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A wave-based analysis is a convenient method for generating acoustic models, both for simple
and for more complex geometries. However, there is no straightforward method to describe the
resulting system in state-space form. This prevents powerful, well-established methods from
dynamics and control being applied to a wave-based acoustic model because these methods
require a state-space description of the system to which they are applied. This paper presents a
simple method for generating a state-space description of an acoustic model when that model
has been derived using a wave-based approach. The utility of the method is demonstrated by
applying it to a simple open-ended duct with a temperature jump across the flame, and the
resulting state-space model is validated in both the time domain and the frequency domain.
The method is sufficiently general that it can also be applied to more complex geometries.

1. Introduction

There are a number of ways to formulate an acoustic model for a thermoacoustic analysis.
Three common methods are i) a Galerkin discretization [1–3]; ii) a Green’s function approach [4]
(which may subsequently be used in a modal expansion [5]); and iii) a wave-based approach [6, 7].
In any acoustic modelling method, it is very useful if one can write the resulting model in state-
space form (to be defined in § 4) because this description of the acoustics allows allows one to make
use of powerful techniques from dynamics and control. This could include a stability analysis of the
coupled thermoacoustic system; analysis of its transient growth characteristics; or feedback controller
design to eliminate oscillations. For the first two methods mentioned above – namely the Galerkin
discretization and the Green’s function approach – methods to describe the resulting systems in state-
space form have been developed. For a Galerkin discretization, a state-space description follows quite
naturally from the Galerkin modes, and for a Green’s function approach, a state-space description can
be generated by performing a modal expansion [5]. For the wave-based approach, however, it is less
straightforward to describe the resulting system in state-space form, and this is largely due to the
explicit presence of time delay terms, which make the system infinite-dimensional, and which are not
amenable to a state-space description in a straightforward way.

The purpose of this paper is to present a method for generating a state-space description of
an acoustic model when that model has been derived using a wave-based analysis. The method is
applied to a simple open-ended duct geometry with a temperature jump across the flame. However,
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the method is sufficiently general that it could equally well be applied to more complex geometries
using data generated by a suitable low-order model, such as the time-domain network model described
by Stow & Dowling [8]. The paper is organized as follows. In § 2 the wave-based acoustic analysis
is described. In § 3 the simplifying assumption of no mean flow is made. This is done to make the
model more tractable, allowing one to readily give physical significance to the different terms. In § 4
a method for generating a state-space description of the wave-based model is introduced, and in § 5,
results of the approach applied to a simple geometry (with mean flow) are presented. We conclude
the paper in § 6.

2. Wave-based approach for a duct with mean flow

Figure 1 shows the geometry considered: an acoustically compact flame sits in a duct of unity
length. Steady heat release gives rise to a change in temperature across the flame (and therefore a
change in the mean speed of sound from c̄1 before combustion to c̄2 after combustion). A perturbation
in the heat release, q′(t), generates outward-travelling waves that propagate both upstream (α1) and
downstream (α2). These waves are reflected when they reach the upstream/downstream ends of the
duct. This reflection is characterized by the reflection coefficients, R1 and R2, and gives rise to
reflected waves β1 and β2. Notice that we have defined the spatial coordinate system, x, such that
x = 0 at the flame. Then x ∈ [−l1, 0] upstream of the flame and x ∈ [0, l2] downstream of the flame.

α1 α2

β2β1
R1 R2

flame

q

p̄1, ρ̄1, T̄1, M̄1 p̄2, ρ̄2, T̄2, M̄2

x = −l1 x = +l2x

Figure 1. Wave approach in a simple duct geometry.

