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Abstract

We create and describe an inhomogeneous Helmholtz equation solver, helmholtz-
x, written in an open-source framework. The mesh is generated with Gmsh and
the solver uses DOLFINx and UFL from FEniCSx. The performance, valid-
ity, stability and extensibility of the solver are demonstrated through several
examples of thermoacoustic instability, from the one-dimensional Rijke tube to
the three-dimensional MICCA combustor. The implementation of Bloch-type
boundary conditions is explained and tested. The adjoint capability of the solver
is also shown, and used to obtain derivatives of the eigenvalue with respect
to shape parameters. This is exploited to find shape changes that reduce the
thermoacoustic growth rate.

Keywords: Helmholtz equation, finite element method, open-source software, adjoint,
parallel computing

1 Introduction

Thermoacoustic oscillations in rockets and gas turbines occur when the fluctuating
heat release rate occurs sufficiently in phase with the acoustic pressure that the growth
of acoustic energy exceeeds the damping [1]. These oscillations damage engines and
must be eliminated, preferably at the design stage.
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Low-order network models such as LOTAN [2], OSCILOS1 [3] and taX2 [4] are the
simplest tools for modelling thermoacoustic instability. In these models, the acoustics
are modelled within connected modules with simple geometries and the temperature is
assumed uniform within each module. The heat release rate from the flame is typically
modelled as a compact source of heat, which is a function of the acoustic velocity or
pressure. Low-order network models can only model simple geometries but can account
for mean flow effects such as entropy waves.

For complicated geometries and spatially-varying temperature fields, finite ele-
ment method (FEM) can be used to solve the non-homogenous Helmholtz equation.
These Helmholtz solvers assume that the mean flow Mach number is small and
therefore cannot model entropy waves. For example, the package PyHoltz3 is a Python-
based FEM solver that calculates thermoacoustic eigenvalues and corresponding
eigenvectors. It includes Bloch boundary conditions [5, 6], uncertainty quantifica-
tion [7] and non-iterative solvers [8]. It has been re-written in Julia under the name
WavesAndEigenvalues4. These packages implement nonlinear eigenproblem solvers
with subspace [9] and iterative algorithms such as Banach’ fixed point iteration and
Householder’s method [10]. These packages also have some adjoint capability [11].

For resolution of the reacting flow within a combustion system, Large Eddy Sim-
ulation (LES) can be used, but at high computation cost. This provides high fidelity
information about the flow, which can be used to extract acoustics through, for
example, dynamic mode decomposition [12]. LES is used to investigate self-excited
thermoacoustic instabilities for laboratory [13] and industrial [14] combustion systems.
However, LES is too expensive for extensive parametric studies and its results do not
show how to control thermoacoustic instabilities [15].

The stability of thermoacoustic systems is highly sensitive to small changes in
many parameters, particularly those that affect the phase between the heat release
rate and the acoustic pressure such as the flame configuration [16]. Knowing the ther-
moacoustic response of the system to these changes would help the design process.
Adjoint methods achieve this at a low computation cost. This was first presented in
[17] in which stabilizing mechanisms for a hot wire Rijke tube were quickly deter-
mined. Adjoints were then applied with a wave-based approach [18] and a Helmholtz
solver [19] to determine thermoacoustic sensitivities [20]. Adjoint methods were then
used in low-order network models to stabilize longitudinal [21] and annular [22] com-
bustors by changing their shapes. For more complex geometries, adjoint Helmholtz
solvers are required, which increases the computational cost. For these geometries, the
shapes need to be parametrized with, for example, B-Splines [23] and Non-Uniform
B-Splines [24], or more descriptive CAD tools for industrial geometries. Adjoint meth-
ods then provide the sensitivity of the thermoacoustic eigenvalues to changes in the
shape parameters.

Free-form deformation (FFD) places control points within the volume that is to be
deformed and then shifts their positions. The geometry deforms as it moves with the

1https://github.com/MorgansLab/OSCILOS long
2https://gitlab.lrz.de/tfd/tax
3https://bitbucket.org/pyholtzdevelopers/public/src/master/
4https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl
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control points [25]. FFD has many design applications, such as aerodynamics [26, 27]
and turbomachinery [28–30] but it has not yet been used in thermoacoustics.

In this paper, we present an open-source parallelized adjoint Helmholtz solver,
helmholtz-x, which combines several open source packages to model small amplitude
thermoacoustic oscillations in complex geometries. In Sec. 2, we derive the numerical
system for direct and adjoint frameworks, and explain the implementation of various
boundary conditions. In Sec. 3 we verify the results of the solver and show its parallel
computation capability. In Sec. 4 we demonstrate adjoint-based shape optimization
with FFD.

2 helmholtz-x

In this section, we present the derivation and FEM discretization of the thermoacoustic
Helmholtz equation and corresponding boundary conditions. We include code and
show how to calculate eigenmodes. helmholtz-x uses the open-source FEM framework,
FEniCSx and numerical toolkits PETSc and SLEPc.

2.1 FEniCSx, PETSc and SLEPc

The FEniCSx project [31] offers a framework for solving PDEs using FEM. It has
efficient matrix assembly kernels for reducing the solution time. The software also
offers a scalable framework for computationally demanding problems with MPI [32]
parallelization. It also has a Python interface named mpi4py [33].

We define weak forms of the PDEs through a high-level Python interface with
the Unified Form Language (UFL) package [34]. UFL weak forms are used to define
the weak forms, which are then used by the FEniCSx Form Compiler, FFCx [35],
which generates the low level C codes for local tensors to be globally assembled by
DOLFINx. Subsequently, the UFL compiled forms can be assembled as sparse matri-
ces. Matrices can be formatted with the Portable Extensible Toolkit for Scientific
Computation (PETSc) [36] so as to be compatible with MPI and to use a Python
binding, petsc4py [37]. It also uses the open-source scalable and flexible toolkit for
the solution of eigenvalue problems (SLEPc) [38], which solves eigenvalue problems
of PETSc matrices, returning eigenvalues and their corresponding PETSc eigenvec-
tors. SLEPc also offers Python binding through slepc4py [37]. FEniCSx, PETSc and
SLEPc all support complex numbers.

2.2 Thermoacoustic Helmholtz Equation

The derivation of the direct and adjoint thermoacoustic Helmholtz equations follows
the methodology in [39]. The direct Helmholtz equation and momentum equation in
a domain Ω ⊂ R3 are

∇ ·
(
c2∇p̂1

)
+ ω2p̂1 = iω(γ − 1)q̂1 + c2∇ · f̂1 + c2iωm̂1 in Ω, (1a)

−iρ0ωû1 +∇p̂1 = f̂1 in Ω, (1b)
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where c is the spatially-varying speed of sound, p̂1 is the direct acoustic pressure,
û1 is the acoustic velocity, ω is the complex valued angular frequency, γ is the heat
capacity ratio, q̂1 is any fluctuating heat release rate, f̂1 is any fluctuating body force,
m̂1 is any fluctuating mass injection, and p0 is the mean pressure. Equation (1) can
be written as L(ω)p̂1 = 0, where L is a differential operator that is linear in p̂1 but
potentially nonlinear in ω. The property

⟨p̂†1|Lp̂1⟩ = ⟨L†p̂†1|p̂1⟩+ boundary terms = 0 (Sec 3.1 in [39])

defines the adjoint Helmholtz and momentum equations [39] as

∇ ·
(
c2∇p̂†1

)
+ ω∗2p̂†1 = iω∗(γ − 1)q̂1(ω∗) (2a)

+ c2∇ · f̂1 + iω∗c2m̂1 in Ω,

−iρ0ω∗û1 +∇p̂†1 = f̂1 in Ω, (2b)

where p̂1
† is the adjoint acoustic pressure and ω∗ is the complex conjugate of the

angular eigenfrequency.

2.3 Source terms in the Helmholtz equation

We assume that the local heat release rate perturbation, q1, is proportional to the
acoustic velocity at a measurement point:

q1(x, t)

q0
= FTF

u1(xr) · nr

ub
, (3)

where q0 is the mean heat release rate, FTF is the complex-valued flame transfer
function, which depends on ω, ub is the mean velocity and nr is the unit normal vector
in the reference direction. The fluctuating heat release rate, q̂1, is often modelled with
a local n− τ formulation [40]. In Eq. (4), as in [19]:

q1(x, t)

q0
=

nh(x)
∫
Ω
w(x)u1 (x, t− τ(x)) · nrdx

ub
, (4)

where n is the interaction index, τ(x) is the time delay, h(x) is the heat release rate
distribution and w(x) is the measurement field. In the frequency domain, we can write
Eq. (4) as

q̂1 = neiωτ

∫
Ω

q0
ub

h(x)w(x)û1(x) · nrdx. (5)

The fields h(x) and τ(x) can be obtained from experiments or simulations [13]. If
τ(x) is uniform, we replace neiωτ with a complex-valued FTF. Without a fluctuating
body force, Eq. (1b) becomes ∇p̂1 = iωρ0û1, so Eq. (5) becomes:

q̂1 = FTF
q0
ub

h(x)

∫
Ω

w(x)

iωρ0
∇p̂1 · nr dx. (6)
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We then obtain the thermoacoustic Helmholtz equation with a distributed measure-
ment function:

∇ ·
(
c2∇p̂1

)
+ ω2p̂1 = FTF(γ − 1)

q0
ub

h(x)

∫
Ω

w(x)

ρ0(x)
∇p̂1 · nr dx in Ω. (7)

If w is a Dirac delta function, δD, then Eq. (1) becomes:

∇ ·
(
c2∇p̂1

)
+ ω2p̂1 = FTF(γ − 1)

q0
ub

h(x)
∇p̂1(xr) · nr

ρ0(xr)
in Ω. (8)

We label the case where the FTF (i.e. n) is zero as the passive flame and the others
as the active flame.

