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Nonlinear Phenomena
in Thermoacoustic Systems
With Premixed Flames
Nonlinear analysis of thermoacoustic instability is essential for the prediction of the fre-
quencies, amplitudes, and stability of limit cycles. Limit cycles in thermoacoustic systems
are reached when the energy input from driving processes and energy losses from damp-
ing processes balance each other over a cycle of the oscillation. In this paper, an integral
relation for the rate of change of energy of a thermoacoustic system is derived. This rela-
tion is analogous to the well-known Rayleigh criterion in thermoacoustics, however, it
can be used to calculate the amplitudes of limit cycles and their stability. The relation is
applied to a thermoacoustic system of a ducted slot-stabilized 2-D premixed flame. The
flame is modeled using a nonlinear kinematic model based on the G-equation, while the
acoustics of planar waves in the tube are governed by linearized momentum and energy
equations. Using open-loop forced simulations, the flame describing function (FDF) is
calculated. The gain and phase information from the FDF is used with the integral rela-
tion to construct a cyclic integral rate of change of energy (CIRCE) diagram that indi-
cates the amplitude and stability of limit cycles. This diagram is also used to identify the
types of bifurcation the system exhibits and to find the minimum amplitude of excitation
needed to reach a stable limit cycle from another linearly stable state for single-mode
thermoacoustic systems. Furthermore, this diagram shows precisely how the choice of
velocity model and the amplitude-dependence of the gain and the phase of the FDF influ-
ence the nonlinear dynamics of the system. Time domain simulations of the coupled ther-
moacoustic system are performed with a Galerkin discretization for acoustic pressure
and velocity. Limit cycle calculations using a single mode, along with twenty modes, are
compared against predictions from the CIRCE diagram. For the single mode system, the
time domain calculations agree well with the frequency domain predictions. The heat
release rate is highly nonlinear but, because there is only a single acoustic mode, this
does not affect the limit cycle amplitude. For the twenty-mode system, however, the
higher harmonics of the heat release rate and acoustic velocity interact, resulting in a
larger limit cycle amplitude. Multimode simulations show that, in some situations, the
contribution from higher harmonics to the nonlinear dynamics can be significant and
must be considered for an accurate and comprehensive analysis of thermoacoustic
systems. [DOI: 10.1115/1.4023305]

1 Introduction

Lean premixed combustion systems are susceptible to thermo-
acoustic instabilities, which occur due to the interaction between
the unsteady heat release rate and acoustic waves inside the com-
bustor [1]. Linear stability analysis of such systems can be used to
predict frequencies and growth rates of linearly unstable modes.
However, they can predict neither limit cycle amplitudes, nor a
system’s susceptibility to oscillations triggered by finite amplitude
excitations.

Several studies have investigated nonlinear phenomena in com-
bustion instabilities. While early studies focused on nonlinear gas
dynamics in solid-propellant rocket engines [2–6], later studies,
especially those relevant to gas turbine combustors, explored the
nonlinear behavior of the unsteady heat release rate [7–9]. Several
nonlinear flame models relevant to gas turbine combustors have
been proposed [10–15] based on theory and experiments. In recent
years, complex nonlinear phenomena such as triggering, hystere-
sis, and mode-switching have been experimentally and numeri-
cally investigated [16,17].

The previously mentioned analyses use one of two types of
approaches: time domain or frequency domain. It is useful to
highlight the underlying assumptions in each method. In the fre-
quency domain approach based on the (sinusoidal) flame describ-
ing function (FDF), one assumes that the fundamental frequency
determines the dynamics of the system while higher harmonics
generated in the nonlinear processes are of sufficiently low ampli-
tude to have a negligible effect on the system’s stability (Noiray
et al. [16]). The FDF is then used in a nonlinear dispersion relation
to calculate growth rates and frequencies as functions of the per-
turbation amplitude. Their analysis highlights the importance of
the amplitude-dependence of the flame response delay on the non-
linear behavior of the system. While the frequency domain
approach has been successful in some practical systems, Subrama-
nian et al. [18] argue that the system behavior predicted using the
FDF approach may be quantitatively and qualitatively different
from that seen using time domain simulations of simple thermo-
acoustic models. They point out that using a two-part approach
and a modal analysis fails to capture the intricate coupling
between combustion and acoustics.

The aims of this paper are: (i) to examine the nonlinear ther-
moacoustic phenomena of a ducted premixed flame, and (ii) to
evaluate the accuracy of limit cycle amplitudes calculated from
the frequency domain against calculations from the time domain.
An energy integral relation that assumes the existence of limit
cycles is derived for a single mode thermoacoustic system. This
integral relation is used with the FDF: (i) to calculate the
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amplitudes and stability of limit cycles, (ii) to predict the types of
bifurcation in such systems, and (iii) to estimate the minimum am-
plitude required to trigger a single-mode system into stable limit
cycle oscillations. Time domain simulations are used to evaluate
the accuracy of a particular case. Single-mode simulations show
that the results obtained by applying the integral criterion along
with the FDF are accurate, even when the nonlinearities in the
heat release rate are not negligible. Multimode simulations, how-
ever, show that the higher harmonics contribute to the nonlinear
dynamics and their impact can be significant in some situations.
Although the thermoacoustic system under consideration in
this paper is a simple ducted premixed flame, the fundamental
nonlinear behavior observed here is relevant to more complex
thermoacoustic systems because the main source of nonlinearity is
captured well.