2.1 Wave approach

We solve the wave equation in each of the two regions upstream and downstream of the flame
shown in figure 1. Considering the region upstream of the flame, the acoustic pressure and velocity
perturbations can be written in terms of the upstream- and downstream-travelling waves, α1 and β1:

p′1(x, t) = α1(t+ x
c̄1−ū1 ) + β1(t− x

c̄1+ū1
) (1a)

ρ′1(x, t) =
1

c̄2
1

[α1(t+ x
c̄1−ū1 ) + β1(t− x

c̄1+ū1
)] (1b)

u′1(x, t) =
1

ρ̄1c̄1

[−α1(t+ x
c̄1−ū1 ) + β1(t− x

c̄1+ū1
)]. (1c)

We can write similar expressions for the downstream region [6].

2.2 Boundary conditions

Boundary conditions are required at the ends of the duct and across the flame. The boundary
condition at the upstream end, x = −l1, is:

β1(t+ l1
c̄1+ū1

) = R1α1(t− l1
c̄1−ū1 )

⇒ β1(t) = R1α1(t− τ1), (2)
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where τ1 = 2l1c̄1/(c̄
2
1 − ū2

1). Similarly, at the downstream end, x = l2, we have:

β2(t+ l2
c̄2−ū2 ) = R2α2(t− l2

c̄2+ū2
)

⇒ β2(t) = R2α2(t− τ2), (3)

where τ2 = 2l2c̄2/(c̄
2
2 − ū2

2).

2.3 Momentum and energy equations

At the flame (where x = 0), Dowling [9] uses the two conditions:

p2 − p1 + ρ1u1(u2 − u1) = 0 (4a)
γ

γ − 1
(p2u2 − p1u1) +

1

2
ρ1u1(u2

2 − u2
1) = Q, (4b)

where Q is the total heat release rate. Assuming the upstream mean flow is prescribed, then we have
two unknowns, ū2 and p̄2, and two equations. Solving them gives rise to two quadratic equations,
which we can solve for ū2 and p̄2. For linearized disturbances, Eq. (4) becomes:

p′2 − p′1 + ρ̄1ū1(u′2 − u′1) + (ū2 − ū1)(ρ̄1u
′
1 + ū1ρ

′
1) = 0 (5a)

γ

γ − 1
(p̄2u

′
2 + ū2p

′
2 − p̄1u

′
1 − ū1p

′
1) + ρ̄1ū1(ū2u

′
2 − ū1u

′
1) +

1

2
(ū2

2 − ū2
1)(ρ̄1u

′
1 + ū1ρ

′
1) = q′. (5b)

2.4 Solution for waves

Substituting the expressions for the perturbation quantities (Eq. 1) into the linearized equations
(Eq. 5) and recalling that they apply at the flame where x = 0, we arrive at two equations for the wave
amplitudes, which we write in matrix form as

X

[
α1(t)
α2(t)

]
− Y

[
β1(t)
β2(t)

]
=

[
0
1

]
q′(t)

c̄1

, (6)

where X and Y are 2× 2 matrices, the expressions for which are given in Appendix A. At this point
we have two equations but four unknowns. By using the boundary conditions at the duct ends, we
arrive at the requisite two unknowns, which gives an equation governing the time evolution of the
outward-travelling waves α1(t), α2(t):

X

[
α1(t)
α2(t)

]
= Y

[
R1α1(t− τ1)
R2α2(t− τ2)

]
+

[
0
1

]
q′(t)

c̄1

, (7)

Taking Laplace transforms, the resulting system can be written as[
X11 −R1Y11e

−sτ1 X12 −R2Y12e
−sτ2

X21 −R1Y21e
−sτ1 X22 −R2Y22e

−sτ2

] [
α1(s)
α2(s)

]
=

[
0
1

]
q(s)

c1

. (8)

The modes of the system are then given by those values of swhere the determinant of Eq. (8) vanishes.
We can now solve for α1 and α2 by rearranging Eq. (8):

α1(s) = − 1
c̄1

(X12 − Y12R2e
−sτ2)q(s)/Ω(s) (9a)

α2(s) = + 1
c̄1

(X11 − Y11R1e
−sτ1)q(s)/Ω(s), (9b)

where Ω(s) is the determinant of the matrix in Eq. (8).
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2.5 Solution for pressure and velocity perturbations

