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ABSTRACT
This theoretical paper examines a non-normal and non-linear model of a horizontal Rijke tube.
Linear and non-linear optimal initial states, which maximize acoustic energy growth over a given
time from a given energy, are calculated. It is found that non-linearity and non-normality both
contribute to transient growth and that, for this model, linear optimal states are only a good
predictor of non-linear optimal states for low initial energies. Two types of non-linear optimal
initial state are found. The first has strong energy growth during the first period of the
fundamental mode but loses energy thereafter. The second has weaker energy growth during the
first period but retains high energy for longer. The second type causes triggering to self-sustained
oscillations from lower energy than the first and has higher energy in the fundamental mode. This
suggests, for instance, that low frequency noise will be more effective at causing triggering than
high frequency noise.

1. INTRODUCTION
Combustion instability has been a long-standing problem in rocket engines and gas
turbines. It occurs when pressure fluctuations and heat release fluctuations lock into
each other such that instances of higher heat release coincide with instances of higher
pressure. In commercial gas turbines, there is a drive to increase the ratio of air to fuel
because this leads to lower flame temperatures and therefore lower nitrogen oxide
(NOx) emissions. This, however, increases gas turbines’ susceptibility to combustion
instability.

Recently, there has been considerable interest in the transient growth of
thermoacoustic oscillations and the role that non-normality plays in this. Ref. [1]
showed that the linearized governing equations of a simple thermoacoustic system, the
horizontal Rijke tube, are non-normal and that this non-normality leads to linear
transient growth even when all eigenvalues are stable. Ref. [2] found similar behaviour
in a Burke-Schumann flame in a tube, a more complex system, which has a higher
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degree of non-normality and transient growth than the Rijke tube. These authors explain
that the non-normality arises from the convection terms, independently of the acoustics,
and is therefore a general feature of combusting systems. Ref. [3] considered a
generalized linear thermoacoustic system using the n − τ model, in which the heat
release fluctuation is a linear function of the velocity fluctuation after a time delay. They
produced maps of the maximum possible transient growth as a function of n, which
represents the thermal intensity, and τ, which represents the time delay. All of these
studies show that significant linear transient growth can be achieved in a linearly-stable
thermoacoustic system and that this is due to the non-normality of the linearized
governing equations.

It is particularly interesting to know whether or not transient growth plays a role in
the triggering of thermoacoustic systems. Triggering is a mechanism through which a
small perturbation leads to high amplitude self-sustained oscillations even when the
corresponding unperturbed system has no unstable eigenvalues. A full description of
triggering must include non-linearity in the combustion term and is strongest if the heat
release fluctuation is a non-linear function of the velocity fluctuation [4]. These
conditions are satisfied by the models of Refs. [1] and [2]. In order to be susceptible to
triggering, Ref. [4] shows that a thermoacoustic system must either have a subcritical
bifurcation or have a supercritical bifurcation followed by a fold bifurcation in the
amplitude/heat-release plane. The role that non-linearity plays in triggering, mode
switching and hysteresis has been examined by Ref. [5]. These authors develop and
validate a technique for predicting these phenomena, based on an experimentally-
derived non-linear Flame Describing Function (FDF), which is used in a frequency
domain non-linear stability analysis involving the fundamental mode. Their results
show that triggering occurs when the amplitude of an initial perturbation infinitesimally
exceeds that of an unstable limit cycle.

The study of Ref. [5] demonstrates triggering but does not include non-normality.
This leaves open the possibility that non-normal transient growth can reduce the
amplitude of initial perturbations that lead to triggering. This has been considered by
Ref. [6], who shows that certain initial perturbations first grow transiently towards an
unstable limit cycle and, from there, either grow to self-sustained oscillations or decay
to zero amplitude. This is directly analogous to bypass transition to turbulence in
hydrodynamic systems [7], in which low amplitude perturbations can first grow
transiently towards unstable periodic travelling wave solutions and, from there, either
grow to full turbulence or decay to the laminar state [8].

In hydrodynamic systems, the non-linear term conserves the perturbation kinetic
energy. This means that, if there is transient kinetic energy growth in a non-normal and
non-linear hydrodynamic system, it must be due to non-normality. In thermoacoustic
systems, the non-linear term does not conserve the perturbation acoustic energy. This
means that, if there is transient acoustic energy growth in a non-normal and non-linear
thermoacoustic system, it could arise from non-linearity, non-normality or some
combination of the two.