The rest of this paper is organized as follows. Sections 2 and 3
describe the models and governing equations for the acoustics and
the flame, respectively. In Sec. 4, criteria for the amplitude and
stability of limit cycles are derived. Section 5 describes the linear
and nonlinear velocity-coupled heat release response of the
flame and the influence of the choice of velocity model on them.
In Sec. 6, diagrams that map the stability of thermoacoustic
systems and the nonlinear phenomena observed in them are dis-
cussed. Section 7 shows simulations in the time domain and a
comparison between the frequency and time domain calculations.
Closing remarks with an outlook on future work are presented in
Sec. 8.

2 Model for the Acoustics

For the sake of simplicity, the acoustic chamber in the thermo-
acoustic system considered here is a duct of length L0, open at
both ends with a slot-stabilized 2-D laminar premixed flame
located at a distance ~xf from one end. Figure 1 shows a schematic
illustration. The base flow velocity is ~u0, the pressure is ~p0, and a
constant mean density assumption is invoked so that the mean
density ~q0 and the speed of sound in the unburnt mixture ~c0
remain constant everywhere in the duct. The Mach number
M ! ~u0=~c0 is assumed to be small and, hence, nonlinear effects in
the acoustics are negligible [11]. A compact flame assumption is
used here because the flame length is small compared to the wave-
lengths of the duct’s acoustic modes. The dimensional governing
equations for the acoustic perturbations are the momentum and
energy equations

~q0
@~u

@~t
þ @~p

@~x
¼ 0 (1)

@~p

@~t
þ c~p0

@~u

@~x
þ f

~c0
L0

~p$ ðc$ 1Þ~_Qdð~x$ ~xf Þ ¼ 0 (2)

where the rate of heat transfer from the flame to the gas is given

by ~_Q, which is applied at the flame’s position by multiplying ~_Q by

the dimensional Dirac delta distribution ~dð~x$ ~xf Þ. The acoustic
damping is represented by f and the model for this is described
later.

The preceding equations may be nondimensionalized using ~u0,
~p0cM, L0, and L0=~c0 for speed, pressure, length, and time, respec-
tively. The dimensionless governing equations are

@u

@t
þ @p

@x
¼ 0 (3)

@p

@t
þ @u

@x
þ fp$ b _QdDðx$ xf Þ ¼ 0 (4)

b ! ðc$ 1Þ~_Q0a
c~p0~u0

; _Q !
~_Q
~_Q0

(5)

where b _Q is the nondimensional heat release rate perturbation,
which encapsulates all relevant information about the flame, base
velocity, and ambient conditions. The heat release rate is averaged
over the cross-sectional area of the duct and the ratio of the area
of the base of the flame to the cross-sectional area of the duct a is
assumed to be 0:02 in this paper.

For the open duct examined here, the pressure perturbations
and gradient of velocity perturbations are both set to zero at the
ends of the tube

p½ (x¼0¼ p½ (x¼1¼ 0;
@u

@x

! "

x¼0

¼ @u

@x

! "

x¼1

¼ 0 (6)

These boundary conditions are enforced by choosing basis sets
that match these boundary conditions and satisfy the dimension-
less momentum equation (Eq. (3)) as follows:

uðx; tÞ ¼
XN

j¼1

gjðtÞcosðjpxÞ; pðx; tÞ ¼ $
XN

j¼1

_gjðtÞ
jp

sinðjpxÞ (7)

In this Galerkin discretization, all of the basis vectors are ortho-
gonal. The state of the system is given by the amplitudes of
the Galerkin modes that represent the velocity gj and those that
represent the pressure _gj. The energy equation is discretized by
substituting Eq. (7) into Eq. (4). The acoustic damping f is dealt
with by assigning damping parameters fj to each mode, where
fj ¼ c1j2 þ c2j1=2. This model is based on correlations developed
by Matveev [19] and has been used in similar thermoacoustic sys-
tems [18,20]. It represents acoustic energy losses due to radiation
from the open ends and dissipation in the acoustic viscous and
thermal boundary layers at the duct walls. The dimensionless
energy equation is then multiplied by sinðkpxÞ and integrated over
the domain x ¼ ½0; 1(, thus reducing it to an ordinary differential
equation for each mode j, as follows:

d

dt

_gj
jp

# $
þ jpgj þ fj

_gj
jp

# $
þ 2bsinðjpxf Þ ¼ 0 (8)

which is integrated by direct time-marching from t ¼ 0 using a
fourth order Runge–Kutta algorithm.

3 Model for the Premixed Flame

The flame is described by a kinematic model using a level set
approach, also known as the G-equation model. Although this
model is less complex than real premixed flames, it has been
shown that it captures the major nonlinearities in premixed flame
dynamics [12,15] and is used widely in low-order models of ther-
moacoustic systems with premixed flames [11,12,15,21,22].

