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a b s t r a c t

This paper describes a derivation of the adjoint low Mach number equations and their imple-
mentation and validation within a global mode solver. The advantage of using the low Mach
number equations and their adjoints is that they are appropriate for flows with variable den-
sity, such as flames, but do not require resolution of acoustic waves. Two versions of the
adjoint are implemented and assessed: a discrete-adjoint and a continuous-adjoint. The
most unstable global mode calculated with the discrete-adjoint has exactly the same eigen-
value as the corresponding direct global mode but contains numerical artifacts near the inlet.
The most unstable global mode calculated with the continuous-adjoint has no numerical
artifacts but a slightly different eigenvalue. The eigenvalues converge, however, as the time-
step reduces. Apart from the numerical artifacts, the mode shapes are very similar, which
supports the expectation that they are otherwise equivalent. The continuous-adjoint
requires less resolution and usually converges more quickly than the discrete-adjoint but
is more challenging to implement. Finally, the direct and adjoint global modes are combined
in order to calculate the wavemaker region of a low density jet.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

This paper concerns the calculation of the hydrodynamic stability of variable density flows. It is the first of a series taken
from Ref. [1] concerning the hydrodynamic stability of flames. The stability is calculated by linearizing the Navier–Stokes
equations around a base flow and then obtaining an operator that describes the evolution of small perturbations to the flow.
The eigenvalues of this operator give the frequency and growth rate of the perturbations. The corresponding eigenfunctions
give their corresponding shapes [2]. Eigenmodes can be calculated in one dimension [3] (Section 25–31) in two dimensions
[4] and in three dimensions [5]. In this paper, we will call these the direct eigenmodes.

Having calculated the direct eigenmodes of a flow, we wish to know their sensitivity to small perturbations in the direct lin-
ear operator. First, however, we need to define what we mean by sensitivity. This requires a global measure of the size of the
small perturbations. This is typically taken to be the perturbation kinetic energy integrated over the whole domain, which is
proportional to the inner product hu;ui �

R
V u� � udV . One type of sensitivity is the change that a perturbation makes to this

measure. This sensitivity is given by the eigenmodes of the corresponding adjoint operator, where the adjoint is defined with
respect to the above inner product [6] (Section 3.3.2). (Other inner products and corresponding adjoint operators are discussed
in depth by [7].) Another type of sensitivity is the change that a perturbation makes to an eigenvalue. This is a robust quantity, in
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that it is not affected by the above choice of measure [8] (Section 2.2). The adjoint eigenfunctions are biorthogonal to the direct
eigenfunctions [9,10]. In other words, for each direct eigenfunction, there is only one non-orthogonal adjoint eigenfunction. The
sensitivities are calculated by various combinations of the direct eigenfunction with its corresponding adjoint eigenfunction
[11].

If an operator, L, is normal, it commutes with its corresponding adjoint operator, L+, (i.e. L+L = LL+) and, for each eigen-
mode, the adjoint eigenfunction is identical to the direct eigenfunction. This means that a given eigenmode is most sensitive
to changes of the direct linear operator in the region in which its eigenfunction has highest amplitude. If an operator is non-
normal, it does not commute with its corresponding adjoint operator and, for each eigenmode, the adjoint eigenfunction dif-
fers from the direct eigenfunction. This means that a given eigenmode is most sensitive to changes of the stability operator in
a different region. For example, flows with advection are non-normal [8], and their direct eigenfunctions have higher ampli-
tude downstream, whereas their adjoint eigenfunctions have higher amplitude upstream.

Adjoint eigenmodes can be calculated for systems with many degrees of freedom. This has led to their extensive use in
receptivity analyses [10], structural sensitivity analyses [4,11], aerodynamic design optimization of steady flow [12–15],
optimal flow control [16,17], as well as routines to calculate initial conditions that maximize the energy growth of linear
systems [17–20] and nonlinear systems [21].

The hydrodynamic stability of many flows is strongly affected by the density profile [22,23]. The adjoint operator has been
calculated for the uniform density linearized Navier–Stokes (LN–S) equations [4,11] but these are not appropriate for flows
with variable composition and density, such as flames. The adjoint operator has also been calculated for the fully compressible
LN–S equations [24,25]. The eigenmodes of these equations contain acoustic modes, however, which require high temporal
resolution, are strongly affected by boundary conditions, and in many cases are not relevant to the system stability. For this
reason, we will use the low Mach number (LMN) equations [26,27]. These equations permit density variations due to temper-
ature or species composition but not due to compressibility. (For simplicity, only variations due to temperature are presented
in this paper because variations due to composition are dealt with using the same technique.) The LMN equations have been
used to simulate self-sustained oscillations in variable-density round jets [28,29], unsteady combustion in pre-mixed flames
[30], turbulent reactive plumes [31], and self-sustained oscillations in variable-density lifted diffusion flames [28,32,33].

Adjoint techniques have been applied to steady low Mach number flow problems [34], where low Mach number precon-
ditioning is used to accelerate convergence. This technique, however, is not suitable for time-dependent flows, such as the
ones considered here. For time-dependent low Mach number flows with density variation it is advantageous to use the lin-
earized LMN equations and an adjoint operator of these equations does not seem to have been calculated before. This process
is technically more difficult than for the uniform density or fully compressible LN–S equations because of the way that the
density is treated. In Section 2, a review is given of the derivation of the direct low Mach number governing equations. In
Section 3, the adjoint equations are derived. In Section 4, the numerical procedures are described; one for the direct equa-
tions and two different techniques for the adjoint equations. In Section 6, the numerical procedures are validated against
each other and against previous results where possible. In Section 7, the direct and adjoint global modes for a hot jet at
Re = 1000 are presented and the two adjoint techniques are compared against each other. Finally, the sensitivity of the
hot jet to spatially-localized feedback is calculated in the same fashion as described in [11]. The structural sensitivity de-
scribed in [11] was for incompressible flow behind a cylinder – we extend this to incorporate variable density effects, which
are important to the case of the hot jet. The main subject of this paper is construction and validation of the numerical pro-
cedure. Subsequent papers will present more of the physical results from [1].

2. The direct governing equations

In this paper, the direct and adjoint global modes are found using the low Mach number (LMN) formulation of the Navier–
Stokes equations [26,29]. Starting from the non-dimensionalized fully-compressible Navier–Stokes equations, each variable
is expressed in a form similar to p = p(0) + cMa2p(1) + � � �, where p is the non-dimensional pressure. The Mach number, Ma, and
the ratio of specific heats, c, are defined in Table 1. In the limit of low Mach number, all terms of order Ma2 disappear except
for the pressure term in the momentum equation, which contains the factor 1/cMa2. This term implies that the LMN momen-
tum equation is balanced by $pð1Þ, and that $pð0Þ ¼ 0.

