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In this theoretical study, a weakly nonlinear analysis is performed on a generic thermoacoustic
system. The velocity and heat release are assumed to be periodic. The heat release fluctu-
ations are characterized by their phase,φ, relative to the velocity fluctuations, and by their
amplitude,a. Bothφ anda are functions of the velocity amplitude,r. Aroundr = 0, φ must
be known up to the second derivative with respect tor, anda up to the third derivative. A
standard linear analysis shows that the point of linear instability (the Hopf bifurcation point)
is determined only byζ , the first derivative ofa, and the zeroth derivative ofφ (i.e. the value
of φ whenr = 0). The weakly nonlinear analysis shows that the type of bifurcation (super-
critical or subcritical) is determined by a simple expression containing the first, second, and
third derivatives ofa, and the zeroth, first, and second derivatives ofφ. The functionsφ(r) and
a(r), which characterize a flame’s response to forcing, can be measured from experiments or
numerical simulations. They are called the Flame Describing Function. This analysis quickly
reveals the type of bifurcation that this flame will cause andwhether this behaviour is due to
phase-dependence, amplitude-dependence, or some combination of the two.

1. Introduction

When Yuri Gagarin was launched into orbit in 1961 on a Vostok 1, the probability of a rocket
blowing up on take-off was around 50% [1]. In those days, one of the most persistent causes of
failure was a violent oscillation caused by the coupling between acoustics and heat release in the
combustion chamber. These thermoacoustic oscillations have caused countless rocket engine and gas
turbine failures since the 1930s and have been studied extensively [2] (§1.1–1.2). Nevertheless, they
are still one of the major problems facing rocket and gas turbine manufacturers today [3].

Rockets, jet engines and power generating gas turbines are particularly susceptible to coupling
between heat release and acoustics because they have high energy densities and low acoustic damping.
The energy densities are roughly 10 GW m−3 for liquid rockets, 1 GW m−3 for solid rockets, and
0.1 GW m−3 for jet engines and afterburners [2] The acoustic damping islow because combustion
chambers tend to be nearly closed systems whose walls reflectsound. Consequently, high amplitude
acoustic oscillations are sustained even when a small proportion of the available thermal energy is
converted to acoustic (mechanical) energy. Furthermore, because so much thermal energy is available,
the existence and amplitude of thermoacoustic oscillations tend to be very sensitive to small changes
in the system and therefore difficult to predict.

The simplest and most useful starting point for the study of thermoacoustic oscillations is a
linear stability analysis of the steady base flow. This either considers the behaviour of perturbations
that are periodic in time, or the response to an impulse. In both cases, the system is said to be linearly
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stable if every small perturbation decays in time and linearly unstable if at least one perturbation
grows in time. These analyses have been performed on all types of rocket and gas turbine engines [2]
(§6) [4] [5] [6] Most of the work in the last 50 years has been in the framework of linear analyses.

If a combustor is linearly unstable, the amplitude of infinitesimal thermoacoustic oscillations
starts to grow exponentially. This cannot continue indefinitely, however, and eventually nonlinear
effects act to limit it. In the simplest cases, the system reaches a constant amplitude periodic solution.
In other cases it can reach multi-periodic, quasi-periodicor chaotic solutions [7] [8].

The operating point at which the combustor transitions fromlinear stability to linear instability
is called a bifurcation point. If the system’s behaviour around this point is periodic, it is called a Hopf
bifurcation. The nonlinear behaviour around this point is particularly important. On the one hand,
if the growth rate decreases as the oscillations’ amplitudeincreases, then the steady state amplitude
grows gradually as the operating point passes through the Hopf bifurcation. This is known as a
supercritical bifurcation. On the other hand, if the growthrate increases as the oscillations’ amplitude
increases, then the steady state amplitude grows increasingly as the operating point passes through the
Hopf bifurcation point, until a higher order nonlinearity acts to limit it. This is known as a subcritical
bifurcation.

