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Abstract

We present a method that combines multiple sensory modalities in a rocket thrust chamber to
predict impending thermoacoustic instabilities with uncertainties. This is accomplished by training
an autoregressive Bayesian neural network model that forecasts the future amplitude of the
dynamic pressure time series, using multiple sensor measurements (injector pressure/ temperature
measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-
frequency OH* chemiluminescence measurements) and future flow rate control signals as input.
The method is validated using experimental data from a representative cryogenic research thrust
chamber. The Bayesian nature of our algorithms allows us to work with a dataset whose size is
restricted by the expense of each experimental run, without making overconfident extrapolations.
We find that the networks are able to accurately forecast the evolution of the pressure amplitude and
anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare
the predictive accuracy of multiple models using different combinations of sensor inputs. We find that
the high-frequency dynamic pressure signal is particularly informative. We also use the technique of
integrated gradients to interpret the influence of different sensor inputs on the model prediction. The
negative log-likelihood of data points in the test dataset indicates that prediction uncertainties are
well-characterized by our model and simulating a sensor failure event results in a dramatic increase
in the epistemic component of the uncertainty, as would be expected when a Bayesian method
encounters unfamiliar, out-of-distribution inputs.
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Introduction

High-frequency thermoacoustic instabilities are a potentially catastrophic phenomenon in rocket and
aircraft engines. They usually arise from the coupling between unsteady heat release rate and acoustic
eigenmodes of the combustion chamber. Acoustic waves incident on a flame cause fluctuations in its
heat release rate. If a flame releases more (less) heat than average during instants of higher (lower) local
pressure, then more work is done by the gas during the acoustic expansion phase than is done on it during
the acoustic compression phase. If this work is not dissipated then the oscillation amplitude grows and
the system becomes thermoacoustically unstable.

Thermoacoustic instabilities can be challenging to model and predict because they are usually sensitive
to small changes in a combustion system (Juniper (2018)). The large pressure fluctuations and accelerated
heat transfer caused by these oscillations can lead to structural failure, because rocket engines have high
energy densities and low factors of safety in their structural design. From the F1 rocket engine, which
underwent costly redesigns in the 1960s (Oefelein and Yang (1993)) to the modern Japanese LE-9 engine
(Watanabe et al. (2016)), they continue to plague the development of liquid propellant rocket engines.

Designers can suppress thermoacoustic oscillations in two ways. The first method involves fitting
passive devices such as acoustic liners (Oefelein and Yang (1993)), baffles (Eldredge and Dowling
(2003)) and resonators (Zinn (1970)) or the use of tuned passive control, where sensor measurements are
used to diagnose thermoacoustic oscillations which can then be mitigated by adjusting a passive damping
device or avoiding the operating point (Kobayashi et al. (2019a)). The second method is active feedback
control (Dowling and Morgans (2005)). The challenging demands of high power output, reliability and
robustness placed on an active feedback control system means that feedback control is not used in rocket
engines and aircraft engines. This paper proposes the diagnosis of impending instabilities using multiple
sensor data-streams as input and Bayesian neural networks for forecasting. The forecast can be used by

a rocket engine controller to perform a mass flow rate adjustment and avoid the unstable regions.
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The remainder of the paper is paper is structured as follows. We provide an overview of related work in
this field and explain the motivation behind the current study. Next, we describe the experimental rocket
thrust chamber which generated our dataset. This is followed by details of the statistical tools we used:
Bayesian neural network ensembles for forecasting and integrated gradients for interpreting them. We
then compare the quality of the forecasts obtained using different model inputs and identify the influence
of important input features on predictions using integrated gradients. We conclude with a brief summary
of our findings and a discussion of potential avenues for future work.