2.4 Finite Element Formulation

We start by defining the Sobolev space H1(Ω) as:

H1(Ω) = {u ∈ L2(Ω)|∇u ∈ L2(Ω)},
where u is any square integrable function and L2 is the space of square-integrable
functions in Ω. We define the properties of L2 such that

⟨u|v⟩ =

∫
Ω

uv∗ dx,

and ⟨u|u⟩ ≥ 0. To approximate the solution numerically, we define the test function
v ∈ V in the finite-dimensional function space V h ⊂ H1(Ω) as

Vh = {vh ∈ H1(ω)|vh|K ∈ Pk(K)∀K ∈ Th},

where Pk(K) is the space of polynomials degree ≤ k on each element K (triangle for
2D and tetrahedra for 3D). We then define p̂1,h ∈ V h such that p̂1,h =

∑
k ϕkp1,k

where ϕk are real valued basis functions of space V h and p1,k ∈ C are complex valued
degrees of freedom.

2.4.1 Discretization

Within the finite element framework, we integrate the terms in (1a) over the domain
and multiply by a test function vh to obtain∫

Ω

∇ ·
(
c2∇p̂1,h

)
vh dx +

∫
Ω

ω2p̂1,h vh dx =

∫
Ω

iω(γ − 1)q̂1 vh dx

+

∫
Ω

c2∇ · f̂1 vh dx (9)

+

∫
Ω

c2iωm̂1 vh dx ∀vh ∈ Vh.
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Note that the final two terms in Eq. (9) are only integrated over the two domains in

which the fluctuating body force f̂1 and fluctuating mass m̂1 act, which are assumed
to be negligible in this paper. Using integration by parts to reduce the smoothness
requirements of the first term in Eq. (9) yields:

∑
k

(∑
j

(
−
∫
Ω

c2∇ϕk · ∇ϕj dx +

∫
∂Ω

c2∇ϕk · n ϕj dS +

∫
Ω

ω2ϕk ϕj dx
)
p1,k

)
=

∑
k

(∑
j

( ∫
Ω

iω(γ − 1)q̂1ϕj dx
))

, (10)

where n is the normal vector of the relevant boundary. The specific acoustic impedance
[41], Z, is defined as

Z =
p̂1

ρ0cû1 · n
. (11)

Using Eq. 11, we can transform the second integral in Eq. (10) into the Robin
integral using Eq. (1b) by writing∫

∂Ω

c2
(
∇ϕk · n

)
ϕj dS =

∫
∂Ω

c2
( iω
cZ

ϕk

)
ϕj dS. (12)

Hence, the matrix form of Eq. (10) is[
A−D(ω) + ωB + ω2C

]
p = 0, (13)

where

A = −
∫
Ω

c2∇ϕk · ∇ϕj dx, (14a)

B =

∫
∂Ω

ic

Z
ϕk ϕj dS, (14b)

C =

∫
Ω

ϕk ϕj dx, (14c)

D = FTF (γ − 1)
q0
ub

∫
Ω

ϕj h(x) dx

∫
Ω

w(x)

ρ0
∇ϕk · nrdx, (14d)

and p is the direct eigenvector. In Eq. (14d), there is an outer product between the left
integral and the right integral. We denote matrices A, B and C the acoustic matrices
and matrix D as the flame matrix.

To derive the adjoints of Eq. (14) in matrix form, we take the conjugate transpose
(Hermitian, (H)) of Eq. (14) and calculate the right eigenvector, which is the adjoint
eigenvector: [

AH − (D(ω))H + ω∗BH + ω∗2CH
]
p† = 0, (15)

where

AH =−
∫
Ω

c2∇ϕj · ∇ϕk dx, (16a)
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BH =

∫
∂Ω

ic

Z∗ϕj · ϕk dS, (16b)

CH =

∫
Ω

ϕj · ϕk dx, (16c)

DH = FTF∗(γ − 1)η

∫
Ω

w(x)

ρ0
∇ϕj · nrdx

∫
Ω

ϕk h(x)dx. (16d)

and p† is the adjoint eigenvector. Matrices A and C are self-adjoint 5 but matrix BH

is not self-adjoint if the specific impedance Z has a complex component. Matrix DH

is calculated by swapping the left and right vectors of the outer product in Eq. (14d)
and replacing the FTF with its conjugate, FTF∗.

The matrices A,B,C and D from Eq. (14) are easily expressed in UFL, and can
readily be assembled into MPI distributed matrices compatible with PETSc using
standard DOLFINx functionality. The details of creation of the matrices A,B and C
are presented in Appendix A.1.

2.4.2 Typical boundary conditions

There are three typical boundary conditions in acoustics: Dirichlet, Neumann, and
Robin, all of which can be expressed through Eq. (11):

1. For open boundaries (Dirichlet), Z → 0 and p̂1 = 0.
2. For closed boundaries (Neumann), Z →∞ because û1 is zero. So ∇p̂1 · n = 0.
3. For other boundaries (Robin), Z is a finite complex number that quantifies acoustic

radiation and phase shift at the boundary.

In helmholtz-x, Neumann boundaries are imposed naturally through the FEM dis-
cretization. For Dirichlet boundaries, degree of freedom (DOF) indices of the nodes on
those surfaces are collected as a list. We use this to modify A and C. For Robin and
its special cases, choked inlet and choked outlet, we define the weak forms for these
boundaries and use them to build B. Z can be imposed on Robin boundaries through
the reflection coefficients6, R, with Eq. (14b). The UFL implementation of the Robin
boundary condition is shown in Appendix A.1.

In thermoacoustics, most of the facets are assumed to be Neumann or choked
boundary conditions. The reflection coefficient of the inlet choked boundary condition
is [3]

Rin =
1− γinMin/(1 + (γin − 1)M2

in)

1 + γinMin/(1 + (γin − 1)M2
in)

, (17)

where γin is the heat capacity ratio on the inlet choked boundary and Min is the Mach
number near the downstream of the inlet choked boundary. The UFL implementation
of the choked inlet boundary condition is shown in Appendix A.1. Similarly, we write
the choked outlet condition [3]

Rout =
1− (γout − 1)Mout/2

1 + (γout − 1)Mout/2
, (18)

5AH == A and CH == C
6Z = (1 + R)/(1 − R)
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where γout is the heat capacity ratio on the outlet choked boundary and Mout is the
Mach number near the upstream of the outlet choked boundary. The UFL of the choked
outlet boundary condition is implemented by changing R, γ and M in Appendix A.1.

2.5 Implementation of the flame matrix

The flame matrix, D contains an outer product between two sparse vectors, which
requires careful implementation. The relation

(γ − 1)
q0
ub

∫
Ω

ϕjh(x) dx

∫
Ω

w(x)

ρ0
∇ϕk · nrdx (19)

is shared between Eq. (14d) and (16d). For computational efficiency, we first perform
the calculation of this cross product and compute the direct and adjoint submatrices,
Dij and Dji. Then we multiply the submatrices with FTF or (FTF)∗, to obtain the
direct or adjoint D. The left and right components of Eq. (19) are calculated separately
during assembly:

(γ − 1)
q0
ub

∫
Ω

ϕjh(x) dx︸ ︷︷ ︸
left vector

∫
Ω

w(x)

ρ0
∇ϕk · nrdx︸ ︷︷ ︸

right vector

(20)

The left and right vectors in Eq. (20) are swapped when generating the adjoint D.
In helmholtz-x, two different flame matrices are implemented: one for a distributed

measurement function w(x) and the other for a pointwise measurement function w(xr).
The right vector of Eq. (20) is implemented differently for the pointwise flame matrix,
as explained in Sec. 2.5.2. For the distributed flame matrix, Eq. (20) remains the
same (Sec. 2.5.1). Appendix A.2 explains how parallel assembly is handled for the
distributed and pointwise matrices.

2.5.1 Distributed measurement function

The measurement region w(x) can take any shape. We choose a truncated Gaus-
sian distribution that integrates to 1. This distribution introduces more nonzero
contributions to the flame matrix, so is less sparse than the pointwise flame matrix.

In helmholtz-x, we use distributed w(x) for longitudinal combustors and pointwise
w(x) for annular combustors. Although distributed w(x) can be used for annular
combustors, it has a high memory requirement.