This paper examines a model of the horizontal Rijke tube, which has a small degree
of non-normality. Optimal initial states are calculated for both the linear and non-linear
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governing equations as a function of the optimization time and their initial energy. By
comparing the transient growth from these optimal initial states, the contributions of
non-linearity and non-normality can be distinguished. The non-linear optimal initial
states are then examined more closely in order to determine the characteristics that lead
to triggering.

2. THE MODEL AND ITS GOVERNING EQUATIONS
The system examined in this paper is a horizontal tube with an imposed base flow, in
which a hot wire is placed some distance, xf , from one end [1] [6]. The governing
equations are expressed in terms of perturbations on top of a base flow. For example,
the velocity perturbation is labelled u′ and the base velocity is labelled u–. The fluctuating
heat release at the wire, q′, is modelled with Heckl’s [9] modified form of King’s law,
shown in Fig. 1. This correlation retains the square root dependence of King’s law, 
q′ ∝ |u_ + u′|0.5 − |u_ |0.5, but adds an off-set, q′ ∝ |u_ /3 + u′|0.5 − |u_ /3|0.5, which was
determined by fitting to experimental results at u′ > 0 [9]. The off-set creates
problems at u′ < 0 because the heat release should be minimal around u′ = −u

_
, which

corresponds to zero velocity at the wire. The results in this paper are for Heckl’s
modified form, however, so that they can be compared directly with those in Refs. [1]
and [6]. Heckl’s modified form has the same qualitative form as King’s law, so these can
be expected to be qualitatively the same as those that would be obtained from King’s
law. The equations for momentum and energy are non-dimensionalized and then
discretized with a Galerkin discretization, which also imposes the boundary conditions.
The parameters of the system are: the time delay, τ, between velocity at the wire and
heat release; the damping coefficients, ζ j; and the heat release, β. The governing
equations reduce to two delay differential equations (DDEs) for each mode, j:

(1)

(2)

F
t j

j
j

u

G
j

j j
j

f

2

2
1

3

≡






+ +






+ +

d

d

� �
…

…

η
π

πη ζ
η
π

β (( ) sin ,t j x f− − 

















 ( ) =τ π

1

2

1

21

3
0

F
t

j
jG j

j
1 0≡ −







=d

d
η π

η
π
�

,

international journal of spray and combustion dynamics · Volume .3 · Number . 3 . 2011 211

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

q 
′

 

Heckl's experiments
Heckl's correlation
King's law

u ′f  (t  −   )τ

Figure 1: Correlations for the heat release fluctuations q′ as a function of the
velocity fluctuations u′, compared with experimental results for u

_ = 0.6.



where

(3)

The state of the system is described by the amplitudes of the Galerkin modes that
represent acoustic velocity, ηj, and those that represent acoustic pressure, ·ηj /jπ. These
are given the notation u ≡ (η1, …, ηN )T and p ≡ (·η1/π, …, ·ηN /Nπ)T. The state vector of
the discretized system is the column vector x ≡ (u; p). 10 Galerkin modes are used in
this paper. For the non-linear results, the DDEs eqns (1–2) are integrated with a 4th order
Runge-Kutta algorithm from t = 0. This requires information about uf for t ∈ [−τ, 0) and,
in this paper, uf is set to zero in this period. For the linear results, the governing
equations are linearized in two steps. The first linearization, which is valid for uf (t − τ)
<< 1/3, is performed on the square root term in eqn (2):

(4)

When eqn (4) is substituted into eqns (1–3), it produces a system of linear DDEs,
which in this paper are called the velocity-linearized system. The second linearization,
which is valid for the Galerkin modes for which τ << Tj, where Tj ≡ 2/j is the period of
the jth Galerkin mode, is performed on the time delay:

(5)

When eqns (4–5) are substituted into eqns (1–3), they produce a system of linear
ordinary differential equations (ODEs), which in this paper are called the fully-
linearized system.

For the optimization procedure, it is necessary to define some measure of the size of
the perturbations. The most convenient measure is the acoustic energy per unit volume,
E, because it is easy to calculate and has a simple physical interpretation [3]:

(6)

where || · || represents the 2-norm. The parameter values used in this paper are ζj = 0.05j2
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τ = 0.02 is one quarter of that in the experimental study of Ref. [9]. This time delay
would be achieved by using a wire with one quarter of the thickness (i.e. 0.11 mm).
These time delays are small compared with those found in typical combusting systems.

