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Abstract

We consider the thermo-viscous acoustic flow inside the narrow channel and nozzle of an

inkjet print head. We define a cost function to be the sum of the acoustic energy in the channel

and the surface energy of the spherical cap of ink at the end of the nozzle. We derive the adjoint

equations and obtain the sensitivity of this cost function to boundary forcing from the piezo-

electric actuator opposite the nozzle. We use this forcing to eliminate residual oscillations after

a droplet is ejected. We use a gradient-based optimization algorithm to find the time-varying

boundary forcing that minimizes the cost function at various final times and for geometries with

increasing complexity. For all geometries, the actuator first extracts fluid so that the ink/air

interface becomes flat. This unavoidably sends an acoustic wave upstream, which reflects off

the inlet manifold. The actuator subsequently moves to absorb this returning wave without

reflection. The optimal boundary forcing and the final energy depend on the channel length,

the actuator length, the forcing’s temporal resolution, and the available optimization time. The

minimum time required to dampen residual oscillations is the time taken for waves to travel

from the actuator to the inlet and back. For times greater than this, the total energy inside

the microchannel can be reduced by a factor of 1000 compared to the uncontrolled case. This

method is general and can be applied to other cost functions and initial conditions. Successful

application of this method could lead more repeatable droplets at higher ejection frequencies.

Keywords: optimization, adjoint, acoustic, inkjet

1. Introduction

An inkjet print head contains several hundred microchannels, each typically 1 mm in length

and 70 µm in width and height (Fig. 1). Each channel feeds a short nozzle, typically 50 µm
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in length and 20 µm in diameter. There is a free surface at the end of each nozzle, where the

ink meets the air. A droplet is expelled through a nozzle when the piezo-electric actuator in the5

corresponding channel pushes in one side of the channel by a few nanometres. After this, acoustic

oscillations reverberate through the channel until damped by visco-thermal mechanisms, which

strongly influence wave propagation inside narrow channels [1, 2]. Ref. [3] contains a detailed

review of the process, the challenges, and the open questions in inkjet printing.

Drop-on-demand inkjet printing is widely used for printing paper, packaging, and textiles.10

It is increasingly used for production of 3D electronic components, MEMS devices, and other

applications [4, 5]. Manufacturers would like to increase the droplet ejection frequency, while

retaining or improving the reproducibility of the droplets. There is, however, a trade-off between

the droplet ejection frequency and the droplet reproducibility. This is because, as the time be-

tween ejections decreases, each droplet becomes increasingly affected by the residual oscillations15

from the previous ejection. Manufacturers therefore try to design print head shapes that pas-

sively damp residual oscillations. They also alter the electrical waveforms sent to the print heads

microchannels in order to damp residual oscillations with open loop control. These waveforms

are currently adjusted by trial and error in extensive experimental campaigns. Our first paper

on this subject [6] used adjoint methods in the frequency domain. That paper showed how to op-20

timize the shape of the print head microchannel in order to passively damp residual oscillations.

This paper uses adjoint methods in the time domain in order to damp residual oscillations with

open loop control by optimizing the actuating waveform: the velocity at the actuator channel

wall. The adjoint methods in both papers reveal the physical mechanisms being exploited by the

optimization algorithms.25

Early studies [7, 8] performed experimental and theoretical analysis of acoustic phenomena

inside a drop-on-demand piezoelectric print head. Acoustic motion inside tubes or channels with

simple geometries can be successfully approximated using reduced analytical models, such as

the narrow channel model [1, 2, 9] and the lumped elements method [10]. For channels with

smooth boundaries, the acoustic boundary layer model [11] can be applied. While these models30

are computationally cheap and useful for initial designs, they can fail to predict performance of

print heads with complex geometries. In this paper we impose no restrictions on the channel

geometry and solve the full system of thermo-viscous acoustic equations in two dimensions. The

method can easily be extended to three dimensions.

The flow in the nozzle, which is short, is typically modelled as incompressible and axisym-35

metric [12, 13], driven by the pressure [14] or velocity inflow [15] from the channel. Separating
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Figure 1: Channel (yellow) and nozzle (blue) domains of a single microchannel within an inkjet print head. In this

paper the channel is modelled as 2D planar and the nozzle is modelled as 2D axisymmetric. The piezo-electric

actuator sits on the channel wall opposite the nozzle.

the nozzle from the channel allows the two domains to be considered separately and, if analysed

numerically, to be discretized independently. In turn this allows the analysis in the nozzle to be

focused on droplet formation. Various numerical methods have been proposed to model the free

surface development, droplet formation, and pinch-off in inkjet print heads. One-dimensional40

models of droplet formation [16, 17, 18] and jet break-up [19] have shown good agreement with

experiments. The volume of fluid [13] and level-set methods [20, 15] have been successfully

applied to compute the position of free surface boundary and droplet formation. In the above

methods, the nozzle is assumed always to be filled with fluid. This assumption can be relaxed

and the dynamics of the contact line between liquid, solid, and gas can be simulated using a45

variational approach [14, 21]. In this paper, however, we assume that the nozzle is always filled

with fluid and that the fluid/gas interface is a spherical cap. This is a realistic assumption,

and it has the advantage that it allows gradients of useful quantities with respect to the inflow

conditions to be derived analytically [22, 23]. It could readily be relaxed in subsequent studies,

at the expense of extra computational time.50

Typical objectives for optimization in inkjet printing are droplet velocity and volume [24],

damping of residual oscillations, damping of cross-talk between channels [25, 26], and high fre-

quency jetting [15]. Reducing the nozzle diameter allows jetting at megahertz frequency and

smaller droplet size [15]. We do not calculate the waveform of the applied voltage because this

would require us to specify and then simulate the piezo-electric actuator, which varies for dif-55

ferent devices. We choose instead to focus on the optimization and physical understanding of

the fluid motion alone, in order to produce a general result for the motion of the fluid boundary.
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With this knowledge, the required voltage can then be found for a given actuator.

The most basic waveform is the unipolar (trapezoidal push in) waveform. This waveform has

a number of drawbacks: the volume of the ejected droplets is large, the amplitude of residual60

reverberations is high, and satellite droplets are formed in addition to the main droplet [27].

Bipolar (trapezoidal push in then trapezoidal pull out) waveforms are used to eliminate satellite

droplets [24]. Compared with unipolar and bipolar waveforms [12], the W-shaped waveform type

can significantly reduce the volume of the ejected droplet, and eliminate the residual acoustic

waves from the last ejection cycle [24]. Droplets formed from complex waveforms are, however,65

more sensitive to changes in the waveform shape. This means that optimal waveforms become

harder to find as the waveform type becomes more complex. Given that waveforms are usually

found by trial and error during extensive experiments, this leads to considerable experimental

cost as the waveforms become more complex and motivates the more systematic approach in this

paper.70

Systematic waveform optimization can be approached in several ways. A feed-forward control

method [25] can be used to eliminate residual reverberations by flattening the response of the

meniscus velocity to the pulse frequency. If numerical models are not accurate enough, or are too

computationally expensive to predict the droplet characteristics, then the waveform parameter

space can be explored with model-free methods by combining an automated experimental rig75

with an optimization algorithm. The waveform shape is the experimental input and the droplet

characteristics are the experimental output. This method has been used with a genetic algorithm

[28] and a swarm-intelligence based technique [10]. Alternatively, a highly efficient instanteneous

adjoint-based approach to control the free surface inside the nozzle has been developed by [14],

applied to numerical simulations. Our approach is similar, in that it considers a systematic80

approach to waveform optimization by using adjoint-based optimization. The differences are

that this study includes the acoustics in the channel in addition to the flow in the nozzle, but

makes an assumption on the spherical shape of the fluid/gas interface.