The domain is cylindrical and uses a collocated grid with cylindrical polar coordinates (r,h,x). The inlet (the jet exit plane)
is located at the axial location x = 0 and the outlet is at x = Xmax, with uniformly spaced grid points in the axial direction. The
lateral boundaries are at a radial distance r = Rmax from the centreline, with skewed grid spacing in the radial direction. For
the results in this paper, only axisymmetric flows are considered, but the analysis can be extended to fully 3D regimes. The
full derivation of the nonlinear equations along with a full description of the computational domain and non-dimensional-
izations are given in Ref. [29]. The definitions of all non-dimensionalized variables and parameters are given in Table 1. The
superscript (0) has been dropped on all non-dimensional variables except for p. Dimensional variables are denoted by (�),
ambient conditions are denoted by subscript (0) and conditions for the jet at entry are denoted by subscript (j). The non-
dimensional nonlinear low-Mach-number equations are
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Table 1
Non-dimensionalized variables and parameters.

Reference quantities
Ambient density (kg m�3) ~q0

Ambient temperature (K) eT 0

Jet density (kg m�3) ~qj

Jet temperature (K) eT j

Jet diameter (m) ~dj

l2-norm of jet velocity (m s�1) k~ujk � ~uj

Dynamic viscosity (N m�2 s) l
Thermal conductivity (W m�1 K�1) k
Gas constant (J kg�1 K�1) R
Specific heat capacity at constant pressure (J kg�1 K�1) cp

Ratio of specific heats c
Acceleration due to gravity (m s�2) g � kgk

Non-dimensional variables
Velocity u � ~u=~uj

Density q � ~q=~q0

Temperature T � eT � eT 0

� �
= eT j � eT 0

� �
Pressure p � ~p= ~q0ReT 0

� �
� pð0Þ þ cMa2pð1Þ

Time t � ~t ~uj=
~dj

Spatial derivatives $ � ~dj
e$

Non-dimensional parameters:
Mach number

Ma � ~uj= cReT 0

� �1=2

Reynolds number Re � ~qj~uj
~dj=l

Prandtl number Pr � lcp/k
Richardson number Ri � g~dj=~u2

j

Density ratio S1 � ~q0=~qj
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S1RePr
r2T ¼ 0; ð1cÞ
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3
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where the identity matrix, I, has the same matrix dimensions as $u and s is the viscous stress tensor. The vector ĝ is a unit
vector in the direction of g, the acceleration due to gravity. The pressures p(0) and p(1) are known as the thermodynamic pres-
sure and hydrodynamic pressure respectively because p(0) is determined by the temperature in the state Eq. (1d) and p(1) is
determined by the hydrodynamic forces in the momentum Eq. (1b).

The physical properties l, k, R, cp and c described in Table 1, are assumed to be uniform and constant and can therefore be
used directly in the non-dimensional variables and parameters. The Prandtl number Pr expresses a non-dimensional ratio of
momentum diffusivity to thermal diffusivity. The parameter S1 is the ratio of ambient density to jet density, which implies
that S1Re forms a Reynolds number based on the ambient density instead of the jet density. The Richardson number, Ri ex-
presses a ratio of gravitational potential energy to kinetic energy. For the results in this paper, it is set to zero, but we carry it
through the derivation as it may be useful in some cases, such as vertically orientated diffusion flames.

The dimensional equation of state, ~p ¼ ~qReT , implies that the ambient pressure ~p0 ¼ ~q0ReT 0. Together with the definition of
p in Table 1, this implies that the non-dimensional ambient pressure p0 ¼ ~p0=~q0ReT 0 ¼ 1. Eq. (1e) implies that p(0) is uniform
in space and, assuming that the boundary conditions on p(0) are time independent, p(0) is also constant in time. Under the
assumption of low Mach number, p(0) � p and we conclude therefore that p(0) � 1.

The base flow is a steady solution to (1) and satisfies
$ � �m ¼ 0; ð2aÞ

$�pð1Þ � $ � 1
S1Re

�s� �q�u�u
� �

þ Rið1� �qÞĝ ¼ 0; ð2bÞ

�m � $T � 1
S1RePr

r2T ¼ 0; ð2cÞ

�q ðS1 � 1ÞT þ 1
� �

¼ 1; ð2dÞ
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where p(0) has been replaced by the value 1 in (2d). The nonlinear Eq. (1) are linearized about the base flow to form:
@q0

@t
þ $ �m0 ¼ 0; ð3aÞ

@m0

@t
þ $ � �q�uu0 þ �qu0�uþ q0�u�uð Þ þ $p0 � 1

S1Re
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S1RePr
r2T 0 ¼ 0; ð3cÞ

q0
�q
þ ðS1 � 1ÞT 0

ðS1 � 1ÞT þ 1
� � ¼ 0; ð3dÞ

s0 � $u0 þ $u0ð ÞT
h i

� 2
3

$ � u0ð ÞI; ð3eÞ

m0 � �qu0 þ �uq0; ð3fÞ
where m0 is the linearized momentum perturbation and p0 is the linear perturbation of p(1). For the rest of this paper, the
primes on the direct linear perturbation variables are dropped and p refers to the linear perturbation of the hydrodynamic
pressure p(1).
3. The adjoint governing equations

The system of linearized perturbation equations, (3), can be expressed in terms of the direct linear operator, L:
@q
@t
� Lq ¼ 0; ð4Þ
q �
m
T

� 	
;

where m and T are functions of the axial and radial coordinates, x and r, and time t. The state vector q does not contain p and
q because these can be derived from m and T using (3).

Our main interest is calculating the global modes of (4) and their corresponding frequencies and growth rates. We are
therefore interested in non-trivial solutions of (4) of the form
qðx; r; tÞ ¼ q̂ðx; rÞ expðrtÞ: ð5Þ
Substituting (5) into (4), we can write the new system of equations as
rq̂� Lq̂ ¼ 0: ð6Þ
To form the adjoint equations and find the adjoint global modes, an inner product must be defined:
hq1;q2i �
1
V

Z
V

qH
1 q2 dV ; ð7Þ
where qH
1 is the Hermitian of q1. In this notation, qH

1 q2 �
P

iq
�
1i q2i, where superscript (⁄) denotes the complex conjugate.

