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ABSTRACT
Under certain conditions, the flow in a combustion chamber can sustain large amplitude oscillations
even when its steady state is linearly stable. Experimental studies show that these large oscillations
can sometimes be triggered by very low levels of background noise. This theoretical paper sets out
the conditions that are necessary for triggering to occur. It uses a weakly nonlinear analysis to show
when these conditions will be satisfied for cases where the heat release rate is a function of the
acoustic velocity. The role played by non-normality is investigated. It is shown that, when a state
triggers to sustained oscillations from the lowest possible energy, it exploits transient energy growth
around an unstable limit cycle. The positions of these limit cycles in state space is determined by
nonlinearity, but the tangled-ness of trajectories in state space is determined by non-normality. When
viewed in this dynamical systems framework, triggering in thermoacoustics is seen to be directly
analogous to bypass transition to turbulence in pipe flow.

NOMENCLATURE
Roman
as a steady state amplitude
cv the constant volume specific heat capacity
c0 the speed of sound within the acoustic duct
h(η, η̇) a generic nonlinear function of η and η̇
I the identity matrix
L0 the length of the acoustic duct
M the Mach number
M the monodromy matrix
n an integer
p the acoustic pressure perturbation within the acoustic duct
p0 the unperturbed pressure within the acoustic duct
P a generic control parameter
Pl the value of the control parameter above which the system is linearly unstable
Pc the value of the control parameter below which no periodic solutions exist

Q
.~

the heat transfer to the gas within the acoustic duct
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q the reduced heat transfer: 2πQ
.~
(γ − 1)/(γp0u0) sin πxf

q1 (dq/dη) evaluated at η = 0
q2 (d2q/dη2)/2! evaluated at η = 0
q3 (d3q/dη3)/3! evaluated at η = 0
r the amplitude of η0
R the gas constant
S the resolvent norm: ||(iωI − M)||2

T the long timescale
T0 the unperturbed temperature within the acoustic duct
u the acoustic velocity perturbation within the acoustic duct
u0 the unperturbed velocity within the acoustic duct
xf the flame or hot wire position

Greek
γ the ratio of the specific heat capacities
δ the Dirac delta
ε a small parameter
ζ the acoustic damping
η the amplitude of the first mode of the acoustic velocity perturbation, u
η0 the contribution to η at order 1
η1 the contribution to η at order ε
η̇ dη/dt
λ the time delay between a velocity perturbation, u, and the correponding heat

release perturbation
λt the thermal conductivity within the acoustic duct
ρ0 the unperturbed density within the acoustic duct
τ the oscillation period, which is also the short timescale
φ the phase of η0
ω the oscillation frequency of η0
|| · || the 2-norm

Superscript
˜ dimensional

Subscript
f at the flame or hot wire position
0 unperturbed

1. INTRODUCTION
Triggering was first observed in liquid and solid rocket motors in the 1960’s [1]. Motors
that seemed to be stable and quiet would jump to a self-sustained oscillating state when
given a sufficiently large impulse. The same phenomenon has been seen in a model gas
turbine engine [2] and in models of thermoacoustic systems [3, 4, 5].
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The first analyses of triggering were motivated by liquid rocket motors [6] and
showed that some systems could sustain thermoacoustic oscillations even when they
were linearly stable. In rocket engines, the oscillations have sufficiently high
amplitude that the gas dynamics are nonlinear. Perhaps for this reason, most early
studies of triggering assumed nonlinear gas dynamics but retained linear combustion
models [7, 8, 9, 10, 11, 12, 13, 14]. They concluded that nonlinear gas dynamics, even
up to third order, cannot explain triggering [15].

Later studies [3, 17, 18] included nonlinear combustion. The nonlinearities in these
studies took two forms: (1) nonlinearities arising from quadratic terms in the fluctuating
velocity, u, and fluctuating pressure, p, such as u2; (2) a nonlinearity arising from a
modulus sign, such as |u|. These studies showed that triggering can be achieved when
the combustion is nonlinear and they explored the types of nonlinear models that give
rise to experimentally-observed behaviour.

More recently, research into thermoacoustic instability has mainly been motivated by
gas turbine engines [16]. The energy density inside a gas turbine is considerably less
than that inside a rocket engine. This means that the thermoacoustic oscillations have
lower amplitude and are usually sufficiently small that nonlinear gas dynamics can be
neglected. It is also worth mentioning that, in gas turbines, the heat release fluctuations
tend to be a function of the velocity fluctuations (velocity-coupling) rather than the
pressure fluctuations (pressure-coupling).

