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In this theoretical study, a weakly nonlinear analysis iggrened on a generic thermoacoustic
system. The velocity and heat release are assumed to beliperithe heat release fluctu-
ations are characterized by their phagerelative to the velocity fluctuations, and by their
amplitude,a. Both ¢ anda are functions of the velocity amplitude, Aroundr = 0, ¢ must
be known up to the second derivative with respect,tanda up to the third derivative. A
standard linear analysis shows that the point of lineaalbty (the Hopf bifurcation point)
is determined only by, the first derivative ofi, and the zeroth derivative @f (i.e. the value
of » whenr = 0). The weakly nonlinear analysis shows that the type of b#tion (super-
critical or subcritical) is determined by a simple expreastontaining the first, second, and
third derivatives of:, and the zeroth, first, and second derivatives.of he functionss(r) and
a(r), which characterize a flame’s response to forcing, can besuned from experiments or
numerical simulations. They are called the Flame DesagiBinction. This analysis quickly
reveals the type of bifurcation that this flame will cause amether this behaviour is due to
phase-dependence, amplitude-dependence, or some coimboiahe two.

1. Introduction

When Yuri Gagarin was launched into orbit in 1961 on a Vostpthé probability of a rocket
blowing up on take-off was around 50% [1]. In those days, ohthe most persistent causes of
failure was a violent oscillation caused by the couplingngetn acoustics and heat release in the
combustion chamber. These thermoacoustic oscillatiovs teused countless rocket engine and gas
turbine failures since the 1930s and have been studiedsxéin[2] (§1.1-1.2). Nevertheless, they
are still one of the major problems facing rocket and gasitermanufacturers today [3].

Rockets, jet engines and power generating gas turbinesaaieysarly susceptible to coupling
between heat release and acoustics because they have @igh éensities and low acoustic damping.
The energy densities are roughly 10 GW Hfor liquid rockets, 1 GW m? for solid rockets, and
0.1 GW n13 for jet engines and afterburners [2] The acoustic dampidgvwsbecause combustion
chambers tend to be nearly closed systems whose walls reflect. Consequently, high amplitude
acoustic oscillations are sustained even when a small piopmf the available thermal energy is
converted to acoustic (mechanical) energy. Furthermeaeguise so much thermal energy is available,
the existence and amplitude of thermoacoustic oscillatiend to be very sensitive to small changes
in the system and therefore difficult to predict.

The simplest and most useful starting point for the studyhefrnoacoustic oscillations is a
linear stability analysis of the steady base flow. This eittunsiders the behaviour of perturbations
that are periodic in time, or the response to an impulse. th bases, the system is said to be linearly
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stable if every small perturbation decays in time and lityeanstable if at least one perturbation
grows in time. These analyses have been performed on all tfpecket and gas turbine engines [2]
(§6) [4] [5] [6] Most of the work in the last 50 years has been ia framework of linear analyses.

If a combustor is linearly unstable, the amplitude of inéisitmal thermoacoustic oscillations
starts to grow exponentially. This cannot continue indeflgj however, and eventually nonlinear
effects act to limitit. In the simplest cases, the systeralrea a constant amplitude periodic solution.
In other cases it can reach multi-periodic, quasi-periodichaotic solutions [7] [8].

The operating point at which the combustor transitions flowar stability to linear instability
is called a bifurcation point. If the system’s behaviounard this point is periodic, it is called a Hopf
bifurcation. The nonlinear behaviour around this pointastigularly important. On the one hand,
if the growth rate decreases as the oscillations’ ampliindesases, then the steady state amplitude
grows gradually as the operating point passes through the biturcation. This is known as a
supercritical bifurcation. On the other hand, if the growate increases as the oscillations’ amplitude
increases, then the steady state amplitude grows incghasisithe operating point passes through the
Hopf bifurcation point, until a higher order nonlinearitgta to limit it. This is known as a subcritical
bifurcation.

When the position of the Hopf bifurcation has been deterchuai¢h a linear analysis, it is useful
to know whether this bifurcation is supercritical or subcal. In thermoacoustic systems, supercriti-
cal bifurcations are relatively benign but subcriticaliodations are dangerous. When the bifurcation
is subcritical, not only do oscillations grow suddenly as f#ystem passes into the linearly unsta-
ble regime, but also there are linearly stable operatingtpdhat can trigger suddenly to sustained
oscillations. In other words, large amplitude thermoatowscillations can start without warning.

The heat release fluctuations inside thermoacoustic sgséeenoften characterized by their
phase, relative to the acoustic velocity fluctuations, apdhieir amplitude. Both the amplitude of
heat release and the phase of heat release are functions atdlistic velocity amplitude. Given
knowledge of the amplitude dependences of the heat releagktade and heat release phase, the
weakly nonlinear analysis presented here determines whatkopf bifurcation is supercritical or
subcritical and reveals the relative influences of the twmedelences.

