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Abstract

The Flame Describing Function (FDF) is a useful and relatively cheap approximation
of a flame’s nonlinearity with respect to harmonic velocity fluctuations. When embedded
into a linear acoustic network, it is able to predict the amplitude and stability of harmonic
thermoacoustic oscillations through the harmonic balance procedure. However, situations
exist in which these oscillations are not periodic, but their spectrum contains peaks at
several incommensurate frequencies. If one assumes that two frequencies dominate the
spectrum, these oscillations are quasiperiodic, and the FDF concept can be extended
by forcing the flame with two amplitudes and two frequencies. The nonlinearity is then
approximated by a Flame Double Input Describing Function (FDIDF), which is a more
expensive object to calculate than the FDF, but contains more information about the
nonlinear response.

In this study, we present the calculation of a non-static flame’s FDIDF. We use a
G-equation-based laminar conical flame. We embed the FDIDF into a thermoacoustic
network and we predict the nature and amplitude of thermoacoustic oscillations through
the harmonic balance method. A criterion for the stability of these oscillations is out-
lined. We compare our results with a classical FDF analysis and self-excited time domain
simulations of the same system. We show how the FDIDF improves the stability predic-
tion provided by the FDF. At a numerical cost roughly equivalent to that of two FDFs,
the FDIDF is capable to predict the onset of Neimark-Sacker bifurcations and to iden-
tify the frequency of oscillations around unstable limit cycles. At a higher cost, it can
also saturate in amplitude these oscillations and predict the amplitude and stability of
quasiperiodic oscillations.

Keywords: Flame Describing Function, Premixed flame response, Thermoacoustic
oscillations

1. Introduction1

Thermoacoustic oscillations are a persistent problem in rocket and gas turbine en-2

gines. While their onset can be modelled with linear methods, prediction of their finite3

amplitude behaviour requires the use of nonlinear techniques. In the last decade these4
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Figure 1: Overview of a closed-loop thermoacoustic network. ρ, p and u denote the flow density and
acoustic pressure and velocity variables. (a) The jump across the flame element is highlighted, using
superscripts − and + for the acoustic properties upstream and downstream the flame, respectively. All
the remaining acoustic information is embedded into the acoustic block Z. (b) The same closed-loop
thermoacoustic network simplified across the FDF element; H contains all the linear acoustic response
with respect to heat release perturbations.

nonlinear methods have involved both frequency domain [1, 2, 3, 4, 5, 6] and time domain5

methods [7, 8, 9, 10, 11, 12].6

Time domain methods tend to be computationally expensive. One usually converts7

the (linear) frequency response of a given acoustic system into the time domain by using8

Green’s functions [7, 9, 10], Fourier modes [5, 11] or a state space approach [8, 13, 14].9

One then couples this with a nonlinear flame model and performs a simulation forward10

in time, exploiting the full nonlinear characteristics of the flame model. However, this is11

usually expensive, even for low-order models, because many oscillation cycles have to be12

simulated before the final attractor of the system is reached [11]. Numerical continuation13

algorithms [12] are cheaper, but require smooth numerical integration techniques. They14

can predict limit cycle oscillations and their stability, but not the amplitude of non-15

periodic oscillations.16

On the other hand, frequency domain methods tend to be cheap. Rather than sim-17

ulate the entire system’s nonlinear behaviour, one encapsulates the flame’s nonlinear18

response with a Flame Describing Function (FDF), which is the frequency response of19

the flame with respect to harmonic forcing at variable amplitude. FDF methods were20

introduced in thermoacoustics by [15], and first fully exploited by [6]. The calculation of21

an FDF can be expensive, but if the flame model is not changed, the same FDF can be22

used to test many acoustic configurations with a low-cost procedure, known as harmonic23

balance.24

For the harmonic balance analysis, the nonlinear flame dynamics is decoupled from25

the acoustics. This can be done if the flame is acoustically compact, meaning that the26

characteristic flame length Lf is much shorter than the smallest acoustic wavelength of27
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interest λmin = c/fmax. Under this assumption, a generic thermoacoustic configuration28

can be drawn as a block diagram as in Fig. 1a. The acoustic jump conditions across29

the flame have been highlighted. Their inputs are the acoustic variables upstream of30

the flame and the instantaneous heat release fluctuations, q′. The acoustics is expressed31

in terms of downstream (f) and upstream (g) travelling waves. The remaining acoustic32

response is contained in the upstream and downstream acoustic blocks. For the simple33

configuration composed of two straight ducts interconnected by a flame, they contain34

information about the mean flow, end reflection coefficients, and wave time delays [3].35