Adjoint-based optimization can be applied only to numerical simulations. The adjoint meth-

ods provide, in a single calculation, the gradient of an objective function with respect to all of85

the control parameters [29]. This gradient is then used within a gradient-based optimization

algorithm in order to converge to a local optimum. This gradient information greatly speeds

up optimization. Adjoint-based optimization is faster than non-gradient-based methods when

the number of control parameters exceeds the number of objective functions, which is the case

here. It has been used in aerodynamics optimization [30], triggering in thermoacoustics [31],90
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hydrodynamic stability [29] and shape optimization for hydrodynamic stability [32].

In this paper, we start from a moment just after pinch-off of the expelled ligament. We use

adjoint-based optimization to optimize a velocity waveform at the actuator in order to reduce

residual oscillations to zero within a given time. In order to be effective, this time needs to

increase as the length of the printhead microchannel increases so that waves have time to reflect95

off the opposite end and return [7]. In practice, this time would be the desired period between

droplets. Similarly to previous studies we derive different governing equations for the channel

and the nozzle. We develop a general approach to couple the channel to the nozzle through the

boundary conditions on the surface between the two. We then derive the adjoint of this coupled

channel-nozzle system and optimize the velocity waveform at the actuator for various channel100

shapes and optimization times. In doing so we reveal the physical mechanisms that are exploited

in order to reduce the residual oscillations and define the minimum time between droplets. In

this paper, we do not consider jetting, droplet coalescence, or entrainment of air bubbles into the

nozzle. We also do not consider the actuation cost required to reduce these residual oscillations

because this cost is much smaller than the actuation cost of jetting. This is because the jetting105

pulse creates a large amount of surface area and gives the jet a large kinetic energy, while the

residual control movement has to absorb just a small amount of surface energy.

2. Formulation of the Direct Problem

We label the spatial domain Ω ⊂ Rd with boundary ∂Ω =
⋃

Γi ⊂ Rd−1, where Γi are the

labels of sections of the boundary. We label the temporal domain T = {t : 0 < t < tf}, where tf

is the final time. We label the mixed spatio-temporal domain of the problem Σ = (Ω× T ). We

define the following scalar products in the spatial, temporal, and mixed domains:

[a, b]Σ ≡
∫

T
dt

∫

Ω

dx a∗ b, ⟨a, b⟩Ω ≡
∫

Ω

dx a∗ b, {a, b}Γi
≡
∫

Γi

ds a∗ b. (1)

Here ∗ denotes complex conjugation. An integral of a single variable over a domain is equivalent

to the corresponding scalar product with a ≡ 1, ⟨b⟩Ω ≡ ⟨1, b⟩Ω.110

We split the printhead microchannel into the non-overlapping channel Ωc and the nozzle Ωn

domains (figure 1). The channel domain consists of the top part of the nozzle and a horizontal

channel connected to vertical outlets. The nozzle domain is the bottom part of the nozzle, which

includes the liquid/gas interface. The two domains intersect at a (virtual) flat boundary Ωc

⋂
Ωn.

We couple the flows inside the channel and nozzle domains through velocity and stress boundary115

conditions on the shared boundary. On the nozzle domain shared boundary ΓN−C ⊂ Ωn, we
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prescribe the velocity, which is determined by the flow in the channel domain [13, 33]. On the

channel flow shared boundary ΓC−N ⊂ Ωc, we prescribe the stress, which is determined by the

force applied from the flow in the nozzle.

2.1. Governing equations for the acoustic oscillations in the channel120

Using a two-parameter low Mach number asymptotic expansion [6, 34] we separate the com-

pressible Navier–Stokes equations into a stationary ambient state, an incompressible steady flow

with no acoustic oscillation, and an acoustic oscillation with no steady flow. Then we consider

only the acoustic oscillation with no steady flow. We expand the dimensional flow pressure,

velocity and temperature (P ∗,u∗, T ∗) in terms of the acoustic Mach number ϵ ≡ ∥u∗∥ /cs ≪ 1:

P ∗(x, t) = P b
(
P (0) + ϵP

)
+O

(
ϵ2
)
, (2a)

u∗(x, t) = csϵu+O
(
ϵ2
)
, (2b)

T ∗(x, t) = T b
(
T (0) + ϵT

)
+O

(
ϵ2
)
, (2c)

where P bP (0) is the ambient pressure, T bT (0) is the ambient temperature, and (u, P, T ) are the

nondimensional acoustic velocity, pressure and temperature. We use Qc ≡ (u, P, T ) to denote

the acoustic state. The speed of sound is set to cs = 1000ms−1.

The acoustic state Qc inside the inkjet channel, Σc ≡ (Ωc × T ), is governed by the linear non-

dimensional conservation equations for mass, momentum, and energy, with viscous and thermal

losses (3). We include the acoustic density ρ = γthP − T and entropy s = T/ (γth − 1) − P for

convenience:
∂
∂tρ+∇iui = 0,

∂
∂tui +∇iP − 1

Re∇jτij = 0,

∂
∂ts− 1

(γth−1)Pe∆T = 0.

(3)

The Reynolds and Peclet numbers are based on the speed of sound: Re = ρbLcs/µ, Pe =

ρbLcscp/K, where ρb is the fluid density, µ is the dynamic viscosity, K is the thermal conductivity,125

and cp is the specific heat at constant pressure. The ratio of specific heats is γth = 1.017, which

is characteristic of water at 25◦ [35]. The viscous stress tensor is given by τij ≡ τ ◦ u =

∇jui +∇iuj − 2/3 δij∇kuk.

We rewrite the state equations in matrix form, ∂
∂tAcQc +BcQc = 0:

∂

∂t




1 0 0

0 γ −1

0 −1 1
γth−1







ui

P

T


+




− 1
Re∇jτ ∇i 0

∇i 0 0

0 0 − ∆
(γth−1)Pe







ui

P

T


 = 0 (4)
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where either the velocity, Ui, or force, fi, is prescribed at the boundary. We apply homogeneous

no slip and stress-free boundary conditions by setting Ui = 0 on no slip boundaries Γw, and

fi = 0 on stress-free boundaries Γopen:

ui = Ui on Γvel or ui = 0 on Γw, σijnj = fi on Γforce or σijnj = 0 on Γopen, (5)

where σij ≡ −Pδij + Re−1τij is the stress tensor. We apply isothermal boundary condition

T = 0 on Γw and Γvel, and adiabatic boundary conditions ∂T
∂n = 0 on Γopen.130

The total acoustic energy Eac [36], volume dissipation, R, and boundary energy flux, F of

the thermoviscous acoustic problem (4) are:

Eac =
1

2
⟨Qc,AcQc⟩Ωc

=
1

2

(
⟨P, ρ⟩Ωc

+ ⟨u,u⟩Ωc
+ ⟨T, s⟩Ωc

)
,

R =

〈
1

Re
τij ,∇jui

〉

Ωc

+

〈
1

(γth − 1)Pe
∇jT,∇jT

〉

Ωc

,

F =
∑

k

FΓk
=
∑

k

(
{ui, σijnj}Γk

+

{
1

(γth − 1)Pe

∂T

∂n
, T

}

Γk

)
.

(6)

The volume averaged energy balance is:

d

dt
Eac +R = F. (7)

The boundary condition at the interface between the channel and the nozzle domains, ΓC−N

is derived in section 2.2. The nozzle flow state is defined by the free surface curvature κ̂(t) which

changes due to the mass flow through the shared boundary as

d |Ωn(κ̂)|
dκ̂

d

dt
κ̂ = ϵ {u · n}ΓC−N

− ϵhCL |ΓC−N|
d

dt
γκ̂, (8)

where |Ωn(κ̂)| is the volume of the nozzle domain, hCL is the distance between the boundary

ΓC−N and the static contact line in the nozzle, and γ is the surface tension coefficient. The

channel flow boundary condition on ΓC−N is defined by the free surface curvature κ̂:

σijnj = −γκ̂ni − hCL

(
∂tui −

1

Re
∆Γui

)
on ΓC−N.