When the position of the Hopf bifurcation has been determined with a linear analysis, it is useful
to know whether this bifurcation is supercritical or subcritical. In thermoacoustic systems, supercriti-
cal bifurcations are relatively benign but subcritical bifurcations are dangerous. When the bifurcation
is subcritical, not only do oscillations grow suddenly as the system passes into the linearly unsta-
ble regime, but also there are linearly stable operating points that can trigger suddenly to sustained
oscillations. In other words, large amplitude thermoacoustic oscillations can start without warning.

The heat release fluctuations inside thermoacoustic systems are often characterized by their
phase, relative to the acoustic velocity fluctuations, and by their amplitude. Both the amplitude of
heat release and the phase of heat release are functions of the acoustic velocity amplitude. Given
knowledge of the amplitude dependences of the heat release amplitude and heat release phase, the
weakly nonlinear analysis presented here determines whether a Hopf bifurcation is supercritical or
subcritical and reveals the relative influences of the two dependences.

2. The thermoacoustic system

The thermoacoustic system examined in this paper is a tube oflengthL0 in which a velocity-
coupled compact heat source is placed distancex̃f from one end [9, 10]. A base flow is imposed
through the tube with velocityu0. The physical properties of the gas in the tube are describedby cv,
γ,R andλt, which represent the constant volume specific heat capacity, the ratio of specific heats, the
gas constant and the thermal conductivity respectively. The unperturbed quantities of the base flow
areρ0, p0 andT0, which represent density, pressure and temperature respectively. From these one can
derive the speed of soundc0 ≡

√
γRT0 and the Mach number of the flowM ≡ u0/c0.

Acoustic perturbations are considered on top of this base flow. In dimensional form, the per-
turbation velocity and perturbation pressure are represented byũ and p̃. Quantities evaluated at the

flame’s position,̃xf , have subscriptf . The rate of heat transfer to the gas there is given by˜̇Q, which
depends onu in a way that will be defined later. Acoustic damping is represented byζ .

The dimensional momentum and energy equations for the acoustic perturbations are:

ρ0
∂ũ

∂t̃
+
∂p̃

∂x̃
= 0, (1)

∂p̃

∂t̃
+ γp0

∂ũ

∂x̃
+ ζ

c0
L0

p̃− (γ − 1) ˜̇Qδ̃(x̃− x̃f ) = 0. (2)
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Reference scales for speed, pressure, length and time areu0, p0γM , L0 andL0/c0. The dimensional
variables, coordinates and Dirac delta can then be written as:

ũ = u0u, p̃ = p0γMp, x̃ = L0x t̃ = (L0/c0)t, δ̃(x̃− x̃f ) = δ(x− xf )/L0, (3)

where the quantities without a tilde or subscript 0 are dimensionless. Substituting (3) into the dimen-
sional governing equations (1) and (2) and making use of the definition of c0 and the ideal gas law,
p0 = ρ0RT0, gives the dimensionless governing equations for acousticperturbations:

∂u

∂t
+
∂p

∂x
= 0, (4)

∂p

∂t
+
∂u

∂x
+ ζp− γ − 1

γp0u0

˜̇Qδ(x− xf ) = 0, (5)

The pipe has open ends atx = 0 andx = 1, at whichp = 0 and∂u/∂x = 0. Only the first acoustic
mode will be considered here, for whichu(x, t) = η cos(πx) andp(x, t) = −(η̇/π) sin(πx). When
the higher modes are included, the analysis becomes much more complicated (but not impossible).
The same is true of FDF analyses, for which the standard procedure is to consider just the first mode
or to assume that the amplitudes of the higher modes are fixed multiplies of that of the first mode [11].
As a side-effect, this makes the system less non-normal [12]. The first mode is substituted into (4–5),
which are then rearranged to give:

η̈ + π2η + ζη̇ + q = 0. (6)

whereq ≡ 2π ˜̇Q(γ − 1)/(γp0u0) sin πxf . Equation (6) is similar to equation (46) in Culick [14] but
with a simpler damping term and a general heat release term. The acoustic energy of this system is
E = (η2 + η̇2)/2 and the rate of change of energy isĖ = −ζη̇2 − qη̇.