The construction of instability precursors from pressure measurements and optical measurements has
attracted considerable attention from the combustion research community, as reviewed by Juniper and
Sujith (2018). Lieuwen (2005) used the autocorrelation decay of combustion noise, filtered around an
acoustic eigenfrequency, to obtain an effective damping coefficient for the corresponding instability
mode. Other researchers have used tools from nonlinear time series analysis, which capture the transition
from the chaotic behaviour displayed by stable turbulent combustors to the deterministic acoustics
during instability, such as Gottwald’s 0-1 test (Nair et al. (2013)) and the Wayland test for nonlinear
determinism (Gotoda et al. (2011)) to assess the stability margin of a combustor. Nair et al. (2014)
reported that instability is often presaged by intermittent bursts of high-amplitude oscillations and used
recurrence quantification analysis (RQA) to detect these. In a later paper, Nair and Sujith (2014) noted
that combustion noise tends to lose its multifractality as the system transitions to instability. They
proposed the Hurst exponent as an indicator of impending instability. Measures derived from symbolic
time series analysis (STSA) (Sarkar et al. (2016)) and complex networks (Murugesan and Sujith (2016))
are also able to capture the onset of instability.

Recent studies have explored machine learning techniques to learn precursors of instability from
data. These promise greater accuracy than physics-based precursors of instability, though at the cost of
robustness and generalizability. Hidden Markov models constructed from the output of STSA (Jha et al.
(2018)) or directly from pressure measurements (Mondal et al. (2018)) have been used to classify the state
of combustors. Hachijo et al. (2019) have projected pressure time series onto the entropy-complexity
plane and used support vector machines (SVMs) to predict thermoacoustic instability. SVMs were
also employed by Kobayashi et al. (2019b), who used them in combination with principal component
analysis and ordinal pattern transition networks to build precursors from simultaneous pressure and
chemiluminiscence measurements. Sengupta et al. (2020) showed that the power spectrum of the noise
can be used to predict the linear stability of a thermoacoustic eigenmode using Bayesian neural networks.
Related work by McCartney et al. (2020) used the detrended fluctuation analysis (DFA) spectrum of the
pressure signal as input to a random forest and found that this approach compared favorably to precursors
from the literature. A recent study by Gangopadhyay et al. (2021) trained a 3D Convolutional Selective
Autoencoder on flame videos to detect instabilities. Novoa and Magri (2022) adopt a hybrid approach,

Prepared using sagej.cls



4 International Journal of Spray and Combustion Dynamics XX(X)

using Bayesian data assimilation to learn the parameters of a low fidelity model and an echo state network
to model the forecast bias. Transfer learning is also being explored by Mondal et al. (2021) as a means
of efficiently transferring knowledge of precursors across machines.

Most papers in the literature identify indicators of approaching instability. In this study, on the other
hand, we use nonlinear autoregressive time series modeling with a Bayesian Neural Network to forecast,
with uncertainties, the future amplitude of pressure fluctuations given the history of sensor signals and
future flow rate control signals. This informs the engine controller of the expected timing and potential
severity of a forthcoming instability. This approach also lets us take advantage of the rich instrumentation
of our rig by integrating multimodal sensor data into our model: high frequency dynamic pressure (p’(t))
and OH* chemiluminescence (I’(t)) measurements, injector pressures (pg2, po2) and temperatures
(T2, To2), chamber static pressure (p..) and fuel flow rates (o2, mp2). We compare models with
different combinations of sensors, different sensor-derived features, and different lengths of signal
histories in the inputs. We find that, although operating parameters and mass flow rate control signals can
anticipate instabilities on their own, inclusion of dynamic pressure signal history, in particular, results
in a measurable increase in the forecast accuracy. It is not possible to predict triggered thermoacoustic
instabilities from operating parameters and control signals alone, so we need to integrate multimodal
sensor data with operating parameters and control signals in an instability forecasting framework.

The size of our dataset is limited by the high cost and effort required for each additional test run on the
rocket thrust chamber. Fortunately, the uncertainty-aware nature of the Bayesian Neural Network allows
us to work in this medium-data regime without overconfident extrapolation. We compute log-likelihoods
on the test dataset and find that the uncertainty is well-quantified. We also simulate a sensor failure to
assess the robustness of our Bayesian forecasting tool. As expected, the network exhibits large epistemic
uncertainties during the failure, signalling the unfamiliar out-of-distribution nature of the inputs. Finally
we use the interpretation technique of integrated gradients (IG) to understand how the different input

features in our model influence the predictions.