2.2. Reduced order model for the flow in the nozzle

In this paper, we start the optimization process from a moment just after an ejected ligament

has pinched off and the fluid-gas interface has returned to the vicinity of the print head. In

practice, the time between the end of the jetting pulse and the moment described above would

need to be measured experimentally beforehand, and may be different for different jetting pulses.135
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Figure 2: Fluid inside the droplet domain is bounded by the solid walls Γw and the free surface Γfree, and connects

to the channel through ΓN−C.

Figure 2 shows the nozzle domain Ωn, which is an axisymmetric tube of radius Rn. The distance

between the shared boundary and the multiphase interface at rest (the contact line) is HCL =

10µm. Both Rn and HCL are small in comparison to the characteristic channel length, L =

100µm. The droplet domain is bounded by three types of boundary: the boundary ΓN−C between

the nozzle and the channel domains, the no slip wall boundary Γw, and the moving free surface140

Γfree. The boundary Γfree is a multiphase interface between the liquid inside the nozzle, the nozzle

walls and the outside air. For a typical nozzle radius Rn = 10µm, fluid density ρb = 103 kg/m3,

and surface tension coefficient γ∗ = 50× 10−3 Nm−2, the capillary time scale is tγ ∼
√
ρR3

n/γ
∗ =

10−5 s [37, 38]. The acoustic time scale, tac ∼ L/cs = 10−7s, where cs ≈ 1000ms−1 is the

speed of sound. The acoustics therefore occur two orders of magnitude more quickly than the145

capillary motion, indicating that the capillary motion is quasi-static compared with the acoustic

motion. In this paper we model both the acoustic and nozzle flows on the acoustic timescale.

We model the boundary condition on ΓN−C as a prescribed velocity, determined by the acoustic

oscillations inside the channel. Using the same strategy as for (2), we expand the dimensional

nozzle flow variables in terms of the oscillating flow Mach number, ρ∗ ≃ ρb
(
1 + ϵρ(1)

)
+O

(
ϵ2
)
,150

u∗ ≃ csϵu
(1) +O

(
ϵ2
)
.

2.2.1. Conservation laws in the nozzle subdomain

We assume that the contact line between the solid, liquid and gas phases is stationary: u = 0

on ∂Γfree = Γfree

⋂
Γw, meaning that the energy of only the liquid-air interface Γfree contributes

to the free surface energy. A vector field w defines the domain deformation due to the movement

of the free boundary Γfree. The relationship between w and u depends on the type of boundary.

On Γw both the domain and the fluid velocities have zero normal component (9a). On Γfree the
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flow velocity and the domain velocity are equal in the normal direction (9b). On ΓN−C there is

no deformation (although there is mass flow through this boundary) (9c).

w · n = ϵu(1) · n = 0 on Γw. (9a)

w · n = ϵu(1) · n on Γfree. (9b)

w · n = 0 on ΓN−C. (9c)

The nondimensional nozzle radius and the distance to the contact line are rn ≡ Rn/L and hCL ≡
HCL/L. The nondimensional nozzle volume |Ωn(t)| is the sum of a static component, πr2nhCL,

and a time-varying component Ω̂n(t), where |·| means surface or volume measure according to

the context. A nondimensional effective height of the channel is defined as hn ≡ |Ωn| /(πr2n). The
algebraic relation between the domain volume and the domain deformation, although obvious,

can be derived rigorously with the Reynolds transport theorem by considering the time derivative

of the volume functional J = ⟨ϕ⟩Ω:

d

dt
J =

〈
∂

∂t
ϕ+ div(ϕw)

〉

Ω

. (10)

By choosing ϕ ≡ 1, the functional is the domain volume, J = ⟨1⟩Ωn
≡ |Ωn|. After applying the

boundary condition (9), the time derivative of the nozzle volume equals the normal flow at the

free surface.
d

dt
|Ωn| =

d

dt
Ω̂n(t) = {w · n}Γfree

= ϵ
{
u(1) · n

}
Γfree

. (11)

We apply the Reynolds transport theorem (10) to the continuity equation:

〈
∂ρ

∂t
+ div(ρu)

〉

Ωn

=
d

dt
⟨ρ⟩Ωn

+ ⟨div(ρ (u−w))⟩Ωn
= 0.

We integrate the divergence term and apply the boundary conditions (9). The nondimensional

mass balance equation is

d

dt
Ω̂n = −ϵ

{
u(1) · n

}
ΓN−C

− ϵ
d

dt

〈
ρ(1)

〉
Ωn

+O
(
ϵ2
)
. (12)

The force applied from the free surface to the nozzle flow is proportional to the curvature

of the free surface, σ
(1)
ij nj = −γκni, where γ ≡ 2γ∗/

(
ϵρbc2sRn

)
is the nondimensional surface

tension coefficient, and κ ≡ κ∗Rn/2 is the nondimensional curvature of the free surface. The155

pressure drop along the nozzle due to the inertia of the fluid can be estimated as ρbHCLω ∥u∥,
where ω ≃ 106 s−1 is the characteristic oscillation frequency of the flow. For ∥u∥ = 0.1 ms−1, the

nozzle pressure drop is 103 Pa which is equivalent to the pressure of a free surface with curvature
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radius R = 10−4m = 10Rn. This shows that the pressure drop along the nozzle is small, but

may not be negligible.160

We need to account for the kinetic and potential energy of the fluid when the free surface

curvature is small. The total energy of the nozzle system En is a sum of the free surface energy

Efree, and kinetic Kn and potential Pn energy of the nozzle flow: Efree = ϵ−1 rn
2 γ |Γfree|, Kn =

〈
1
2u

(1) · u(1)
〉
Ωn

. We assume that the temperature is uniform in the nozzle and neglect the

thermal energy, so Pn =
〈
1
2P

(1) · P (1)
〉
Ωn

(and ρ(1) = P (1)). The nozzle energy changes due

to the viscous dissipation Rn = 1
Re

〈
τ
(1)
ij ∇ju

(1)
i

〉
Ωn

and the energy flux through the shared

boundary ΓN−C are:

d

dt
En =

d

dt
(Efree +Kn + Pn) = −Rn +

{
σ
(1)
ij nju

(1)
i

}
ΓN−C

. (13)

The time derivative of the free surface energy equals the energy flux through the free surface

d

dt
Efree = −

{
−γκu(1) · n

}
Γfree

= −γκ̂
{
−u(1) · n

}
Γfree

where κ̂ ≡
{
κu(1) · n

}
Γfree

/
{
u(1) · n

}
Γfree

is the effective curvature of the free surface.

Volume integrals in (12, 13) scale as ⟨·⟩Ωn
∼ hnr

2
n, and surface integrals scale as {·} ∼ r2n.

In this study we consider cases in which the nozzle height is much shorter than the reference

length, and expand the mass and energy conservation equations in terms of the small parameter

hn ≪ 1. If hnL ≃ L, however, then the terms proportional to hn cannot be ignored and the flow

should be modelled directly in the nozzle as well as in the channel. We approximate the flow

velocity and the pressure by their values on the boundaries:

u(1) ≃ u(1)
∣∣∣
ΓN−C

+O (hn) , P (1) ≃ P (1)
∣∣∣
Γfree

+O (hn) , (14)

which gives
〈
ρ(1)

〉
Ωn

=
〈
P (1)

〉
Ωn

≃ |Ωn| P (1)
∣∣
Γfree

+ O
(
h2
n

)
. Substituting that into (12) gives a

mass balance approximation to second order in hn:

d

dt
Ω̂n = −ϵ

{
u(1) · n

}
ΓN−C

− ϵ |Ωn|
d

dt
γκ̂+O

(
ϵ2, h2

n

)
. (15)

The second term on the right hand side is proportional to hn and accounts for the nozzle flow

compressibility and potential energy.