The principal assumptions of the model are [23]: (i) the flame is
a thin surface separating unburnt reactants from burnt products,
and (ii) the flow is parallel along the axial direction with no trans-
verse velocities. Assumption (i) allows for the flame to be tracked
using the G-equation (in two dimensions), as follows:

Fig. 1 Schematic of the two-dimensional slot stabilized pre-
mixed flame in a duct: L0 is the length of the duct, ~xf is the
flame position along the duct, a5 0:02 is the fraction of the duct
cross-sectional area occupied by the burner and the flow is
from left to right
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þ ~U
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@~x
þ ~V

@G

@~y
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@G

@~x

# $2

þ @G

@~y

# $2
s

(9)

where tildes denote dimensional values and G(x,y,t) is a time-
varying function that takes negative values at points in the unburnt
gas, positive values at points in the burnt gas, and zero at points
that lie on the flame surface. Here, ~U and ~V are the instantaneous
total velocities along the x and y directions. The flame speed sL is
a function of the local equivalence ratio, however, we only con-
sider the dynamics of velocity perturbations imposed on fully pre-
mixed flames, ignoring flame-stretch effects. Hence, the
equivalence ratio and flame speed are assumed to be uniform
throughout the flow. Assumption (ii) allows for the velocity field
to be independently specified, neglecting the coupling between
the flow-field and flame surface evolution, and is the major
simplifying assumption of this reduced order modeling approach.
Equation (9) can be rewritten in terms of the nondimensional
parameters x) ¼ ~x=Lf ; y) ¼ ~y=R; u) ¼ ~U=~u0; v) ¼ ~V=~u0, and
t) ¼ ~t~u0=Lf as

@G

@t)
þ u)

@G

@x)
þ bf v

) @G

@y)
¼ sL

~u0

# $ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@G

@x)

# $2

þ b2f
@G

@y)

# $2
s

(10)

where Lf is the nominal flame height, i.e., the height of the steady
flame ignoring stretch effects, R is the half-width of the burner,
and bf is the flame aspect ratio Lf =R.

The nonlinearity in heat release fluctuations is more pro-
nounced in short flames compared to long flames [15]. For a given
mean velocity, the shortest flame is that which has the greatest
flame speed. In order to allow for a greater degree of nonlinearity,
/ is chosen such that sL is maximized. For the /-dependence used
in this paper [24], / ¼ 1:06 maximizes sL to 0:42m=s and this
flame speed is used throughout this study.

Several perturbation velocity models have been proposed. Early
studies have used a uniform axial velocity perturbation [25,26].
However, it was shown by Baillot et al. [27,28] that the shear
layers at the slot lips roll up into vortices that advect downstream
and distort the flame surface. This was modeled as a convective
wave that propagates through the velocity field of a vibrating
flame by Schuller et al. [22] in order to calculate the flame transfer
function (FTF). This model predicted the gain and phase of the
FTF over a range of Strouhal numbers with reasonable accuracy.
Within the flame domain, if the divergence-free assumption is
used for the hydrodynamics, the continuity equation can be solved
to find the transverse velocity perturbation field, given an axial ve-
locity perturbation field. This was done by Preetham et al. [22]
and, more recently, by Cuquel et al. [29], who have also derived
analytical flame transfer functions with both axial and transverse
velocity perturbations. However, Preetham et al. [22] show that
the differences between transfer functions calculated using a
purely axial velocity perturbation field and one with both axial
and transverse perturbations are negligible. Hence, for the sake of
simplicity, a purely axial convective wave velocity perturbation
model is adopted in this paper. The nondimensionalized velocity
field is specified as a harmonically oscillating traveling wave as

u) ¼ 1þ e cosð2p StðKx) $ t)ÞÞ (11)

where e ¼ ~u=~u0 is the nondimensional velocity perturbation,
St ¼ fLf =~u0 is the excitation Strouhal number, and K ¼ ~u0=~uc is
the ratio of the mean velocity to the disturbance convection speed
(phase speed of velocity disturbances). Typically K is assumed to
be equal to 1, i.e., the phase speed is assumed to equal the mean
flow velocity. As seen in experiments [27,30], however, the phase
speed of the velocity disturbances depends on a variety of factors
such as the forcing frequency, amplitude, shear layer characteris-
tics, temperature, and density changes across the flame surface,

burner geometry, etc. In order to capture the dependence of the
phase speed on the previously mentioned parameters, K is retained
as a parameter in the model and the implications of the value of K
on the nonlinear behavior of the system is described in Sec. 6.

Equation (10) is numerically solved using a weighted essentially
nonoscillatory (WENO) fifth order scheme [31] for spatial discreti-
zation with a third order total variation diminishing (TVD)
Runge–Kutta scheme [32] for time integration. The nondimension-
alized spatial and temporal resolution in all the simulations are
5* 10$3 and 5* 10$4, respectively, with a uniform mesh spacing
in both spatial directions. The local level set method is used to
achieve a significant reduction in the computational cost associated
with these computations [33]. These computations are performed
within the framework of LSGEN2D, a general level set method
solver, which was developed by the second author [23,34].

Figure 2 shows instantaneous flame images over one forcing
cycle. Note the formation of sharp cusps towards the products, a
distinct characteristic of premixed flames seen in experiments
[26,27,35].