We can now substitute these expressions into Eq. (1) to find expressions for the pressure and
velocity for the upstream region:

p′1(x, s)

q′(s)
= − [X12 −R2Y12e

−sτ2l2 ][+1 +R1e
−sτ2(l−x)

1 ]

c̄1Ω(s)
e−sτ

x
1 (10a)

u′1(x, s)

q′(s)
= − [X12 −R2Y12e

−sτ2l2 ][−1 +R1e
−sτ2(l−x)

1 ]

ρ̄1c̄2
1Ω(s)

e−sτ
x
1 . (10b)

A similar analysis can be performed for the downstream region.

3. Waved-based approach without mean flow

In this section we look at what happens when we neglect the mean flow. By doing so the
expressions just derived simplify significantly, and we use them to give some physical significance to
the different terms. For no mean flow, Eq. (8) simplifies to[

1 +R1e
−sτ1 −1−R2e

−sτ2

1−R1e
−sτ1 c2

c1
(1−R2e

−sτ2)

] [
α1(s)
α2(s)

]
=

[
0
γ−1
c1

]
q(s), (11)

and the modes occur at values of s satisfying
c2

c1

(1 +R1e
−sτ1)(1−R2e

−sτ2) + (1−R1e
−sτ1)(1 +R2e

−sτ2) = 0. (12)

It is convenient to write this as

(1 +
c2

c1

)(1−R1R2e
−s(τ1+τ2)) + (1− c2

c1

)(R2e
−sτ2 −R1e

−sτ1) = 0. (13)

This is convenient because it makes clear the influence of c2/c1. When c2/c1 = 1 (no temperature
change across the flame), the modes are equispaced and given simply by

R1R2e
−s(τ1+τ2) = 1. (14)

When c2/c1 6= 1 we have an extra term in Eq. (13) and the modes are no longer equispaced. We can
now use Eq. (8) to ultimately solve for the pressure and velocity as we did before. For the upstream
region the solution is

p1(x1, s) =
γ − 1

c1

[1 +R2e
−sτ2 ][1 +R1e

−s(τ1−
2x1
c1

)
]

Ω(s)
e
−sx1

c1 q(s) (15a)

u1(x1, s) =
γ − 1

2ρ1c2
1

[1 +R2e
−sτ2 ][−1 +R1e

−s(τ1−
2x1
c1

)
]

Ω(s)
e
−sx1

c1 q(s). (15b)

We now consider what the terms in each of the numerators represent.

• 1 + R2e
−sτ2 term: this appears in both the pressure and the velocity, and that is because it

comes from the expression for α1(s) in Eq. (9a). It tells us that we will have zero response
(an antiresonance) whenever 1 + R2e

−sτ2 = 0. Physically, what do the two terms represent?
Imagine that acoustic perturbations are zero everywhere in the duct. A fluctuation in q will then
generate two waves directly: α1 and α2. The 1 in the expression is just the α1 wave generated
directly by q. TheR2e

−sτ2 is the α2 wave which, after reflecting from the downstream boundary,
arrives back at the flame and is ‘turned into’ an α1 wave as it traverses the flame – i.e. it is the
‘echo’ of the α2 wave. From these arguments we see that these zeros have nothing to do with
where one measures p1 or u1. They are completely determined by the location of the flame in
the duct.
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• ±1 + R1e
−s(τ1−

2x1
c1

) term: this is another source of zeros. It depends on both frequency, s and
the location, x1, and so where we measure is important this time. Physically, these zeros occur
when the wave α1 and its reflection β1 cancel each other out.

To summarize (for region 1 of the duct): The first source of zeros occurs when the wave α1 generated
by q is exactly cancelled by the reflection of the wave α2 from the other side of the duct. In this sense
q is not able to excite α1 at this particular s, and if α1 is zero, then p1 and u1 are zero everywhere. The
second source of zeros occurs when, although α1 is excited, it is cancelled out by its own reflection,
β1. We can perform the same analysis for the other half of the duct, and similar physical significance
can be given to the different terms.