2.5.2 Pointwise measurement function

The pointwise measurement function has a nonzero contribution only at the measure-
ment point(s) (xr). We use this for annular combustors, where multiple pairs of w(xr)
and h(xf ) exist. We calculate the pointwise values of the gradient of the trial function
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∇ϕk near the points xr such that Eq. (19) becomes

(γ − 1)
q0f
ub

∫
Ω

ϕj h(x) dxf︸ ︷︷ ︸
left vector

∫
Ω

∇ϕk(xrf ) · nr

ρ0(xrf )
dxf︸ ︷︷ ︸

right vector

(21)

where subscript f represents the relevant flame index. If there are N discrete sec-
tors in the annular combustor, there are N measurement points and heat release rate
distributions. We find the contributions to D of the corresponding flame and its mea-
surement point iteratively. We access the nonzero data through the subscript f . In
helmholtz-x, each individual h(x) integrates to 1 over the domain7. In addition, the
heat release rate volumes are tagged as separate subdomains starting from 0 to N −1.
These tags are used in helmholtz-x during assembly (Fig. 1a).

2.6 Bloch boundary condition

If the computational domain has an N -fold discrete rotational symmetry (Fig. 1b), the
circumferential eigenmodes can be calculated by repeating a single geometry N times
[42], first implemented in thermoacoustics by [5, 6]. For this, we apply Bloch-type
boundary conditions to the relevant (master and slave) boundaries. This boundary
condition reduces the computation load by 2N times. helmholtz-x follows the method-
ology presented in [6]. According to Bloch-wave theory, the acoustic wave can be
expressed by;

p̂b(ϕ, r, z) = p̂b+N (ϕ, r, z)eibϕ(ϕ, r, z), (22)
where ϕ, r and z are angular coordinates and b is the Bloch wavenumber. In helmholtz-
x, the Bloch boundary condition is implemented as a Dirichlet (essential) boundary
condition [6]. We map the matching nodes between master and slave boundaries (Fig.
2) with Eq. (22). When Bloch boundary conditions are applied, the number of DOFs
in the mesh reduces. This requires manipulation of the matrices in Eq. (14) such that
the DOFs of the slave boundary and its entries are deleted, and a periodicity scalar
fb = eib2π/N is imposed on the master facets. The eigenmode of the system is found
with these matrices. Then the slave DOFs are added back to the eigenvector.

In helmholtz-x, parallel calculations are handled by partitioning the mesh. This
partition is performed arbitrarily. The parallelization of the calculations with Bloch
boundary conditions is possible but is not addressed in helmholtz-x. This is because the
pairing between master and slave DOFs is unevenly distributed over the processors,
which makes the mapping difficult. There are several approaches that could handle
this problem. One solution would be to allocate the DOFs of the master and slave
nodes to certain processors via custom partitioning of the mesh. Another approach
would be to use dolfinx mpc8 library to handle the parallelization through multi-point
constraints. dolfinx mpc currently does not, however, support complex coefficients as a
periodic constraint, so this would have to be implemented in order to implement Bloch
boundaries. The final approach would be to generate periodic meshes. We currently

7The integral
∫
Ω
h(x)dx = N over the domain and we input the heat release rate q0 per single flame

(q0N = qtotal where qtotal is the total power of the annular combustor).
8https://github.com/jorgensd/dolfinx mpc
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(a) Subdomain tagging for the annular combustor. The numbering runs from 0 to
15 because there are 16 flame volumes in total within the heat release rate function
h(x).

(b) Example annular combustor geometry. The gray section represents a single sector
out of 20 identical sectors. With Bloch boundary condition, the azimuthal eigen-
modes can be calculated by considering only the gray section.

Fig. 1
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Fig. 2: Example mesh for Bloch BC application. The DOFs of the blue (slave) nodes
should be paired with the DOFs of the red (master) nodes according to the numbers
(from 1 to 11 in this example). The half-sector mesh is then reflected with respect to
the symmetry axis/plane in order to guarantee one-to-one DOF mapping.

obtain periodicity by mirroring the mesh of the halved sector geometry with respect
to the burner plane. A custom subroutine that imposes periodicity on the topology
would need to be implemented to ensure that the mesh topology is periodic. These
approaches require further development and we leave them for future work.

2.7 Fixed-point Iteration & Newton’s method

The nonlinear eigenvalue problem consists in finding the eigenvalues ω ∈ C and the
non-zero eigenvectors p ∈ Cn such that

L(ω)p = 0, (23)

in which L depends nonlinearly on ω.

2.7.1 Fixed-point iteration

At each iteration, we solve a generalised eigenvalue problem for f2.

L(f ;ω)p =
(
A + ω[k]B + f2(ω[k])C−D(ω[k])

)
p = 0, (24)
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where f is the eigenvalue and ω[k] is a parameter. At the zeroth iteration, ω[k] = 0.
In the simplest version of the fixed-point iteration, ω[k+1] = f(ω[k]), and the itera-
tion might not converge to a fixed point. According to Banach’s fixed-point theorem,
a necessary condition for the mapping, f , to converge to a fixed point, ω, is that
|f ′(ω)| < 1. In this case, there is no guarantee that |f ′(ω)| < 1. In order to improve
the convergence, we can use a relaxation method:

ω[k+1] = g(ω[k];α) ≡ αf(ω[k]) + (1− α)ω[k], (25)

where g is a mapping and α is a relaxation factor. The rate of convergence is equal to
the smallest positive integer, m, satisfying ∂m/∂zm g(z = ω) ̸= 0. If g′(ω) = 0, then
the rate of convergence is quadratic.

g′(ω[k];α) = αf ′(ω[k]) + 1− α = 0. (26)

From Eq. (26), we obtain α = 1/(1− f ′(ω[k])) and use it as a relaxation coefficient in
Eq. (25). We can approximate f ′(ω[k]) with a backward difference

f ′(ω) =
f(ω[k])− f(ω[k−1])

ω[k] − ω[k−1]
(27)

A fixed-point iteration can be implemented in more than one way. Instead of a linear
eigenvalue problem, we can choose to solve at each iteration a quadratic eigenvalue
problem for f [43];

L(f ;ω)p =
(
A + f(ω[k])B + f2(ω[k])C−D(ω[k])

)
p = 0. (28)

We provide the pseudocode for the fixed point iteration scheme in Alg. 1.

12



function Eigensolver(A, B, C, D, tol, maxiter):
k ← −1

ω[k] ← 0

Solve L(f ;ω[k])p = 0 to find f2 and p

ω[k+1] = f
∆ω ← 2× tol
while |∆ω| > tol and k < maxiter do

k ← k + 1

Solve L(f ;ω[k])p = 0 to find f2 and p

f ′ ← f(ω[k])− f(ω[k−1])

ω[k] − ω[k−1]

α← 1

1− f ′

ω[k+1] ← αf + (1− α)ω[k]

∆ω ← ω[k+1] − ω[k]

end

return ω[k+1], p

end
Algorithm 1: Pseudocode for the fixed-point iteration algorithm. We supply the
PETSc matrices A,B,C and D(ω) generated by DOLFINx and UFL to the algo-
rithm. It converges to the eigenvalue by iteratively updating D(ω) when solving
the polynomial eigenvalue problem in Eq. (28). Relaxation is used in order to
accelerate the convergence.

2.7.2 Newton’s method

At each iteration, we solve an auxiliary generalised eigenvalue problem for λ.

L(ω)p = λCp. (29)

We want to find ω such that λ = 0. As with the fixed-point iteration, here ω takes the
role of a parameter. If we linearize λ = 0 with respect to ω, we obtain

λ(ω + ∆ω) ≃ λ(ω) + λ′(ω)∆ω = 0. (30)

Therefore, at each iteration step we update ω according to

ω[k+1] = g(ω[k]) ≡ ω[k] − λ(ω[k])

λ′(ω[k])
, (31)

where g is a mapping and g′ is guaranteed to be 0 at a fixed point. Using perturbation
theory, the first derivative of λ with respect to ω is

λ′(ω) =
p†HL′(ω)p

p†HCp
(32)
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For a degenerate eigenvalue with multiplicity m, in order to have quadratic conver-
gence,

ω[k+1] = g(ω[k]) ≡ ω[k] −m
λ(ω[k])

λ′(ω[k])
(33)

Newton’s method is the first of a class of methods called Householder’s methods [6, 10].
The pseudocode for the proposed algorithm with Newton’s method is given in Alg. 2.

function Eigensolver(A, B, C, D, ω[0], tol, maxiter):
k ← −1
∆ω ← 2× tol
while |∆ω| > tol and k < maxiter do

k ← k + 1

Solve L(ω[k])p = λCp to find λ and p

Solve (L(ω[k]))Hp† = λ∗Cp† to find λ∗ and p†

λ′ ← p†HL′(ω[k])p

p†HCp

ω[k+1] ← ω[k] − λ

λ′

∆ω ← ω[k+1] − ω[k]

end

return ω[k+1], p, p†

end
Algorithm 2: Pseudocode for the Newton’s method. We supply the PETSc matri-
ces A,B,C and D(ω) as well as initial guess for the eigenvalue ω[0]. We iteratively
update ω with Newton’s method using direct and adjoint eigenfunctions of Eq. (29).
Unlike fixed-point iteration, this algorithm strongly relies on the initial eigenvalue
ω[0].