Substituting (14) into (13) and using (11, 15) allows us to derive an energy-consistent ap-

proximation of the stress on the shared boundary ΓN−C:

σ
(1)
ij nj = −γκ̂ni − hn

(
∂tu

(1)
i − 1

Re
∆Γu

(1)
i

)
+O

(
ϵ2, h2

n

)
on ΓN−C. (16)
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Here ∆Γ is the tangent Laplace operator on ΓN−C. The term on the right hand side proportional

to hn accounts for the internal and viscous effects in the fluid. The nozzle flow velocity on ΓN−C

is determined by the acoustic velocity on ΓC−N. Considering the inertial and viscous effects only

in the static part of the nozzle domain hCL, we obtain a nonlinear (through the curvature term

κ̂) acoustic impedance boundary condition:

σijnj = −γκ̂ni − hCL

(
∂tui −

1

Re
∆Γui

)
on ΓC−N. (17)

2.2.2. Free surface parametrization

The above analysis is valid for fluid-gas interface of any shape. In this paper, inspired by

experimental observations [39, 40, 41], we approximate the free surface as a spherical cap, Γfree ≃
Γ̂free, neglecting the presence of large wavenumber capillary waves k ≫ π/Rn on Γfree. This

simplifies the analysis by providing a single parameter (curvature) to quantify the relationship

betwen pressure and nozzle mass, but would need to be revised for non-spherical interfaces, which

are observed at the end of the jetting process ([3], section 3). The approximate surface curvature

is a uniform function and coincides with the effective surface curvature: γ|Γfree
≃ γ|Γ̂free

= κ̂(t).

The approximated free surface is a hemisphere when κ̂ = 1. The surface area
∣∣∣Γ̂free(κ̂)

∣∣∣ equals
∣∣∣Γ̂free(κ̂)

∣∣∣ = r2n
4

8π

κ̂2
(1− cos θ(κ̂)) , (18)

where cos θ(κ̂) ≡
√
1− κ̂2. The nondimensional energy of the free boundary with uniform cur-

vature equals Êfree = ϵ−1γ rn
2

∣∣∣Γ̂free

∣∣∣. The nozzle volume |Ωn| is a sum of the volume between the

shared boundary ΓN−C and the plane of the free surface contact line πr2nhCL, and the volume

enclosed between the plane of the free surface contact line and the free surface Ω̂n:

|Ωn| = πr2nhCL + Ω̂n = πr2nhCL +
r3n
8

8π

3

1

κ̂3
(2 + cos θ(κ̂)) (1− cos θ(κ̂))

2
. (19)

The derivatives of the surface area and enclosed volume are functions of κ̂:

8

r3n

dΩ̂n(κ̂)

dκ̂
=

4

r2n

1

κ̂

d
∣∣∣Γ̂free(κ̂)

∣∣∣
dκ̂

=
8π

κ̂4

(1− cos θ(κ̂))
2

cos θ(κ̂)
(20)

The contact line is static d
dthCL = 0, and therefore d

dt |Ωn| = d
dt Ω̂n(κ̂) =

dΩ̂n(κ̂)
dκ̂

d
dt κ̂. The nozzle

volume conservation equation (15) then becomes an ODE for the uniform curvature κ̂:

dΩ̂n(κ̂)

dκ̂

d

dt
κ̂ = −ϵ

{
u(1) · n

}
ΓN−C

− ϵhCL |ΓC−N|
d

dt
γκ̂ (21)

subject to an initial condition κ̂(t = 0) = κ̂0. Similarly to the stress boundary condition (17),165

the compressibility effects are accounted for only inside the static part of the nozzle domain.
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The change of the nozzle system energy En is consistent with the acoustic energy flux through

ΓC−N:

En = ϵ−1γ
rn
2

∣∣∣Γ̂free

∣∣∣+ 1

2
hCL

({
(u · n)2

}
ΓC−N

+ |ΓC−N| (γκ̂)2
)
,

d

dt
En = FC−N = {ui, σijnj}ΓC−N

.

(22)

By combining the channel and the nozzle flows into one system, the total energy of the system

changes due to the energy fluxes through the channel boundaries with prescribed velocity Γvel

or force Γforce, and the viscous and thermal dissipation R:

d

dt
(Eac + En) = {Ui, σijnj}Γvel

+ {ui, fi}Γforce
−R. (23)

2.3. Direct problem discretization

We discretize the thermoviscous acoustic problem (4) in space using the finite elements pack-

age FEniCS [42]. We choose continuous Lagrange elements of order 2 for the velocity and

temperature components, and of order 1 for the pressure component of Qc [43, 44], to construct170

the corresponding weak forms.

We divide the time domain T into N intervals of length ∆t. Following [45], the mid-point rule

θ = 1
2 is chosen to discretize the unsteady thermoviscous acoustic equation by a finite difference

scheme. This choice of θ is equivalent to the non-dissipative, dispersive, second order accurate

Crank–Nicolson scheme [46]. We choose a non-dissipative scheme because we want to minimize175

the error in the acoustic energy due to the numerical effects.

In order to reduce the cost of the unsteady computations, we choose such discretisation of the

bilinear weak form that it is independent of time, and the matrix factorization could be stored

and re-used each time step. This greatly reduces the computational time required to run a direct

solver, and, as shown later, the adjoint solver backwards in time. Moreover, if one performs a180

direct-adjoint looping multiple times for optimization, the matrix still has to be factorized only

once. The resulting linear system is solved with a direct solver MUMPS [47], for each time step.

3. Optimal control of coupled domains

3.1. Governing equations for the adjoint problems

Here we derive the adjoint counterpart of the coupled acoustic and nozzle flow system. The

direct acoustic state Qc is defined in Σc and governed by the thermoviscous acoustic equations

(4) and boundary conditions (5). The nozzle flow state Qn is characterized by the free surface
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curvature ODE (21). The acoustic and nozzle flows are coupled via the boundary conditions (17)

and the flow through the shared boundary. The acoustic energy and the flow energy inside the

nozzle are defined by (6) and (22), respectively. We choose the total energy E = Eac + En (23) at

the final time tf as the objective function J :

J ≡ Eac + En

=
1

2
⟨Qc,AcQc⟩Ωc

+ γ
rn
2ϵ

∣∣∣Γ̂free

∣∣∣+ hCL

2

({
(u · n)2

}
ΓC−N

+ |ΓC−N| (γκ̂)2
)

at t = tf .
(24)

We multiply the acoustic state equations (4) by the adjoint acoustic variables Λ†
c ≡

(
u†, P †, T †).

We multiply the nozzle state equations (21) by ϵ−1γκ†, where κ† is the adjoint curvature variable.

The augmented objective function is:

L = J −
[
Λ†
c,

∂

∂t
AcQc +BcQc

]

Σc

−
[
ϵ−1γκ†,

d

dt
Ω̂n + ϵ {u · n}ΓN−C

+ ϵhCL |ΓC−N|
d

dt
γκ̂

]

Σn

.

(25)

We set the variation of the Lagrangian δL with respect to the direct state to zero. After successive

integration by parts and applying the initial and boundary conditions from (5), we obtain the

adjoint acoustic equations,

− ∂

∂t
AcΛ

†
c +B†

cΛ
†
c = 0 in Σc, (26a)

σ†
ijnj = −γκ†ni − hCL

(
∂t +

1

Re
∆Γ

)
u†
i on ΓC−N, (26b)

Λ†
c(x, t = tf ) = Qc(x, t = tf ), (26c)

and the adjoint nozzle flow equations,

(
dΩ̂n

dκ̂

)
d

dt
κ† = ϵ

{
u† · n

}
ΓN−C

− ϵ
d
(
Ω̂nκ̂

)

dκ̂

d

dt
γκ̂ in Σn, (27a)

κ†(t = tf ) = κ̂(t = tf ). (27b)

The adjoint acoustic operator B†
c is defined as

B†
c =




− 1
Re∇jτ ij −∇i 0

−∇i 0 0

0 0 − ∆
(γth−1)Pe


 . (28)

The adjoint acoustic stress tensor is defined as σ†
ij = −P †δij − Re−1τij . The adjoint no slip185

velocity and stress free boundary conditions, as well as the isothermal and adiabatic temperature
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boundary conditions, are equal to the homogeneous boundary conditions of the direct problem

[6].