Experimental Setup

The dataset used in this study is derived from experiments performed on the research combustor BKD
(Groning et al. (2016)) operated at the P8 test facility (Frohlke et al. (1997), Koschel et al. (1996)) of
the DLR Institute of Space Propulsion in Lampoldshausen. It has three main components: an injector
head, a cylindrical combustion chamber and a convergent-divergent nozzle, as shown in Figure 1. The
combustion chamber is water-cooled and is designed to deal with the high thermal loads that are expected
during instability events. The L42 injector head has 42 shear coaxial injectors and is operated with a

liquid oxygen (LOX)/ hydrogen (LH2) propellant combination. The cylindrical combustion chamber is
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Figure 1. Experimental thrust chamber BKD.

80 mm in diameter and the nozzle throat diameter is 50 mm, resulting in a contraction ratio of 2.56. The
chamber static pressure (p.) is varied between 50 — 80 bar and mixture ratio of oxidizer to fuel (ROF
= 1hog /M 2) between 2 — 6. The experiments considered here have a LOX injection temperature T2

around 110 K and a hydrogen injection temperature 7o around 100 K.

For the operating point with p.. = 80 bar, ROF = 6, the total propellant mass flow rate is 6.7 kg/s, the
theoretical thermal power is 90 MW and the thrust achieved is about 24 kN. These specifications place

BKD at the lower end of small upper stage engines.

A representative BKD test sequence, along with a spectrogram of dynamic pressure oscillations inside
the combustion chamber, is shown in Figure 2. Stable and unstable operating conditions can be identified
in the spectrogram. Strong high-frequency combustion instabilities of the first tangential (1T) mode at
about 10 kHz were excited consistently when approaching the operating point at p,. = 80 bar, ROF
= 6. The coupling mechanism for this instability is injection-driven (Groning et al. (2016)). The flame
dynamics are modulated by the LOX post acoustics and combustion instabilities emerge when the
frequency of the 1T chamber mode matches the second longitudinal eigenmodes of the LOX posts. This

mechanism has been confirmed using high-speed flame imaging (Armbruster et al. (2019)).
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Figure 2. BKD test sequence and p’ spectrogram showing self-excited instability of the first tangential mode
(Groning et al. (2016)). pec is the chamber static pressure, ROF is the mixture ratio of oxidizer to fuel, and
T2, To2 are the LOX and hydrogen injection temperatures respectively.

The extreme conditions within the thrust chamber, where temperatures reach 3600 K and the pressure
reaches 80 bar, limit the diagnostic instruments for our instability investigations. A specially designed
measurement ring is placed between the injector head and the cylindrical combustion chamber segment,
as shown in Figure 1. At this location, the temperatures are moderated by the injection of cryogenic
propellants, which allows the mounted sensors to survive several test runs. Eight Kistler type 6043A
water-cooled high-frequency piezoelectric pressure sensors are flush-mounted in the ring with an even
circumferential distribution, in order to measure the chamber pressure oscillations p’(¢). The high-
frequency pressure sensors have a measurement range set to +30 bar and a sampling rate of 100 kHz.
An anti-aliasing filter with a cutoff frequency of 30 kHz is applied. Three fibre-optical probes are used
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to record the OH* radiation intensity I’(¢) of selected individual flames. The full acceptance angle of the
optical probes is approximately 2°. In order to capture the OH* radiation signal, the probes are equipped
with inteference filters with a center wavelength of 310 nm. The sampling frequency of the I’ (t) signals is
also 100 kHz. There are also several low sampling frequency (100 Hz) sensors that measure the chamber

static pressure pe., the mass flow rates of fuel 7 72 and oxidizer 12 and injector temperatures T2, Tos-

Methods

Nonlinear autoregressive models with exogenous variables (NARX) for timeseries
modeling

To forecast instabilities, we train NARX-style models (Lin et al. (1996)) to capture the functional
relationship between the history of the sensor data, control signals and future pressure fluctuations. These

model the evolution of pressure fluctuations as follows:

log(pﬁms(tm + At)) = f(Xma Xm—15- Xm—h; um+f) + 0 (1)