2.8 Software Structure

helmholtz-x follows the philosophies of scalability, reproducibility, evolvability and
aims to be readable using a Python interface [44]. helmholtz-x heavily exploits the
principles of object oriented programming. The typical simulation flow is visualized in
Fig. 3, in which the submodules of helmholtz-x and their functionalities are classified.
The source code of helmholtz-x can be found in the helmholtz_x directory in the
repository9. helmholtz-x uses DOLFINx v0.9.0.

2.8.1 Pipeline of helmholtz-x

In this section, we describe the helmholtz-x utilities step by step.
Mesh, subdomains, and facets: We first need to generate the mesh, subdomains

and facets. If flames are included, we need to define the flame volume subdomains
during mesh generation. These subdomains are labeled from 0 to N − 1. We also tag
facets to impose boundary conditions. helmholtz-x provides simple geometries such as

9https://github.com/ekremekc/helmholtz-x/tree/paper
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Fig. 3: The components of helmholtz-x and the flowchart for the solution of the
inhomogeneous thermoacoustic Helmholtz equation.
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intervals, squares and boxes using the DOLFINx mesh generators. For complex geome-
tries, we use the open source finite element mesh generator Gmsh, which generate
grids for .step files through its Python API and Open Cascade kernel [45]. For Gmsh
meshes, we transform the generated grids into the XDMF format for consistency with
DOLFINx modules. The following lines read an XDMF mesh with its subdomains and
facets tags:

1 geometry = XDMFReader("PathForMesh")
2 mesh , subdomains , facet_tags = geometry.getAll ()

There are several examples with different grids in the /numerical examples folder.
Assembling the acoustic matrices: We define the parameters for acoustic

matrices A, B and C with a standalone params.py file that is imported into the main
calculation file. These two files are kept separate in order to track the problem param-
eters more conveniently. First we define boundary conditions by specifying facet tags
as a Python dictionary, for example:

1 boundary_conditions = {1:{"Dirichlet"},
2 3:{"ChokedInlet":params.M_in},
3 8:{"ChokedOutlet":params.M_out},
4 11:{"Robin":params.R}}

where the integer dictionary keys represent the corresponding Gmsh tags of each
boundary condition. The choked inlet and choked outlet boundaries adopt the Mach
number near the boundaries. Robin boundaries are specified with their reflection coef-
ficients. We input the speed of sound or temperature field to construct the acoustic
matrices:

1 c = params.c(mesh)
2 matrices = AcousticMatrices(mesh , facet_tags , boundary_conditions , c, degree=degree

)

where the degree represent the polynomial degree of basis functions of the continuous
Lagrange finite elements. The parameter c is the speed of sound. The AcousticMa-
trices class can also take temperature as a parameter and convert it to the speed of
sound using the relation: c =

√
γrgasT0.

Defining the flame transfer function: If we solve the inhomogeneous Helmholtz
equation, matrix D needs to be implemented, which requires an FTF. helmholtz-x has
two different FTFs: the n− τ formulation or the state space representation (from an
experimental FTF). These can be defined by using nTau or stateSpace classes as

1 FTF = nTau(params.n, params.tau)
2 FTF = stateSpace(params.S1 , params.s2, params.s3, params.s4)

by importing the necessary parameters from params.py.
Assembling the flame matrix: For distributed D, we define the parameters of

Eq. (19) and input them to the DistributedFlameMatrix class with:

1 rho = rho_step(mesh , params.x_f , params.a_f , params.rho_d , params.rho_u)
2 w = gaussianFunction(mesh , params.x_r , params.a_r)
3 h = gaussianFunction(mesh , params.x_f , params.a_f)
4 FTF = nTau(params.n, params.tau)
5 D = DistributedFlameMatrix(mesh , w, h, rho , T, params.q_0 , params.u_b , FTF , degree=

degree)
6 D.assemble_submatrices ()

where the function D.assemble submatrices() takes two parameters, ‘direct’ (by
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default) or ‘adjoint’. For implementing pointwise D, we import the necessary
parameters of Eq. (21) and use them in the PointwiseFlameMatrix class by, for
example:

1 h = Q_multiple(mesh , subdomains , params.N_sector)
2 D = PointwiseFlameMatrix(mesh , subdomains , params.x_r , h, params.rho_xr , params.q_0

, params.u_b , FTF , degree=degree)
3 D.assemble_submatrices ()

Imposing Bloch boundary conditions: If there are Bloch boundaries, we define
them in the boundary conditions dictionary. For this, we specify slave and master
boundaries with their physical tags such as

1 boundary_conditions = {11: {’Robin’:params.R_outlet},
2 12: ’Master ’,
3 13: ’Slave ’}

Then we manipulate the matrices in the system with

1 bloch_matrices = Blochifier(geometry , boundary_conditions , N, acoustic_matrices)
2 D = PointwiseFlameMatrix(mesh , subdomains , params.x_r , h, params.rho_amb , params.

q_0 , params.u_b , FTF , degree=degree , bloch_object=bloch_matrices)
3 D.blochify ()

where N is the Bloch number. The flame matrix classes take the post-Bloch matrices
as a bloch object parameter to create D.

Solving the system: If the Helmholtz equation is homogeneous, we use the EPS
solver such that

1 target = 200 * 2 * np.pi
2 E = eps_solver(matrices.A, matrices.C, target , nev=2, print_results=True)

or, if we have Robin boundaries, the PEP solver such that

1 target_dir = 262 * 2 * np.pi
2 E = pep_solver(matrices.A, matrices.B, matrices.C, target_dir , nev=10,

print_results=True)

In helmholtz-x, the unit of the target eigenvalue is rad s−1. We converge to the
targeted angular eigenfrequency. If the problem is inhomogeneous, we have D and we
use fixed point iteration (or a Newton solver) such that

1 target = 200 * 2 * np.pi
2 E = fixed_point_iteration(matrices , D, target , nev=2, i=0, print_results= False)

All these functions return a SLEPc object E, from which we extract eigenvalues and
eigenvectors.

Extracting the eigenvalues and eigenvectors: In helmholtz-x, we normal-
ize the eigenvectors such that

∫
p̂21,h=1. When the object E is computed, it has

eigenvalue ω and eigenvectors p and p† as instances. We extract them with the
normalize eigenvector function with

1 omega , p = normalize_eigenvector(mesh , E, i=0, degree=degree , which=’right’)

where the parameter i is the index of the converged eigenvalue and the keyword
which decides whether to return the right or left eigenvector.

Saving the eigenvector and eigenvalue: We save the eigenvector in XDMF file
format with utility xdmf writer, if the degree of the finite element basis is 1. For the
higher order Lagrange spaces with the degree greater than 1, we use VTK file format

17



by calling vtk writer. We save the eigenvalue of the corresponding eigenvector with
dict writer function.

1 # Save eigenvectors
2 xdmf_writer("PathToWrite", mesh , p) # if degree of p is 1
3 vtk_writer("PathToWrite", mesh , p) # if degree of p is greater than 1
4 # Save eigenvalues
5 omega_dict = {’direct ’:omega}
6 dict_writer("PathToWrite", omega_dict)

We then visualize the resulting output file with open-source visualization toolkit
ParaView [46].

2.8.2 Parallelization

Any eigenmode calculation without Bloch boundary conditions can be parallelized
using helmholtz-x with the command mpirun -np n proc python3 -u file.py where
n proc specifies the number of processors and file.py is the Python script to be paral-
lelized. After writing the params.py and main scripts following the pipeline (Sec. 2.8.1),
helmholtz-x handles the parallelization internally. All computations in this paper are
performed using hardware with Intel(R) Xeon(R) E5-2620 v4 2.10GHz x 16 processors
and 32GB memory.

3 Numerical examples

In this section, we present several test cases with helmholtz-x for longitudinal and
annular geometries and compare them against other numerical tools in the litera-
ture. An additional numerical verification against manufactured solution without the
thermoacoustic effect is given in Appendix B.1.

3.1 Longitudinal thermoacoustic systems

We first verify the results of helmholtz-x in relatively simple thermoacoustic cases: a
hot wire Rijke tube, a longitudinal combustor, and an industrial network model [2].

3.1.1 Hot wire Rijke tube

In this section, 1D, 2D and 3D test cases of the hot wire Rijke tube
are implemented. The code is presented in numerical_examples/Longitudinal/

NetworkCode/RijkeTube* folders in the repository. The schematic representation of
the hot wire Rijke tube case is shown in Fig. 4.

We define w(x) and h(x) as multi-dimensional Gaussian functions (Eq (34)) in
which ndim is the spatial dimension and σ controls the width of the Gaussian around
its central point P (x0, y0, z0):

G(x) =
1

σndim(2π)ndim/2
exp

(
− (x− x0)2 + (y − y0)2 + (z − z0)2 + ...

2σ2

)
. (34)

We supply w(x) and h(x) fields as inputs when constructing the Distribut-
edFlameMatrix instance for assembling the flame matrix. The parameters of the
Helmholtz solver are tabulated in Table 1.
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Fig. 4: Schematic representation of the Rijke tube. We implement w(x) and h(x) with
Gaussian functions.

Table 1: Dimensional parame-
ters of the hot wire Rijke tube.