In section 2.3, the direct channel and nozzle states were discretized in time using the Crank–

Nicolson scheme. The adjoint state is approximated using the same method, resulting in a con-190

sistent time-discrete dual problem [48]. The symmetry between the direct and adjoint problems

is discussed in Appendix A.

3.2. The augmented gradient

The top boundary of the channel contains a piezo-electric actuator, which we model as a

prescribed velocity boundary condition U(t). We minimize the objective function J (24) by

optimizing the velocity profile on the actuator boundary Γact. This control is described through

a velocity Dirichlet boundary condition:

u = U on Γact.

The only non zero term in the Lagrangian variation (25) is the adjoint stress boundary integral on

Γact. This equals the objective variation with respect to the control, and therefore the objective

gradient is:

J ′[δU ] =
{
σ†
ijnj , δUi

}
Γact×T

. (29)

In other words, the distribution of the adjoint stress along the control boundary is the sensitivity

distribution.195

4. Applications

4.1. One dimensional test case

In order to illustrate the method and to discuss the physical mechanisms it exploits, we first

apply the optimization technique in section 3 to a one-dimensional test case. A viscous acoustic

flow inside a unit length domain Ωc = {x : 0 ≤ x ≤ 1} is initially at rest Qc(x, t = 0) = 0. The200

boundary at x = 1 is set as a control boundary. We prescribe a velocity profile u(x = 1) = U(t) on
this boundary. The boundary at x = 0 is a free surface (21). This free surface is initially deformed

κ̂(t = 0) = 0.05, and therefore possesses non-zero initial energy E(t = 0) = En(t = 0) > 0.

We define the nondimensional acoustic timescale tac to be the time taken for a wave to travel

from x = 0 to x = 1. In these units the time taken for a wave to travel from one side to the205

other and back is tL = 2. This is a key quantity that will be referred to later. We discretize the
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time domain T into equal intervals with time step ∆t = 10−4. The non-dimensional parameters

of the experiment are provided in table 1. The optimization search space consists of control

velocity values at each discrete time point Un for n = 1 . . . N −1. The values of U0,UN are fixed

to zero. We use the scipy.minimize(method=‘TNC’) [49] implementation of the truncated210

Newton method as the gradient-based algorithm to minimize the objective function (24). In

all experiments, we use the Taylor remainder convergence test to ensure that the sensitivities

calculated with the adjoint method are correct.

We start with the case in which the final time is set to tf = 2.5 and use the gradient-based

method to find the optimal waveform (figure 3a). Figure 3b shows the time history of the free215

surface energy En (green line) and the acoustic energy Eac (blue line) in the optimally controlled

case, normalized by the initial total energy value E(t = 0). The final energy at E(t = tf ) is 10
5

time lower than the initial value. In this simple case, the physical mechanism that it exploits

can be clearly identified. The optimal waveform consist of three stages. The first stage is a pulse

lasting τp = tf − tL = 0.5 that withdraws half the volume stored in the nozzle domain. In the220

second stage the actuator remains inactive while the front and back of the pulse reach the free

surface at t = 1 and t = 1 + τp respectively. The pulse velocity amplitude doubles as it reflects

from the free surface. The amount of fluid transferred through the free surface is therefore equal

to the volume initially stored in the nozzle domain. At t = 2 the front of the reflected pulse

reaches the actuator. Between these two times the free surface relaxes to zero curvature and, in225

doing so, reflects an acoustic pulse back towards the actuator. The third stage is a pulse lasting

τp = tf − tL = 0.5 that withdraws more fluid such that the reflected pulse leaves the channel

without further reflection and returns the fluid in the channel to its initial state at exactly t = tf .

The two pulses, when combined, withdraw exactly the mass of fluid between the initial and final

positions of the surface.230

For comparison we then examine the case in which the final time is set to tf = 3.0 (figure

4). Figure 4b shows the time history of the free surface energy En (green line) and the acoustic

energy Eac (blue line) in the optimally controlled case, normalized by the initial total energy value

E(t = 0). The optimal waveform is qualitatively identical to that found when tf = 2.5 but with

pulses lasting τp = tf − tL = 1.0 rather than τp = 0.5. As before, the actuator withdraws exactly235

the half mass of fluid between the initial and final positions of the surface, but this time with a

longer pulse and, consequently, with a smaller actuator velocity. Consideration of the physical

mechanism shows that the optimization time has to be greater than tf = 2 and that, beyond

that, its lower limit will be determined by the maximum speed of the actuator. In both cases,
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Table 1: Parameters of the optimization test case 4.1

non-dimensional value

domain length, L 1

final time, tf 2.5, 3

speed of sound, cs 1

Mach number, ϵ 10−3

Reynolds number, Re 5 · 103

initial curvature, κ̂(t = 0) 0.05

surface tension, γ 0.01

nozzle radius, rn 0.1

time step size, ∆t 10−4

the spurious oscillations in U appear due to step-like control at initial time (Gibbs phenomena).240

4.2. Two dimensional straight channel

Having shown that the optimization algorithm works for a simple 1D case, and having iden-

tified the physical mechanism in that case, we now examine a 2D straight channel with a nozzle

placed at the centre of one wall, an actuator along the opposite wall, an outlet boundary at the245

left side, and a symmetry boundary at the right side (figure 5). The dimensional parameters of

the nozzle domain and acoustic constants are given in table 2. The spatial domain is discretized

into 120 · 103 triangular elements [50]. In the remaining sections, we present the time and space

scales in dimensional format because this enables easier comparison with the literature.

We assume that the nozzle state Qn shortly after the droplet has been expelled is a free

surface with uniform curvature. For ease of demostration, we assume that the acoustic energy

in the channel is zero. This assumption could easily be relaxed in practice. The simulation

therefore starts from the zero acoustic state and non zero curvature:

Qc(t = 0) = 0, κ̂(t = 0) = 0.25. (30)

The objective is to minimize the total energy at the final time J = E(tf ) = Eac(tf )+En(tf ) (24).250

Typically the time between droplets is between 2 µs and 20 µs. In this paper, we calculate

the open loop forcing that would need to be applied for periods of 1 µs, 2 µs and 3 µs in order

to minimize the total energy at the end of the forcing period. We discretize the time domain
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Figure 3: Optimally controlled case of the one-dimensional unit length domain, tf = 2.5. (a) the optimal velocity

U of the control boundary, where τp indicates the pulse duration, and tL is the timescale of the length of channel;

(b) the nozzle energy (green), and acoustic energy (blue), normalized by the initial total energy value E(t = 0).
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Figure 4: Optimally controlled case of the one-dimensional unit-length domain, tf = 3. (a) the optimal velocity

U of the control boundary, where τp indicates the pulse duration, and tL is the timescale of the length of channel;

(b) the nozzle energy (green), and acoustic energy (blue), normalized by the initial total energy value E(t = 0).
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Table 2: Inkjet microchannels parameters (section 4.2)

dimensional value

final time, tf , s (1− 5) · 10−6

speed of sound, cs, m/s 103

Mach number, ϵ 10−3

viscosity, µ, kg/(m · s) 2 · 10−2

Prandtl number, Pr 10

initial curvature, κ(t = 0), m−1 0.05 · 106

surface tension, γ, N/m 50 · 10−3

nozzle radius, rn, m 10 · 10−6

nozzle length, ln, m 20 · 10−6

time step size, ∆t, s 10−9

T into equal time intervals with time step ∆t = 10−3 µs. This time step is chosen in order to

have sufficient time resolution of the acoustic motion inside the narrowest part of the channel255

Ωc, near the nozzle boundary.

The actuating waveforms in inkjet printing are constrained by the limitations of the driving

electronics and response of the piezo-electric actuator. In this section, we assume that the piezo-

electric actuator moves as a solid plate in the direction normal to the channel’s wall. We model

this as a boundary velocity U that is spatially uniform along the control boundary Γact. There is260

no mass flow through the actual physical actuator boundary, but we prescribe a velocity boundary

condition on it. So there is effective mass flow through the fixed boundary used in computations.