Given that triggering seems to be particularly influenced by nonlinear combustion
but not by nonlinear gas dynamics, this paper is restricted to linear gas dynamics and
nonlinear combustion. It is also restricted to velocity-coupling, although the extension
to pressure-coupling is simple.

Previous papers have usually examined combustion models in which the heat release
fluctuations are a quadratic or cubic function of the acoustic velocity or pressure
fluctuations. The first sections of this paper (§2 – §4), however, do not place any
restriction on the nonlinear relationship between velocity and heat release. This produces
a simple criterion for the type of system in which triggering is possible. Any velocity-
coupled combustion model can be tested against this criterion by evaluating the first,
second and third derivatives of heat release with respect to velocity around the steady
state.

In a system that can have several different oscillating states, it is possible to switch
from one oscillating state to another, either with an external pulse, or spontaneously
[19]. In this paper, this type of transition will be called mode switching, and the word
triggering will be reserved for the special case when the system transitions from a
stationary state to an oscillating state.

The aims of this paper are to set the context of triggering by describing
supercritical and subcritical bifurcations (§2), to outline the conditions required for
triggering (§3) and derive a necessary criteria for triggering in terms of the velocity-
coupling (§4), to explain why systems can trigger when pulsed at moderate
amplitudes (§5), to show how non-normality can cause systems to trigger when
pulsed at small amplitudes (§6), to describe how to identify the smallest amplitude
that causes triggering (§7), and to show that triggering in thermoacoustics is
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analogous to bypass transition to turbulence (§8). The scope of this paper is to
examine simple systems from a theoretical point of view, in order to explain the
principles of triggering rather than to give accurate predictions of experimental
results. The analysis in this paper has been adapted from the fields of optimal control,
nonlinear dynamical systems, and hydrodynamics.

2. BIFURCATION DIAGRAMS
Two systems with the same control parameter, P, are shown in figure 1. Some measure
of the steady state amplitude of the system, aS , is plotted on the vertical axis. In an
oscillating system, this is often the peak-to-peak amplitude of the oscillations. There is
a solution with zero amplitude, which is called a fixed point. At low values of P, on the
left of figures 1(a,b), the fixed point is stable. When P reaches the Hopf bifurcation
point, which is at Pl , this fixed point becomes unstable. The system starts to oscillate
and eventually reaches the steady state amplitude given by the solid line. This state of
the system is called a periodic solution, or limit cycle.

The nonlinear behaviour around the Hopf bifurcation point at Pl defines which
type of bifurcation it is. The first type is a supercritical bifurcation (figure 1a) and is
characterized by an amplitude that grows gradually with P for P > Pl . The second
type is a sub- critical bifurcation (figure 1b) and is characterized by an amplitude that
grows suddenly as P increases through Pl . The second type has two stable solutions
for Pc ≤ P ≤ Pl .

Periodic solutions are not the only possible solutions to nonlinear differential
equations. There can also be multi-periodic, quasi-periodic and chaotic solutions, as
described in textbooks on nonlinear dynamics [21]. These types of solution appear in
thermoacoustic models [22] and in thermoacoustic experiments [23] but are beyond the
scope of this paper.
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Figure 1: The steady state oscillation amplitude, aS, as a function of a control
parameter, P, for (a) a supercritical bifurcation and (b) a subcritical
bifurcation. Pl is the point at which the fixed point (i.e. the zero amplitude
solution) becomes unstable. Pc is the point below which no oscillations
can be sustained.



3. NECESSARY CRITERIA FOR TRIGGERING
In order for triggering to be possible, the thermoacoustic system must have operating
points that can support a stable fixed point and another stable attractor (the second
attractor does not have to be periodic). The simplest system that can exhibit triggering
has a subcritical Hopf bifurcation to an unstable periodic solution (at Pl in figure 1b),
followed by a fold bifurcation to a stable periodic solution (at Pc in figure 1b). This type
of system will be examined in this paper.

Systems with different types of bifurcations can also exhibit triggering. One example
is a system with a supercritical Hopf bifurcation to a stable periodic solution, followed by
a fold bifurcation to an unstable periodic solution, followed by another fold bifurcation to
a stable periodic solution, as shown in figure 2(b) of Ananthkrishnan et al. [18]. Other
examples are systems with a stable fixed point and a multi-periodic, quasi-periodic or
chaotic attractor. These system can trigger to sustained oscillations but these do not have
a simple period. It is important to bear in mind that the existence of a stable periodic
solution is not a necessary condition for triggering. In early papers, which were written
before nonlinear dynamics and chaos were widely known, the existence of a periodic
solution was thought to be necessary.