Parameter value unit

L 1 m
d 0.047 m
rgas 287.1 Jkg−1K−1

p0 101325 Pa
ρu 1.22 kg m−3

ρd 0.85 kg m−3

Tu 285.6 K
Td 409.92 K
q0 -27.0089 W
ub 0.1006 m s−1

n 0.1 -
τ 0.0015 s
xf 0.25 m
af 0.025 -
xr 0.2 m
ar 0.025 -

The speed of sound field is calculated from the temperature distribution. The
interaction index n is scaled by dividing by the cross-sectional area of the tube (πd2/4)
for the 1D case and by πd/4 for the 2D case. The 3D case does not require scaling.
For calculation of γ = cp/cv = cp/(cp − rgas), linear temperature dependence of
cp(T ) = 973.60091 + 0.1333T is used for both the Helmholtz solver and the network
code. For simplicity, all boundaries are assumed to be Neumann. Passive and active
flame simulations are performed. Their eigenfrequencies are tabulated in Table. 2 and
they agree well. The adjoint eigenmode computation with helmholtz-x is explained
with a more detailed test cases in Appendix B.2.

3.1.2 Flame in a cylindrical duct with choked boundaries

In this case, we use a geometry that has area changes and choked boundaries
at both ends. The code is implemented in numerical_examples/Longitudinal/
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Table 2: Eigenfrequencies of the passive and active flame test cases
for the Rijke tube. GR denotes the growth rate. The eigenfrequen-
cies become closer as the grid resolutions of helmholtz-x increases.

Run
Passive Active

f (1/s) GR (rad/s) f (1/s) GR (rad/s)

Network code [2] 169.178074 0. 197.784121 6.411332
1D helmholtz-x 169.377645 0. 197.699903 6.683160
2D helmholtz-x 169.377337 0. 197.762459 6.668631
3D helmholtz-x 169.410068 0. 198.577709 6.797977

xr

xf

choked
inlet

choked
outlet

injector (measurement region )

heat release rate

w(x)

h(x)

0.2m 0.3m 0.5m

0.126m 0.089m 0.126m

Fig. 5: Schematic representation of the flame in a cylindrical duct with choked bound-
ary conditions. The red zone represents the heat release rate field and the blue zone
shows the fuel injection point, which is at the centre of the 0.3m duct.

NetworkCode/FlamedDuct folder in the repository. A schematic representation of this
test case is shown in Fig. 5.

This example is useful to check the Helmholtz solver’s ability to capture the influ-
ence of the area change and acoustic energy losses through the choked boundaries.
The parameters of this test are given in Table 3.

The density field ρ0 is calculated from the ideal gas equation of state, p0 = ρ0rgasT0

using the temperature field. The Mach number near the inlet is Min = 0.0092 and near
the outlet is Mout = 0.011. The heat release rate and measurement region fields for
this case are implemented with Eq. (34). For the heat release rate field, the Gaussian
function is halved and rescaled such that it integrates to 1.

Table 4 shows the eigenvalues for passive and active flame configurations, compar-
ing helmholtz-x against the network code. For the passive flame, the thermoacoustic
system loses energy through the choked boundaries as expected. For the active flame,
the growth rate becomes more negative.

The normalized magnitudes of the eigenfunctions of helmholtz-x and a network
model for the active flame case can be seen in Fig. 6. The trend of the acoustic
pressure in the axial direction is very similar for both approaches. We note that the
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Table 3: Dimensional parameters
of the flame in a cylindrical duct.
Tu denotes the temperature before
the flame and Td denotes the tem-
perature after the flame. γ linearly
depends on the temperature as in
Sec. 3.1.1

Parameter value unit

rgas 287.1 Jkg−1K−1

p0 101325 Pa
Tu 1000 K
Td 1500 K
q0 -57015.232 W
ub 11.4854 m s−1

n 1 -
τ 0.002 s
xf 0.5 m
af 0.025 -
xr 0.35 m
ar 0.025 -

Table 4: Eigenfrequencies of the passive and active flame test cases for the
flame in a duct. GR denotes the growth rate. 177,737 elements are used for
the FEM simulation.

Run
Passive Active

frequency (1/s) GR (rad/s) frequency (1/s) GR (rad/s)

Network model [2] 267.1030 -10.944425 267.307657 -43.4478
helmholtz-x 261.7945 -11.9214 262.559781 -43.2349

network model for this thermoacoustic case includes some connections, each repre-
senting the thermoacoustic contributions such as choked ends, flame and area change
affects. Although the absolute acoustic pressure for the network code looks continu-
ous (Fig. 6b), the network code performs pointwise evaluations and performs linear
interpolation between them.

3.2 Annular Combustors

In this section, we demonstrate the capability of helmholtz-x to compute thermoa-
coustic eigenmodes for annular geometries. The helmholtz-x code is held in the
numerical_examples/AnnularCombustor/MICCA folder in the repository. For this test
case, we choose a laboratory-scale annular combustor, MICCA [47, 48]. Thermoa-
coustic limit cycles of standing, spinning, and slanting modes are observed at some
operating conditions [49, 50]. The MICCA combustor is composed of an annular
plenum, 16 injectors and an annular combustion chamber. Each injector has a burner
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(a) Helmholtz solver

(b) Network model

Fig. 6: Normalized amplitude of the direct eigenfunction p̂1 for (a) the Helmholtz
solver and (b) a network code

and a perforated plate. Following [48], the perforated plate and the burner are rep-
resented by a cylindrical volume. Fig. 7 shows one sector of the MICCA combustor
model.

For annular geometries, we use the PointwiseFlameMatrix class to implement D
(see Sec. 2.5.2). We consider the same operating conditions as operating point B in
[48]. A standing mode with a stable limit cycle at a frequency of 487 Hz is observed
in the experiments. The total power of the flame for each burner is q0 = 2080 W, and
the bulk flow velocity is ub = 0.66 m/s. The ratio of specific heats, γ = 1.4, is assumed
to be independent of temperature. The mean temperature in the plenum and up to
the combustion chamber is T̄ = 300 K. In the combustion chamber, the temperature
profile is parabolic, gradually decreasing between the values at the flame positions xf

and the chamber outlet, given in Eq. (35). In helmholtz-x, Eq. (35) is implemented
with degree 0 discontinuous Galerkin elements.

T (z) =

300, if z < zf

(1200− 1521)
(

z−zf
lcc

)2
+ 1521, otherwise.

(35)
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Fig. 7: Section of one sector of the MICCA combustor. The dash-dotted line is the
axis of symmetry. The subscripts stand for: plenum (p), burner (b), perforated plate
(pp), flame (f ), combustion chamber (cc). rp = 140 mm, Rp = 210 mm, lp = 70 mm,
db = 33 mm, lb = 14 mm, dpp = 18.9 mm, lpp = 6 mm, df = 36 mm, lf = 6 mm,
rcc = 150 mm, Rcc = 200 mm, lcc = 200 mm. The vertical dashed axis represents the
longitudinal axis of the burner. The red zone represents the cylindrical heat release
rate domain and the blue circle represents the pointwise measurement function.

The experimental flame transfer function depends on the frequency of the excita-
tion and on the ratio of the root mean square of the velocity fluctuation measured at
the reference point, u1, to the average flow velocity in the injector, ub (Eq. (3)).

We apply Neumann boundary conditions at the combustor walls and a Robin
boundary condition at the outlet surface. The reflection coefficient at the outlet bound-
ary is Routlet = −0.875 − 0.2i. In this paper, we obtain the flame transfer function
FTF, by considering a relatively small amplitude, |u′/ū| = 0.1. In order to calculate
the first derivative of the linear operator L with respect to the eigenvalue ω without
approximations, we need FTF(ω) in equation (3) to be analytic in the complex plane
[51]. We approximate the frequency response of the flame with a linear state-space
model. The transfer function of the state-space model,

FTF(ω) = sT3
(
iωI− S1

)−1
s2 + s4, (36)
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Fig. 8: Gain and phase of the flame transfer function (|u′/ū| = 0.1) as a function
of the frequency. The squares are the values obtained from the experiments [48], and
the solid line is the transfer function of the linear state-space model, evaluated at
real values of the angular frequency ω. The stateSpace class in helmholtz-x is used to
obtain an analytical function for FTF(ω).

will correspond to the FTF. In order to obtain an analytic transfer function, we apply
the Vector Fitting algorithm [51, 52]. The experimental FTF and the transfer function
of the state-space model are shown in Fig. 8.

3.2.1 Eigenmodes

helmholtz-x can capture numerous eigenmodes by specifying the nearest target to the
desired eigenvalue. Computations for different eigenfunctions are shown in Fig. 9 and
their eigenfrequencies are presented in Table 5.