In 4.4, we compare the spatially uniform boundary control with a parabolic actuator velocity

profile.

In practical devices the electric signal that forces the piezo-electric actuator is piecewise linear265

with a temporal resolution, w, between 0.01 µs and 0.1 µs. We use a continuous piecewise linear

function in time to describe the boundary velocity.

In our model, shown in figure 5, the length of the control element (actuator boundary) varies

from Lact = 20µm to Lact = 200µm. The waveform time resolution is fixed at w = 0.1µs.

The left boundary is stress-free. The right boundary of the computational domain (shaded) is a270

symmetry plane. Figure 6 shows the optimized total energy at the final time En(tf ) normalized

by the uncontrolled total energy at the final time E∗(tf ). For 1µs optimization time there is
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Figure 5: Two dimensional straight channel domain (sizes in µm).
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Figure 6: Optimized objective values for eight actuator lengths, Lact, and three final times, tf . The values are

normalized by the total energy at final time in the uncontrolled case.
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almost no energy reduction because, as will be shown later, there is insufficient time to control

the wave reflected by the left boundary. For 2µs optimization time the final energy reduces by

one order of magnitude. For 3µs optimization time the final energy reduces by a further order275

of magnitude. The actuator size has little influence as long as it exceeds 100µm. The physical

reasons for this are explored next.

4.2.1. Waveform optimization for tf = 2µs.

For illustration, we will examine the results with final time tf = 2µs and actuator length

Lact = 200µm. Figure 7a shows the nozzle surface energy (green) and the total energy (blue)

for the uncontrolled (dashed) and controlled (solid) cases. Figure 7b shows, for the uncontrolled

case, the integrated acoustic energy dissipation (red dashed) and, for the controlled case, the

total energy E(t) (blue), the integrated energy flux through the actuator boundary
∫
Fact(τ)dτ

(purple), the integrated acoustic energy dissipation
∫
R(τ)dτ (red solid). Due to the energy

balance (7), these are related by

E(t) = E(0) +
∫ t

0

Fact(τ)dτ −
∫ t

0

R(τ)dτ. (31)

Figure 7c shows the mass flux through the actuator boundary (black) and the nozzle boundary

(red). Figure 8 shows snapshots of the pressure field of the controlled case at times corresponding280

to the empty circles in figure 7a.

For the uncontrolled case, the nozzle surface energy E∗
n (green dashed line in figure 7a) reduces

smoothly as the free surface relaxes. As for the one-dimensional test case, this sends an acoustic

wave down the channel, increasing the acoustic energy. The total energy E∗ (blue dashed line,

figure 7a), which comprises the nozzle surface energy and the acoustic energy, reduces gently as285

the wave dissipates due to thermo-viscous mechanisms.

At time t = tf = 2.0 µs, the controlled case has almost 20 times lower energy than the

uncontrolled case (compare the solid blue and dashed blue lines in figure 7a). The optimal

waveform (black line in figure 7c) consists of three phases. During the first phase A+ : 0 ≤ t ≤
0.38 µs the actuator pulls fluid upwards and creates a negative pressure wave (figure 8a). This290

wave moves down towards the nozzle and left along the channel. The wave reaches the nozzle

boundary at t = 0.12µs, at which point mass starts to be pulled out of the nozzle (red solid line

in 7b), and the nozzle surface energy starts to reduce (green solid line in 7a). The wave reflects

back off the nozzle, reaching the actuator at t = 0.24µs. Reverberations at this timescale, which

is that of the height of the channel, continue during the controlled period. This behaviour is295
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Figure 7: Comparison between the uncontrolled case (dashed lines) and the optimally controlled case (solid lines)

with Lact = 200µm and tf = 2µs. (a) Total energy E(t) (blue) and nozzle energy En(t) (green), normalized by

E(t = 0). (b) Integrated energy flux through the actuator boundary
∫
Fact(τ)dτ (purple line), integrated acoustic

energy dissipation
∫
R(τ)dτ (red solid line), and the integrated acoustic energy dissipation

∫
R∗(τ)dτ in the

uncontrolled case (red dashed line). (c) Boundary mass flux through the actuator boundary Mact (black) and

the nozzle boundary Mn (red). The red dashed line is the mass flux M∗
n through the nozzle boundary in the

uncontrolled case. The coloured patches denote the actuation phases, when the acoustic waves are formed (A+)

and absorbed by the actuator (A−).

similar to that of the 1D test case but is more complicated because the flow is 2D. This wave

relaxes the free surface but, unavoidably, produces a large amplitude wave moving left along the

channel (figure 8b). Indeed the energy flux through the control boundary during the first phase,

A+, is large and the total energy rapidly increases to nearly three times that of the uncontrolled

case.300

During the second phase 0.38 ≤ t ≤ 1.62 µs the integrated mass flux through the actuator,

Mact ≡ {u · n}Γact
, is almost identical to the integrated mass flux away from the nozzle, Mn

(black and red solid lines in figure 7c). Compared with the first pulse, this motion is relatively

slow, shown by the fact that the energy flux through the actuator boundary is small ∂tE ≃ 0.

The nozzle surface energy reduces to nearly zero during this phase (green solid line in 7a).305

Meanwhile, in the channel, the pressure wave generated during the first phase reflects off the

stress-free boundary and a positive pressure wave travels back towards the nozzle and the actuator

(figure 8c). The total energy E steadily decreases due to viscous and thermal dissipation of the

acoustic wave (figure 7b, red line).

The third phase A− : 1.62 ≤ t ≤ 2.0 µs is the counterpart of the first phase A+. When the310

positive pressure wave reaches the symmetry plane of the channel the actuator quickly moves

out of the domain again (black line in figure 7b) and optimally absorbs the acoustic energy (blue
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(a) t = 0.06µs. (b) t = 0.3µs.

(c) t = 1.3µs. (d) t = 1.9µs.

(e) t = 2.0µs. (f) t = 2.5µs.

Figure 8: Snapshots of the pressure distribution inside an injector channel at different times, with the optimal

control applied to the actuator boundary, Lact = 200µm, tf = 2µs. The actuator is the thin horizontal rectangle

at the top-right of each frame.

line in figure 7b) by moving to make the wave do work on the actuator boundary (purple line

in figure 7b). The acoustic pressure quickly reduces and remains small thereafter (fig. 8f). This

acts on the timescale of the channel: 2L/cs = 2×900µm/ (1000m/s) = 1.8µs. If the optimization315

time is 1µs, the nozzle free surface energy could be reduced by the actuator but there would then

be insufficient time to absorb the acoustic wave that is reflected off the stress-free boundary. The

optimal solution is to do almost nothing.

We now investigate the effect of the actuator size Lact on the final energy and the optimal

waveform. Figure 6 (orange line) shows the final total energy of the controlled cases, normalized320

by the final energy of the uncontrolled case. Figure 9 shows the optimal mass flux through the

actuator boundary for different actuator sizes, Lact. All waveforms have the three-phase shape

described above and exploit the same mechanism. The mass flux increases with the actuator

length. This is because the actuators produce a wave that both pulls mass out of the nozzle and

propagates to the stress free boundary, where it pulls mass through that boundary. The nozzle325

mass flux is determined by the mass in the nozzle and, with that mass flux fixed, the boundary

mass flux then increases with the actuator length. Shorter actuators are therefore more efficient.

4.2.2. Waveform optimization for tf = 3µs.

For illustration, we will examine the results with final time tf = 3µs and actuator length

Lact = 100µm. Figure 10 shows the time history of the energy and boundary mass fluxes for the330

uncontrolled and optimally controlled cases. Figure 11 shows snapshots of the pressure field at

the times shown as open circles on figure 10.
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Figure 9: Optimal mass flux through the control boundary as a function of time, for different actuator lengths.