The most complete way to identify systems that can exhibit triggering is to map the
bifurcation diagram as a function of the control parameters. Recent work [24] has
shown that this is straightforward for network models [25] with simple heat release
models. It is also relatively easy for thermoacoustic systems whose heat release has been
characterized by a Flame Describing Function (FDF) [19]. The FDF quantifies how the
amplitude and phase of the heat release fluctuations vary with the amplitude and
frequency of the velocity fluctuations.
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Figure 2: Periodic solutions predicted from the weakly-nonlinear analysis around
the Hopf bifurcation point. Solid lines are stable solutions. Dashed lines
are unstable solutions. When q1 is positive, the type of Hopf bifurcation
depends on the sign of q3 in (19). When q3 is negative (left), cubic terms
are saturating and the bifurcation is supercritical. When q3 is positive
(right), cubic terms are enhancing and the bifurcation is subcritical. q1 and
q3 are the first and third derivatives of q (η) in the Maclaurin series (7).



For systems that simulate the acoustics and heat release simultaneously, without
encapsulating the interaction in an FDF, [4, 5] it can take a long time to map the
bifurcation diagram. Nevertheless, this approach is already feasible [27, 28] and with
improvements in continuation methods and the application of parallel computing,
continuation methods are likely to become important tools in nonlinear analysis of
thermoacoustics.

The type of Hopf bifurcation can be determined, however, without mapping the
bifurcation diagram. The technique described in §4 determines this from the amplitude
of small heat release fluctuations as a function of the amplitude of small velocity
fluctuations. This quickly indicates whether a system is susceptible to triggering. A
complete analysis, including the amplitude-dependence of the time delay (or phase), is
more difficult and will be presented in another paper.

4. WEAKLY NONLINEAR ANALYSIS AROUND THE HOPF BIFURCATION POINT
A weakly nonlinear analysis can determine the nature of a Hopf bifurcation point. This
method has been performed before on thermoacoustic systems [6] and makes similar
assumptions to the time averaging approach in many of Culick’s papers [11]. The
process in this paper differs from that in previous papers, however, due to the Maclaurin
expansion (7), which allows the method to be applied to any velocity-coupled heat
release model.

The thermoacoustic system examined in this paper is a tube of length L0 in which a
velocity-coupled compact heat source is placed distance x~f from one end [4, 27]. A base
flow is imposed through the tube with velocity u0. The physical properties of the gas in
the tube are described by cv, γ, R and λt, which represent the constant volume specific
heat capacity, the ratio of specific heats, the gas constant and the thermal conductivity
respectively. The unperturbed quantities of the base flow are ρ0, p0 and T0, which
represent density, pressure and temperature respectively. From these one can derive the

speed of sound and the Mach number of the flow M ≡ u0/c0.

Acoustic perturbations are considered on top of this base flow. In dimensional form,
the perturbation velocity and perturbation pressure are represented by u~ and p~.
Quantities evaluated at the flame’s position, x~f , have subscript f. The rate of heat transfer
to the gas there is given by Q

.~
, which depends on u in a way that will be defined later.

Acoustic damping is represented by ζ.
The dimensional momentum and energy equations for the acoustic perturbations are:
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Reference scales for speed, pressure, length and time are u0, p0γM, L0 and L0/c0.
The dimensional variables, coordinates and Dirac delta can then be written as:

(3)

where the quantities without a tilde or subscript 0 are dimensionless. Substituting (3)
into the dimensional governing equations (1) and (2) and making use of the definition
of c0 and the ideal gas law, p0 = ρ0RT0, gives the dimensionless governing equations
for acoustic perturbations:

(4)

(5)

The pipe has open ends at x = 0 and x = 1, at which p = 0 and ∂u/∂x = 0. Only the
first acoustic mode will be considered here, for which u(x, t) = η cos(πx) and p(x, t) =
−(η̇/π) sin(πx). When the higher modes are included, the analysis becomes much more
complicated (but not impossible). The same is true of FDF analyses, for which the
standard procedure is to consider just the first mode or to assume that the amplitudes of
the higher modes are fixed multiplies of that of the first mode [19]. As a side-effect, this
makes the system less non-normal [20]. The first mode is substituted into (5), which are
then rearranged to give:

(6)

where q ≡ 2πQ
.~
(γ − 1)/(γp

0
u

0
) sin πxf . Equation (6) is similar to equation (46) in

Culick [8] but with a simpler damping term and a general heat release term.
The heat release is taken to be a nonlinear function of the amplitude of the first mode,