For the linear ODEs, the optimal initial states are calculated with the Singular Value
Decomposition [7]. The maximum possible transient growth after time T is:

(7)

The highest value of G(T ), for T ∈ [0, ∞], is denoted Gmax and occurs at time Tmax.
For the linear and non-linear DDEs, the optimal initial states are found with an adjoint
looping algorithm embedded within a conjugate gradient optimization algorithm [6].

3. THE BIFURCATION DIAGRAM AND THE ‘MOST DANGEROUS’ INITIAL STATES
The bifurcation diagram for the system with τ = 0.02 and varying β is shown in Fig. 2.
This has been calculated with DDE Biftool [10], which uses a continuation method for
DDEs similar to that described by Ref. [11] for ODEs. There is a stable zero amplitude
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Figure 2: Stable limit cycles (solid line) and unstable limit cycles (dashed line) as a
function of the heat release parameter, β. The amplitudes of the limit
cycles are quantified by their minimum energy, E. The grey dots show the
energy of the lowest energy states that can reach the stable limit cycle [6].
At β = 0.75, all states with E0 < 0.1099 decay to the zero solution.



solution up to β = 0.859, at which point there is a subcritical Hopf bifurcation to an
unstable limit cycle (dashed line). The unstable limit cycle continues to β = 0.7026,
where there is a fold bifurcation to a stable limit cycle (solid line).

The limit cycles are loops in state space. States on the unstable limit cycle remain on
it for all t and are therefore not within the basins of attraction of the zero solution or the
stable limit cycle. It is found that some states in the immediate vicinity of the unstable
limit cycle are attracted to the zero solution and others to the stable limit cycle. From
this it is deduced that the unstable limit cycle lies on the boundary that separates the
basin of attraction of the stable limit cycle from that of the zero solution. There are no
fixed points on the boundary so, assuming no chaotic dynamics, the unstable limit cycle
is the trajectory towards which all points on the boundary converge. It must be stressed
that the unstable limit cycle is not the boundary itself (except for the 1 Galerkin mode
system [12] §6.2). It merely lies on the boundary. Growth to the stable limit cycle occurs
when an initial perturbation starts with infinitesimally higher amplitude than a point on
the unstable limit cycle, which is also seen in the results of Ref. [5].

The limit cycles can be represented in several different ways on a bifurcation
diagram. For instance, the peak to peak amplitude of the first mode is often plotted
on the vertical axis. (For this system, most of the energy is in the first mode when it
reaches a limit cycle.) In Fig. 2, the lowest acoustic energy on the limit cycle is
plotted on the vertical axis. This representation is chosen because the lowest energy
on the unstable limit cycle is the lowest energy on the basin boundary of the stable
limit cycle that can be identified with the continuation method. Initial states can grow
to the stable limit cycle from lower energy than this but must be found with a
different method [6]. Of these states, those with lowest energy have been plotted as
circles on Fig. 2. These are known as the ‘most dangerous’ initial states. The
significance for this paper is that initial states with energy below these circles will
always decay to the zero solution, even if they grow transiently before then. For 
τ = 0.02 and β = 0.75, which are the values chosen in the rest of this study, this initial
energy corresponds to E0 = 0.1099.

4. LINEAR OPTIMAL INITIAL STATES
Ref. [1] investigates the optimal initial states of the fully-linearized ODE system while
Ref. [6] investigates the most dangerous initial states of the non-linear DDE system. This
study starts by investigating the optimal initial state of the velocity-linearized DDE
system because this bridges the gap between [1] and [6]. Note that, because the velocity-
linearized system is linear, its initial energy is not influential.

Figure 3(top) shows G(T) and Gmax for the fully-linearized system (grey line and
grey dot) and the velocity-linearized system (dashed line and black dot). For T < 0.3,
the velocity-linearized system has lower G(T) because, with uf set to zero during 
t ∈ [−τ, 0], the heat release term in eqn (2) is zero until T = τ and there is therefore
no non-normal transient growth until then. The optimal initial states of the fully-
linearized system are similar to those of the velocity-linearized system for the lower
Galerkin modes but different for the higher Galerkin modes, for which the
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linearization in time delay eqn (5) becomes increasingly less accurate. For T > 0.3,
however, the difference between the two is very small.