The adjoint eigenmodes themselves depend on this choice of norm but, when they are recombined with the direct modes
to give the sensitivity of the eigenvalue to changes in the operator L, and other robust measures, the effect of the norm can-
cels out. Using the inner product, Eq. (6) is premultiplied by an arbitrary vector, q̂þ, to give:
q̂þ;rq̂h i � q̂þ; Lq̂h i ¼ 0: ð8Þ
The vector q̂þ will soon be identified with the adjoint global mode corresponding to q̂. The adjoint equations can be derived
from the continuous direct Eq. (8) and then discretized or can be derived directly from the discretized direct equations. These
two paths, although subtly different, are theoretically equivalent. They are known as ‘discretization of the adjoint system’
(DA) versus ‘adjoint of the discrete system’ (AD), [35], ‘finite difference of adjoint’ (FDA) versus ‘adjoint of finite difference’
(AFD), [36], and ‘optimize then discretize’ (OTD) versus ‘discretize then optimize’ (DTO), [16]. Both paths are reviewed by Ref.
[15] in the context of design methods for steady flows. Some of the programming benefits of the AD approach in the context
of aircraft design are described in Ref. [37], as well as software that can calculate the discrete-adjoint operator automatically.
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3.1. Continuous-adjoint approach

3.1.1. General formulation
The continuous-adjoint operator of L is labelled L+ and is defined implicitly by
Please
Comp
Lþq̂þ; q̂

 �

� q̂þ; Lq̂h i: ð9Þ
L+ can be found by rearranging (8) with integration by parts to give:
r�q̂þ; q̂h i � Lþq̂þ; q̂

 �

¼ b: ð10Þ
By selecting appropriate boundary conditions, the boundary term, b, can be set to zero, which means that (9) is satisfied. At
this point q̂þ can still be an arbitrary vector but, in order for (10) to be satisfied for arbitrary q̂; q̂þ must satisfy
r�q̂þ � Lþq̂þ ¼ 0: ð11Þ
A vector q̂þ satisfying (11) is a global mode of the continuous-adjoint operator L+ with a corresponding eigenvalue equal to
r⁄. Global modes of L+ will be referred to hereafter as continuous-adjoint global modes and are time-independent solutions
of the system
� @qþ

@t
� Lþqþ ¼ 0; ð12Þ

where qþ � qþðx; r; tÞ � q̂þðx; rÞ expð�r�tÞ;

and qþ �
mþ

Tþ

� 	
:

The minus sign in front of the time derivative term in (12) appears due to the integration by parts of the time derivative term
in (4). Remembering that adjoint simulations are run backwards in time, t could be replaced with �t+, which would put the
adjoint system of (11) and (12) in a similar form to the direct system of (4)–(6).

3.1.2. Specific formulation
The time derivative terms and continuous-adjoint operator form a set of adjoint equations, which are created by succes-

sive integration by parts of the set of direct Eq. (3). The exact form of the adjoint equations depends on the exact form of the
direct equations. The aim of this section is to find a set of adjoint equations that closely mimics the set of direct equations so
that they both can be solved using a similar algorithm. The incompressible and fully-compressible direct Navier–Stokes
equations are naturally in a suitable form. The low-Mach-number Navier–Stokes equations, however, are not.

A naive approach would be to apply integration by parts to (3). The @q/@t term in (3a), however, leads to adjoint equations
that require @p+/@t to be approximated from p+ at the current and previous time steps. This approximation is not present in
the direct algorithm and leads to large numerical errors. The direct and adjoint low-Mach-number equations closely mimic
one another when the direct equations take the form
ðS1 � 1Þ �mi
@bT
@xi
� 1

S1RePr
@2bT
@x2

i

 !
þ @

@xi

m̂i

�q

� �
¼ 0; ð13aÞ

rm̂i þ
@

@xj

�mjm̂i

�q
þ m̂j �mi

�q
� q̂ �mj �mi

�q2

� �
þ @p̂
@xi
� 1

S1Re
@2

@x2
j

m̂i

�q
� q̂ �mi

�q2

� �
þ 1

3
@2

@xj@xi

m̂j

�q
� q̂ �mj

�q2

� � !
� Riq̂ĝi ¼ 0; ð13bÞ

rbT þ �mi

�q
@bT
@xi
þ m̂i

�q
@T
@xi
� 1

S1RePr
1
�q
@2bT
@x2

i

¼ 0; ð13cÞ

q̂
�q2 þ ðS1 � 1ÞbT ¼ 0: ð13dÞ
To obtain (13) from (3) a number of steps have been taken: (5) is substituted into (3); u and s are removed by using (3f) and
(3e); (2d) is substituted into (3d) to remove T; (3a), (3c) and (3d) are divided through by �q; (3d) is differentiated with respect
to time and substituted into (3c), which is then substituted into (3a); and the terms that contained m̂i in (13a) have been
combined using (2d) to form:
ðS1 � 1Þm̂i
@T
@xi
þ 1

�q
@m̂i

@xi
¼ m̂i

@

@xi
ðS1 � 1ÞT þ 1
� �

þ ðS1 � 1ÞT þ 1
� � @m̂i

@xi
¼ @

@xi

m̂i

�q

� �
: ð14Þ
If the adjoint variable multiplying (13a) is labelled p̂þ, then forming the adjoint equations with the terms on the left hand
side in (14) would result in both p̂þ and $p̂þ appearing in the adjoint momentum equation. This would make the formation
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and solution of a Poisson equation more difficult. The rearrangement in (14) allows the adjoint momentum equation to be
formed with just $p̂þ and is therefore necessary for the adjoint Poisson equation to be solved.

Two new adjoint variables are required to premultiply (13a) and (13d). The labelling of these variables is unimportant but
it is helpful to think of the variable premultiplying (13a) as the adjoint pressure and the variable premultiplying (13d) as the
adjoint density. The adjoint momentum and temperature naturally premultiply (13b) and (13c) respectively. Through suc-
cessive integration by parts, the adjoint equations corresponding to (13) are
Please
Comp
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r�bTþ � �mi
@
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bTþ
�q
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 !
� 1

S1RePr
@2

@x2
i

bTþ
�q
þ ðS1 � 1Þp̂þ

 !
þ ðS1 � 1Þq̂þ ¼ 0; ð15cÞ

�mi �mj
@m̂þi
@xj
þ Ri�q2m̂þi ĝi þ

�mi

S1Re
@2m̂þi
@x2

j

þ 1
3
@2m̂þj
@xj@xi

 !
þ q̂þ ¼ 0: ð15dÞ
Eq. (15) shows that p̂þ and q̂þ can be derived from m̂þ and bTþ in the same way as p̂ and q̂ can be derived from m̂ and bT using
(13).