For a premixed flame, the heat release rate can be written as an
integral of local heat release rate contributions over the flame sur-
face, which can be expressed in terms of G as an integral over the
whole domain [36] as follows:

qðtÞ ¼
ð

D
qsLð/ÞhRð/Þ rGj jdðGÞdx)dy) (12)

where dðGÞ is the Dirac-delta function and hRð/Þ is the heat of
reaction. The preceding integral can be numerically evaluated
using the formulation by Smereka [36]. Note that, for fully pre-
mixed flames with constant flame speed, heat release rate oscilla-
tions are only due to flame surface area fluctuations induced by
velocity perturbations that distort the flame surface.

4 Integral Criteria for Limit Cycles: Amplitudes
and Stability

The Rayleigh criterion is a well-known and widely used crite-
rion in thermoacoustics to determine whether acoustic disturban-
ces in a system grow in magnitude. In the generalized form, as
stated by Morgans and Dowling [37], an acoustic mode grows in
amplitude if the energy gain from combustion exceeds the energy
losses from the boundaries averaged over a period of the acoustic

Fig. 2 Instantaneous images of the flame during one forcing
cycle; /51:06, bf 5 2:14, e5 0:25, St51, and K 5 2:5. The thick
black line represents the slot burner and the thin black curve is
the flame surface. Note the formation of sharp cusps towards
the products, which is a distinct characteristic of premixed
flames seen in experiments [26,27,35].
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oscillation. As noted by Rayleigh, the phase difference between
the pressure and heat release rate is crucial in determining
the acoustic energy change over a cycle [38]. The Rayleigh crite-
rion, however, does not provide the amplitude of limit cycle
oscillations.

The purpose of this section is to propose a method to determine
the amplitude of periodic oscillations in simple thermoacoustic
systems and to identify their stability. The method used here is
similar to the method of averaging developed by Culick [3,4]. In
order to simplify the analysis, we consider only the fundamental
acoustic mode. This simplification is reasonable because: (i)
higher modes tend to be strongly damped, and (ii) the flame
response at higher harmonics is usually small. While the single-
mode assumption precludes interactions between modes, it allows
one to derive analytical results that provide insight into the nonlin-
ear dynamics of simple thermoacoustic systems.

The acoustic velocity perturbation is written as

~u ¼ e~u0 cosðx~tþ uÞ cos p~x
L0

# $
(13)

Solving for the acoustic pressure perturbation using the dimen-
sional momentum (Eq. (1)) with the appropriate boundary condi-
tions (Eq. (6)) yields

~p ¼ e~u0~q0
xL0
p

sinðx~tþ uÞ sin p~x
L0

# $
(14)

The acoustic energy is written as the sum of potential and kinetic
energies as

E ! 1

2

~p2

~q0~c20
þ ~q0~u

2

# $
(15)

When a thermoacoustic system reaches a limit cycle, the rate of
change of the acoustic energy integrated over the domain and
over one cycle of oscillation is zero, i.e.,

þ ð

D

@E

@~t
d~xd~t ¼

þ ð

D

~p

~q0~c20

@~p

@~t
þ ~q0~u

@~u

@~t

# $
d~xd~t ¼ 0 (16)

Using the dimensional energy (Eq. (2)) for @~p=@t, this reduces to

þ ð

D

ðc$ 1Þ~p~_Q~dð~x$ ~xf Þ
~q0~c20

$ f~p2

~q0~c0L0

 !

d~xd~t ¼ 0 (17)

Using Eqs. (13) and (14) and integrating over the domain
~x ¼ ½0; L0(, recollecting that ~xf is the flame position, yields

þ
2b _Q sinðx~tþ uÞ sin

p~xf
L0

# $
$ xL0

p~c0
fe sin2ðx~tþ uÞ

# $
d~t ¼ 0

(18)

In general, the heat release rate perturbation is a nonlinear
function of ~u and contains higher harmonics of the fundamental
frequency x. It can be written as a Fourier series

_Q ¼
X1

k¼1

qk cosðkx~tþ ukÞ (19)

If the phase difference between the terms in the expansion of
_Q and the acoustic velocity perturbation are written as
Duk ! ku$ uk and the orthogonality of the Fourier series is
used, the cyclic integral (Eq. (18)) reduces to

þ
Wdriv $Wdamp

( )
sin2ðx~tþ uÞd~t ¼ 0 (20)

Wdriv ! 2b sin
p~xf
L0

# $
q1 sinðDu1Þ; Wdamp !

xL0
p~c0

fe (21)

In the preceding equation, the driving and damping terms, Wdriv

and Wdamp, are constant on a limit cycle. Hence, for Eq. (20) to
be true, the driving and damping terms must be equal, i.e.,
Wdriv ¼ Wdamp, or

2b sin
p~xf
L0

# $
q1 sinðDu1Þ ¼

xL0
p~c0

fes (22)

This equation shows that when a thermoacoustic system reaches a
limit cycle, the gain of the velocity-coupled FDF q1=e and the
phase of the velocity-coupled FDF Du1 are explicitly related to
the damping factor f. With measured or computed FDFs, the
preceding equation can be used to find the amplitude of acoustic
velocity perturbations, es on the limit cycles. This equation also
shows that for a single-mode system, over one cycle of the oscilla-
tion, only the fundamental of the heat release rate contributes to
the limit cycle amplitude.