η, with a time delay, λ. This is a common assumption for the analysis of thermoacoustic
systems that are representative of gas turbines. For further analysis, one of two
assumptions must be made: (1) that the time delay, λ, is small compared with the
oscillation period, τ, or (2) that η is periodic in t. The first assumption is chosen here
because it does not preclude the non-periodic behaviour described later. This is
reasonable when the heat release is from a heat source that reacts quickly to velocity
changes, such as a hot thin wire, but not reasonable when the heat release is from a
flame, for which the second assumption is appropriate. It will be shown later that this
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analysis also requires the damping to be very small, which is satisfied in most
thermoacoustic systems. With this assumption, the time-delayed heat release term can
be approximated by q(η(t−λ)) ≈ q(η − λη̇).

In a moment, a weakly nonlinear analysis around the Hopf bifurcation point will be
performed, for which oscillations in q are small. In this case it is valid to take the
Maclaurin expansion of q :

(7)

where q1 ≡ q′(0), q2 ≡ q′′(0)/2! and q3 ≡ q′′′(0)/3!. For the weakly nonlinear analysis,
this expansion is more general than assuming that q is a specified function of η, as in
Refs. [3, 6, 8, 10, 11, 12, 13, 14, 15, 18]. Indeed, q1, q2, and q3 can be extracted from
any velocity-coupled heat release model, from an FDF, or from experimental data. In
this paper, q will be expanded only to third order because this is the lowest order that
determines the behaviour around the Hopf bifurcation point. Equation (7) is substituted
into (6), which is re-arranged to give:

(8)

The first two terms are those of a linear harmonic oscillator with angular frequency
(π2 + q1)

1/2. (The shift in frequency due to heat release was noted by Rayleigh [26] pp.
226–227.) The third term represents the first order competition between heat release and
damping. Around the Hopf bifurcation point, where the linear stability switches, this
term is small because (ζ − λq1) passes through zero there. When the amplitudes of η
and η̇ are also small, the final three terms are all much smaller than the first two terms
and equation (8) can be put in the form:

(9)

where ε is a small parameter and h is a generic nonlinear function of η and η̇ . If ε were
zero, the solution to (9) would be a harmonic oscillation with constant amplitude and
constant period. When ε is small, the solution to (9) is a similar harmonic oscillation with
a similar period. The effect of the small term is to vary the amplitude and phase of this
oscillation on a timescale that is order 1/ε longer than the period. This makes the system
susceptible to a two-timing analysis [21], which is also known as a Van der Pol analysis.

In a two-timing analysis, a fast time, τ, and a slow time, T, are defined such that τ = t
and T = εt. These variables, T and τ, are treated as if they are independent. The variable η
is then expressed as a function of τ, T, and ε. The variables η̇ and η̈ are evaluated using the
chain rule:

(10)η τ η τ η τ, , , ( , ) ( )T T Tε ε O ε( ) = ( )+ +0 1
2

�� �η π η η η+ +( ) + ( ) =2
1 0q hε , ,
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1 1 2

2

3q q q q
33
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2
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(11)

(12)

Equations (10 – 12) are substituted into (8) and equated at different orders of ε.
At O(ε0) and O(ε1) respectively they are:

(13)

(14)

If variations of η0 in the slow timescale, T, are frozen then equation (13) collapses
to an O.D.E with solution

(15)

where ω2 = (π2 + q1) and the amplitude, r, and phase, φ, are functions of the slow time,
T. This behaviour was anticipated earlier from inspection of (9). In order to calculate
the evolution of r and φ on the slow time, equation (15) is substituted into (14), which
is re-arranged using trigonometric relations to give an inhomogenous O.D.E for η1:

(16)
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The left hand side of (16) represents a linear oscillator with natural frequency ω. The
terms in square brackets on the right hand side represent forcing exactly at this natural
frequency. These terms, which are called secular terms, must be zero or they would
result in unbounded growth and violate the assumption in (10) that the η1 term is small.
This means that either r = 0 or the amplitude and phase of the oscillations must vary on
the slow timescale T according to:

(17)

(18)

There is a periodic solution if dr/dT = 0, which occurs when

(19)

For a damped system that can become linearly unstable, q1 must be positive. The first
term on the RHS of (17) represents linear driving if λq1 > ζ and the second term represents
either cubic saturation if q3 is negative, or cubic enhancement if q3 is positive. This means
that (19) has two types of solution, as shown in figure 2. If q3 is negative, oscillations to the
right of the Hopf bifurcation point are saturated by the cubic terms and the bifurcation is
supercritical. If q3 is positive, oscillations to the left of the Hopf bifurcation point are
enhanced by the cubic terms and the bifurcation is subcritical. The same result can be
derived with a time-averaging approach. For the square root nonlinearity in King’s law,
which is used in the Rijke tube model of the rest of this paper [4, 27], it is easy to show that
q3 is positive and therefore that the Hopf bifurcation is subcritical.