Finally, the FDF converts velocity disturbances upstream of the flame into heat release36

fluctuations.37

The feedback loop in Fig. 1a can be simplified by choosing a reference input signal38

uref just upstream of the FDF and the heat release as an output, so that the open-loop39

heat release response with respect to velocity fluctuations is given by:40

q′ = FDF
(
u′ + uref

)
(1)

Furthermore, the entire open-loop acoustic response with respect to heat release fluctua-41

tions can be embedded into a unique transfer function H so that, for velocity fluctuations42

upstream of the flame, we can write (see Fig. 1b):43

u′ = Hq′ (2)

For simple acoustic networks, the expression for the transfer function H can be found44

analytically [3, 14]. It becomes rather complicated for complex networks, and numerical45

methods are used in these cases to evaluate H over a certain range of frequencies.46

Closing the feedback loop between the velocity at the reference point and the heat
release fluctuations yields:

q′ =
FDF(A, s)

1− FDF(A, s)H(s)
uref (3)

Equation (3) represents a Single Input Single Output system: if no input velocity is47

prescribed, the system will be linearly unstable if and only if it has poles in the r.h.s. of48

the complex plane in the zero amplitude limit. Looking for these poles is equivalent to49

finding solutions to the harmonic balance dispersion relation50

FDF(A, s)H(s) = 1 (4)

where A is the upstream velocity amplitude and s = σ+ iω is the Laplace variable. The51

dispersion relation (4) is also able to identify poles which have a negative growth rate at52

small amplitudes, but become unstable at finite amplitudes. This is a characteristic of53

subcritical Hopf bifurcations, and phenomena such as bistability and triggering may be54

observed.55

Solving the dispersion relation (4) at various amplitudes leads to harmonic limit cycle56

solutions of the closed-loop system, for which the growth rate σ is equal to zero. Their57

stability may be analysed by investigating the change in growth rate across the saturated58

amplitude [6, 14, 16]. These solutions are, however, only harmonic approximations of59

the actual response of the system. Furthermore, if the growth rate of more than one60

thermoacoustic mode is positive, then the oscillations are non-periodic. Because the61
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FDF is calculated by forcing the flame harmonically, it cannot be used to predict the62

amplitude of non-periodic oscillations. In particular, one cannot linearly superpose two63

periodic solutions that are found from the harmonic balance at a given operating point.64

This is simply because the flame’s behaviour when forced by two finite amplitude signals65

is not a linear superposition of its behaviour when forced by each finite amplitude signal66

independently. When using the FDF, therefore, one cannot rule out the possibility that67

the long time behaviour is non-periodic.68

A detailed investigation of the interplay between two oscillating modes has been per-69

formed experimentally only for simple configurations [17], due to its high cost. Nonethe-70

less, the presence of multiple, incommensurate frequencies in the spectrum of thermoa-71

coustic oscillations has been reported in several experimental studies [18, 19, 20]. The72

study of the nonlinear interaction between the modes may be relevant for the analysis of73

these systems. It has also been observed in experiments that, although a single eigenmode74

is found to be linearly unstable, nonlinear effects may actually stabilise the oscillations at75

this frequency and trigger oscillations at a different frequency [6]. The FDF can predict76

the existence of oscillations of the two modes independently, but will fail in predicting77

their stability, as the latter is connected to the nonlinear coupling between the two modes.78

This phenomenon is usually called mode-switching, and was observed also by [21] and in79

gas turbines experiments by [22, 23]. In [21] it was shown that mode-switching can be80

attributed to the existence of an unstable quasiperiodic attractor in the phase-space of81

thermoacoustic trajectories, which the FDF framework cannot calculate.82

In order to predict the amplitude of at least some classes of non-periodic oscillations,83

a different approximation of the nonlinear flame model has to be calculated. This is84

known as the Double Input Describing Function (DIDF), and is created by forcing the85

flame with a signal composed of two harmonic components with independent amplitudes86

and incommensurate frequencies [24]. The calculated Flame DIDF (FDIDF) can then be87

fed into an acoustic network in a similar manner to that in Fig. 1. The harmonic balance88

procedure yields two coupled dispersion relations which have to be solved simultaneously,89

as was first shown by [21] for a thermoacoustic system.90

The aim of this study is to present a numerical analysis that exploits frequency91

domain calculations of a non-static (or dynamic1) nonlinearity based on a low-order92

model for the flame dynamics. This is the major difference between our analysis and93

that of [21], where a static model for the flame was considered. For static nonlinearities,94

a Wiener-Hammerstein model can be adopted, which decouples the nonlinear amplitude95

saturation process from the linear dynamic response. This is not possible for dynamic96

nonlinearities, and the FDIDF we calculate is a nonlinear object that couples the input97

amplitudes and frequencies. We also obtain an analytical criterion for the stability of98

quasiperiodic oscillations, which is different from the one discussed in [21]. A different99

attempt to extend the concept of the FDF was proposed by [25, 26], where higher order100

transfer functions that account for modal coupling were derived using Volterra series101

expansions. However, the dependence of the higher order transfer functions upon the102

relative amplitude of the input modes was not considered in these studies. The non-static103

model we adopt for the flame is the kinematic nonlinear G-equation, which is known to104

lead to quasiperiodic oscillations when coupled with an acoustic network [11, 12, 14].105