The stability of limit cycles is obtained by calculating the gradi-
ent of the left hand side of Eq. (20) with respect to e, i.e.,

@

@e

þ
Wdriv $Wdamp

( )
sin2ðx~tþ uÞd~t

! "

es

< 0 (23)

implies that the limit cycle is stable.

5 Linear and Nonlinear Flame Response

The linear and nonlinear velocity-coupled response of premixed
flames has been extensively studied [15,16,21,22,35,39]. The con-
figuration investigated here, however, is a 2-D slot-stabilized
flame, which has different response characteristics and it is useful
to highlight the main features of its FDF. Figure 3 shows the gain
and phase of the FDF of the heat release rate response to velocity
perturbations. As noted by several researchers in the past, the gain
at low frequencies tends to unity, the phase at low frequencies is
zero, and the low frequency behavior is largely linear [40]. The
phase increases with the St, which is characteristic of systems
with a time-delay.

Fig. 3 Flame describing function FDFðx;eÞ5 ~_Q
0
=
~_Q0=~u

0=~u0: (a)
gain, and (b) phase K 5 2:5, bf 5 2:14, /5 1:06
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The FDF has zeros due to the destructive interference between
disturbances created on the flame surface from flow nonuniform-
ity and the flame anchoring boundary condition [22]. When these
zeros are located close to the imaginary axis in the complex plane,
they result in a sharp decrease in the gain and a phase jump of
p across the St at which they are located; for example, at
St ¼ 0:8; 1:6; 2:4; :::. However, as the forcing amplitude increases,
all zeros move to a higher Strouhal number. This suggests that the
time-delay between the heat release rate and velocity perturba-
tions decreases, which is due to the decrease in the mean flame
height as the amplitude increases. Second, as the forcing ampli-
tude increases, the zeros move further away from the imaginary
axis in the complex plane. Hence the decrease in gain is less dra-
matic in the vicinity of the zeros and the phase decrease of p is
spread over a wider range of Strouhal number. At large forcing
amplitudes, the zeros are very far away from the imaginary axis.
Hence, the gain and phase are smooth and monotonically decrease
with frequency.

The amplitude-dependent behavior of the zeros results in a sig-
nificant gain and phase variation of the FDF. Crucially, at a given
St, the amplitude dependence of the gain is not monotonic and sat-
uration does not always occur. Indeed, at some frequencies, the
gain increases as the forcing amplitude increases. Preetham et al.
proposed that the amplitude dependence of the gain determines
whether a system exhibits subcritical bifurcations [22]. This rests
on the assumption, however, that the FDF phase remains constant
at all amplitudes. This is not the case for the flame investigated in
this article. At a given St, the phase difference decreases as the
amplitude increases and the decrease is most dramatic when a
zero crosses that particular St. Section 6 shows how the combined
effect of the amplitude-dependence of the gain and phase impacts
the nonlinear dynamics of these systems.

Finally, it is important to note that when K, the ratio of the
mean velocity ~u0 to the disturbance phase speed ~uc is assumed to
be zero (i.e., a spatially uniform disturbance) or one (i.e., the dis-
turbance phase speed equals the mean flow velocity), the FDF
does not exhibit the features previously discussed. The nonlinear-
ities of the flame response for these special cases result in a mono-
tonic decrease in the gain and a negligible change in the phase, as
the amplitude increases [15,22]. The effect of K on the nonlinear
dynamics of this system will be highlighted in Sec. 6.

6 Cyclic Integral of Rate of Change of Energy
(CIRCE) Diagrams

Using the integral criterion derived in Sec. 4, a stability dia-
gram of single-mode thermoacoustic systems can be constructed,
as shown in Fig. 4. This is a diagram of the cyclic integral of rate
of change of energy (CIRCE) as a function of the nondimensional
velocity perturbation amplitude (vertical axis), across different
single-mode systems of varying nondimensional resonant frequen-
cies (horizontal axis). Note that each nondimensional frequency
corresponds to a thermoacoustic system with a different duct
length. Hence, for a given system, the diagram is to be interpreted
by moving along the amplitude axis (vertical axis) at the fre-
quency that corresponds to the fundamental mode of that system.
Each frame of Fig. 4 corresponds to a different value of K—the
ratio of the mean velocity to the disturbance phase speed.

The gray-scale is such that regions where driving exceeds
damping are light, while regions where damping exceeds driving
are dark. The boundaries between light and dark regions, marked
by the black curves, are locations where driving and damping are
exactly equal and, hence, they correspond to the limit cycles of
the system. The vertical dashed lines in each frame represent the
scenarios examined later, in terms of the number of limit cycles
that exist and their stability. Furthermore, the criterion in Eq. (23)
is used to infer the stability of these limit cycles.