2. Thethermoacoustic system

The thermoacoustic system examined in this paper is a tulength L, in which a velocity-
coupled compact heat source is placed distafcom one end [9, 10]. A base flow is imposed
through the tube with velocity,. The physical properties of the gas in the tube are deschped,

v, R and)\;, which represent the constant volume specific heat cap#uityatio of specific heats, the
gas constant and the thermal conductivity respectivelye Oiperturbed quantities of the base flow
arepy, po andTy, which represent density, pressure and temperature tesggcFrom these one can
derive the speed of soung = \/~RT; and the Mach number of the flolW = u,/c.

Acoustic perturbations are considered on top of this base flo dimensional form, the per-
turbation velocity and perturbation pressure are reptesenyw andp. Quantities evaluated at the

flame’s positiong s, have subscripf. The rate of heat transfer to the gas there is giveybwhich
depends om in a way that will be defined later. Acoustic damping is reprasd by(.
The dimensional momentum and energy equations for the ac@esturbations are:

ou  Op
Poo7 + Eri 0, 1)

8]5 ou Co . Ry ~ N
§+7po%+CL—OP—(7—1)Q5($—$f) = 0. (2)
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Reference scales for speed, pressure, length and time,asgy M, L, andLy/c,. The dimensional
variables, coordinates and Dirac delta can then be wrigen a

@ = ugu, p=poyMp, &= Loz t=(Lo/co)t, 5(5:—:%f):5(x—:cf)/Lo, 3)

where the quantities without a tilde or subscript O are dsmariess. Substituting (3) into the dimen-
sional governing equations (1) and (2) and making use of &fi@itdon of ¢, and the ideal gas law,
po = poRTy, gives the dimensionless governing equations for acopstitirbations:

Oou  Op
R . 4
o T 0 (4)
0 0 —1=
Ly =0z —xp) =0, 5)

ot  Ox b YPolg

The pipe has open endsat= 0 andz = 1, at whichp = 0 anddu/dz = 0. Only the first acoustic
mode will be considered here, for whieliz, t) = ncos(wx) andp(z,t) = —(n/7) sin(wz). When
the higher modes are included, the analysis becomes muadh coarplicated (but not impossible).
The same is true of FDF analyses, for which the standard guveas to consider just the first mode
or to assume that the amplitudes of the higher modes are fixégpires of that of the first mode [11].
As a side-effect, this makes the system less non-normal Tk first mode is substituted into (4-5),
which are then rearranged to give:

i+ 7+ (4 q=0. (6)

whereq = 27Q(y — 1)/ (vpouo) sin nxy. Equation (6) is similar to equation (46) in Culick [14] but
with a simpler damping term and a general heat release tehm.agdoustic energy of this system is
E = (n*> + 7%)/2 and the rate of change of energyfis= —(n? — qi).

In this paper, it is assumed that harmonic velocity osadfet exist of the form) = r cos(wt).
These give rise to periodic (but not harmonic) oscillationg. In a moment, the rate of change of
energy will be integrated over a cycle. Only the component aff frequencyw integrates to a non-
zero value over a cycle, so this is the only component thadsxezbe considered. It is of the form
q = acos(wt + ¢). In this expressiony and¢ are functions of- but do not vary significantly over a
cycle. This assumption is equivalent to the two-timing agstion in Strogatz [13].

3. Weakly nonlinear analysis

The change in energy over one cycleE, is found by integrating” over one cycle. This gives
AE = —7r?w( — wrasin ¢. A periodic solution exists wheA E = 0, which occurs when:

—asin g = w(r (7)

The weakly nonlinear analysis is performed around the Hdpfdation point, where periodic solu-
tions have small amplitude: < 1. This means that MacLaurin expansionsi@&nd¢ are valid:

a = ag+ar +ar? +agrd + ... (8)
¢ = o+ drr+dor®+ ... )

wherea; = da/dr|,—o etc. . Note that,, = 0 becausey is the heat release perturbation about the
steady state. The zeroth order phasgjs not zero.

In equation (7)sin ¢ is required at small. The phaseg, is not small, however, so the small
angle approximations cannot be used. The expression idiedfy noting that) can be written as
¢ = ¢o + (1), wherey(r) is a small number. Therefore:

sin ¢ = sin(¢g + 1) = cos ¢ sin Y + sin ¢g cos (10)
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and now the small angle approximations can be usedifiap andcos ). To second order in, this
gives:

1
sin ¢ & cos ¢y ((bl'r + <b27’2) + sin g (1 — 5( fr2)> (11)
Grouping these terms in increasing powers gives:
1
sin ¢ ~ sin ¢ + 7 [y cos ¢g| + |:¢2 oS ¢ — §¢f sin ¢0] (12)

Substituting these into (7) gives a cubic expression fovtiee ofr at a periodic solution:

7 [a1 sin ¢o] + 12 [ag sin ¢g + a1 (1 cos ¢p)] . . .