Here, pl,(tm + At) is the root mean square amplitude of the dynamic pressure fluctuation signal in a
50 ms window centered around ¢,,, + At. We choose At = 500 ms for our models because we consider
this to be sufficient warning for our rocket engine controller to detect and react to an impending instability
with a mass flow rate adjustment. The state variables X,,,, X;,—1, ... X, —p consist of various sensor data
(or transformations thereof) at times ¢,, — 50, ¢,,, — 100, ... ¢,,, — 50h ms. The order of dependence h
determines how far in the past we look. In this study, we explore models with 2 = 0 and h = 2. The
elements of u,, 4 y are the two mass flux control signals 12 s and 1o2 ¢ averaged over the window
between t,, and t,, + At. These are the exogenous variables whose future values are known and can
therefore be included in the inputs. It is possible to train models that capture higher order dependence on
instantaneous values of the control signals instead of reducing them to an average, but we find that this
does not improve predictive accuracy in our problem. o, is the homoskedastic (constant) observation
noise or aleatoric uncertainty term, which is assumed to be Gaussian. We forecast the logarithm of
Dhms (tm, + At) instead of pl (¢, + At) itself because the noise in the pressure fluctuations increases
with the amplitude, and so the simplifying assumption of constant homoskedastic noise only holds
approximately once this logarithmic transform has been applied. It also forces pl, predictions to be
positive.

We model the nonlinear function f in Equation (2) as a feedforward neural network with a simple
multi-layer perceptron (MLP) architecture. In a standard neural network, one obtains a point estimate of

the network parameters. Here, however, we train a machine learning algorithm on a dataset whose size
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is limited by the cost of performing experiments on large rocket thrust chambers. With a standard neural
network this size limit could lead to naive and inaccurate extrapolations when the network encounters
out-of-distribution inputs that are different from those which were experienced during training. In
safety-critical systems such as rockets, control decisions based on overconfident predictions could be
catastrophic. Bayesian Neural Networks (BNNs) are an elegant solution to this problem because they

provide a confidence interval as well as a prediction.

Bayesian Neural Network Ensembles

The Bayesian framework for training neural networks Neal (1996) involves placing a sensible prior
probability distribution p(é) over the parameters 6 of the network. Observations D are then used to
update our belief about the parameter distribution. The posterior distribution p(6|D) is obtained using
Bayes’ rule.

p(D|0)p(9)

p(0|D) = T p(DI0)p(6)d6 ()

Bayesian models are resistant to overfitting on small datasets and are uncertainty aware. They are
also useful for continual learning throughout the lifetime of a device in operation (Li et al. (2019)).
Exact Bayesian inference, however, is not possible in neural network models because the integral
[ p(D]0)p()df is analytically intractable. The most widely used numerical method to integrate over
the posterior, Markov Chain Monte Carlo, is too computationally expensive to be practical. Variational
inference is often used (Blundell et al. (2015)), in which the posterior is approximated using a convenient
parametrization and the Kullback-Leibler divergence between this variational distribution and the true
posterior is minimized using backpropagation. However, although computationally cheap, mean-field
variational inference also has drawbacks such as not capturing correlations between parameters. Recently,
a different approximate inference method, based on ensembling, has been proposed. This is called the
anchored ensembling algorithm. It is cheap, simple and scalable but manages to outperform variational
inference in several uncertainty quantification benchmarks (Pearce et al. (2018)).

Consider a dataset of N data points (x,,, y» ), where each data point consists of features x,, € RP and
output y,, € R. Define the likelihood for each data point as p(y, | 0,%,, %) = N (y, | NN(x,;0),02),
where NN is a neural network whose weights and biases form the latent variables  while o2 is the
observation noise. Define the prior on the weights and biases 6 to be the standard normal p(6) = N(6 |

Uprior; Sprior). The anchored ensembling algorithm (Figure 3) then does the following:

1. The parameters 0y ; of each j-th member of our neural network ensemble are initialized by

drawing from the prior distribution N (Hprior, Zprior)-
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Figure 3. Approximate Bayesian inference using ensembles of neural networks.