Although not shown here, the initial states that give rise to G(T) for T >> 2 have most
of their energy in the first Galerkin mode because this is the least damped mode.

5. RELEVANCE OF THE LINEAR OPTIMAL INITIAL STATES
When considering transient growth of the non-linear system, it is useful to know
whether the linear optimal initial state is relevant. Figure 4 compares the linear (dashed
line) and non-linear (solid lines) evolution from the linear optimal initial state for five
initial energies: E0 = 0.001,0.01,0.1,1 and 10.

When E0 = 0.001, the non-linear evolution is almost identical to the linear evolution.
When E0 = 0.01, the evolution is similar but with slightly higher transient growth. When
E0 = 0.1, however, there is very little initial transient growth and when E0 = 1 and 10,
there is no initial transient growth at all. It is known from Ref. [6] that an initial energy
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of at least E0 = 0.1099 is required for this system to trigger to self-sustained oscillations.
The linear optimal initial state does not cause significant transient growth at these
energies, which suggests that non-linear optimal initial states must be sought in order to
investigate whether transient growth influences triggering.

It is important to note that the system being considered here has very small non-
normal transient growth. In systems that have larger non-normality, the linear optimal
could be more relevant to triggering because the resultant transient growth is
considerably larger [2].

6. NONLINEAR OPTIMAL INITIAL STATES
In the linearized systems, G is a function only of T. In the non-linear system, G is also
a function of the initial state’s amplitude, which in this paper is quantified by the initial
acoustic energy, E0. Therefore Gmax is found by optimizing G(T, E0) over all T and E0.
The algorithm used in this paper finds the optimal initial state for a fine grid of T and
E0 and then extracts Gmax from this data.

Refering back to Fig. 3, Gmax of the velocity-linearized system is achieved at T =
0.2384 and is equal to 1.2496. Figure 5 plots G(T = 0.2384) as a function of E0 for the
non-linear system. The maximum is achieved at E0 = 0.0497 and is equal to 1.4767. This
is significantly higher than Gmax of the velocity-linearized and fully-linearized systems.
This demonstrates that non-linearity contributes as much as non-normality towards
transient growth of this system.

Figure 6 shows contours of G in the (T, E0)-plane for the non-linear system. Two
regions of high transient growth can be seen. The first is centred on (E0, T ) = (0.050,
0.25), with Gmax = 1.48, and is a continuation of the linear optimal into the non-linear
regime. The second is at high values of (T, E0) and is not a continuation of the linear
optimal, which always decays for large T. §7 examines the contribution of these two
regions to triggering.
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7. RELEVANCE OF THE NON-LINEAR OPTIMAL INITIAL STATES TO TRIGGERING
The dashed line at E0 = 0.1099 in Fig. 6 shows the boundary between the states that
cannot trigger to self-sustained oscillations (left) and those that can (right). Firstly, cases
that cannot reach self-sustained oscillations are examined. Figure 7 shows G(T) for the
velocity-linearized system (dashed line) and G(T, E0) for the non-linear system at
various values of E0, which are well below that which is required for triggering. In this
range of E0, the maximum transient growth increases as E0 increases but this effect is
confined to the first cycle, T ∈ [0, 2], which is approximately one period of the
fundamental mode. This corresponds to region 1 of Fig. 6.

It is worth commenting on the behaviour of G(T) for T ∈ [2, 10]. G decreases with
increasing T because all states decay at long times. G also fluctuates because, once the
transient growth during the first period of the fundamental mode has died away, there
are two low energy points on each cycle (at 0 and π radians) and two high energy points
(at π/2 and 3π/2 radians). The optimal initial state starts at a low energy point so if the
cycle has period T ≈ 2 and the optimization time is T ≈ 2, 3,…, the state ends at another
low energy point on the cycle and little growth can be achieved. If, however, the
optimization time is half way between these, the state ends at a high energy point on the
cycle and more growth is achieved.