- 417 |agsin gy + as(¢1 cos do) + a1 (s cos gy — %dﬁ sin ¢>0)} = —w(r (13)

There is a trivial solution withr = 0. It can be shown that the nature of the bifurcation is
determined by the terms inandr3. For now we will consider the special case when the tern? is
zero. In this special case, equation (13) reduces to

— [ay sin ¢o] — 7 [a?, sin ¢g + az(¢1cos ¢o) + ar (P2 cos o — %Qﬁ sin ¢o)] = w( (14)

This can be written as:

2 [@+a2¢1+a1¢2 Lo w¢ 1 (15)

aq ay tan ¢ B §¢1 gy sin oo

The position of the Hopf bifurcation is found by setting- 0, which gives:
w( = —ay sin ¢ (16)

The type of bifurcation is determined by the sign of the temrsquare brackets on the left hand side
of (15). For example, whefis positive andin(¢y) is negative, which is the physically realistic case,
the bifurcation is supercritical when the term in squarekess is negative and subcritical when it is
positive.

As the amplituder, of the velocity perturbation increases, the amplitudeand phaseyp, of
the heat release changes nonlinearly. One often wondechwafithese has more influence: the
amplitude-dependence of the heat release amplitude, anpétude-dependence of the heat release
phase. As regards the type of bifurcation, this can now battfiexd by finding the Flame Describing
Function and then examining the relative influences of theten the expression:

az  aspr +aipa 1,

=20 R 17

aq + a1 tan ¢q 2<Z)1 (17)
The first of these depends only on the heat release amplindiesahe only remaining term in the
case where the phase is constant. Its effect has been ndted [#5]. The third term depends quite
sensitively on changes in the the heat release phase. Towedserm is a combination of the two.




19" International Congress on Sound and Vibration, Vilniushuania, July 8-12, 2012

REFERENCES
! HeppenheimeiCountdown: a history of space flighwiley, ISBN 0471291056 (1999).

2 Culick, Unsteady motions in combustion chambers for propulsiotesy s AGARD AG-AVT-039
(2006).

3 Lieuwen, T. C. and Yang, \Combustion instabilities in gas turbine engin@$AA (2005).

4 Mcmanus, K., Poinsot, T. and Candel, S. M. A Review of Activan€ol of Combustion Instabili-
ties,Progress in Energy and Combustion Sciend®s 1-29, (1993).

°> Dowling, A. P. The Calculation of Thermoacoustic Oscilhais, Journal of Sound and Vibratign
180, 557-581, (1995).

¢ Dowling, A. P. and Stow, S. R. Acoustic Analysis of Gas Tugb@ombustorsjournal of Propul-
sion and Powerl9, 751-764, (2003).

” Sterling, J. D. Nonlinear Analysis and Modelling of Combastinstabilities in a Laboratory Com-
bustorComb. Sci. Tect89(1) , 167-179 (1993).

8 Kabiraj, L., Sujith, R. I. and Wabhi, P. Experimental StudiéBifurcations leading to Chaos in a
Laboratory Scale Thermoacoustic Syste®ME Turbo Expa3T2011-46149 (2011).

9 Balasubramanian, K. and Sujith, R.l. Thermoacoustic biktain a Rijke tube: nonnormality and
nonlinearityPhys. Fluids20 044103 (2008).

10" Juniper, M. P. Triggering in the horizontal Rijke tube: normality, transient growth and bypass
transitiond. Fluid Mech. 667, 272-308 (2011).

11 Noiray, N., Durox, D., Schuller, T. and Candel, S. M. A unifigdmework for nonlinear com-
bustion instability analysis based on the flame describumgtion,J. Fluid Mech.,615, 139-167
(2008).

12 Kedia, K.S., Sharath, B.N. and Suijith, R. |. Impact of Lin€mupling on Thermoacoustic Insta-
bilities in a Rijke TubeCombust. Sci. Techl80 1588-1612 (2008).

13 Strogatz, S. HNonlinear Dynamics And Chad§estview Press (2001).

14 Culick, F. E. C. Nonlinear Growth and Limiting Amplitude oftAustic Oscillations in Combution
ChambergComb. Sci. Tecl8, 1-16 (1971).

15 Juniper, M. P. Triggering in thermoacoustics. J. Spray and Combustion Dynamicgn print)
(2012).