2. Each ensemble member is trained using a modified loss function that anchors the parameters
to their initial values. The loss function for the j-th ensemble member is given by Loss; =
ZZI\;Dl(yZ — 95 (xi,ti))? + ||E;T1i{,i(9j — Oanc,;)||3, where §;(x;,t;) is the neural network output

and the i-th diagonal element of X is the ratio of data noise to the prior variance of the i-th

parameter.

Pearce et al. (2018) prove that this procedure approximates the true posterior distribution for wide
neural networks and that the trained neural networks in the ensemble may be treated as samples from
an approximate posterior distribution. The resulting ensemble has predictions that converge when they
are well-supported by the training data and diverge when they are not. The variance of the ensemble
predictions is an estimate of the Bayesian model’s epistemic uncertainty. Epistemic or knowledge
uncertainty is the reducible portion of uncertainty which stems from uncertainty in model parameters
and decreases as more data is added. The total uncertainty of each prediction is obtained by adding the

epistemic uncertainty and the irreducible aleatoric uncertainty o, which stems from observation noise:

1 . 1 .
€ _7 € J

Interpretation using Integrated Gradients

Neural networks have a reputation as black boxes, which disincentivizes their application to cases in
which practitioners must understand why the algorithm is or is not working. We use the technique of
integrated gradients (IG) (Sundararajan et al. (2017)) to attribute the predictions of our network ensemble

to the input features. This is a simple scalable method that only requires access to the gradient operation.
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IG has several desirable properties that other attribution methods lack, such as implementation invariance,

sensitivity, linearity, completeness and preservation of symmetry.

For deep neural networks, the gradients of the output with respect to the input are an analog of the
linear regression coefficients. In a linear model, the regression coefficients characterize the relationship
between input and output variables globally. In a nonlinear neural network, however, the gradient of the
output at a point merely characterizes the local relationship between a predictor variable and the output.
IG computes the path integral of the gradient of the outputs with respect to the inputs around a baseline
to the input under consideration. For an image recognition algorithm, a completely black image could be
a reasonable choice of baseline, while for a regression problem like ours, where the input variables were
normalized to have zero mean and unit standard deviation, the average input of all zeros is a sensible
baseline. We consider the straight-line path (in the feature space RP) from the baseline =’ to the input x
being considered. The IG attribution attr; for the j-th feature is then defined as follows:

attrj(z) = (z; — x}) / f(@ + oz — ') do @)

a=0 8CCJ

This integral is computed numerically by sampling the gradient evenly along the path. For our neural
network ensemble, we average the integrated gradient attributions obtained from individual ensemble

members to obtain a mean attr; for each feature.

Transforming sensor signals into neural network inputs

We compare NARX models with different combinations and transformations of the sensor data in their

state variables x,,_; (Equation 2) and evaluate their accuracy.

Models that include the low frequency signals pec, M2, Moo, Te and Tps in their x,,_; vectors
use the average value of the signal between t,, — 50¢ and t,, — 50(i 4+ 1). For the high frequency
pressure und OH* signals, p’ and I’, we use transformations from the literature that are known to
capture instability-relevant information as described next. The current p/, is a natural candidate which is
included in all models that incorporate pressure information. Sengupta et al. (2020) and McCartney et al.
(2021) have shown that, before a combustor transitions to instability, the power spectral density shows
measurable changes which can be used as a precursor. We estimate the spectral density of the p’ (pggr)
and I’ (Ifgy) time series by applying Welch’s method Welch (1967) to a segment of the signals between
t,, — 50i ms and ¢, — 50(¢ + 1) ms. In this study, a Hann window of length 30 with 50% overlap is used
for both p’ and I’.
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Kobayashi et al. (2019b) applied machine learning to the the ordinal partition transition network of
the p’ and I’ timeseries to detect instabilities early. The ordinal partition transition networks for an m-
dimensional time series are expressed by a weighted adjacency matrix W consisting of W;; = P(m; —
m;), i,j € [1,2™], >- W;; =1, where P(m; — ;) is the observed probability from the ith- to jth-
order transition patterns. In this study, the order patterns are my, w2, 73, and w4 which account for
all combinations of the signs of the increments for our two-dimensional time series [p’(t), I'(t)]. The
probability distribution of the corresponding 16-dimensional transition patterns W computed from the
segment of the signals between ¢,, — 50¢ and ¢,,, — 50(i + 1) are used in the state variable vector.