In forming (15c), the base flow condition (2a) has been used to shift �mi outside the derivative. This ensures that the
adjoint pressure appears only inside a derivative, which reduces numerical error because the solution to the adjoint
pressure Poisson equation is accurate only up to an arbitrary constant. Alternatively, ðbT=�qÞ$ � �m could have been added
to the left-hand side of (13c). The base flow condition (2a) ensures this extra term is approximately zero, but now inte-
gration by parts gives (15c) directly without requiring any further use of (2a). In practice, the forms in (13c) and (15c)
give the smallest discrepancy between the direct and adjoint global mode frequencies and have therefore been used for
this work.
3.2. Discrete-adjoint approach

Eqs. (4), (6) and (8) are discretized to give:
@q
@t
� Aq ¼ 0; ð16Þ

rq̂� Aq̂ ¼ 0; ð17Þ
q̂þð ÞH Drq̂ð Þ � q̂þð ÞH DAq̂ð Þ ¼ 0; ð18Þ
where the state vector, q, and global mode vector, q̂, have changed from continuous functions, q(x,r, t) and q̂ðx; rÞ, to discrete
arrays of vectors located at grid points that span the domain. Alternatively the continuous scalar fields that form the con-
tinuous vectors can be discretized to form separate discrete scalar fields, which are then combined to form discrete vectors
of arrays. The matrix A is the discretized version of the direct linear operator L. The diagonal volume distribution matrix D
represents the volumes associated with each grid point as a fraction of the total volume of the domain and is required so that
the terms in (18) are equivalent to the inner products in (8). The product qH

1 Dq2 represents a discrete volume summation in
the same way that the inner product (7) represents a volume integral.

To find the discrete-adjoint global mode, each of the terms in (18) is rearranged so that the discrete direct global mode
alone follows the Hermitian operator:
r�DHq̂þ
� �H

ðq̂Þ � AHDHq̂þ
� �H

ðq̂Þ ¼ 0; ð19Þ

) for arbitrary q̂ : r�DHq̂þ � AHDHq̂þ ¼ 0 ð20Þ

) r�q̂þ � ðDHÞ�1AHDHq̂þ ¼ 0 ð21Þ

) r�q̂þ � D�1AHDq̂þ ¼ 0; ð22Þ
where the final step arises because D is a real diagonal matrix and therefore DH = D. By comparing (20) to (11) it is clear that
the discretized adjoint operator, A+ is given by:
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Aþ � D�1AHD ð23Þ
and that the discrete-adjoint global mode, labelled q̂�, is equivalent to the continuous-adjoint global mode, q̂þ. By establish-
ing a rigorous relationship between the discrete- and continuous-adjoint global modes and eigenvalues, the two approaches
can be seen to be equivalent.
4. Numerical procedure

A nonlinear axisymmetric DNS code is used to obtain a steady solution of the base flow equations. If the flow is unstable,
the base flow may be calculated by adding selective frequency damping (SFD), [38], to the nonlinear Eq. (1). At a fixed point,
the effect of the SFD terms is nil, but they allow an unstable fixed point to be reached numerically by artificially damping
unstable frequencies along the convergence path. In our calculations, simple time-stepping is used until the SFD system con-
verges to a steady solution that satisfies (2).

The code uses axisymmetric cylindrical polar coordinates with sixth-order compact finite difference schemes [39] to com-
pute spatial derivatives in the axial and radial directions. Values along the centreline of the domain are calculated with
asymptotic equations [40] that differ slightly from the regular equations. A 4th-order Runga–Kutta time marching scheme
is used, involving an explicit version of the projection method used by [41], which requires the solution of a pressure Poisson
equation. The Poisson solver uses direct cosine transforms (DCTs) along each line of grid points in the axial direction to
decouple the system into separate wave numbers. A standard complex fast Fourier transform (FFT) algorithm is used with
pre- and postprocessing routines that allow the efficient computation of two real DCTs for each complex FFT [42–44]. The
forward DCTs are applied first to the right hand side of the Poisson equation. An efficient algorithm (based on the Thomas
algorithm) is then applied to solve the decoupled system of one-dimensional equations. Finally the inverse DCTs are applied
to give the pressure. Further details of the code can be found in [28]. This section contains a summary of the relevant parts of
the direct and adjoint solution algorithms.
4.1. Computing global modes

The eigenvalues and global modes are found using ARPACK, which uses the implicitly restarted Arnoldi method [45]. An
introduction to these methods is given by Ref. [2]. ARPACK calculates the eigenvalues and eigenvectors of a virtual time-step-
per matrix that represents the evolution of the flow from time t to time t + NDt, where Dt is the time advanced by a single
application of the time-stepping algorithm and N is the number of applications. If an explicit single-step time discretization
is used, such as a Runge–Kutta method, (16) and its discrete-adjoint equivalent can be expressed as
qðt þ NDtÞ ¼MNqðtÞ; ð24Þ
q�ðt � NDtÞ ¼ ðMHÞNq�ðtÞ; ð25Þ
where M is the matrix exponential of ADt, MH is the matrix exponential of AHDt and superscript (N) denotes the matrix
raised to the power of N.

The continuous-adjoint described by (12) is discretized in space and time to give:
� @qþ

@t
� Aþqþ ¼ 0; ð26Þ
and qþðt � NDtÞ ¼MþNqþðtÞ; ð27Þ
where M+ is the matrix exponential of A+Dt.
The eigenmodes and eigenvalues calculated by ARPACK correspond to the matrices MN, (MH)N and M+N. The eigenmodes

are the same as those of the matrices A, AH and A+, but the eigenvalues depend on NDt. From (17), r is an eigenvalue of A and
if k is the corresponding eigenvalue of MN then
k � expðrNDtÞ; ð28Þ
) r � 1
NDt

lnðjkjÞ þ i argðkÞð Þ; ð29Þ
where j j is the absolute value of a complex number.
A two-sided Arnoldi algorithm, which gives both the direct and adjoint eigenmodes, has been proposed by [46]. The two-

sided algorithm uses a combination of the approximate left eigenvectors of the direct solution as the initial state for the ad-
joint calculation. While this improves the speed of convergence of the adjoint algorithm, the use of parallel computing allows
the direct and adjoint calculations to be run side by side and is therefore quicker overall. [11] use a two-sided inverse iter-
ation algorithm to efficiently calculate the discrete-adjoint modes at the same time as the direct modes.
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4.2. Direct linear algorithm

Converting (13) into time-dependent form and discretizing in time with a 1st-order explicit Euler scheme for illustration,
the direct system can be written as
Please
Comp
$ �mnþ1 � khðmnþ1; Tnþ1Þ ¼ 0; ð30aÞ
mnþ1 �mn

Dt
þ $p� � fðmn;qnÞ ¼ 0; ð30bÞ

Tnþ1 � Tn

Dt
� hðmn; TnÞ ¼ 0; ð30cÞ

qn þ kTn ¼ 0; ð30dÞ
where f and h are functions representing the remaining terms in the equations and k is a constant scalar field that is depen-
dent upon the base flow. Subscript (n) denotes the value of the variable at time step n and subscript (⁄) denotes an interme-
diate value.

The variable qn can be eliminated using (30d). The variable p⁄, however, requires the formation of a Poisson equation.
Taking the divergence of (30b) and rearranging gives
r2p� ¼
1
Dt

$ � mn þ Dt fðmn;qnÞ½ 	 � $ �mnþ1ð Þ: ð31Þ
The variables Tn+1 from (30c) and mn are substituted into (30a) to give an approximation for $ �mnþ1
$ �mnþ1 � khðmn; Tnþ1Þ;

$ �mnþ1 � ðS1 � 1Þ�q �mn � $T � �m � $Tnþ1 þ
1

S1RePr
r2Tnþ1

� �
: ð32Þ
The Poisson equation is then solved for p⁄ and (30b) can then be used to find mn+1. The term inside the square brackets in (31)
is the auxiliary momentum
m� ¼ mn þ Dt fðmn;qnÞ½ 	; ð33Þ
) mnþ1 ¼ m� � Dt$p�: ð34Þ
To improve temporal accuracy a 4th-order Runge–Kutta scheme is used, which is formed from the 1st-order Euler scheme
shown above.