3.2.2 Bloch boundary conditions

In this section, we check the Bloch boundary condition implementation within
helmholtz-x. We use a single sector of MICCA and the same parameters as in Sec. 3.2.
As explained in Sec. 2.8.1, we impose slave and master boundaries of Bloch bound-
aries with their physical tags. We calculate the Bloch form of the acoustic and flame
matrices for MICCA. For this comparison, we only consider the plenum-dominant
azimuthal mode (Fig. 9c) and we verify the results against [5]. The results for different
case studies, including with parallelization, are tabulated in Table 6.
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Fig. 9: Computed eigenmodes for the MICCA combustor with helmholtz-x. The cor-
responding eigenvalues are given in Table 5.
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Table 5: Eigenfrequencies of the
active flame test cases for the MICCA
combustor using helmholtz-x. The
corresponding modeshapes are shown
in Fig. 9. The growth rates of Fig. 9c
and Fig. 9d become closer when the
numerical grid is refined.

Mode
Active

frequency (1/s) GR (rad/s)

Fig. 9a 149.151 -534.155
Fig. 9b 289.976 -629.029
Fig. 9c 517.364 +465.643
Fig. 9d 517.355 +435.378
Fig. 9e 721.206 +3.871
Fig. 9f 1314.411 -5.202
Fig. 9g 1617.749 -22.147
Fig. 9h 1721.129 +333.431

The experimental eigenfrequency found in [48] is observed to be lower than that
calculated with helmholtz-x and PyHoltz [6]. This may be due to the approximated
speed of sound field (Eq. (35)) used in both numerical computations. helmholtz-x has
slightly different eigenvalues for the full annulus and the case with Bloch boundary
conditions. This is because periodicity is not imposed when generating the full annu-
lus mesh. Computations with the full annulus mesh generated by copying and rotating
the single sector mesh Nsector times would give closer eigenvalues, as performed in [6].
This requires further manipulation of the physical tags when using Gmsh so we do not
address this here. Although it uses fewer elements, PyHoltz[6] has a higher computa-
tional time than helmholtz-x because it uses the numpy and scipy packages for matrix
generation and solution, rather than PETSC and SLEPc[53]. When parallelizing from
1 to 8 processors, the computational time of helmholtz-x reduces by a factor of 8. For
similar test cases, SLEPc shows linear scaling up to 16 processors (Sec. 9 in [54]).

Table 6: Eigenfrequencies of the active flame test cases for the MICCA combus-
tor calculated with fixed point iteration.

Case Tool
Number of Number of Eigenfrequency Computation
processors cells (1/s) time (s)

Experiment [48] - - 487 -
Full Annulus [6] 1 10,528 511.4+79.4j 4627.55

Bloch [6] 1 658 511.4+79.4j 82.88
Full Annulus helmholtz-x 1 163,165 517.3+74.1j 122.47
Full Annulus helmholtz-x 8 167,401 517.3+74.1j 14.01

Bloch helmholtz-x 1 47,672 513.3+75.6j 15.70
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4 Adjoint based shape optimization

In this section, we demonstrate the adjoint features of helmholtz-x and apply
them to shape optimization. We consider a hot wire Rijke tube, as in Appendix
B.2, with dimensional equations. We parametrize the cylindrical geometry using
FFD. The helmholtz-x code for this example is in the numerical_examples/

ShapeSensitivities/RijkeFFD folder in the repository.

4.1 Free form parametrization

Free form deformation establishes a parametrization relationship between the mesh
nodes and the individual control points around and inside the geometry of interest.
These control points generate the control lattice (Fig. 10a), which can form any geo-
metric shape. Mostly, cylindrical or cube-shaped lattices are preferred so that the
control points can be manipulated conveniently.

Any mesh node around the control lattice can be expressed in terms of parametric
coordinates (s, t, u), as in Eq. (37), where X0 represents the center of the control
lattice and S, T and U are the parametric unit vectors in the radial, circumferential
(azimuthal) and axial directions, respectively.

X = X0 + sS + tT + uU. (37)

Considering the control lattice in Fig. 10a, the mesh nodes are firstly transformed
into cylindrical coordinates. Then their parametric coordinates are computed with Eq.
(37). The range of the parametric coordinates is between 0 and 1 for radial (r) and
axial (z) directions and between 0 and 2π for the azimuthal direction (ϕ).

The FFD control points can be arbitrarily inserted depending on the application.
In this paper, we specify the positions of the control points with a equispaced pattern
forming a cylindrical lattice using Eq. (38). We define the FFD control points using

Pijk = X0 +
i

l
S +

j

m
T +

k

n
U, (38)

where l,m, n specifies the total number of control points in the radial, azimuthal
and axial directions. The positions and number of FFD control points are important
because they form the control lattice and determine the permitted deformation magni-
tudes and directions. Therefore, the control points should be numbered and positioned
to prevent potential overlapping geometrical deformations after control point displace-
ments. For simple or symmetric geometries, equispaced control points might handle
the deformations. However, for complicated geometries, an irregular pattern for the
placements might perform better depending on the goal. For instance, control points
structuring a cylindrical lattice could handle cylinder-like geometries better, whereas
for cornered geometries, box-like lattices might be more convenient, with control points
positioned at the corners.

We first position the FFD control points within the lattice and calculate the
parametric coordinates of the mesh nodes. We change the coordinates of the FFD
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(a) FFD configuration for a cylindrical grid using a cylindrical control lattice with
control points (red dots). r, ϕ and z denotes the radial, circumferential and axial
directions. Black lines connect the control points.

(b) FFD control points for the hot wire Rijke tube. There are 2, 4 and 9 control
points positioned through the radial, circumferential and axial directions respec-
tively.

Fig. 10

control points and deform the mesh nodes individually with trivariate Bernstein basis
polynomials, as shown in Eq. (39):

XFFD =

(
l∑

i=0

(
l

i

)
(1− s)l−isi

( m∑
j=0

(
m

j

)
(1− t)m−jtj (39)

( n∑
k=0

(
n

k

)
(1− u)n−kukPijk

)))
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The FFD configuration for the Rijke tube can be seen in Fig. 10b. We place more
control points in the axial direction than other directions in order to increase the
longitudinal control.

4.2 Shape derivatives

The shape sensitivities for the thermoacoustic Helmholtz equation are derived in [39].
In Hadamard-form, we can compute the shape derivative of the FFD control points
using direct and adjoint eigenvectors. The most general expression for the shape
derivative is that using impedance (Robin) boundary conditions, as in Eq. (40):

ω′
ijk =

∫
∂Ω

Vijk · nijk

(
− p̂†

∗

1

(
κc2

∂c

∂n

)∂p̂1
∂n

+∇ ·
(
p̂†

∗

1 c2∇p̂1
)

− 2
∂p̂†

∗

1

∂n
c2

∂p̂1
∂n

)
dS, (40)

where ω′
ijk is the complex-numbered shape derivative for the control point Pijk and

nijk is its outward normal vector. When applying Neumann boundaries, we impose

∂p̂1/∂n = 0 and ∂p̂†1/∂n = 0. In this example, we only consider design changes for the
lateral surface in the normal directions. The shape derivative of any control point is
then

ω′
ijk =

∫
∂Ω

Vijk · nijk

(
∇ ·
(
p̂†

∗

1 c2∇p̂1
))

dS, (41)

for Neumann boundary conditions. We use Eq. (41) to calculate the shape derivatives
of the control points visualized in Fig. 10a in the direction of facet normals. To compute
the displacement field Vijk for the control point Pijk, we take the derivative of the
mesh nodes with respect to the control point, as shown in Eq. (42).
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( n∑
k=0

(
n

k

)
(1− u)n−kuk

)))
.

The field Vijk can then be used in Eq. (41) to calculate ω′
ijk for Pijk. The helmholtz-x

implementation of Eq. (41) is shown in Listing 1.

1 def shapeDerivativesFFD(geometry , lattice , physical_facet_tag , omega_dir , p_dir ,
p_adj , c, acousticMatrices , FlameMatrix):

2 normal = FacetNormal(geometry.mesh)
3 ds = Measure(’ds’, domain = geometry.mesh , subdomain_data = geometry.facet_tags

)
4 p_adj_norm = normalize_adjoint(omega_dir , p_dir , p_adj , acousticMatrices ,

FlameMatrix)
5 p_adj_conj = conjugate_function(p_adj_norm)
6 G_neu = div(p_adj_conj * c**2 * grad(p_dir))
7 derivatives = {}
8 i = lattice.l-1
9 for zeta in range(0,lattice.n):

10 derivatives[zeta] = {}
11 for phi in range(0,lattice.m):
12 V_ffd = ffd_displacement_vector(geometry , lattice , physical_facet_tag ,

i, phi , zeta , deg=1)
13 shape_derivative_form = form(inner(V_ffd , normal) * G_neu * ds(

physical_facet_tag))
14 eig = assemble_scalar(shape_derivative_form)
15 derivatives[zeta][phi] = eig
16 return derivatives

Listing 1: helmholtz-x code for computing shape derivatives of FFD control points.
Line 6 represents the UFL form of Eq. (41). In the radial direction, we only compute
the shape derivatives of the control points on the lateral surface. Between lines 9
and 15, we loop over the control points in the azimuthal (ϕ) and axial (z) directions,
respectively.