We also include a naive baseline model py, (¢, + At) = pj (tm) for comparison. This model, by
design, is incapable of forecasting any future instabilities but, because large portions of the run consist
of steady operation, its predictions have a reasonably good root mean squared error (RMSE). This model
exists to provide a baseline RMSE and any useful forecast needs to be significantly more accurate than
this.

Train-test-validation split, hyperparameters, performance metrics

We use a dataset of five experimental runs: three that are 50 seconds long and two that are 90 seconds
long. Each run has two occurrences of the 1T instability, where an instability event is defined as being
when the peak-to-peak amplitude of the pressure fluctuations exceeds 5% of the chamber static pressure.

To avoid data leakage, one experimental run is exclusively reserved for hyperparameter tuning. The
timeseries is split into contiguous 250 millisecond blocks and every fifth block is used to evaluate
the negative log-likelihood, which is the metric we use for tuning the BNN hyperparameters. The
hyperparameters are the network depth, layer width, noise o, the learning rate for the ADAM optimizer,
the number of epochs and the number of neural networks in the ensemble. For simplicity, and to
facilitate comparison between models, the same hyperparameters are chosen for all models. This does not
compromise the performance of any particular model, since increasing the key hyperparameters, width
and depth, benefits all models. We choose a 3 hidden layer MLP with 100 units in each layer because
larger networks show only minimal gains in performance. A learning rate of 2 x 10~% is found to be
optimal for convergence. The aleatoric noise parameter o, is set to 0.07. In anchored ensembling, we
train all members of the ensemble until convergence so the number of epochs was set to 512, which is
found sufficient for all models. Converged estimates of the test data log-likelihood are obtained using 25
neural networks per ensemble.

To evaluate model performance, leave-one-out cross validation (LOOCV) is performed on the
remaining four runs. Time series data involves strong temporal correlations, so assigning training and test

data points randomly is dishonest because then the two sets would be highly similar. The test set must
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therefore be a completely independent experimental run. Additionally, LOOCYV is necessary because
with only four runs, firm conclusions cannot be drawn based on performance metrics for one particular
test-train split, since any claimed efficacy or differences between models could be caused by chance. We

report average performance metrics across the four possible splits.

To evaluate model accuracy, we compute the root mean squared error (RMSE) of our pressure
amplitude forecast for the entire test run (full RMSE). We also calculate this on a subset of the test
run comprising the two segments of the timeseries one second before and after a transition to instability
event (transition RMSE). The RMSE is computed separately on this subset because our primary interest
is in forecasting instabilities and the relative merits of different models become clearer on this subset
where there is a dramatic change in the amplitude. As a measure of the quality of uncertainty, we report

mean negative log-likelihood per test data point.

Results

The models were trained on a laptop with 16 GB RAM, an Intel i7-10870H CPU and an NVIDIA RTX
2070 GPU. Each NARX model took ~ 2.5 hours to train. The inference time of the ensemble averaged
around 10 milliseconds per sample, indicating that the algorithm is suitable as a real-time diagnostic tool,

once it has been trained on experimental data.