4.3. Continuous-adjoint algorithm

Converting (15) into time-dependent form and discretizing in time with a 1st-order explicit Euler scheme, the continu-
ous-adjoint system can be written as
$ �mþ
nþ1 ¼ 0; ð35aÞ

�
mþ

nþ1 �mþ
n

Dt

� �
� 1

�q
$pþ� þ fþ mþ

n ; T
þ
n

� �
¼ 0; ð35bÞ

� Tþnþ1 � Tþn
Dt

þ hþ qþn ; T
þ
n ; p

þ
n

� �
¼ 0; ð35cÞ

qþn þ kþðmþ
n Þ ¼ 0; ð35dÞ
where f+, h+ and k+ are functions representing the remaining terms in (15b), (15c) and (15d) respectively.
The derived variable qþn can be eliminated by substituting (35d) into (35c). The derived variable pþ� , however, requires the

formation of a Poisson equation. Taking the divergence of (35b) and rearranging gives
r2pþ� ¼
1
Dt

$ � �q mþ
n þ Dt fþ mþ

n ; T
þ
n

� �� 
� �
�mþ

nþ1 � $�q� �q$ �mþ
nþ1

� �
: ð36Þ
Eq. (35a) is used to remove the $ �mþ
nþ1 term from (36). The remaining mþ

nþ1 is approximated by mþ
n in a similar way to the

way in which mn+1 is approximated by mn in (32). The adjoint Poisson equation is then solved for pþ� . The adjoint pressure is
then substituted into (35) to find mþ

nþ1 and Tþnþ1. The term inside the square brackets in (36) is the adjoint auxiliary momen-
tum field
mþ
� ¼ mþ

n þ Dt fþðmþ
n ; T

þ
n Þ

� 

; ð37Þ

)mþ
nþ1 ¼ mþ

� �
Dt
�q

$pþ� : ð38Þ
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In order for the diffusive term in the adjoint momentum equation to be well-behaved it is necessary to use a negative time
step, which is achieved by changing the sign in front of terms containing Dt in the above equations. Again, the 4th-order
Runge–Kutta scheme is used to improve temporal accuracy.

4.4. Discrete-adjoint algorithm

To form a discrete-adjoint algorithm, the direct algorithm needs to be represented as one matrix (although this matrix is
never actually formed) and the discrete-adjoint is the conjugate transpose of this matrix. First, all the steps in the direct solu-
tion algorithm are broken down and represented as simple matrix–vector products. At the start of the time step, only the
variables contained in the state vector exist. At points in the time step algorithm, derived variables are introduced and
the vector grows. When the derived variables are no longer needed they are removed and the vector shrinks, eventually back
to the size at which the time step started. For example, the state equation, (3d), is represented as a matrix with 4 rows and 3
columns that multiplies the state vector containing three scalar fields: mx, mr and T. The top 3 rows of this matrix form a
3 
 3 identity matrix. The bottom row calculates q from a combination of mx, mrand T and this forms the fourth field in a
new vector containing mx, mr, T and q. Once q is no longer needed, a matrix with 3 rows and 4 columns is used to convert
back to a three-field vector.

The scalar fields are discretized to form a single state vector containing scalar values. This is achieved by consecutively
storing values in the axial direction at each discrete radial location in turn. The middle values for each discretized scalar field
correspond therefore to the centreline of the domain. The middle rows of the corresponding matrix represent the centreline
equations and the other rows represent the regular equations. From this starting point every action that alters the state vec-
tor is represented as a matrix–vector product, which is then transposed. A few key highlights are discussed below with full
details provided in [1].

The Poisson solver requires the transpose of forward and inverse DCTs. Conveniently the inverse DCT is similar to the
transpose of the forward DCT and the forward DCT is similar to the transpose of the inverse DCT. In both cases, only the value
corresponding to the constant coefficient requires altering, which can be easily done in the pre- and postprocessing routines.

A matrix representation of the 4th-order Runge–Kutta scheme is formed by expanding the state vector at each of the four
steps. At each intermediate Runge–Kutta step the new vector is added to the bottom of the state vector. The last matrix–vec-
tor product is then
Please
Comp
½qnþ1	 ¼ 0 I=6 I=3 I=3 I=6½ 	

qn

q1
n

q2
n

q3
n

q4
n

26666664

37777775: ð39Þ
With the Runge–Kutta scheme represented in this way the separate matrices can be transposed and reordered accordingly to
provide the exact transpose of the whole 4th-order Runga–Kutta algorithm.

5. Boundary conditions

One of the most challenging aspects of developing an adjoint solver is the correct treatment of boundary conditions. Sim-
ilar to the direct problem, this depends on the specific flow configuration. In this section, therefore, we carefully describe
boundary conditions developed for the base flow, direct perturbations, and continuous-adjoint perturbations in the case
of a hot jet. The discrete-adjoint algorithm in some sense circumvents these difficulties by using the exact matrix transpose,
but as we will see introduces numerical artifacts near the boundaries.

The boundary conditions used for the base flow, direct perturbations, and continuous-adjoint perturbations are summa-
rized in Table 2. The discrete-adjoint boundary conditions are the exact matrix transpose of the discretized direct boundary
conditions.

Before discussing the boundary conditions for the different simulations, some general points can be made. Although set-
ting boundary conditions on momentum and temperature provides enough information to describe a unique solution [47],
the efficient solution of the pressure Poisson equation in the projection method requires boundary conditions for the hydro-
dynamic pressure and auxiliary momentum fields, which must be consistent with the system of equations and the boundary
conditions already set.

On the boundaries, the projection steps ( (34) for the direct case) imply that the auxiliary momentum is equal to the ac-
tual momentum plus a multiple of $p�. It is convenient therefore to set $p� ¼ 0, which allows the boundary conditions on
the auxiliary momentum to be the same as those for the actual momentum. To set $p� ¼ 0, it is necessary and sufficient to
set the spatial derivatives tangential to the boundary (@p⁄/@s) and normal to the boundary (@p⁄/@n) to zero, where the spatial
co-ordinates s and n are tangential and normal to the boundary surface respectively. For the axisymmetric case with no swirl
and Re� 1, @p⁄/@s � 0 on all boundaries. A high Reynolds number is required so that viscous corrections near the inlet,
which cause a radial pressure gradient at inlet, are small. The solution of the pressure Poisson equation however defines
the pressure only to within a constant and the overall pressure level can therefore drift if a Dirichlet condition is not set
cite this article in press as: G.J. Chandler et al., Adjoint algorithms for the Navier–Stokes equations in the low Mach number limit, J.
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Table 2
Boundary conditions. D ? Dirichlet, h-D ? homogeneous Dirichlet, h-N ? homogeneous Neumann, C ? convective, v-T-F ? viscous traction free.