We calculate the shape gradient aligned with the outward normal vector of the
relevant control point. The physical interpretation of the complex-valued shape
derivatives are shown in Fig. 11 with example design changes to reduce the growth
rate of the eigenvalue. In summary, the main steps of the adjoint based shape
optimization method with FFD control points are:

• the three dimensional numerical grid is generated;
• the FFD lattice and its control points are defined after calculating the parametric

coordinates of the nodes in the grid;
• direct and adjoint eigenmodes are calculated with P2 (degree 2) finite elements;
• the shape derivatives of the FFD control points are calculated and normalized;
• the shape is deformed in line with the direction provided by the normalized shape

derivatives, with a certain step size.
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Fig. 11: Design changes that improve stability of the thermoacoustic system. ω′ is the
complex-valued shape derivative of the corresponding FFD control point. In scenarios
in which the mode is unstable and the imaginary portion of the shape derivative at the
control point has a negative sign, moving the control point along the outward normal
vector direction improves system stability.

4.3 Optimization

We calculate the direct and adjoint eigenmodes of the Rijke tube with helmholtz-x and
obtain the shape derivatives of the control points on the lateral (Neumann) surface
using Eq. (41). We only allow radial displacements of the control points and do not
impose shape changes in the axial direction.

We then iterate over the control points on the lateral boundary and move them
individually in the direction provided by the shape gradients. The deformed geometry
of the Rijke tube is shown in Fig. 12. The growth rate of the eigenmode for the
deformed design becomes negative after deformation. The general trend of the growth
rate due to FFD changes is found to be similar to that in [23], in which B-Spline
parametrization was applied. The example in this paper, however, allows radii changes
for the inlet and outlet circular boundaries.

5 Conclusion

We present an open-source parallelized finite element framework, helmholtz-x, which
solves the thermoacoustic Helmholtz equation, and present increasingly elaborate
examples. In Sec. 2, we explain the FEM discretization and implementation details for
helmholtz-x. In Sec. 3.1, we investigate axial eigenmodes in longitudinal combustors.
We begin with a relatively simple example, the Rijke tube with Neumann boundary
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Fig. 12: Optimized geometry of the Rijke tube. The eigenfrequency after free form
deformation is ω/2π = f = 202.171 − 0.354 s−1. The red (top) and green (bottom)
dots are the initial and final positions of the FFD control points for the initial (top)
and final (bottom) geometries after few deformations.

conditions. Then we propose a more detailed longitudinal example with area changes
in the axial direction and choked boundary conditions at the inlet and outlet bound-
aries. We find that eigenmode computations of helmholtz-x in different configurations
agree well with those of a network model for passive and active flame cases ( Table 2
and Table 4). In Sec. 3.2, we present a numerical example of a laboratory 3D annular
combustor, MICCA. We implement a 3D parabolic temperature field. We also present
a state space representation of the experimental data of the flame transfer function
and obtain its analytical expression. Then we present different possible eigenmodes of
the MICCA combustor. We visualize the corresponding eigenvectors in Fig. 9, in which
helmholtz-x manages to capture axial (Fig. 9a), circumferential (e.g. Figs. 9c, 9d) and
mixed modes (Fig. 9h). For the efficient calculation of circumferential modes, we also
introduce Bloch boundary conditions to MICCA in Sec. 3.2.2. The circumferential
eigenmode computations are much quicker with helmholtz-x than with existing 3D
FEM tools in the literature. We also present parallelization capabilities of helmholtz-x
for the eigenmode computations for the MICCA without Bloch BCs. Finally, we pro-
pose an adjoint based shape optimization application in Sec. 4. We present a free form
deformation technique to parametrize the 3D Rijke tube geometry. We specify control
points around the tube and calculate their shape derivatives using direct and adjoint
eigenfunctions. In order to compute the shape gradients for each control point, the
adjoint feature of helmholtz-x massively reduces the number of calculations compared
with finite differences. Through this, helmholtz-x accelerates optimization procedures
that can stabilize thermoacoustic systems, such as the Rijke tube (Fig. 12).

Given its applicability to the examples shown here, helmholtz-x could be a useful
numerical tool to study and passively control thermoacoustic instabilities of complex
shaped real-world combustors. The adjoint and parallel capabilities of helmholtz-x
quickly calculate design changes that stabilize thermoacoustic systems. These can be
combined with other constraints and entered into an optimization algorithm.

Several next steps are possible. Further acoustic or thermoacoustic test cases
could be implemented, along with experimental or analytical analysis. More realistic
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geometries could be studied. The parallelization subroutines for the Bloch bound-
ary conditions could be implemented. The acoustic damping caused by area changes
could be implemented, in order to model acoustic dissipation in high speed incom-
pressible flows. The acoustic properties of perforated liners could be accounted for,
e.g. via Rayleigh conductivity. More robust interpolation schemes for 3D temperature
fields could be implemented to incorporate the temperature distributions from experi-
ments or LES. The FFD optimization procedure could be advanced by including more
complicated geometries and other engineering constraints.

Data Availability

The source code of helmholtz-x is available on the GitHub repository https://github.
com/ekremekc/helmholtz-x/tree/paper.
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Appendix A Further development of helmholtz-x

A.1 Customizable design

helmholtz-x can be developed further to include more acoustics and flame models.
For example, listing 2 shows how Robin boundary conditions are implemented. An
acoustic liner model can be integrated through an impedance relation on the wall.
This requires the block in listing 2 to be duplicated, the name of the dictionary key to
be updated, and the relation for R to be changed. helmholtz-x will then automatically
include the new boundary condition when assembling matrix B.

1 if ’Robin’ in boundary_conditions[boundary ]:
2 R = boundary_conditions[boundary ][’Robin’]
3 Z = (1+R)/(1-R)
4 integrals_Impedance = 1j * c / Z * inner(phi_k , phi_j) * ds(boundary)
5 integrals_R.append(integrals_Impedance)

Listing 2: Robin boundary condition implementation. The weak form in line 4 is
identical to Eq. (14b). We add the contributions of the Robin boundaries to the list
integrals R.

If the user wants to impose an averaged value on a boundary, an approach similar
to that in Listing 3 could be used. This example is for the implementation of choked
boundaries where the heat capacity ratio on the boundary is averaged during the
calculation of R.

1 if ’ChokedInlet ’ in boundary_conditions[boundary ]:
2 A_inlet = MPI.COMM_WORLD.allreduce(assemble_scalar(form(AreaConstant * ds(

boundary))), op=MPI.SUM)
3 gamma_inlet_form = form(gamma/A_inlet* ds(boundary))
4 gamma_inlet = MPI.COMM_WORLD.allreduce(assemble_scalar(gamma_inlet_form), op=

MPI.SUM)
5

6 Mach = boundary_conditions[boundary ][’ChokedInlet ’]
7 R = (1- gamma_inlet*Mach /(1+( gamma_inlet -1)*Mach **2))/(1+ gamma_inlet*Mach /(1+(

gamma_inlet -1)*Mach **2))
8 Z = (1+R)/(1-R)
9 integral_C_i = 1j * c / Z * inner(phi_k , phi_j) * ds(boundary)

10 integrals_R.append(integral_C_i)

Listing 3: Choked inlet boundary condition implementation. Lines 2 to 4 calculate
the average γ on the choked boundary. Line 7 calculates the reflection coeffient for
the choked inlet boundary using the near-upstream Mach number of the flow. Line 9
implements the Robin boundary condition with the specific impendance Z calculated
in line 8. Finally the implemented Robin BC is added to the Robin integrals list in
line 10.

The fluctuating body force (f̂1) and fluctuating mass (m̂1) can be used to model the
damping caused by acoustic dissipation through area changes. The user needs to dis-
cretize Eq. (1) and include damping models in the terms f̂1 and/or m̂1. Manipulation
of the UFL forms in listing 4 adds these terms into matrices A,B and C.
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1 # Matrix A
2 a_form = form(-c**2* inner(grad(phi_k), grad(phi_j))*dx)
3 A = assemble_matrix(a_form , bcs=bcs_Dirichlet)
4 A.assemble ()
5 _A = A
6

7 # Matrix B
8 if integrals_R:
9 b_form = form(sum(integrals_R))

10 B = assemble_matrix(b_form)
11 B.assemble ()
12 B_adj = B.copy()
13 B_adj.transpose ()
14 B_adj.conjugate ()
15 _B = B
16 _B_adj = B_adj
17

18 # Matrix C
19 c_form = form(inner(phi_k , phi_j) * dx)
20 C = assemble_matrix(c_form , bcs_Dirichlet)
21 C.assemble ()
22 _C = C

Listing 4: UFL forms for construction of the acoustic matrices. Lines 2 and 19 represent
Eqs. (14a) and (14c). In lines 3 and 20, Dirichlet boundary conditions are imposed.
Lines 8 to 16 construct matrix B in Eq. (14) containing Robin boundary conditions
using the list integrals R.

A.2 Handling parallel sparse matrix data

This section contains details about the algorithms that obtain the sparse left and
right vectors when constructing D and/or its adjoint. For the distributed flame
matrix, the UFL forms of the left and right vectors are defined in listing 5.

1 left_form = form((gamma - 1) * q_0 / u_b * phi_k * h * dx)
2 right_form = form(inner(n_r ,grad(phi_j)) / rho * w * dx)

Listing 5: UFL forms for left and right vectors shown in Eq. (20).

We provide the vector assembly codes for the distributed flame matrix in Listing 6
and for the pointwise flame matrix in Listing 7.

