig. 7(d)); and (iii)
the thermoacoustic system is more sensitive to changes of dZsto

but less sensitive to changes of dPe. Similar results can be derived
for variations of the other three parameters: xh, a, and b. This
base-state sensitivity analysis therefore allows a combustion tech-
nologist to quickly examine the stability of a given model and
how the stability varies with the parameters of the model over a
wide range of parameter space. On a cautionary note, the results
are, of course, only as good as the model from which they are
derived.

7 Conclusions

The aim of this paper is to extend adjoint sensitivity analysis to
thermoacoustic systems. We consider a Rijke tube containing an
electrically heated wire and a Rijke tube containing a diffusion
flame. By combining information from the direct and adjoint
equations, we predict how the least stable/most unstable eigen-
value of these thermoacoustic systems changes when a generic
passive feedback device is introduced. From this, we find that
devices that exert a drag force on the fluid have the biggest effect
on the growth rate.

Two physical feedback mechanisms in particular are investi-
gated: a second heat source placed in another location along the
duct (a second hot wire) and a local smooth variation of the tube
cross-sectional area. We find that these feedback mechanisms
have more effect on the frequency of oscillations than on their
growth rate. For the first of these systems, we verify the predic-
tions from the adjoint analysis by comparing them with the results
of time integration of the fully nonlinear system.

In the base-state sensitivity analysis, we investigate how tiny
variations in the base-state parameters affect the most unstable
eigenvalue of the system. This reveals how best to change
these parameters in order to stabilize the system and also which
base-state parameters have most influence on the stability. For the
electrically heated Rijke tube, we find that (i) the system is more
sensitive to small variations of the time-delay coefficient, s, than
it is to the heat-release term, b, and (ii) a change of b is more
effective for control of the frequency, whereas a change in s is
more effective for control of growth rate. For the diffusion flame
Rijke tube close to a Hopf bifurcation, we find that (i) the system
is much more sensitive to small fluctuations of the stoichiometric
mixture fraction, dZsto, than to the P�eclet number and (ii) the
growth rate is very sensitive to small changes of dZsto and there-
fore the flame length, with stabilizing effect when the unperturbed
flame is short.

The sensitivity analysis proposed in this paper has been carried
out by linearizing the nonlinear governing equations around fixed
points. Therefore, we have studied how to extend the linear stable
region of fixed points by changing some parameters of the system
or introducing passive devices. In future work, we will apply
adjoint Floquet analysis to study the stability and control of non-
linear self-sustained oscillations by linearizing the equations
around these periodic solutions. We will also examine more real-
istic acoustic networks with a state-space implementation of an
acoustic-network model [19]. The successful application of sensi-
tivity analysis to more realistic thermoacoustic models will open
up new possibilities for the design of passive control strategies for
thermoacoustic oscillations.
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Nomenclature

c1; c2 ¼ damping coefficients
CA ¼ continuous adjoint
DA ¼ discrete adjoint

i ¼ imaginary unit, i2 ¼ �1
p ¼ acoustic pressure

Pe ¼ P�eclet number
_q ¼ heat-release rate divided by b
S ¼ structural sensitivity tensor
u ¼ acoustic velocity
X ¼ oxidizer mass fraction
Y ¼ fuel mass fraction
Z ¼ mixture fraction

Zsto ¼ stoichiometric mixture fraction
� ¼ dyadic product
^¼ eigenfunction or eigenvector

Greek Symbols

a ¼ nondimensional fuel slot half width
b ¼ heat-release parameter

dk ¼ Dirac d, dk � dðx� xkÞ
C ¼ direct matrix
f ¼ damping factor
r ¼ complex eigenvalue, rr þ iri

s ¼ time-delay coefficient
U ¼ adjoint matrix
/ ¼ equivalence ratio
v ¼ direct state vector

Subscripts

c ¼ passive control device
h ¼ heat source
i ¼ inlet of the diffusion flame
x ¼ oxidizer
y ¼ fuel