Table 1 shows the average prediction RMSEs for the NARX models computed during cross-validation
across the four runs. We note, firstly, that the NARX models outperform the naive baseline, which
means that the data contains a predictable signal that can be extracted. We also observe that the simple
models, which use only the two operating point parameters p.. and ROF as inputs, perform well. This
is unsurprising because we know that the 1T instabilities are consistently triggered when the operating
point at p,c = 80 bar and ROF = 6 is approached. This means that knowing the current operating point
and future flow rate control signals is informative. All transitions to instability in the test runs differ from
each other, however, even though though they have identical control trajectories. The cross-validation
shows unambiguously that the data from the additional instrumentation improves the prediction of
future pressure fluctuations. Models that include the dynamic pressure spectrum pggr, radiation intensity
spectrum [{gr, current amplitude p/,.., ordinal network transition probabilities, W, To2, THa, Po2 OF P2,
have better prediction accuracies, especially on the transition subset. Including higher order dependencies
on state variables also provides a slight boost in accuracy. Interestingly, the dynamic pressure spectrum
appears more informative than the spectrum of the OH* radiation intensity. This could be due to the
fact that a single optical probe observes only a small volume of the chamber, while the pressure field

integrates information across the whole chamber.
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H State variable inputs x Order Full RMSE Transition RMSE  NLL H
Baseline - 0.1552 0.2134 -
Decs ROF 0 0.1289 0.1630 -1.622
Decs ROF 2 0.1202 0.1576 -1.631
Dimss PEFT 0 0.1197 0.1546 -1.5752
Dimss PEFT 2 0.1169 0.1508 -1.5467
Dhmss Thpr 0 0.1255 0.1612 -1.5154
Dhnss W 0 0.1241 0.1566 -1.5801
Too, T2, P02, P2 0 0.1243 0.1578 -1.5948
Dees ROFE, 9L, Diprs To2, TH2, DO2, DH2 0 0.1048 0.1407 -1.5632
Dees ROFE, Lo, Diprs To2, TH2, D02, PH2 2 0.1005 0.1311 -1.5350

Table 1. Cross-validation RMSEs (in bar) for entire runs (Full RMSE) and the transition subset of the run
(Transition RMSE) and mean negative log-likelihoods (NLL) for different NARX models. Lower RMSEs and
NLLs are better.

Table 1 also reports the mean negative log-likelihood (NLL) per datapoint, averaged across the four
cross-validations. The mean negative log-likelihoods are fairly low for most of our models, implying
that very few observations lie far outside the uncertainty bounds of the forecast (Figure 4). This is also
confirmed by the percentage of data points in the test set within the £-1 standard deviation (s.d.) and £3
s.d. bounds, which are roughly in line with our Gaussian assumptions (68% within 1 s.d., 99.7% within
3 s.d.). Additionally, though models using more features have higher prediction accuracies, they have
slightly worse NLLs in some cases because the presence of additional features results in higher epistemic
uncertainties.

To test the robustness of the Bayesian model against out-of-distribution inputs, we simulate a sensor
failure event. This is shown in Figure 5. To simulate an optical probe icing event between 10 sec and 40
sec, the original photomultiplier signal is replaced by white noise with mean 0.05 and amplitude 0.015.
During this simulated probe failure, the epistemic uncertainty of the Bayesian neural network greatly
increases, indicating that the inputs are highly dissimilar to conditions experienced during training.
Predictions remain reasonable despite the uninformative optical signal, although they become much less
accurate.

We use the technique of integrated gradients to produce feature-level attribution plots, which can tell
us how much a particular predictor influenced the prediction for a particular input. For example, the
attribution plots in Figure 6 shows this technique being applied to two data points. The first one is a
data point just prior to the first instability event in a run, where a large jump in the dynamic pressure
fluctuation amplitude is forecast by the model. This model uses pjgr, Phys @and the flowrate control signals

as input. The most prominent feature is the large positive attribution for the oxygen flowrate control signal
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Figure 4. Forecast p/, values for the four experimental runs based on sensor data prior to t — 0.5 sec,
superimposed on observed pys values at time t. The model was trained on the other three runs in each case.
This model used prer and pins as state variables and order h = 2. Actual observations are shown as black
dots, 3 standard deviation (S.D.) total uncertainty bounds for the forecast are in light blue and 3 standard
deviation (S.D.) epistemic uncertainty bounds are in deep blue.
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Figure 5. Bayesian Neural Network epistemic uncertainty (top) and p;s forecasts (bottom) for experimental
run no. 4 where a fibre optical probe failure was simulated between ¢t = 10 sec and ¢ = 40 sec (marked by two
grey dotted lines). The model used Ifer, pims as input state variables and order = 0. Actual observations are
shown as black dots, 3 standard deviation (S.D.) total uncertainty bounds for the forecast are represented by
light blue bars and 3 standard deviation (S.D.) epistemic uncertainty bounds are in deep blue. The light blue
bars are barely discernible from the deep blue bars in the failure region because the total uncertainty is almost
entirely dominated by the large epistemic uncertainty.