1 def _assemble_vectors(self , problem_type=’direct ’):
2 left_vector = indices_and_values(left_form)
3 right_vector = indices_and_values(right_form)
4 if problem_type == ’direct ’:
5 left_vector = distribute_vector_as_chunks(left_vector)
6 right_vector = broadcast_vector(right_vector)
7 elif problem_type == ’adjoint ’:
8 right_vector = distribute_vector_as_chunks(right_vector)
9 left_vector = broadcast_vector(left_vector)

10 return left_vector , right_vector

Listing 6: We first define the left and right vector forms as in Listing 5 The internal
function indices and values extracts the nonzero values from the left (line 2) and right
(line 3) sparse vectors. If the problem is direct, the right vector is replicated over
the processors and the left vector is distributed evenly. For the adjoint problem, the
procedure is reversed.
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1 def _assemble_vectors(self , flame , point):
2 left_form = form((gamma - 1) * q_0 / u_b * inner(h, phi_j)*dx(flame))
3 left_vector = indices_and_values(left_form)
4 _, _, owning_points , cell = determine_point_ownership( mesh._cpp_object , point ,

1e-10)
5 right_vector = []
6 if len(cell) > 0: # Only add contribution if cell is owned
7 cell_geometry = mesh.geometry.x[mesh.geometry.dofmap[cell [0]], :gdim]
8 point_ref = mesh.geometry.cmaps [0]. pull_back ([ point], cell_geometry)
9 right_form = Expression(inner(grad(TestFunction(V)), n_r), point_ref , comm=

MPI.COMM_SELF)
10 dphij_x_rs = right_form.eval(mesh , cell)[0]
11 right_values = dphij_x_rs / rho_u
12 global_dofs = dofmaps.index_map.local_to_global(dofmaps.cell_dofs(cell [0]))
13 for global_dof , right_value in zip(global_dofs , right_values):
14 right_vector.append ([global_dof , right_value ])
15 right_vector = broadcast_vector(right_vector)
16 return left_vector , right_vector

Listing 7: Code to calculate the nonzero data for the pointwise flame matrix. The
parameters flame and point represent the flame tag and its measurement point (line
1). Line 2 is identical to the left vector of Eq. (21). For the left vector data, we use
only the corresponding flame subdomain (dxf ) during integration and we calculate its
nonzero data in line 3. Line 9 is identical to the right vector of Eq. (21). We calculate
the value of the gradient of the test function at the measurement point (line 11) and
find the DOFs of the cell that includes the measurement point (line 12). We store the
global indices of the DOFs of the cell and construct the (col index, value) pairs of the
right vector (lines 13 and 14). Finally, we copy the data of the right vector over the
processors for parallel pointwise D generation (line 15).

We present the MPI utility functions of helmholtz-x for constructing the sparse
matrix D and its adjoint, DH . FEniCSx uses MPI for handling the parallelization
[32]. When we parallelize the calculation using nproc processes, FEniCSx partitions
the mesh into nproc pieces. Each piece has different nonzero entries for the left and
right vectors that we use to construct D (Sec. 2.5). We need the positions and entries
of those nonzero contributions for both vectors. We obtain these as (indices, nonzero
values) pairs. For D, we obtain row indices from the left vector and column indices
from the right vector. We calculate the nonzero entries by multiplying the nonzero
values of the left and right vectors within the same process. The nonzero data for the
right vector may, however, be ‘None’, while the contribution for the left vector may be
nonzero. Without modification, the multiplication of nonzero entries in that process
would give ‘None’, meaning that the unmodified algorithm would fail to insert some
nonzero contributions during assembly. To address this, we implement a broadcasting
function that copies the right vector data to each process, as shown in listing 8.
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1 def broadcast_vector(vector):
2 vector = MPI.COMM_WORLD.gather(vector , root =0)
3 if vector:
4 vector = [j for i in vector for j in i]
5 else:
6 vector =[]
7 vector = MPI.COMM_WORLD.bcast(vector ,root =0)
8 return vector

Listing 8: Broadcasting function to gather the right vector indices and values from the
processors to process 0 (line 2) and broadcast the nonzero contributions back to the
processors (line 7) during a parallel run.

To improve the share of computational load of each process, we also distribute the
left vector data evenly over the processors. The algorithm for this is in Listing 9.

1 def distribute_vector_as_chunks(vector):
2 vector = MPI.COMM_WORLD.gather(vector , root =0)
3 if vector:
4 vector = [j for i in vector for j in i]
5 chunks = [[] for _ in range(MPI.COMM_WORLD.Get_size ())]
6 for i, chunk in enumerate(vector):
7 chunks[i % MPI.COMM_WORLD.Get_size ()]. append(chunk)
8 else:
9 vector = None

10 chunks = None
11 vector = MPI.COMM_WORLD.scatter(chunks , root =0)
12 return vector

Listing 9: Function used to distribute the left vector indices and values over the
processors during parallel runs. The algorithm initially gathers all nonzero data at the
root (line 2). It then distributes the data across the processors as evenly as possible.

These operations are demonstrated in Fig. A1.

37



Fig. A1: Example of the nonzero data handling for left and right vectors using four
processors. The left vector’s data consists of nonzero row pairs (row indices, row val-
ues), while the right vector’s data consists of nonzero column pairs (column indices,
column values). When the left and right vectors contain non-zero data, the cross mul-
tiplication of the values of the vectors can give ‘None’, so nonzero contributions are
lost (gray case). To prevent this, we copy the data of the right vector to each process
(blue case) using the algorithm in Listing 8. We then evenly distribute the data of
the left vector using the algorithm described in Listing 9. This shares the workload
among processors (green case). Finally, the left and right vector data become ready
for matrix construction.
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Appendix B Further test cases

B.1 Verification of passive acoustic eigenmodes

We demonstrate simple acoustic cases without a flame in order to compare the results
of helmholtz-x against available analytical solutions. For these test cases, we repeat
the calculations presented in Sec. V in [43]. We consider a two-dimensional acoustic
domain with a length of L = 0.4m and a height of h = 0.1m. We assume the speed
of sound to be uniform, c0 = 450m/s over the domain. We model the boundaries as
a Neumann condition except for the top boundary that is modelled as an impedance
(Robin) boundary condition. We define the impedance Z = a + bi, where a denotes
the acoustic resistance and b denotes the acoustic reactance of the boundary. The
manufactured solution for this case is [43]:

e2ikyh
(
ky −

k

Z

)
−
(
ky +

k

Z

)
= 0, ky =

√
k2 −

(nπ
L

)2
, (B1)

where k = ω/c0 represents the wavenumber and n represents the mode number. We
calculate the eigensolutions of Eq. (B1) with n = 1 for various purely reactance and
purely resistance impedances. We set up these cases using helmholtz-x and compare
the results in Fig. B2. For the presented numerical cases, the eigenfrequencies obtained
with helmholtz-x show very good agreement with the analytical eigenfrequencies.
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Fig. B2: Computed eigenfrequencies for the two-dimensional acoustic case with (a)
purely reactive and (b) purely resistive impedance boundary conditions on y = h.
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B.2 Verification of adjoint eigenmodes

We present tests to check the adjoint capability of helmholtz-x by replicating the
results in [19]. The helmholtz-x codes for these cases are in the numerical_examples/
Longitudinal/PRF folder in the repository. The parameters are in Table B1.

Table B1: Dimensional parameters
of the hot wire Rijke tube taken from
[19]. The interaction index n changes
for 1D and 2D for dimensional con-
sistency.

Parameter value unit

L 1 m
d 0.047 m
rgas 287.1 Jkg−1K−1

p0 100000 Pa
ρu 1.22 kg m−3

ρd 0.85 kg m−3

q0 200 W
ub 0.1 m s−1

n 1.4e-7 -
τ 0.0015 s
Rinlet -0.975 -0.05i -
Routlet -0.975 -0.05i -
xf 0.25 m
af 0.025 -
xr 0.2 m
ar 0.025 -

We run test cases for multidimensional configurations (as in Sec. 3.1.1). The inlet
and outlet boundaries are Robin, with reflections coefficients tabulated in Table. B1.
The resulting eigenvalues are in Table B2.

Table B2: Eigenfrequencies of the passive and active flame
test cases for the Rijke tube, where GR denotes the growth
rate. The grid resolutions of the helmholtz-x tests can be
improved to obtain eigenfrequencies closer to the results in
[19]

Run
Direct Adjoint

f (1/s) GR (rad/s) f (1/s) GR (rad/s)

[19] 3.425513 +0.001926 3.425514 -0.001904
1D-helmholtz-x 3.421902 +0.002225 3.421902 -0.002224
2D-helmholtz-x 3.422663 +0.002180 3.422663 -0.002180
3D-helmholtz-x 3.420690 +0.002666 3.420690 -0.002667

We also show the direct and adjoint pressure eigenfunctions in Fig. B3.
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Fig. B3: 1D direct and adjoint pressure eigenfunctions in the Rijke tube using
helmholtz-x and [19]. The interval is discretized into 100 uniform sections and a first
order continuous Lagrange space has been used for the simulation using the reference
[19].
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