1 A nonlinearity is non-static if it depends on time derivatives of the input state.
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Figure 2: Sketch of the thermoacoustic network. A compact flame connects two ducts with different
diameters and mean temperatures. The linearised Euler equations are solved on top of a uniform mean
flow solution. Jump conditions at the flame and prescribed reflection coefficients at the inlet/outlet
provide closure for the model.

The FDIDF method is able to predict the location of Neimark-Sacker bifurcations, the106

frequency of unstable oscillations around limit cycles, and also the saturation amplitude107

and the stability of quasiperiodic oscillations. The study is structured as follows: in §2108

we describe the acoustic and flame configurations we investigate; in §3 we present FDF109

results and calculate harmonic limit cycles amplitudes and frequencies, together with110

their stability, highlighting strong points and weaknesses of the method; in §4 and §5 the111

FDIDF is presented and tested against the FDF in the limit of a small forcing amplitude;112

the dispersion relations which couple it with the acoustic response are derived and solved;113

the frequencies and amplitudes of periodic and non-periodic solutions are calculated with114

the harmonic balance method based on the FDIDF; a criterion for the stability of these115

solutions is outlined; results are compared with the FDF method analysis and with time116

domain simulations of the same nonlinear system. Finally in §6 the study is summarised117

and the benefits and problems of the methods are discussed.118

2. Thermoacoustic model119

The thermoacoustic model we will consider throughout this study consists of a lam-120

inar, conical flame confined in a simple acoustic network. The same model has been121

presented and extensively discussed in [14, 27] but is summarized here for completeness.122

2.1. Acoustic network123

The acoustic network we consider is shown in Fig. 2. It consists of two intercon-124

nected ducts with different cross sectional areas. A flame, assumed to be acoustically125

compact, is located just after the area change. Rankine-Hugoniot jump conditions for126

mass, momentum and energy are solved across the area change and the flame to guaran-127

tee the conservation of these fluxes [3]. Reflection coefficients, which may be frequency128

dependent, are specified at the inlet and outlet. This is a simple but generic model for a129

combustion driven Rijke tube, such as the one analysed experimentally by [28].130

The geometry and mean flow parameters are: total length of the combustor L =131

860 mm; upstream and downstream duct diameters D1 = 23 mm and D2 = 25.6 mm;132

inlet temperature T 1 = 300 K; Mach number upstream of the flame M1 = 0.0057; outlet133
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Figure 3: Comparison between the frequency response calculated with LOTAN (solid black) and the
state space approximation (dashed red) at xf = 0.34. The approximation works well over a wide range
of frequencies.

pressure equals to atmospheric pressure; temperature ratio across the flame T 2/T 1 =134

2. Note that the average temperature in the downstream duct, T 2, is lower than the135

adiabatic flame temperature in order to account for heat losses through the walls. We136

will use the non-dimensional position of the flame in the duct, defined as xf ≡ x̃f/L,137

where x̃f is the dimensional flame position value, as a bifurcation parameter. Finally, we138

use a frequency dependent reflection coefficients at the inlet and outlet when solving the139

acoustic equations. We choose the low-Mach number limit of the reflection coefficient140

derived analytically by [29, 30] using the Wiener-Hopf technique. It has been validated141

against experiments in [31].142

Using the Low-Order ThermoAcoustic Network (LOTAN) framework [4, 32], the143

acoustic network is solved in the frequency domain by decomposing the acoustic vari-144

ables into upstream and downstream travelling waves (see Fig. 2). We calculate the145

acoustic eigenfrequencies and, by imposing harmonic fluctuations in the heat release at146

the combustion zone, we evaluate the open-loop acoustic transfer function Hxf
as in147

eq. (2). Using both the frequency response and the eigenfrequencies, the acoustic re-148

sponse to heat release fluctuations can be fitted onto a state space, as described in [14].149

This is necessary to extend the frequency response – calculated at s = iω – in the full150