It is worth noting that this analysis requires the damping, ζ, to be very small if the
frequency shift due to heat release is small. The latter assumption requires that q1 � π2,
which means that τ ≈ 2. Around the Hopf bifurcation point, λ ≈ ζ/q1, which means that
λ/τ ≈ ζ/(2q1). The two-timing analysis assumes that λ/τ � 1, which means that
ζ/(2q1) � 1 and, because q1 is small, this means that ζ is very small. Fortunately for
this analysis, thermoacoustic systems are prone to instability precisely because their
acoustic damping is very small.

5. TRIGGERING
The evolution of the single mode system considered in section 4 can be described in
terms of the oscillation amplitude, r, and phase, φ. If the system has a subcritical
bifurcation (q3 > 0) then equation (17) shows that, if the amplitude, r, increases above
that of the unstable limit cycle, then it must continue to grow.
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For the single mode system, this gives a simple criterion for the onset of triggering:
the amplitude must exceed that of the unstable periodic solution. This is true for single
mode systems and systems that are modelled in terms of the amplitude of a single mode.
For instance, Noiray et al. [19] evaluated the nonlinear Flame Describing Function
(FDF) of a laboratory burner with multiple flames and used it to create their bifurcation
diagram, which had stable and unstable periodic solutions. They considered the
amplitude and phase of only the fundamental mode and assumed that the higher
harmonics were locked to this mode. Then they numerically evaluated trajectories in
state space and showed that mode-switching occurs when the amplitude tips to one side
or the other of an unstable periodic solution (their Figure 9a). Finally, they compared
their results with experimental measurements, which showed that mode switching
occurs when the amplitude passes that of the unstable periodic solution. (This can be
seen by comparing their figure 17 with their figure 12). This is a remarkably successful
experimental demonstration of the role of unstable periodic solutions in mode-
switching.

Experiments on a ducted flame [29] and an electrically-heated Rijke tube [30] show
similar behaviour. In these experiments, the bi-stable region of the systems was
evaluated (this is the region where a stable fixed point co-exists with a stable periodic
solution) and the frequency of the stable periodic solution was measured. Then the
systems were set to the non-oscillating state and forced briefly at the frequency of the
stable periodic solution. The forcing was either for a prescribed number of cycles at a
variable amplitude or for a variable number of cycles at a prescribed amplitude. The
forcing caused the amplitude of the system to grow until the forcing was switched off.
After that, it either decayed back to the fixed point, or grew on to the stable periodic
solution. In this way, the triggering threshold was identified. These experiments also
showed that, just above the threshold, the amplitude grew very slowly. This is consistent
with the threshold being the unstable periodic solution although, unlike Noiray et al [19],
they did not evaluate the Flame Describing Function and therefore could not calculate
the unstable periodic solution with a frequency domain stability analysis.

The studies described above were all on systems that have dominant periodic
solutions at isolated frequencies. Mode switching and triggering were examined either
when the system was oscillating at these frequencies [19] or when the system was
forced at these frequencies [29, 30]. In all cases, the amplitude grew relatively slowly
and was not suddenly increased by a pulse.

Wicker et al. [3] examined the triggering behaviour when a two-mode system was
pulsed suddenly. They found that the threshold amplitude for triggering varied
significantly with the relative phases of the initial modes and varied slightly with their
harmonic content. In particular, they found that, for triggering to occur, the initial
amplitude of the first mode had to be greater than that of the second. This shows that,
in a system with more than one mode, there is more to triggering than simply
increasing the amplitude of a pulse above a certain value. The type of pulse is also
important.