Before investigating the different scenarios in detail, it is useful
to note that the differences between Figs. 4(a)–4(c) illustrate the
strong influence of K, the ratio of the mean velocity to the disturb-

ance phase speed, on the nonlinear behavior of the system. The
shapes of the limit cycle contours and the number of limit cycles
that exist for a particular system (i.e., for a particular nondimen-
sional frequency) are direct manifestations of the gain and phase
variation of the corresponding FDFs. The amplitude-dependence
of the phase of the FDF for the K ¼ 1 case is negligible, whereas
the gain saturates at high amplitudes. Hence, only a single inter-
section of the driving and damping curves is possible for linearly
unstable systems and, at most, one limit cycle exists at a given fre-
quency, as seen in Fig. 4(a). For the K ¼ 2:5 case, however, the
gain is not monotonic and the phase changes by several multiples
of p, as the amplitude increases. Hence, as the amplitude
increases, the driving curve has several sign changes and multiple
intersections with the damping line are possible, resulting in sev-
eral limit cycles, as seen in Fig. 4(c). The gain and phase of the
FDF of the K ¼ 1:5 case show a weaker amplitude-dependence
compared to the K ¼ 2:5 case; hence, it has fewer limit cycles at a
given system frequency. As discussed in Sec. 5, the gain and
phase variation is due to the behavior of the zeros of the FDF and
their influence is clearly seen in these CIRCE diagrams.

Figures 5 and 6 are slices of the CIRCE diagram that depict the
four different scenarios marked by the dashed lines in Fig. 4(c). In
these figures, the solid line represents the driving termWdriv, while
the dashed line represents the damping term Wdamp. The compli-
cated amplitude-dependence of Wdriv is due to the amplitude-
dependence of the gain and phase of the FDF and will be
discussed in detail later.

Figure 5(a) shows a system that is linearly unstable about the
fixed point because driving exceeds damping at small amplitudes.
At point-A, where the driving and damping balance each other, a
limit cycle is established. Furthermore, the gradient of the CIRCE
(see Eq. (23)) at point-A is negative; therefore, this limit cycle is
stable. This situation corresponds to a monostable state. In terms
of a control parameter such as bq1, this corresponds to a supercrit-
ical bifurcation.

On the contrary, Fig. 5(b) shows a system that is linearly stable
about the fixed point. Indeed, the so-called driving term is nega-
tive in the linear limit due to the sign of the phase difference, i.e.,
sinðDu1Þ < 0 for small e. However, as the amplitude increases,
changes in the driving term result in two intersections with the

Fig. 4 CIRCE diagram: driving (Wdriv) – damping (Wdamp) as a
function of amplitude e for thermoacoustic systems with differ-
ent fundamental frequencies f ): (a) K 5 1:0, (b) K 5 1:5, and (c)
K 5 2:5
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damping line at points A and B, which are an unstable and a stable
limit cycle, respectively. If the system in its linearly stable state is
given an excitation with amplitude greater than the amplitude of
state-A, oscillations in the system will grow until the system
reaches state-B. This phenomenon is called triggering. In a single-
mode thermoacoustic system, the minimum amplitude of an exci-
tation that can cause triggering is the amplitude at point-A. For
this minimum amplitude excitation to be successful in triggering
the system, however, the excitation has to be given in the right
direction. For example, in the case of velocity-coupled oscillations
of a premixed flame, the velocity excitation has to be given when
the flame shape is most receptive to this excitation. In a system
with several modes, however, it has been shown that triggering
can occur, due to nonnormal transient growth, at amplitudes
smaller than that of the unstable limit cycle [20]. The situation
depicted in Fig. 5(b) corresponds to a bistable state. In terms of a
control parameter such as bq1, this corresponds to a subcritical
bifurcation.

The systems shown in Figs. 6(a) and 6(b) have a similar linear
behavior to those of Figs. 5(a) and 5(b), but have a more complex
nonlinear behavior because the gain and phase, at high St, vary
greatly as the amplitude increases. Using the same reasoning as
before, Fig. 6(a) shows that the system has stable limit cycles at A
and C and an unstable limit cycle at B. From the stable oscillating
state at A, the system can be triggered into large amplitude oscil-
lations with an excitation of amplitude greater than that of point-
B. This situation corresponds to a bistable state. In terms of a con-
trol parameter such as bq1, this corresponds to a supercritical
bifurcation followed by two fold bifurcations. As mentioned in
Ref. [9], a system must have either a subcritical bifurcation or a
supercritical bifurcation followed by fold bifurcations in order to
be susceptible to triggering.

Finally, Fig. 6(b) shows a system that is linearly stable, has two
unstable limit cycles (A and C), and two stable limit cycles (B and
D). An excitation with amplitude greater than that of A, but less
than that of C, will eventually lead to stable oscillations at B. An
excitation with amplitude greater than that of C, however, will
lead to stable oscillations at D. As in Fig. 6(a), the system can be
triggered from one stable limit cycle to another by a suitably large
excitation. This situation corresponds to a tristable state. In terms

of a control parameter such as bq1, this corresponds to a subcriti-
cal bifurcation followed by two fold bifurcations.