In this paper, it is assumed that harmonic velocity oscillations exist of the formη = r cos(ωt).
These give rise to periodic (but not harmonic) oscillationsin q. In a moment, the rate of change of
energy will be integrated over a cycle. Only the component ofq at frequencyω integrates to a non-
zero value over a cycle, so this is the only component that needs to be considered. It is of the form
q = a cos(ωt + φ). In this expression,a andφ are functions ofr but do not vary significantly over a
cycle. This assumption is equivalent to the two-timing assumption in Strogatz [13].

3. Weakly nonlinear analysis

The change in energy over one cycle,∆E, is found by integratingĖ over one cycle. This gives
∆E = −πr2ωζ − πra sinφ. A periodic solution exists when∆E = 0, which occurs when:

−a sin φ = ωζr (7)

The weakly nonlinear analysis is performed around the Hopf bifurcation point, where periodic solu-
tions have small amplitude:r ≪ 1. This means that MacLaurin expansions ofa andφ are valid:

a = a0 + a1r + a2r
2 + a3r

3 + . . . (8)

φ = φ0 + φ1r + φ2r
2 + . . . (9)

wherea1 = da/dr|r=0 etc. . Note thata0 = 0 becauseq is the heat release perturbation about the
steady state. The zeroth order phase,φ0, is not zero.

In equation (7),sinφ is required at smallr. The phase,φ, is not small, however, so the small
angle approximations cannot be used. The expression is simplified by noting thatφ can be written as
φ = φ0 + ψ(r), whereψ(r) is a small number. Therefore:

sinφ = sin(φ0 + ψ) = cosφ0 sinψ + sinφ0 cosψ (10)
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and now the small angle approximations can be used forsinψ andcosψ. To second order inr, this
gives:

sinφ ≈ cosφ0

(

φ1r + φ2r
2
)

+ sin φ0

(

1− 1

2
(φ2

1
r2)

)

(11)

Grouping these terms in increasing powers ofr gives:

sinφ ≈ sinφ0 + r [φ1 cosφ0] + r2
[

φ2 cosφ0 −
1

2
φ2

1
sin φ0

]

(12)

Substituting these into (7) gives a cubic expression for thevalue ofr at a periodic solution:

r [a1 sin φ0] + r2 [a2 sinφ0 + a1(φ1 cosφ0)] . . .

. . .+ r3
[

a3 sinφ0 + a2(φ1 cosφ0) + a1(φ2 cosφ0 −
1

2
φ2

1
sin φ0)

]

= −ωζr (13)

There is a trivial solution withr = 0. It can be shown that the nature of the bifurcation is
determined by the terms inr andr3. For now we will consider the special case when the term inr2 is
zero. In this special case, equation (13) reduces to

− [a1 sin φ0]− r2
[

a3 sin φ0 + a2(φ1 cos φ0) + a1(φ2 cosφ0 −
1

2
φ2

1
sinφ0)

]

= ωζ (14)

This can be written as:

−r2
[

a3
a1

+
a2φ1 + a1φ2

a1 tanφ0

− 1

2
φ2

1

]

=
ωζ

a1 sinφ0

+ 1 (15)

The position of the Hopf bifurcation is found by settingr = 0, which gives:

ωζ = −a1 sinφ0 (16)

The type of bifurcation is determined by the sign of the term in square brackets on the left hand side
of (15). For example, whenζ is positive andsin(φ0) is negative, which is the physically realistic case,
the bifurcation is supercritical when the term in square brackets is negative and subcritical when it is
positive.

As the amplitude,r, of the velocity perturbation increases, the amplitude,a, and phase,φ, of
the heat release changes nonlinearly. One often wonders which of these has more influence: the
amplitude-dependence of the heat release amplitude, or theamplitude-dependence of the heat release
phase. As regards the type of bifurcation, this can now be quantified by finding the Flame Describing
Function and then examining the relative influences of the terms in the expression:

[

a3
a1

+
a2φ1 + a1φ2

a1 tanφ0

− 1

2
φ2

1

]

(17)

The first of these depends only on the heat release amplitude and is the only remaining term in the
case where the phase is constant. Its effect has been noted before [15]. The third term depends quite
sensitively on changes in the the heat release phase. The second term is a combination of the two.
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