Figure 8(top) shows G for the non-linear system at E0 = 0.1, which is just below the
triggering threshold. There is significant transient growth for T ∈ [0, 2] and some
transient growth at larger T. Figure 8 (middle) shows the amplitudes of the optimal
initial states for T = 0.1,1.0 and 10 and Fig. 8 (bottom) shows the evolution from these
three optimal initial states. (The evolution of the optimal initial state at T = Tmax = 0.398
is very similar to that for T = 1.) The optimal initial state for T = 10 produces much less
transient growth in the first cycle than that for T = 0.1 and T = 1. This shows that strong
initial transient growth is not a reliable indicator of high amplitudes in the long term.

Secondly, cases that just reach self-sustained oscillations are examined. Figure 9
shows the same information as Fig. 8 but for E0 = 0.10999, which is the triggering
threshold. Despite having lower transient growth during the first cycle, the optimal
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initial state for T = 10 is attracted towards the unstable limit cycle, while that for T = 1
decays straight to zero. Similarly, Fig. 10 compares the optimal initial state with highest
G in Fig. 9 with the most dangerous initial state for this system [6]. The initial state with
highest G has high transient growth in the first cycle but then decays straight to zero.
On the other hand, the most dangerous initial state has modest transient growth in the
first cycle but is subsequently attracted towards the unstable limit cycle and from there
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grows to the stable limit cycle. The bottom left frame shows the evolution of ∫ t
0 E(t′)dt′

due to the heat release term (∫ t
0 p′q′dt) and ∫ t

0 E(t′)dt′ due to the damping term
(∫ t

0 ζp′2dt). At early times, the former exceeds the latter. At later times, they have the
same average gradient, showing that the heat release is balancing the damping. The
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Figure 9: As for Fig. 8 but for E0 = 0.1099, the triggering threshold. The dot at T =
0.453 in the top frame shows the initial state with highest G. The line
corresponding to T = 10 in the bottom right frame continues along the
unstable limit cycle indefinitely because it is on the triggering threshold.
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Figure 10: As for Fig. 9 but for the initial state with highest G (top left), which is at
T = 0.453 in Fig. 9, and for the most dangerous initial state found in 
Ref. [6] (top right). The bottom left frame shows the evolution of ∫ t

0
E(t′)dt′ due to the heat release term (∫ t

0 p′q′dt) and ∫ t
0 E(t′)dt′ due to the

damping term (∫ t
0 ζp′2dt). The bottom right frame shows the evolution of

the phase between p′ and q′.



bottom right frame shows the evolution of the phase between p′ and q′. The phase
adjusts until, at the limit cycle, it is nearly 90° (grey line) and is adding just enough
energy per cycle to counteract the damping.

Figure 6 can now be interpreted more clearly. Initial states in region 1 have strong
transient growth in the first cycle but decay in later cycles. Initial states in region 2 have
weaker transient growth in the first cycle but retain higher energy for longer and are the
first to trigger as E0 is increased past the triggering threshold at E0 = 0.1099. The initial
states in region 2 achieve this by maximizing their growth towards the unstable limit
cycle, rather than by maximizing their growth overall.

8. CONCLUSIONS
This paper examines transient energy growth and triggering in a model of the horizontal
Rijke tube. It provides a clearer link between work on linear transient growth [1] [2] and
work on non-linear triggering [4]. A linear analysis shows that the governing equations
are non-normal and that this causes transient growth. The linear optimal initial states are
calculated and are shown to be relevant to the non-linear system when their amplitudes
are small. The non-linear optimal initial states are then calculated, for general
amplitudes, and shown to lead to significantly higher transient growth than the linear
optimal states. This shows that, in this model, non-linearity contributes to transient
growth as much as non-normality does. This differs from hydrodynamics, where the
non-linearity conserves energy and therefore does not contribute to transient energy
growth.

The maximum transient growth, G, is calculated over a wide range of T and E0. This
reveals two regions of high transient growth (Fig. 6). Region 1 corresponds to initial
states that have strong transient growth during the first cycle of the fundamental mode
but do not necessarily lead to self-sustained oscillations. Region 2 corresponds to initial
states that, near the triggering threshold, maximize their growth towards the unstable
limit cycle, rather than maximizing their overall growth. (Far above the triggering
threshold, states can grow directly to the stable limit cycle.) The initial states that trigger
to self-sustained oscillations from the lowest energy are in region 2. They have most of
their energy in the lower Galerkin modes, which suggests that lower frequency noise
will be more effective at triggering self-sustained oscillations than high frequency noise.
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