This wide range of behavior in Figs. 5 and 6 can be explained
by examining the amplitude-dependence of the gain and phase in
Fig. 3. First, the supercritical bifurcation seen in Fig. 5(a) at
St ¼ 0:4 is because the gain decreases as the forcing amplitude
increases, while the phase remains fairly constant. This is the
most commonly described route to a limit cycle in thermoacoustic
systems. Second, the subcritical bifurcation seen in Fig. 5(b) at
St ¼ 1:0 is because the phase changes significantly as the ampli-
tude increases. Figure 7(a) shows the fundamental of the heat
release rate q1, Fig. 7(b) shows the phase difference between the
fundamental of heat release rate and velocity Du1, and Fig. 7(c)
shows sinðDu1Þ at St ¼ 1:03. Note that sinðDu1Þ is negative at
low amplitudes (gray shaded area) but changes sign at around
e ¼ 0:2. Since sinðDu1Þ is a factor in the driving term, it is clear
that the driving becomes positive at a finite amplitude, reaches a
peak, and then decreases at high amplitudes, as seen in Fig. 5(b).
Depending on the value of the damping factor f, an unstable and
a stable limit cycle can exist between e ¼ 0:2 and e ¼ 0:38. A
subcritical bifurcation is also possible when the amplitude-
dependence of the gain is such that it increases as the forcing
amplitude increases, followed by saturation at high amplitudes.
This behavior is most likely to be seen at a linear zero of the FDF,
for example, at St ¼ 0:8. Figure 7(d) shows q1 versus the forcing
amplitude at St ¼ 0:8. For this frequency, the phase difference
remains constant as the amplitude increases. Hence, this corre-
sponds to a driving curve with an inflection point, which permits
two limit cycles at finite amplitudes. The preceding two examples
are special cases, where the amplitude-dependence of either the
gain or the phase leads to a subcritical bifurcation. In most cases,
however, it is the combined effect of the gain and the phase which
results in the driving curve intersecting the damping line twice,
which, for a linearly stable system, represents a subcritical bifur-
cation. Finally, at high frequencies, the changes in the gain are
small, whereas the changes in phase are large. Indeed, the dra-
matic changes seen in the driving term in Figs. 6(a) and 6(b) and
the multiple intersections with the damping line are due to the
large variation in phase, as amplitude increases, at high St.

Fig. 5 CIRCE for thermoacoustic systems with different
fundamental frequencies (duct lengths): K 5 2:5, /51:06, and
bf 5 2:14. (a) Slice of Fig. 4(c) at f ) 5 0:4: A is the stable limit
cycle, and (b) slice of Fig. 4(c) at f ) 51:0; A is the unstable limit
cycle, and B is the stable limit cycle.

Fig. 6 CIRCE for thermoacoustic systems with different funda-
mental frequencies (duct lengths): K 5 2:5, /51:06, and
bf 5 2:14. (a) Slice of Fig. 4(c) at f ) 5 1:2: A and C are the stable
limit cycles, B is the unstable limit cycle, and (b) slice of
Fig. 4(c) at f ) 51:8: A and C are the unstable limit cycles, B and
D are the stable limit cycles.
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7 Time Domain Simulations

The analyses in the previous sections were based on the analyti-
cal results for a single-mode system with amplitude-dependent
information derived from the FDF. It is useful to compare these
results with the time-domain calculations of self-excited oscilla-
tions to verify the accuracy of the frequency-domain predictions.

Figure 8 shows the time domain calculations of self-excited
thermoacoustic systems with one Galerkin mode and twenty
Galerkin modes. Both of these systems have a nondimensional

fundamental frequency of f ) ¼ 0:87, which, for a duct of length
L0 of 1:954m and a flame length, Lf of 1* 10$2 m, corresponds
to a dimensional fundamental frequency of 87Hz. These systems
are linearly unstable and have supercritical bifurcations. Figure
8(a) shows that the two systems reach limit cycles of different
amplitudes. Figure 8(b) shows that the higher Galerkin modes
contain approximately ten percent of the total energy of the sys-
tem. The higher modes contribute to the increase in the amplitude
of limit cycle oscillations seen in Fig. 8(a).

Figure 9(a) shows heat release rate oscillations, with one of the
signals phase-shifted slightly in order to avoid overlap on the fig-
ure. The corresponding Fourier transforms are shown in Fig. 9(b).
Note that the heat release rate signals are highly nonharmonic,
with the first harmonic having a magnitude more than forty per-
cent that of the fundamental. In the single-mode system, however,
the higher harmonics of the heat release rate cannot interact with
the velocity perturbations, as shown in Sec. 4. On the contrary, in
the twenty-mode system, the higher harmonics of the heat release
rate contribute to the dynamics by interacting with the higher
acoustic velocity modes. For this reason, the twenty-mode system
extracts more energy from the flame and transfers it to the acous-
tics, than does the single-mode system. As a result, the single-
mode system reaches a limit cycle with e ¼ 0:375, while the
twenty-mode system reaches a limit cycle with e ¼ 0:415.

The amplitude of oscillation predicted by the CIRCE criterion
with information from the FDF, shown in Fig. 10, is e ¼ 0:377.
Clearly, in spite of a fairly high degree of nonlinearity in the heat
release signal, very good agreement is obtained between the
single-mode time domain and frequency domain results. An im-
portant point to note is that close agreement is to be expected
when time-domain simulations of a single-mode system are com-
pared against results from the criterion derived in Sec. 4, because
only the fundamental modes of the heat release rate and acoustic
velocity can interact, as shown in Sec. 4. For the twenty-mode
system, however, the effect of the higher modes on the system
dynamics is not negligible and the twenty-mode system has a limit
cycle amplitude that is larger than that of the single-mode system.