The control duration is 2 µs.
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Figure 10: Comparison between the uncontrolled case (dashed lines) and the optimally controlled case (solid

lines) with Lact = 100µm and tf = 3µs. (a) Total energy E(t) (blue) and nozzle energy En(t) (green), normalized

by E(t = 0). (b) Integrated energy flux through the actuator boundary
∫
Fact(τ)dτ (purple line), integrated

acoustic energy dissipation
∫
R(τ)dτ (red solid line), and the integrated acoustic energy dissipation

∫
R∗(τ)dτ

in the uncontrolled case (red dashed line). (c) Boundary mass flux through the actuator boundary Mact (black)

and the nozzle boundary Mn (red). The coloured patches denote the actuation phases, when the acoustic waves

are formed (A+,B+) and absorbed by the actuator (A−,B−).

The first phase A+ : 0 ≤ t ≤ 0.55 µs is similar to the A+ phase of the tf = 2µs case. The

actuator pulls fluid upwards and generates a negative pressure wave (figure 11a). As before,

the wave reaches the nozzle boundary at t = 0.12µs and mass starts to be pulled out of the335

nozzle. This wave reflects back off the nozzle. The reverberations in the fluid are as strong

as in the previous case, but the actuator is wider. The wider actuator is unable to reduce

the reverberations’ amplitude without simultaneously creating high amplitude waves elsewhere.

Therefore the actuator moves less in order to avoid creating these high amplitude waves elsewhere.
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(a) t = 0.1µs. (b) t = 0.8µs.

(c) t = 1.05µs. (d) t = 1.2µs.

(e) t = 1.8µs. (f) t = 2.05µs.

(g) t = 2.4µs. (h) t = 2.6µs.

(i) t = 2.8µs. (j) t = 3.0µs.

Figure 11: Snapshots of the pressure distribution inside an injector channel at different times, with the optimal

control applied to the actuator boundary, Lact = 100µm, tf = 3µs. channel T 3 L 100.mp4 is a movie of the case

(see supplementary materials).
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Figure 12: Optimal mass flux through the control boundary as a function of time, for different actuator lengths.

The control duration is 3 µs.

As before, this motion produces a large amplitude wave moving left along the channel.340

During the second phase B+ : 0.55 ≤ t ≤ 1.2µs the mass flux through the nozzle reaches

a maximum. The actuator is still moving upwards, partially compensating for the flow from

the nozzle and slowly absorbing the acoustic energy. A positive pressure wave moves left along

the channel (fig. 11b). (The optimization algorithm does not create this wave for the 2µs case

because there is insufficient time to cancel it.) During this phase, almost all of the fluid is quickly345

transferred from the nozzle to the channel. By the end of the B+ phase, the free surface has

nearly reached its final low energy state.

During the third phase 1.2 ≤ t ≤ 1.75µs the mass flux from the actuator broadly cancels that

from the nozzle. No new pressure waves form during this phase (fig.11c). The negative pressure

left-running wave reflects from the open end (11d) and becomes a positive pressure right-running350

wave. This middle phase is similar to the middle phase of the tf = 2µs case.

The fourth phase A− : 1.8 ≤ t ≤ 2.3µs is the same as the A− phase in the tf = 2µs case. The

positive right-running wave is absorbed by the actuator (fig. 11e, 11f). This results in a rapid

decrease in total energy. Meanwhile the positive left-running wave has reflected from the open

end and has become a negative right-running wave. During the fifth phase B− : 2.3 ≤ t ≤ 3.0µs,355

the negative left-running pressure wave reaches the actuator, and is optimally absorbed by doing

work on the actuator boundary. Figure 12 shows the mass flow at the actuator Mact as a

function of time for different Lact. The shapes of the waveforms for tf = 3µs with different

actuator lengths are similar. The increase of mass flux with actuator length is less pronounced
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because the combination of A+, B+ waves pulls less fluid through the stress-free boundary than360

the A+ wave alone.

In summary, the most effective control to minimize the energy at the final time is achieved

when the actuator moves out of the domain and provides a negative pressure pulse to accelerate

the flow at the nozzle, and then adapts to the large mass flux during the B+ phase. This

combination efficiently transfers all fluid from the nozzle to the channel and leaves sufficient365

time for the actuator to absorb the reflected waves afterwards. At lower optimization times,

reasonably effective control can be achieved with a short negative pulse, followed by a long

middle period in which the channel slowly absorbs the fluid from the nozzle, leaving sufficient

time to cancel its reverberation from the ends of the channel. If there is insufficient time to cancel

the reverberation from the ends of the channel then any control is ineffective. This shows that370

the minimum optimization time (i.e. the minimum time between droplet ejections) is 2L/cs.

4.3. Two dimensional U-shaped print head channel

Having shown that the optimization algorithm works for a straight channel, and having

highlighted the importance of wave reflections at the ends of the channel, we now examine a

realistic case, in which the ends of the channel bend upwards to make a U-shape and the length375

along the centreline is L = 1235µm (figure 13). We set the actuator length to Lact = 400µm.

The spatial domain is discretized into 245 · 103 triangular elements [50].

From the snapshots (figure 15) we see that the waves disperse slightly as they travel round

the corner. By comparing figure 14 with figure 10, however, we see that the optimal profiles for

the U-shaped channel are qualitatively identical to those for the long straight channel in section380

4.2.2. From this, and the snapshots, we deduce that the optimization method is exploiting the

same physical mechanism.

10 910

400

70

200

Lact

Γopen

Γw ΓC−N

Figure 13: Printhead microchannel domain (sizes in µm). The right boundary is a symmetry plane.
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Figure 14: Comparison between the printhead uncontrolled case (dashed lines) and the optimally controlled case

(solid lines) with Lact = 400µm and tf = 5µs. (a) Total energy E(t) (blue) and nozzle energy En(t) (green),

normalized by E(t = 0). (b) Integrated energy flux through the actuator boundary
∫ t
0 Fact(τ)dτ (purple line),

integrated acoustic energy dissipation
∫
R(τ)dτ (red solid line), and the integrated acoustic energy dissipation∫

R∗(τ)dτ in the uncontrolled case (red dashed line). (c) Boundary mass flux through the actuator boundary

Mact (black) and the nozzle boundary Mn (red). The red dashed line is the mass flux M∗
n through the nozzle

boundary in the uncontrolled case.

Finally we investigate how the objective value changes when we increase the waveform time

resolution from w = 1.0 to w = 0.5, and 0.25µs. These correspond to the time resolution of state-

of-the-art piezoelectric controllers. We project the optimal waveform with w = 1.0µs (figure 16b,385

solid line) to a higher dimensional space with w = 0.5µs, and use the projected solution as the

initial guess for a new optimization problem. The optimal waveform for w = 0.5µs (figure 16b,

dash-dotted line) results in 25% lower objective value (figure 16a). The optimal waveform for

w = 0.25µs (figure 16b, dotted line) results in further 4% reduction in the objective value. These

improvements are quite small, showing that the rather basic sinusoid-type waveform for the390

w = 1.0µs case provides a good trade-off between efficiency and complexity. This waveform is

an outward moving pulse lasting 2.7µs, and an inwards moving pulse lasting 2 µs. The outward

pulse causes the free surface to relax but generates acoustic waves that travel down the channel.

These reflect and first arrive back at the actuator at t = 2.4µs. The trailing edge of the outward

pulse and then the inward pulse absorb these reflected waves optimally. Given that this waveform395

would be imposed just after ejection of the droplet, it is reassuringly similar to the W-shaped

waveform that, by trial and error, has been shown to remove residual acoustic waves arising from

the previous ejection cycle [24]. The total energy reduces to nearly zero, so if there is another

local minimum, it cannot be significantly better than this one. The advance in this paper is to

show this rigorously with adjoint-based optimization in the time domain, to identify the physical400

mechanisms that this waveform exploits, and to employ a general method that can be applied

to other geometries.
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(a) t = 0.25µs. (b) t = 0.5µs. (c) t = 1.4µs.

(d) t = 1.7µs. (e) t = 2.3µs. (f) t = 2.9µs.