Field Base flow Direct linear Continuous-adjoint

x = 0 Xmax Rmax x = 0 Xmax Rmax x = 0 Xmax Rmax

mx D C v-T-F h-D C h-D h-D h-D h-D
mr h-N C v-T-F h-D C h-D h-D h-D h-D
T D C h-D h-D C h-D h-D h-D h-D
p h-N h-D h-D h-N h-D h-D h-D h-N h-D
mx⁄ D C v-T-F h-D C h-D h-D h-D h-D
mr⁄ h-N C v-T-F h-D C h-D h-D h-D h-D
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on part of the pressure boundary. Far from the inlet, where the flow is varying slowly, @p⁄/@n � 0, allowing a homogeneous-
Dirichlet condition to be set explicitly on the lateral and outlet boundaries. @p⁄/@n = 0 can then be set as the pressure bound-
ary condition at the inlet. Setting a homogeneous-Neumann pressure condition at the inlet and a homogeneous-Dirichlet
condition at the outlet helps generate a pressure build up at start up, which pushes any transients towards the outlet and
out of the domain.

5.1. Base flow boundary conditions

The boundary conditions for the base flow are the same as those used in the nonlinear simulations by [29]. At inlet these
are Dirichlet for axial momentum and temperature, with top-hat inlet profiles formed from Michalke’s profile number two
[48]:
Please
Comp
yð0; rÞ � 1
2

1þ tanh
1
4

~dj

2h
1
2r
� 2r

� � ! !
; ð40Þ

Tð0; rÞ ¼ yð0; rÞ; ð41Þ

qð0; rÞ ¼ 1
ðS1 � 1ÞTð0; rÞ þ 1

; ð42Þ

mxð0; rÞ ¼ qð0; rÞ uc þ ð1� ucÞyð0; rÞð Þ; ð43Þ
where h is the momentum thickness, uc is the non-dimensional coflow velocity and the non-dimensional jet diameter is 1. A
homogeneous-Neumann condition is used for the radial momentum. A small positive coflow velocity helps reduce the accu-
mulation of numerical errors by slowly advecting them out of the domain. With uc� 1, however, the inlet conditions
approximate a jet exiting from a hole in a flat wall. The lateral boundaries allow fluid entrainment through a viscous trac-
tion-free momentum boundary condition and a homogeneous-Dirichlet temperature condition. The outlet boundary is a
convection boundary condition for all fields [49].

5.2. Direct linear boundary conditions

The base flow at the inlet and lateral boundaries is assumed to be inwards and a homogeneous-Dirichlet boundary con-
dition is set for the momentum and temperature perturbation fields.

For shorter domains, a convection outlet boundary condition is necessary for all perturbation fields to allow disturbances
to flow out of the domain with minimal reflections. For long domains, a homogeneous-Dirichlet condition can be used if per-
turbations have reached a small enough amplitude at the exit. If this is the case, a convection condition produces almost
identical results, which is why it has been used for all simulations.

5.3. Continuous-adjoint boundary conditions

The boundary terms, which arise from the integration by parts in the derivation of the adjoint equations, are represented
by b in Eq. (10). Assuming Re� 1, the boundary terms containing a factor of 1/Re can be neglected. The remaining boundary
terms forming b are
1
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Z
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�q
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@xi
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� �
dV ¼ 0: ð44Þ
Using the divergence theorem, the volume integral in (44) can be transformed into a surface integral
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nidS ¼ 0; ð45Þ
where ni is the outward pointing unit normal vector of the surface S.
The flow direction for the adjoint is reversed. The inlet is at Xmax and the outlet is at x = 0. The boundary conditions for the

adjoint pressure are therefore also reversed to push any transients out of the domain. pþ� is therefore set to zero on x = 0 and
on r = Rmax. For the axisymmetric case with no swirl, @pþ� =@s � 0 on all boundaries, implying pþ� � 0 on Xmax. @pþ� =@n is set to
zero on Xmax and it has been assumed that @pþ� =@n � 0 on Rmax and on x = 0 in order to set $pþ� ¼ 0 on all of the boundaries.

On the lateral boundaries, the homogeneous-Dirichlet conditions imposed on all the direct perturbation variables ensure
the boundary terms in (45) are zero. A convenient choice is to set the same conditions on the adjoint variables. At x = Xmax, a
homogeneous-Dirichlet condition on m+ and T+, together with pþ� � 0, ensures the boundary terms in (45) are approximately
zero. At x = 0 a homogeneous-Dirichlet condition set on m+ together with the homogeneous-Dirichlet conditions on m and T
ensure all the boundary terms in (45) are zero. It is also convenient to set a homogeneous-Dirichlet condition on T+ at x = 0.

Unlike at the direct outlet at Xmax, the adjoint perturbations are large near x = 0 and this causes reflections at the homo-
geneous-Dirichlet boundary condition. If the domain is too short, the reflections set up standing waves between the inlet and
outlet. This type of behaviour has also been observed in spatial mixing layers by [50], who suggested that the streamwise
boundaries of the finite domain triggered the global resonances.

If a convection condition is used for m̂þi at x = 0 instead of a homogeneous-Dirichlet condition, the boundary term ðm̂þ�i p̂Þ
is no longer precisely zero. It is, however, approximately zero because p̂ is approximately zero at x = 0. There is also the ques-
tion of which is physically more correct. The jet is modelled as exiting through a hole in a wall. A wall suggests that no per-
turbations, adjoint or direct, should pass out through the boundary at the jet exit plane, implying that a homogeneous-
Dirichlet condition for the adjoint momentum is appropriate. Inside the jet, however, perturbations could travel upstream
of the jet exit plane, implying that a convection condition for the adjoint momentum could be more appropriate. In practice
we found that the homogeneous-Dirichlet condition produces continuous-adjoint eigenvalues slightly closer to the direct
eigenvalues and so this is the condition that has been used for this work.

It is difficult to compare the continuous-adjoint boundary conditions with the discrete-adjoint boundary conditions be-
cause the algorithms in which they are applied are different. In both cases, an approximation of the true adjoint boundary
condition is satisfied at the end of the time step. The continuous-adjoint algorithm enforces the boundary conditions directly
after the state vector is altered, whereas the discrete-adjoint algorithm applies the transpose of the direct boundary condi-
tions at the start of the time step and then updates the state vector.