On the one hand, this is easy to understand in terms of damping: different modes
have different levels of damping and the system will not grow as strongly if one of
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its heavily-damped modes is pulsed than if one of its lightly-damped modes is
pulsed. This can be seen clearly in Waugh et al. [31], which shows the behaviour of
a ten-mode thermoacoustic system when triggered from twenty different initial
pulses. These pulses were chosen because they all led (or nearly led) to triggering.
The pulses that led to triggering from the lowest possible initial energy had most of
their energy in the least-damped mode which, like the system of Wicker et al. [3],
was the first mode. The same argument can be applied in terms of the harmonic
content of the unstable periodic solution: the unstable periodic solution, like the
stable periodic solution, has most of its energy in the least damped mode, which in
Wicker et al.’s case was the first mode. If a system is pulsed close to this unstable
periodic solution, but with infinitesimally more energy, it will grow to the stable
periodic solution. Therefore, to a first approximation, the pulse must also have most
of its energy in the least damped mode.

On the other hand, some experiments have shown that triggering can be achieved
with nothing more than background noise [2]. Although it is not possible to work out
the unstable periodic solution from the reported results of these experiments, it is likely
that its amplitude was significantly greater than the amplitude of the background noise.
This is difficult to explain in terms of the reasoning in the previous paragraphs, and
impossible to explain for a single mode system. A deeper explanation must include the
role of non-normality in these systems (§6), particularly around the unstable periodic
solution.

6. THE ROLE THAT NON-NORMALITY PLAYS IN TRIGGERING
In a thermoacoustic system, the acoustic energy is held alternately by the acoustic
velocity and the acoustic pressure. If a thermoacoustic system is modelled by a single
mode [8, 19] then the corresponding dynamical system has two degrees of freedom: one
for the amplitude of the acoustic velocity and one for the amplitude of the acoustic
pressure. The state space for this model is a two-dimensional plane.

In the bi-stable regime of the single mode system (for which a stable fixed point and
a stable periodic solution co-exist), the unstable and stable periodic solutions are both
closed loops in state space. The stable fixed point lies within the unstable periodic
solution and both of these lie within the stable periodic solution. Because lines in state
space cannot cross, and because this state space is two-dimensional, all trajectories in
state space that start outside the unstable periodic solution must end up on the stable
periodic solution and all trajectories that start inside the unstable periodic solution must
end up on the stable fixed point. Consequently, in a single mode system, the unstable
periodic solution is the boundary of the basin of attraction of the stable periodic
solution.

If the dynamical system has N degrees of freedom, the basin boundary is an (N − 1)

-dimensional manifold in N-dimensional space. It is difficult to visualise this basin
boundary but a cartoon of a two-dimensional manifold in three-dimensional space is
shown in figure 3 for illustration. (It is important to remember, however, that on a
manifold with more than two dimensions, trajectories on the manifold can pass each
other without intersecting.)
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The grey surface is the closed manifold that separates the states that evolve to the
stable fixed point, which lies inside the surface, from the states that evolve to the stable
periodic solution, which is the large loop that lies away from the surface. Points exactly
on the manifold remain on the manifold for all time. Any state on this manifold, if given
an infinitesimal increase in amplitude, would evolve to the stable periodic solution. The
question of triggering therefore boils down to finding the lowest energy point on this
manifold. The unstable periodic solution is a loop exactly on this manifold, so the
lowest energy point on this loop is a good starting point. For multi-mode systems, the
question is whether there are any points on this basin boundary with lower energy than
this.

We consider the evolution of small perturbations around the unstable periodic
solution. We do this by generating the monodromy matrix [32], which maps the
evolution of an infinitesimal perturbation after it has looped once around the periodic
solution. The eigenvalues and pseudospectra of the monodromy matrix of a 10 mode
Rijke tube [27] are shown in figure 4. For this system, there are eighteen eigenvalues
inside the unit circle, which are stable, one eigenvalue on the unit circle, which is
neutrally stable and represents motion in the direction of the periodic solution, and one
eigenvalue outside the unit circle, which is unstable. This shows that the unstable
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Figure 3: A cartoon of the manifold that separates the basin of attraction of the
stable fixed point (at (0,0,0), inside the manifold) from the basin of
attraction of the stable periodic solution (the loop outside the manifold).
The unstable periodic solution (dashed line) is a loop exactly on the
manifold. All states exactly on the manifold are attracted to the unstable
periodic solution (blue line).



manifold attracts states from every direction except one. The pseudospectra are not quite
concentric circles centred on the eigenvalues, which shows that the system is non-
normal and therefore susceptible to transient growth.