Laplace space, in which the growth rate σ can be non-zero. Fig. 3 shows that the state151

space approximation fits well the frequency response evaluated with LOTAN over a wide152

range of frequencies.153

Note that, by moving the flame position, the acoustic response of the system will154

change, but the flame response will not. Thus, a different acoustic transfer function (and155

its state space approximation) has to be evaluated each time the bifurcation parameter156

xf is changed. This, however, is a cheap calculation. On the other hand, only one157

(expensive) Flame Describing Function calculation has to be performed on the flame.158

The same FDF can be used to study the stability of the system for any value of the159

bifurcation parameter.160
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2.2. Flame model161

As a model for the flame, we use the nonlinear kinematic G-equation to track the162

flame front, which is located at the G= 0 level set [33, 34, 35]. We consider a laminar,163

conical, axisymmetric flame. The flow field is assumed to be incompressible and, to164

simplify the calculations, we neglect the density jump across the flame. The local flame165

speed depends on the local flame curvature κ through the relation sL = s0L(1 − Lκ),166

where L is the Markstein length and s0L the speed of a flat, laminar flame. The flow field167

is composed of a uniform mean axial velocity U , on top of which forced perturbations are168

imposed, denoted with primes and described below. The perturbations are specified at169

the burner inlet xb and then travel at a characteristic velocity K in the flame domain [36].170

We fix the value of the convective speed to K = 1.2U , which is within the range obtained171

numerically by [37] for a laminar conical flame. Under these assumptions, the G-equation172

model is:173

∂G

∂t
+ u′r

∂G

∂r
+
(
U + u′

) ∂G
∂x

= s0L(1− κL)

√(
∂G

∂r

)2

+

(
∂G

∂x

)2

(5)

We solve this equation with the efficient Narrow Band Level Set method technique [38,
39]. We choose an incompressible travelling wave as a model for the perturbation flow [36,
37, 40], which reads:

∂u′

∂t
+K

∂u′

∂x
= 0 u′(x = xb) = u′ac(t)

1

r

∂ (ru′r)

∂r
+
∂u′

∂x
= 0 u′r(r = 0) = 0

(6)

Here u′ac denotes the acoustic perturbation imposed at the inlet. The total heat release174

is then given by175

Q =

∫
G=0

ρ s0Lhr(1− Lκ)|∇G| r dr dx (7)

where ρ is the flow density and hr the heat released per unit mass. This G-equation176

based model has been extensively studied both in the linear [27, 41, 42, 43, 44, 45] and177

nonlinear [12, 14, 35, 37, 46] regimes when the imposed perturbations are harmonic,178

i.e. u′ac = A sin(ωt). The main goal of this paper is to extend the nonlinear analysis in179

the frequency domain to the case in which the inlet perturbation is given by the sum180

of two incommensurate harmonic fluctuations, resulting in quasiperiodic oscillations.181

Nonetheless, the harmonic case is instructive and its discussion is needed to present182

some of the assumptions we will use in the quasiperiodic analysis and to benchmark the183

FDIDF calculations.184

3. FDF analysis185

By FDF, we refer to the frequency domain approximation of the nonlinear flame re-186

sponse to harmonic velocity perturbations (see Figure 4). We therefore set u′ac = A sin(ωt),187

time march eq.(5)-(6), and calculate the heat release according to eq. (7). Given that the188
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Figure 4: Velocity Power Spectral Density (PSD), phase plane and Poincaré sections of self-excited
thermoacoustic oscillations. Top row: periodic oscillations. The system responds also at the harmonics,
which are neglected in the FDF framework. Bottom row: quasiperiodic oscillations. The system responds
also at the harmonics and linear combination of the fundamental frequencies, which are neglected by the
FDIDF. Image reproduced from [14] with permission from Cambridge University Press.

velocity perturbation is harmonic with angular frequency ω, it is reasonable to assume189

that the heat release response can be expanded in a Fourier series as:190

Q =

∞∑
k=1

q̂k sin(kωt+ φk) (8)

This assumes that the heat release is periodic, with the same period as the forcing.191