6. Numerical validation

To check the direct linear code, the boundary between absolute and convective instability is calculated as S1 is varied and
the results are compared to those of Ref. [51]. The response to an impulse is calculated in a long domain with a parallel base
flow and the energy at the site of the impulse is monitored. The flow parameters of Re = 1000 and R/h = 20 from Ref. [51]
were used with a non-dimensional domain size of 6.0 
 84.5 (diameter 
 length) with 285 
 7271 grid points and time step
Dt = 0.003. The energy at the site of the impulse was found to decay for density ratios S1 6 1.61 and grow for ratios above
this. For this flow configuration, the absolute/convective instability boundary in Fig. 9 of [51] lies at S1 � 1.54(corresponding
to S � 0.65 in their figure). Given the difficulties in using a time marching code to obtain absolute/convective boundaries for
parallel flow, this agreement is better than expected.

The discrete-adjoint and continuous-adjoint time-marching algorithms are checked against the direct algorithm at each
timestep by calculating q�(t1) �MNq(t2) � q(t2) � (MH)Nq�(t1), which should be zero. For the discrete-adjoint code, this quan-
tity is zero to machine precision, demonstrating that the discrete-adjoint algorithm is the exact adjoint of the direct govern-
ing equations and numerical scheme. For the continuous-adjoint code, this quantity is not quite zero because the numerical
scheme of the continuous-adjoint algorithm has different truncation errors to that of the direct algorithm.

The global modes of all algorithms are then calculated with ARPACK for the base flow described in the next section. The
discrete-adjoint and continuous-adjoint eigenvalues are compared against the direct eigenvalues. The discrete-adjoint
eigenvalues match the direct eigenvalues to six decimal places, which is the precision specified for the eigenvalue calculation
in ARPACK. The continuous-adjoint eigenvalues do not quite match the direct eigenvalues because of the different numerical
schemes. Table 3 compares the direct and adjoint eigenvalues of the most unstable eigenmode as the temporal resolution is
increased. The results in Tables 3 and 4 were calculated using the mid-res setup from Section 7. The direct and adjoint eigen-
values should be complex conjugates of each other. The real component is the growth rate and the imaginary component is
2pSt, where St � ~f ~dj=~uj where ~f is the frequency of the global mode in Hertz. This base flow is only just globally unstable,
which is why the changes in the growth rate seem large when measured from zero. The absolute and relative discrepancies
between the direct and adjoint eigenvalues are more informative, however, and the final column shows that these are �1%
and reduce as the temporal resolution increases.

We also checked that the direct and adjoint modes are bi-orthogonal. The discrete-adjoint modes are bi-orthogonal to the
direct modes to the precision specified in ARPACK, as expected. We evaluated the value of the inner product (7) between the
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Table 3
Eigenvalues of the direct, rd, and continuous-adjoint, rca, calculations, which would be complex conjugates of each other for a perfect scheme. The absolute
discrepancy, absðrd � r�caÞ and relative discrepancy absðrd � r�caÞ=absðrdÞ decrease as the timestep decreases.

dt Eigenvalue Discrepancy

Direct Continuous-adjoint Absolute Relative

0.0100 0.0450 � 1.0946i 0.0632 + 1.0950i 0.0183 0.0167
0.0050 0.0496 � 1.0946i 0.0650 + 1.0957i 0.0155 0.0141
0.0025 0.0519 � 1.0947i 0.0651 + 1.0960i 0.0132 0.0121

Table 4
The inner product of the first adjoint eigenfunction with the first, second, third and fourth direct eigenfunctions. This shows that the eigenfunctions are nearly
bi-orthogonal and become more bi-orthogonal as the timestep decreases.

dt Direct mode 1 Direct mode 2 Direct mode 3 Direct mode 4

0.0100 1 2.85 
 10�3 4.44 
 10�5 1.61 
 10�6

0.0050 1 2.36 
 10�3 4.20 
 10�5 1.29 
 10�6

0.0025 1 2.21 
 10�3 3.82 
 10�5 1.10 
 10�6

Table 5
Eigenvalues of the direct, continuous-adjoint and discrete adjoint calculations at three different spatial resolutions.

Case Direct Continuous-adjoint Discrete-adjoint

Low-res 0.0613 � 1.0646i 0.0769 + 1.0645i 0.0613 + 1.0647i
Mid-res 0.0450 � 1.0946i 0.0632 + 1.0950i 0.0450 + 1.0946i
High-res 0.0423 � 1.1044i 0.0605 + 1.1056i 0.0423 + 1.1044i
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direct and continuous-adjoint eigenmodes. These are shown in Table 4 for the first adjoint mode and the first four direct
modes. The modes are nearly bi-orthogonal and become more so as the resolution increases.

The discrepancies given in Tables 3 and 4 and also in Table 5 in the next section do not reduce to zero, because there are
sources of error other than the one that is being investigated. For example a coarse grid will give a large discrepancy even
with a small time step. Another source of error is the assumption that Re� 1, which is used to set some boundary terms to
zero.

We also compared the eigenvalues of the direct global mode to the non-reacting nonlinear global mode frequencies and
local analysis in the numerical study of Ref. [32]. The non-reacting frequency calculated in this study is within 4% of the fre-
quencies predicted by the local analysis of Ref. [32]. These values are approximately 20% lower than the frequency of the
nonlinear global mode, but Ref. [32] points out that this in agreement with the findings of Ref. [52].
Fig. 1. Non-dimensional base flow at high resolution.
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Figs. 3 and 4, and Figs. 5 and 6, which will be described in the next section, show that the continuous-adjoint and discrete-
adjoint eigenfunctions agree well. From all of these tests, we conclude that the discrete and continuous adjoint algorithms
are working correctly.

7. Results

All the results in this paper are at Reynolds number 1000 (see Table 1). This is large enough to satisfy Re� 1 but small
enough to allow sufficient spreading of the shear layer over the length of the domain so that the local profiles are stable at
exit. The Prandtl number is 0.7. The inlet profile has a shear layer thickness parameter ~dj=ð2hÞ ¼ 12:5 and coflow uc = 0.01.
The Richardson number is zero and the density ratio S1 = 7.0. The non-dimensional axial domain length is 36.0 and the non-
dimensional domain diameter is 8.0. This setup represents a confinement ratio (domain diameter to jet diameter) of 8, which
is large enough for the effects of confinement to be negligible [53].

Three grid sizes are used: 127 
 1027 (low-res), 181 
 1449 (mid-res) and 255 
 2049 (high-res), corresponding to radial

 axial grid points (Nr 
 Nx). The corresponding time steps are Dt = 0.00707 for the high-res simulations and Dt = 0.01 for the
others. The grid is uniform in the axial direction and skewed in the radial direction to give higher resolution near the shear
layers and boundaries.

The base flow used in this paper, Fig. 1, is a hot jet discharging into a cold reservoir of identical fluid. It is steady but unsta-
ble. The top three frames show the axial velocity, radial velocity and density. The bottom three frames show the axial
momentum, radial momentum and temperature, which are the quantities used in the calculations.
Fig. 2. Real part of the non-dimensional most-unstable direct global mode at high resolution.