4. Finding a state-space model

Having outlined the wave-based approach for finding an acoustic model, we now look at how
one can use knowledge of the acoustic modes, together with knowledge of the frequency response, to
find a state-space description of such a model.

4.1 Finding modes

Rather than discretize the system using some kind of discretization scheme (such as Galerkin
modes), we will discretize the system by finding its eigenvalues directly. This involves finding the
roots, λj = σj + iωj , of Ω(s) introduced in § 2.4:

Ω(s) = (X11−R1Y11e
−sτ1)(X22−R2Y22e

−sτ2)− (X12−R2Y12e
−sτ2)(X21−R1Y21e

−sτ1) = 0. (16)

This is achieved using Newton-Raphson iteration in the complex plane.

4.2 Evaluating the frequency response functions (FRFs)

The other piece of information we will require is the frequency response. This is given simply
by setting s = iω in Eq. (10).

4.3 Calculating the state-space matrices A, B, C, D

We want to be able to write the acoustic model described in § 2 in state-space form:

ẋ(t) = Ax(t) +B q(t) (17a)
y(t) = C x(t) +D q(t), (17b)

where y is some output of interest. Taking Laplace transforms of Eq. (17) and rearranging, we arrive
at the transfer function:

G(s) =
y(s)

q(s)
= C(sI − A)−1B +D. (18)

A state-space realization is not unique: that is, there are many state-space realizations that give the
same transfer function. The form that is convenient for our purposes is a modal realization, where the
A matrix is written as a diagonal matrix with its eigenvalues on its diagonal. For this realization, the
term (sI − A)−1 can be written simply as

(sI − A)−1 =

s− λ1 · · · 0
... . . . ...
0 · · · s− λn


−1

=


1

s−λ1 · · · 0
... . . . ...
0 · · · 1

s−λn .

 (19)
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and the transfer function, G(s), becomes

G(s) =
n∑
i=1

cibi
s− λi

=
n∑
i=1

θi
s− λi

. (20)

This is for the single-input single-output case where B is a column vector and C is a row vector, but
is easily extended to the multi-input multi-output case. Here we have defined θi = cibi. Now if we
evaluate the frequency response of G(s) = G(iω) at the frequencies ω1, ω2, . . . , ωp, then we haveG(iω1)

...
G(iωp)

 =

(iω1 − λ1)−1 · · · (iω1 − λn)−1

... . . . ...
(iωp − λ1)−1 · · · (iωp − λn)−1


θ1

...
θn

 , (21)

which we can solve for
[
θ1 . . . θn

]T . We need the frequency response at p = n frequencies to make
the matrix in Eq. (21) invertible. In practice, though, it is better to evaluate the frequency response at
many more than n frequencies, p� n and then solve Eq. (21) in the least squares sense. Notice that
we have solved for θi = cibi. We are then free to choose any ci, bi, provided they satisfy cibi = θi.

4.4 Practical implementation

Clearly there is a frequency associated with each of the eigenvalues, λ1, . . . , λn, found by solv-
ing Eq. (16). We must bear these frequencies in mind when choosing the frequency range over which
to evaluate the frequency responses, G(iω), in Eq. (21). We can anticipate two scenarios that would
cause a problem when solving Eq. (21):

• The maximum frequency used for the frequency response is higher than the frequency of the
highest eigenvalue found. In this case, Eq. (21) will encounter modes in the frequency response
that it does not know about.

• The maximum frequency used for the frequency response is lower than the frequency of the
highest eigenvalue found. In this case, Eq. (21) will have some extra eigenvalues at high fre-
quencies to play with, but the behaviour of these eigenvalues will not be constrained as it should
be by the frequency response.

So by consistent, we mean that the maximum frequency used in the frequency response makes
sense in relation to the frequency of the highest eigenvalue found.