Small perturbations exactly on the manifold stay on the manifold for all time and
therefore have no component in the direction of the unstable eigenvalue. After many
cycles, these perturbations are attracted towards the unstable periodic solution. At
intermediate times, however, these perturbations can grow away from the unstable
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Figure 4: Eigenvalues (black dots) and pseudospectra (grey lines) of the
monodromy matrix, M. This matrix describes the evolution of an
infinetismal perturbation after one loop around the unstable periodic
solution of a dynamical system representing a 10 mode Rijke tube [27].
The thick black line is the unit circle. The eigenvalues, which are also
known as the Floquet multipliers, are stable if they lie within the unit
circle. Here, one is unstable, one is neutral and the rest are stable. The
pseudospectra are shown here as log10(S), where S is the resolvent norm:
S ≡ ||(iω I − M)||2. They extend slightly further out than they would if
the system were normal, particularly around the three eigenvalues at
highest ωi. This implies that there will be some transient growth [32]
although, with only slight non-normality, it will be small for this model.



periodic solution. By inspecting the directions in which they grow [27], it can be shown
that trajectories on the manifold around the unstable periodic solution can have both
higher or lower energy than the unstable periodic solution itself. Therefore, there are
states on the manifold that grow transiently in energy before being attracted towards 
the unstable periodic solution. These are the states adjacent to the ones that trigger to
the stable solution from the lowest energy. In other words, if one imagines trajectories
in state space to be infinitely-long lines of spaghetti on the surface of the manifold, the
role of non-normality is to tangle up the lines of spaghetti and send some of them to
lower energies than would be expected without non-normality. The one that triggers
from the lowest possible energy is called the most dangerous initial state. Having shown
that it exists away from the unstable periodic solution, the next step is to devise a
systematic way to find it.

7. FINDING STATES THAT TRIGGER FROM THE LOWEST POSSIBLE ENERGY
The state with maximum linear transient growth away from the stable fixed point is the
first singular vector of the linear operator that governs the evolution of infinitesimal
perturbations around the stable fixed point [32, 4, 5]. Similarly, the state with maximum
linear transient growth around the unstable periodic solution is the first singular vector
of the monodromy matrix described in §6. These results only apply, however, to
infinitesimal disturbances. In order to find the most dangerous initial state, a procedure
must be developed that can handle disturbances of a finite size.

A convenient technique is adapted from optimal control [33]. A cost functional, J, is
defined as the ratio of final energy to initial energy over some time period, T. A Lagrangian
functional, L, is then defined as the cost functional, J, minus a set of inner products. These
inner products multiply the governing equations by one set of Lagrange multipliers and the
initial state by another set of Lagrange multipliers. When all variations of L with respect to
the Lagrange multipliers, state variables, x, and initial state, x0, are zero then an initial state
has been found that optimizes J and satisfies the governing equations.

To find this initial state, the direct governing equations are integrated forward for
time T from an initial guess, thus satisfying the requirement that all variations of L with
respect to the Lagrange multipliers are zero. The Lagrangian functional is then re-
arranged so that it is expressed in terms of a different set of inner products. These inner
products multiply the state variables, x, by a first set of constraints. They also multiply
the initial state, x0, by a second set of constraints. The requirement that all variations of
L with respect to x are zero can be met by satisfying the first constraints. Half of these,
known as the optimality conditions determine the relationship between an adjoint state
vector, x+, and the direct state vector, x, at time T. The other half, known as the adjoint
governing equations, govern the evolution of x+ for t = [0, T ]. After setting the
optimality conditions at t = T, the adjoint governing equations are integrated backward
to time 0, thus satisfying the requirement that all variations of L with respect to x are
zero. The second set of constraints return the gradient information ∂L/∂x0 at the initial
guess for x0. This is combined with a convenient optimization algorithm, such as the
steepest descent method or the conjugate gradient method, in order to converge towards
the optimal initial state, at which ∂L/∂x0 = 0.
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There are two ways to find the most dangerous initial state. The first is to use the
knowledge that all states exactly on the manifold (figure 3) are attracted towards the
unstable periodic solution. This means that the trajectory from the most dangerous
initial state must pass infinitesimally close to the unstable periodic solution. A good
starting point for the optimization procedure is therefore the lowest energy state on
the unstable periodic solution. This technique was used in Ref. [27]. Alternatively, the
most dangerous initial state can be found by setting the optimization time, T, to be
very large and starting from many hundred random initial states. This naturally finds
states that reach the stable periodic solution from very low energies and avoids the
criticism that the first technique might simply have found a local minimum. This
technique was used in Refs [34, 35]. Both techniques gave the same most dangerous
initial state, which is reassuring.