Fig. 3. Real part of the non-dimensional most-unstable discrete-adjoint global mode at high resolution (volume distribution corrected). Black regions
correspond to minimum values, white regions correspond to maximum values.
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The eigenvalues for the direct, continuous adjoint and discrete adjoint global modes at all three resolutions are given in
Table 5. The difference between the eigenvalues for the mid-res and high-res cases is smaller than the difference between
the low-res and mid-res case, which shows that the eigenvalues are converging with increasing spatial resolution.

The real part of the most-unstable direct, discrete-adjoint, and continuous-adjoint global modes at high-resolution are
shown in Figs. 2–4 respectively. In this paper, if the minimum/maximum values of the figures are stated as ‘min’/‘max’, they
also refer to the minimum/maximum values of the data, whereas if they are stated as ‘figure min’/‘figure max’, they refer to
the figure values only and differ from the actual minimum/maximum values of the data. In the modal figures, the minimum/
maximum values have been set using the value with larger magnitude so that the figure is centred on zero. Only a portion of
the domain close to the inlet is shown in Figs. 3 and 4 because the low-amplitude downstream structure of the adjoint modes
does not show up with the contours used in these figures. The modes have been normalized so that hq̂; q̂i ¼
hq̂þ; q̂þi ¼ hq̂�; q̂�i ¼ 1.

The direct global modes for axial and radial velocity have the cat’s eye pattern that is characteristic of the Kelvin–Helm-
holtz instability [3] (Section 22) [54] but with additional fluctuations in density. The global mode has maximum amplitude at
x � 12 and an analysis similar to that of [11] suggests that it is caused by a wavemaker region located near the upstream
edge of the global mode.
Fig. 4. Real part of the non-dimensional most-unstable continuous-adjoint global mode at high resolution.

Fig. 5. Absolute value of the non-dimensional discrete-adjoint global mode multiplied by the direct global mode at every grid point (volume distribution
corrected). Black regions correspond to minimum values, white regions correspond to maximum values.
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Figs. 3 and 4 show that the adjoint mode is concentrated around the shear layer at the inlet to the domain, as is expected.
The discrete-adjoint mode (Fig. 3) has a similar structure to the continuous-adjoint mode (4) but is obscured by a numerical
artifact close to the inlet. We have seen this nonphysical behaviour near the boundaries in other discrete-adjoint systems
and it shows the sensitivity to a numerical instability rather than a physical instability. The same effect has been seen by
Ref. [55] and [36] when using the discrete-adjoint approach, with Ref. [55] attributing the effect to the discrete adjoint prob-
lem being an inconsistent discretization of the continuous adjoint problem. Nevertheless, the strong similarity between the
discrete-adjoint and continuous-adjoint modes away from the boundaries is encouraging because they were calculated via
two different approaches.

Structural sensitivity maps are formed from various combinations of the direct and adjoint global modes [11]. Each com-
bination corresponds to a different sensitivity. Before presenting the receptivity to spatially-localized feedback, which is the
equivalent to Fig. 17 of [11], it is useful to examine a simple combination of each direct global mode with its corresponding
adjoint global mode and to see how it changes with grid resolution. The absolute value of the product between the direct and
adjoint global modes at every point in the domain for axial momentum, radial momentum and temperature are shown in
Fig. 5 for the discrete-adjoint and Fig. 6 for the continuous-adjoint.

The discrepancy between the mid-res and high-res results for both the discrete-adjoint (Fig. 5) and continuous-adjoint
(Fig. 6) is small, suggesting that the high-res results have more than enough spatial resolution. There is a slight difference,
however, between the exact locations of the high amplitude region given by the continuous-adjoint and the discrete-adjoint
calculations. It is likely that this difference is due to the temporal resolution because we know from Table 3 that the eigen-
values converge closer still as the temporal resolution increases.
Fig. 6. Absolute value of the non-dimensional continuous-adjoint global mode multiplied by the direct global mode at every grid point. Black regions
correspond to minimum values, white regions correspond to maximum values.

Fig. 7. Sensitivity (rGr) of the most unstable eigenvalue (r) to an increase in the feedback (G) between velocity and force: (a) when the force is aligned and
in phase with the velocity; (b) when the feedback is in the most influential direction, as in Fig. 17 of Ref. [11].
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Although the purpose of this paper is to describe and validate the numerical method, it is worth including a physical re-
sult. Considering a feedback mechanism in which the fluctuating velocity at a given point in the flow causes a fluctuating
force at that point (such as that caused by placing a small object in the flow), Fig. 7 shows the sensitivity of the most unstable
eigenvalue to the strength of that feedback. Fig. 7(a) shows the sensitivity if the feedback is in the same direction as the
velocity. Fig. 7(b) shows the sensitivity if the feedback is in the direction that has the most influence. The latter is the equiv-
alent to Fig. 17 of Ref. [11] and shows the wavemaker region of the flow, which is centred on x � 7. More results can be found
in [1] and will be reported in future papers.

8. Conclusions

The first goal of this paper was to describe the calculation of adjoint global modes for variable density shear flows using a
low-Mach-number formulation of the Navier–Stokes equations. Due to the treatment of density, the formation of the adjoint
equations for the low-Mach-number case is more complex than for the incompressible and fully-compressible cases. By
careful rearrangement of the linear equations, a set of adjoint equations has been derived that can be solved with a similar
algorithm to that for the direct equations. This is known as the continuous-adjoint algorithm. A complimentary discrete-
adjoint algorithm was constructed, using a matrix representation that expands and contracts the state vector. This method
provides an efficient framework with which to calculate the matrix transpose for a wide range of algorithmic structures,
whilst maintaining programming efficiency.

The second goal was to compare the continuous-adjoint and discrete-adjoint approaches. The most unstable global mode
calculated with the discrete-adjoint approach has exactly the same eigenvalue as the corresponding direct global mode but
contains numerical artifacts near the inlet. These artifacts reduced with increased resolution but did not disappear com-
pletely in the high resolution case. The most unstable global mode calculated with the continuous-adjoint approach has
an eigenvalue that differs by 1.5% from that of the corresponding direct global mode but does not contain numerical artifacts.
The difference reduces as the timestep reduces. Apart from the numerical artifacts, the mode shapes are very similar, which
supports the expectation that they are otherwise equivalent. The continuous-adjoint requires less resolution and usually
converges more quickly than the discrete-adjoint but is more challenging to implement.

Finally, for a hot jet at Re = 1000, the sensitivity to spatially-localized feedback was calculated. This shows the wavemaker
region of the flow, which is the region that has most influence on the eigenvalue of the first global mode. The advantage of
using the low Mach number equations and their adjoints is that they are appropriate for flows with variable composition and
density but do not require resolution of acoustic waves. More results will be reported in future papers, including the sensi-
tivity analysis of lifted jet diffusion flames.
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