5. Results

We now apply the method to the geometry shown in figure 1. The duct is 1 m long, and the heat
release occurs 0.3 m from the upstream end. Therefore the values of l1 and l2 (refer to figure 1) are
l1 = 0.3 and l2 = 0.7. For brevity we plot data at just one point in the duct, and the location chosen is
x = 0.4. (Recall that x is measured from the flame.) Pressures are non-dimensionalized using γM1p1,
velocities are non-dimensionalized using u1, and the unsteady heat release is non-dimensionalized
using q. Time and frequency, meanwhile, remain dimensional.

The purpose of this section is to investigate how well the acoustics are captured by the state-
space model. This is done in two ways: i) in the frequency domain by comparing the frequency
response of the state-space model to that given directly by equations (10); and ii) in the time domain
by comparing the state-space model’s impulse response (for a Gaussian pulse) to that given by time-
stepping the governing equations (8) directly. Notice in particular that we do not couple the acoustics
to a flame model. Instead, the perturbation in the heat release rate is provided as an input (a Gaussian
pulse) when we simulate the systems in the time domain. (Of course, coupling the acoustic state-
space model to a suitable flame model is one of the ultimate aims of the model, but this is not required
in order to validate it, which is what we are concerned with here.)
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Figure 2. Comparison of the frequency responses found directly using Eq. (10) (—–) and using the
state-space model (−−) for (a) the pressure; and (b) the velocity. Both plots are for the location x = 0.4.
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Figure 3. Comparison of the impulse responses found directly by time-stepping Eq. (8) (—–) and using the
state-space model (−−) for (a) the pressure; and (b) the velocity. Both plots are for the location x = 0.4.

5.1 Validation in the frequency domain

Figure 2 compares the frequency response of the state-space model, which is found by setting
s = iω in Eq. (18), to that found directly by evaluating Eq. (10). The agreement is excellent for both
the pressure and the velocity. (There are some very small discrepancies at the highest frequencies
shown, and this makes sense, since this is the frequency range in which the higher modes that have
been discarded will have their greatest effect.) Similar agreement is seen at other locations in the duct.

5.2 Validation in the time domain

Figure 3 compares the response of the state-space model to that found directly by time-stepping
Eq. (8) for a Gaussian impulse of the form: q′(t)/Q = exp{−(t − t0)2/σ2}, with t0 = 0.001 s and
σ = 2.6904 × 10−4. We see excellent agreement, with the pressure and velocity both very well-
captured by the state-space model. Similar agreement is seen at other locations in the duct.

6. Conclusions

A method has been presented for finding a state-space description of an acoustic model when
that model comes from a wave-based analysis. The method uses knowledge of the acoustic modes,
together with the frequency response, to find the state-space description. This state-space description
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is very useful because it allows powerful, well-established tools from dynamics and control to be ap-
plied to the thermoacoustic system. The method has been demonstrated on a simple open-ended duct
with a temperature jump across the flame, and good results are seen. The state-space model shows
excellent agreement with the original model, both in the time domain and in the frequency domain.
The method is sufficiently general that it can be applied to more complex configurations. The next
step is to apply the method to a more complex geometry using data generated from a thermoacoustic
network model. This will allow acoustic state-space models to be generated for combustors with both
longitudinal and annular geometries.

A. X and Y matrices

The expressions for the X and Y matrices introduced in Eq. (6) are

X =

[ −1 + M̄1(2− ū2
ū1

)− M̄2
1 (1− ū2

ū1
) +1 + M̄2

1−γM̄1

γ−1
+ M̄2

1 − 1
2
M̄2

1 (1− M̄1)(
ū22
ū21
− 1) c̄2

c̄1

(
1+γM̄2

γ−1
+ M̄2

2

)]

Y =

[
+1 + M̄1(2− ū2

ū1
) + M̄2

1 (1− ū2
ū1

) −1 + M̄2

1+γM̄1

γ−1
+ M̄2

1 − 1
2
M̄2

1 (1− M̄1)(
ū22
ū21
− 1) c̄2

c̄1

(
1−γM̄2

γ−1
+ M̄2

2

)] .
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