(g) t = 3.3µs. (h) t = 3.9µs. (i) t = 4.4µs.

(j) t = 5.0µs.

Figure 15: Snapshots of the pressure distribution inside a U-shaped printhead at different times, with the optimal

control applied to the actuator boundary, Lact = 400µm, tf = 5µs. printhead T 5 L 400.mp4 is a movie of the

case (see supplementary materials).
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Figure 16: (a) Optimized objective values (total energy at the final time E(T ) normalized by initial value E(0))

for different waveform resolution w, and (b) corresponding waveforms.

4.4. Optimization with a parabolic actuator velocity profile

In previous sections, the flow inside a straight and a U-shaped channels driven by an actuator

with a uniform actuator velocity profile has been optimized. This section examines a system with405

a parabolic actuator velocity profile, and two cases are considered: a straight channel with Lact =

200µm, tf = 2µs (similar to 4.2), and a U-shaped channel with Lact = 400µm, tf = 5µs (similar

to 4.3). The velocity boundary condition on Γact is u = c(t) (x− xact) (x− xact − 2Lact)n, where

x is the coordinate along the actuator boundary, and xact is the position of the leftmost point

on the actuator boundary.410

The same optimization strategy as descried in section 4.1 is applied to find an optimal wave-

form. Figure 17 shows an optimal waveform, and a mass and energy fluxes for a straight channel

(figure 5) and tf = 2µs (dashed lines). Solid lines denote the optimized results for a flat actuator

velocity profile (from section 4.2). The optimal waveforms (figure 17c) for parabolic and flat

velocity profiles are very similar, and the energy transfer between the nozzle, channel, and the415

actuator follow the same pattern (figure 17b).

Figure 18 shows optimization results for a U-shaped printhead channel (the same as in section

4.3) with a parabolic actuator velocity profile. Again, the parabolic profile results (dashed lines)

match very closely the optimization results for a uniform profile (solid lines). This means that

the energy damping mechanism is independent of the exact shape of the actuator velocity profile,420

and is governed by the mass flow through the actuator boundary Mact.
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Figure 17: Comparison between the optimally controlled straight channel flow with flat (solid lines) and parabolic

(dahsed lines) actuator velocity profiles with Lact = 200µm and tf = 2µs. (a) Total energy En(t) (blue) and

nozzle energy En(t) (green), normalized by E(t = 0). (b) Integrated energy fluxes through the actuator boundary∫
Fact(τ)dτ (purple line), integrated acoustic energy dissipation

∫
R(τ)dτ (red solid line). (c) Boundary mass

fluxes through the actuator boundary Mact (black) and the nozzle boundary Mn (red). The coloured patches

denote the actuation phases, when the acoustic waves are formed (A+) and absorbed by the actuator (A−).
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Figure 18: Comparison between the optimally controlled printhead flow with flat (solid lines) and parabolic

(dahsed lines) actuator velocity profiles with Lact = 400µm and tf = 5µs. (a) Total energy E(t) (blue) and

nozzle energy En(t) (green), normalized by E(t = 0). (b) Integrated energy fluxes through the actuator boundary∫ t
0 Fact(τ)dτ (purple line), integrated acoustic energy dissipation

∫
R(τ)dτ (red solid line). (c) Boundary mass

fluxes through the actuator boundary Mact (black) and the nozzle boundary Mn (red).

5. Conclusions

In this paper we develop a gradient-based approach that uses adjoint methods in the time

domain to optimize the deformation of the piezo-electric actuator in an inkjet microchannel.

We show that an optimally controlled actuator can reduce the total energy inside the printhead425

microchannel geometry by 1000 times, compared with the uncontrolled case. The actuator’s

initial movement withdraws fluid from the nozzle. The liquid/gas surface relaxes towards the

zero curvature state. This initial movement sends an acoustic wave down the microchannel,
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which reflects off the open end and returns some time later. The actuator then moves in order

to perfectly absorb the reflected acoustic wave. The minimum time over which optimization430

can be successful, which is therefore the minimum time between droplets, is the time taken for

an acoustic wave to travel from the actuator to the open end and back. The duration of the

waveform itself must be added to this time. Short waveforms (e.g. A+ in figure 7c) are in one

direction only and reduce the energy by just over one order of magnitude. Longer optimization

times allow sufficient time for the waveform to have two components in opposite directions (e.g.435

A+ and B+ in figure 10c). This waveform reduces the free surface energy more quickly and by

over a further order of magnitude.

This paper demonstrates the success of a more systematic approach than that currently used

in industry: adjoint-based optimization of the waveform using numerical simulations, which can

be interpreted physically. At a minimum, this physical understanding is useful in narrowing440

down the range of waveforms tested experimentally by trial and error. At best, this technique

shows how to use numerical simulations in order to systematically and efficiently find the optimal

waveform and the minimum time between drops in inkjet print heads.

This method can easily be applied to microchannels with complex geometry in three dimen-

sions. The same method can be used to perform waveform optimization for the droplet ejection,445

in order to control the droplet volume and momentum. This would require a new nozzle model

and a new objective function, but the channel model and optimization method would remain the

same. Validation of the formulation and the numerical solution is the subject of future work.
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Appendix A. The primal–adjoint problems symmetry

The symmetry between the direct (4, 21) and the adjoint problems (26, 27) has been discussed

in [6]. In the frequency domain, performing complex conjugation and then inverting the sign of

the velocity component makes the adjoint problem equivalent to the direct problem. Complex

conjugation in the frequency domain translates to time inversion in the time domain: t → −t.

The velocity sign change has the same effect. We introduce a symmetry operator, S : Λ†
c → Λ̌†

c =(
−u†, P †, T †) (−t) ≡

(
ǔ†, P̌ †, Ť †) (ť). We apply the symmetry operator to the coupled adjoint

problems (26, 27), which results in

∂

∂ť
AcΛ̌

†
c +B†

cΛ̌
†
c = 0 in Σ̌c, (A.1a)

σ̌†
ijnj = −γκ†ni − hCL

(
∂̌t −

1

Re
∆Γ

)
ǔ†
i on ΓC−N, (A.1b)

S−1Λ̌†
c(x, t = tf ) = Qc(x, t = tf ), (A.1c)

and

(
dΩ̂n

dκ̂

)
d

dť
κ† = −ϵ

{
ǔ† · n

}
ΓN−C

− ϵ
d
(
Ω̂nκ̂

)

dκ̂

d

dť
γκ̂ in Σ̌n, (A.2a)

κ†(t = tf ) = κ̂(t = tf ). (A.2b)

After applying the symmetry operator, S, to the adjoint problem, the temporal components

of Σc and Σn change such that the adjoint flow propagates forward in time, in Ť = −T . The up-

dated adjoint stress tensor is σ̌†
ij = −P̌ †δij+Re−1τ̌ †ij . The initial condition for Λ̌†

c (A.2b) implies

that time integration of the adjoint problem should start from the direct state Qc(x, t = tf ), but460

with the velocity vector pointing in the opposite direction. The adjoint system now has the same

form as the direct systems (4, 21), with the difference that the terms dΩ̂n/dκ̂, d
(
Ω̂nκ̂

)
/dκ̂ in

(A.2a) come from the solution of the direct problem: the adjoint curvature follows the trajectory

defined by the direct curvature κ̂.

We perform the spatial discretization of the transformed adjoint problem in the same way as465

that of the direct problem in section 2.3. By applying the symmetry operator, the bilinear forms

of the discrete direct and adjoint problem coincide, while the linear forms naturally differ.
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[25] A. A. Khalate, X. Bombois, R. Babuška, H. Wijshoff, R. Waarsing, Performance improve-

ment of a drop-on-demand inkjet printhead using an optimization-based feedforward control525

method, Control Engineering Practice 19 (2011) 771–781.

[26] A. A. Khalate, X. Bombois, S. Ye, R. Babuška, S. Koekebakker, Minimization of cross-talk
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