At the operating condition of the example previously discussed,
the difference in the limit cycle amplitude between the single-
mode and twenty-mode systems is about ten percent. There can,

Fig. 9 Nonlinear heat release rate oscillations in thermoacous-
tic systems with one mode and twenty modes: f ) 5 0:87,
K 5 1:5, bf 5 2:14; /51:06, and f50:05 ðc1 5 0:03; c2 5 0:02Þ.
(a) Time trace of the heat release rate (phase-shifted to avoid
overlap of figures), and (b) Fourier transforms of the heat
release rate.

Fig. 7 Amplitude-dependence of the fundamental of heat
release rate oscillations and the phase between the heat release
rate and velocity perturbations: K 5 2:5, /51:06, and bf 5 2:14.
(a) q1 at St5 1:0, (b) Du1 at St5 1:0, and (c) sinðDu1Þ at St5 1:0.
The gray shaded area shows regions where driving is negative,
while white shows where it is positive. (d) q1 at St50:8.

Fig. 8 Time domain calculations for self-excited thermoacous-
tic systems with one mode and twenty modes: f ) 5 0:87,
K 5 1:5, bf 5 2:14; /51:06, and f50:05 ðc1 5 0:03; c2 5 0:02Þ.
(a) Time trace of the acoustic velocity perturbations at the flame
location xf , and (b) time trace of the contributions of the first
five Galerkin modes to the acoustic velocity at the flame loca-
tion xf of the 20-mode system.
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however, be operating conditions where large discrepancies exist
between the single-mode and multimode systems. Such discrepan-
cies would indicate that interactions between the higher modes
play a crucial role in the system dynamics. A detailed analysis of
this is beyond the scope of this paper and will be the subject of
future investigations.

8 Conclusions

This paper examines the nonlinear thermoacoustic phenomena
in self-excited oscillations of a simple premixed flame in a tube.
The flame is modeled using a nonlinear kinematic model based on
the G-equation, while the acoustics are governed by linearized
momentum and energy equations. Assuming the existence of limit
cycles, integral criteria are derived for a single mode thermoa-
coustic system to estimate the amplitudes of limit cycles and their
stability. Using open-loop forced simulations, the sinusoidal flame
describing function (FDF) is calculated. The FDF has zeros
because of the interactions between the two types of flame front
disturbances characteristic of anchored premixed flames with non-
uniform velocity fields. The amplitude-dependence of the gain
and phase of the FDF is shown to be related to the amplitude-
dependence of the zeros of the FDF. The integral criteria are used
with the amplitude-dependence of the gain and phase of the FDF
to construct cyclic integral of rate of change of energy (CIRCE)
diagrams that show precisely when a thermoacoustic system is
monostable, bistable, or tristable. These diagrams are also used to
show the types of bifurcation seen in such systems and to find the
minimum amplitude of excitation required to trigger a single-
mode thermoacoustic system into limit cycle oscillations.

The choice of velocity model and the phase speed of convective
disturbances are shown to be crucial for the prediction of nonlin-
ear dynamics of thermoacoustic systems. When K, the ratio of the
mean velocity to the phase speed of convective disturbances, is
assumed to be zero or one, which are the most commonly made
assumptions, the system can have only one stable state. For other
values of K, several limit cycles exist and the system has combi-
nations of fold bifurcation and either supercritical or subcritical
Hopf bifurcations, depending on the operating condition.

Previous studies have highlighted the influence of the amplitude
dependence of the FDF gain [22] or phase [16] on nonlinear
behavior. In this paper, it is shown that there exist certain regions
where either the gain or the phase is more influential, however,
the combined effect of the gain and phase has to be considered to
accurately predict nonlinear behavior.

Time domain simulations of the coupled thermoacoustic system
are performed with a Galerkin discretization for acoustic pressure
and velocity. Limit cycle calculations using a single mode, along
with twenty modes, are compared against predictions from the
CIRCE diagram. For the single mode system, the time domain
calculations agree well with the frequency domain predictions.
The heat release rate is highly nonharmonic, however, because

there is only a single acoustic mode, this does not affect the limit
cycle amplitude. For the twenty-mode system, however, the
higher harmonics of the heat release rate interact with those of the
acoustic velocity, resulting in a larger limit cycle amplitude. Mul-
timode simulations show that, in some situations, the contribution
from higher harmonics to the nonlinear dynamics can be signifi-
cant and must be considered for an accurate and comprehensive
analysis of thermoacoustic systems.
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Nomenclature

E ¼ acoustic energy
f ¼ forcing frequency
f ) ¼ nondimensional natural frequency of the self-excited

system ðc0Lf =2~u0L0Þ
G ¼ level set function
hR ¼ heat of reaction per unit mass
K ¼ ratio of mean velocity to disturbance convection speed,

~u0=~uc
p ¼ pressure
_Q ¼ heat release rate
R ¼ half-width of the burner
sL ¼ laminar flame speed
St ¼ Strouhal number, fLf =~u0
u ¼ velocity

Greek Symbols

bf ¼ flame aspect ratio, Lf =R
c ¼ ratio of specific heats
d ¼ Dirac-delta function
e ¼ velocity perturbation amplitude
f ¼ damping coefficient
q ¼ density
/ ¼ equivalence ratio
u ¼ phase
x ¼ angular frequency
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