mos2, whose feature value is also large for this datapoint. This is expected, because a large o2 would
increase the p.. and ROF, bringing the combustor closer to instability. The prediction is also modulated
by contributions from the pppy features. This datapoint has a concentration of power around the 10 kHz
spectrum and low power in the mid to higher frequencies. There is a positive contribution from the 10 kHz
frequency component of the spectrum, which is the frequency of the 1T mode, as well as from the 16.66k
Hz frequency. This shows that the model has learned that an increased concentration of acoustic power
around the frequency of the 1T mode and away from the mid-frequencies is an indication that the system
is close to instability. The second data point is from stable operation. The attributions in this case have
mostly negative values because the prediction of the model is strongly negative. The current pressure
fluctuation amplitude pf, is close to —1.0 in this case and naturally has a large negative attribution.
The o input (here —0.78) also contributes negatively because low ROFs are stable. Finally, the high
concentration of power in the mid-frequencies also tells the network that this operating point will stay
stable.
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Figure 6. Integrated gradient attributions and input feature values (normalized to have zero mean and unit
standard deviation) for two datapoints from experimental run no. 4 att = 16.0 seconds (top, immediately
preceding an instability) and t = 60.0 seconds (bottom, stable). The model used prer and pns as state
variables and order = 0. The blue dots show the normalized values of the features for this particular datapoint
and the bars represent the integrated gradient attributions for each feature. For example, feature 6 (spectral
power around the 16.66 kHz frequency) in the top plot has a large negative value and a positive integrated
gradients attribution, meaning that the network has learned that low power in this frequency band is a potential
indicator of instability.
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Conclusions

In this paper, we present the application of an uncertainty-aware machine learning algorithm to
forecast instabilities using multimodal sensor data in a realistic, thermoacoustically unstable rocket
thrust chamber. We predict the amplitude of dynamic pressure fluctuations 500 ms in advance using
temperature, static pressure, high-frequency dynamic pressure and OH* radiation intensity data recorded
during test runs performed with the cryogenic rocket thrust chamber BKD. We perform a rigorous
cross-validation of the autoregressive Bayesian neural network and find that our models are able to
anticipate all the instability events with varying accuracy (25 — 40% lower RMSEs on the transition
subset compared to baseline), depending on the combination of inputs chosen. The inclusion of longer
histories and additional sensor information, in general, boosts predictive accuracy. Models that use the
dynamic pressure signal, in particular, show a measurable improvement in the forecast, confirming the
findings of the literature on this topic. We gain insight into the predictions made by the neural network
by using Integrated Gradients, which reveals the contribution made by each input feature to the final
prediction.

A key benefit of our Bayesian approach is the ability to quantify the uncertainty in our predictions.
In safety-critical machines such as rocket engines, a diagnostic tool must be robust to unexpected events
such as sensor failures. We compute the log-likelihood of the test data given model predictions and
find that uncertainties are well-characterized. We also simulate a sensor failure event in a model whose
inputs included the spectrum of the fibre-optical probe signal and demonstrate the robustness of Bayesian
algorithms. Integrated Gradients helps us identify important features and how they influence a particular
prediction of the neural network.

Future work will focus on exploring the effectiveness of these tools on DLR’s other experimental
datasets, such as the LOX-methane tests, which also displayed injection-coupled acoustic instabilities
(Klein et al. (2020)). We will also explore the generalizability of data-driven diagnostics across multiple
datasets and combustors, using approaches that utilise transfer learning or domain invariance. Hardware
upgrades are currently being undertaken at the test facility that will allow the implementation of these

methods into the engine control algorithm (Waxenegger-Wilfing et al. (2020)).
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