Figure 5 shows the evolution for the most dangerous initial state, taken from Ref. [27].
There is strong transient growth in the first cycle, from an energy below the lowest
energy on the unstable periodic solution. Then the system settles towards the unstable
periodic solution for many cycles before growing to the stable periodic solution, as
expected.
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The procedure in this section systematically finds the most dangerous initial
condition and describes the system’s evolution from that state. This is currently being
extended to thermoacoustic systems with more realistic heat release models, which
should trigger from lower initial energies because they have higher non-normality.

8. THE LINK WITH BYPASS TRANSITION TO TURBULENCE
Triggering in thermoacoustics is directly analogous to bypass transition to turbulence in
hydrodynamics because both are examples of the evolution of trajectories around edge
states in nonlinear dynamical systems. A fluid flow can be considered as a dynamical
system with a very large number of degrees of freedom [36, 37, 38]. A boundary in state
space can be identified between trajectories that decay to a laminar solution and
trajectories that evolve to a turbulent solution. This boundary has become known as the
edge of chaos [36] and it is directly analogous to the manifold shown in figure 3. This
boundary contains several heteroclinic saddle points and at least one local relative
attractor, each corresponding to a periodic travelling wave solution [38]. The state wanders
from the vicinity of one travelling wave solution to the vicinity of another and so on until
it reaches a local relative attractor, where it either evolves towards the laminar solution or
to a turbulent solution. The local relative attractor in the hydrodynamic system is directly
analogous to the unstable periodic solution in this paper’s thermoacoustic system.

The role of non-normal transient growth is becoming increasingly apparent in hydro-
dynamic systems. For instance, the laminar flow in a round pipe becomes turbulent at a
Reynolds number between 1,000 and 10,000 even though it is linearly stable at all
Reynolds numbers. The likely mechanism is that small (but not infinitesimal)
perturbations grow, due to non-normal transient growth, and then evolve to the turbulent
solution due to the influence of the local relative attractor. In other words, in some of the
many dimensions of the dynamical system, non-normality causes the edge of chaos to be
extremely close to the stable fixed point. It seems likely that the same is true of
thermoacoustic systems, which explains how they can sometimes trigger from low noise.

9. CONCLUSIONS
One conclusion of this paper is that thermoacoustic systems should be considered as
nonlinear dynamical systems and analysed with tools from that field. In nonlinear
dynamical systems, the state of the system evolves along a trajectory in state space.
Amongst the trajectories there are some loops, which are the periodic solutions, and at
least one point, which is the fixed point. (There may also be chaotic trajectories, but
these have not been considered here.) All trajectories tend to the loops or the fixed point
as time goes to positive or negative infinity. The positions of the loops and the point are
determined only by the nonlinear characteristics of the system. They have nothing to do
with non-normality. If the system is normal, trajectories grow or decay monotonically
around the periodic solutions and fixed point. If the system is non-normal, however,
some trajectories can grow strongly away from the periodic solution or fixed point to
which they ultimately decay. If the set of possible trajectories are thought of as lines of
spaghetti in state space, then nonlinearity describes where they end up and where they
started from, while non-normality describes how tangled they are.
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Another conclusion concerns the relative importance of linear, nonlinear, and non-
normal behaviour. The stability around the fixed point is the most important starting
point and this is what would be called a conventional linear analysis. The next most
important factor is the nature of the Hopf bifurcation, which can either be found with
a weakly nonlinear analysis (§4), with a continuation method, or with a Flame
Describing Function. This determines whether the Hopf bifurcation is subcritical or
supercritical. If it is subcritical, then triggering is possible. If it is supercritical then
triggering is not certain, but may still be possible. (Higher order nonlinearities need to
be considered in order to see whether there is a fold bifurcation to an unstable periodic
solution.)

The fully nonlinear behaviour can be calculated with a continuation method. At the
moment this is time-consuming, even for relatively small systems, but with faster
algorithms and increased computing power, it may become feasible for larger systems.
Continuation methods find fixed point and periodic solutions. Other solutions exist,
such as multi-periodic, quasi-periodic, and chaotic solutions, but these are difficult to
find with conventional continuation methods. The nonlinear periodic behaviour can also
be estimated with an FDF analysis.

Once the nonlinear behaviour has been determined, one can consider the non-
normal behaviour. If triggering is not possible (e.g. if the bifurcation is supercritical)
then non-normality is little more than an interesting curiosity that makes a system
more sensitive to noise. If triggering is possible, however, then the transient growth
caused by non-normality provides a mechanism for a system to trigger, via the
unstable periodic solution, from low amplitude initial pulses or low amplitude noise [39].
This helps to explain experimental results [2] concerning triggering and mode
switching.
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