Superscripts

þ ¼ adjoint

 ¼ complex conjugate

Appendix A: Scale Factors for Nondimensionalization

Dimensional quantities are denoted with �.
The acoustic variables are scaled as ~Lax ¼ ~x ½m�, ~Latac=~c0 ¼ ~t

½s�, ~U0u ¼ ~u ½m=s�, and cM~p0p ¼ ~p ½Pa�, where ~La ½m� is the length
of the Rijke tube, ~c0 ½m=s� is the speed of sound in the base flow,
~U0 ½m=s� is the base-flow velocity, ~p0 ½Pa� is the base-flow pres-
sure, c ¼ ~cp=~cv, and M is the base-flow Mach number. ~cp and ~cv

are the mass heat capacities at constant pressure and constant vol-
ume of the mixture ½Jkg�1K�1�, respectively.

In the ducted diffusion flame, the combustion variables are
scaled as ~Hn ¼ ~n ½m�, ~Hg ¼ ~g ½m�, ~Htc= ~U0 ¼ ~t ½s�, and ~TrefT ¼ ~T
½K�, where ~H is the fuel slot half width, ~Tref ¼ ~Qh=~cp, and ~Qh is
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the heat released by combustion of 1 kg of fuel ½Jkg�1�. The com-
bustion time scale has been chosen exactly as the acoustic time
scale (i.e., tac ¼ tc). This is a good assumption as long as
M ~La= ~H ¼ 1 (compact flame and low Mach number assumptions).
The nondimensional length of the combustion domain along n is
Lc ¼ ~Lc= ~H. The P�eclet number is the ratio between the diffusion
and convective time scales, Pe ¼ ~U0

~H=D, where D is the (con-
stant) mass diffusion coefficient.

Appendix B: Numerical Discretization With Galerkin

Method

The partial differential equations are discretized into a set of or-
dinary differential equations by picking an orthogonal basis that
matches the boundary conditions. The basis functions are the
eigenfunctions of the undamped acoustic system when the heat
source is absent. This procedure, often used in thermoacoustics, is
also known as the Galerkin method. The acoustic variables are
expressed as

uðx; tÞ ¼
XN

j¼1

gjðtÞ cosðjpxÞ; pðx; tÞ ¼ �
XN

j¼1

_gjðtÞ
jp

� �
sinðjpxÞ

(B1)

We implicitly make use of a zero Mach number assumption with
the above acoustic discretization. Moreover, a compact heat
source causes a jump in the base-state temperature and, accord-
ingly, the mean quantities. This changes the acoustic impedance
and might have a nonnegligible effect on acoustics (for further
elaboration, see Nicoud and Wieczorek [27] and Magri and Juni-
per [14,15]). These changes in mean quantities are not represented
by the Galerkin expansion we used. Our representation, however,
is sufficiently accurate for our purposes, because the temperature
jump in the Rijke tube is typically small.

As far as the diffusion flame is concerned, the variable z is dis-
cretized as follows:

z ¼
XM

m¼1

XN

n¼0

cosðnpgÞ sin m� 1

2

� �
pn
Lc

� 	
GmnðtÞ (B2)

Hence, the discretized thermoacoustic problem can be arranged in
the state-space representation.

Appendix C: Steady Solution of the Infinite-Rate

Chemistry Diffusion Flame

The analytical solution of Eq. (7) with the relevant boundary
conditions obtained via separation of variables is

�Z ¼ aþ 2

p

Xþ1
n¼1

sinðnpaÞ
n 1þ bnð Þ cosðnpgÞ expðan1nÞ þ bn expðan2nÞ½ �

(C1)

where

an1 �
Pe

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

4
þ n2p2

r
; an2 �

Pe

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

4
þ n2p2

r
(C2)

bn � �
an1

an2

e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2

4
þn2p2

q� �
Lc

(C3)

Note that, if Lc � 1, then bn � 0.
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