For laminar flames, this is supported by experimental evidence [42, 43, 47, 48]. This192

model cannot capture a possible response of the nonlinearity at subharmonics. Also,193

for laminar flames that oscillate in the absence of forcing at an intrinsic frequency [49],194

it cannot capture the response that may appear at non-integer multiples of the forcing195

frequency.196

The FDF that is fed into the dispersion relation (4) is then defined as197

FDF(A, iω) ≡ q̂1e
iφ1

û

U

Q
(9)

where û is the Fourier component of the input velocity signal at the burner.198

Rather than performing the FDF calculations over all possible frequencies, in the199

following we provide an argument that allows us to limit the calculations only over200

certain sets of dangerous frequencies. We first recall that the dispersion relation (4) can201

be derived from the harmonic balance method [24]. Its solutions, which for a fixed value202

of the amplitude can be interpreted as the poles of the closed-loop thermoacoustic system,203

are those for which the loop-gain, |FDF||H|, is equal to 1 and the total (wrapped) phase204

is equal to 0. To find limit cycle oscillations, we impose the additional condition that the205

growth rate is equal to zero. From the loop-gain condition, one can infer that a necessary206
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(but not sufficient) condition for a thermoacoustic oscillation to exist is that either the207

acoustic transfer function H or the FDF must have a gain larger than 1. For the acoustic208

transfer function, this happens close to the acoustic eigenfrequencies, whereas the FDF209

may or may not have regions in which the gain is larger than 1. If the FDF gain is larger210

than 1 over some frequency range, the frequency of thermoacoustic oscillations may lie211

in this region, and can be far from the acoustic eigenfrequencies [50]. It has been shown212

that these oscillations may persist even in the extreme case in which anechoic boundary213

conditions for the acoustic network are imposed, and therefore no purely acoustic mode214

exists [51, 52, 53, 54]. For this reason, these thermoacoustic modes have been labelled215

as intrinsic thermoacoustic modes.216

When the unconfined laminar conical flame model we are considering is forced har-217

monically, its gain |FDF| never exceeds 1. Within the G-equation framework, this can218

be proven analytically in the low forcing amplitude limit when curvature corrections on219

the flame speed are neglected [27, 41, 45]. Numerical and experimental studies show220

that this holds true even in the fully nonlinear case [14, 35, 48, 55]. For this reason, no221

intrinsic thermoacoustic instabilities can be observed in our system, and we can deduce222

that thermoacoustic oscillations are possible only in certain frequency bands, given by223

the regions in which the acoustic gain |H| is larger than one. For example, at xf = 0.34224

one can see from Fig. 3 that oscillations can be expected only in the [118, 197] Hz and225

[303, 371] Hz band regions.226

This is useful information because we can reduce the cost of the FDF calculations227

by evaluating the FDF only over these frequency regions2. We identify these regions228

while varying the bifurcation parameter xf over the entire range [0 1]. Let us define the229

Strouhal number St ≡ Lff/U , where Lf and U are the characteristic flame length and230

2A broad knowledge of the FDF is needed to ensure that a flame’s gain never exceeds unity. For our
model, we already have this information from the literature [14].
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mean flow speed respectively. For the thermoacoustic system under consideration in this231

study, oscillations are possible only in the frequency ranges St ∈ [1.273, 3.024], associ-232

ated with the fundamental acoustic eigenfrequency, and St ∈ [4.138, 7.162], associated233

with the second acoustic eigenfrequency. Note that this range is obtained by considering234

all possible values of xf and is therefore different from the one discussed in the previous235

paragraph, because the latter was considering only a specific position of the flame. We236

carry out a detailed evaluation of the FDF in these frequency ranges, varying the ampli-237

tude of the oscillation between 0 and 0.4. The FDF gain is shown in Fig. 5, and contains238

the usual features of conical, premixed flames: the gain is larger at low frequencies and239

overall it tends to decrease with the amplitude, a signature of the nonlinearity saturation240

effect. This holds true at low frequencies, whereas at high frequencies the gain can also241

increase with the amplitude, meaning that subcritical bifurcations and triggering may242

be observed.243

Having calculated both the acoustic transfer function H and the FDF, we can close244

the thermoacoustic feedback loop as in Fig. 1 and calculate the thermoacoustic eigenfre-245
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quencies according to the dispersion relation (4). We recall that (4), deriving from the246

harmonic balance method, works well when the so-called filtering hypothesis is satisfied,247

meaning that the closed-loop system does not respond greatly at the harmonics of the248

input frequency. Experimental and numerical studies have shown that laminar, conical249

flames act as low-pass filters [41, 43, 55], and Fig. 5 shows that our model contains this250

feature. Also the acoustics tends to damp high frequencies more, although gain peaks are251

found at the resonance frequencies. For these reasons, we shall assume that the filtering252

hypothesis is satisfied.253

Limit cycles are found when the dispersion relation (4) is satisfied, with the additional254

constraint that the growth rate of the oscillations is equal to zero. At this stage, no255

further approximation has been introduced, because we have knowledge of the FDF at256

harmonic oscillations. However, to assess the stability of the cycles we need to perturb257

the saturation amplitude and calculate the shift in frequency and growth rate that it258

causes, i.e., we want to find the ∆s = ∆σ + i∆ω that satisfies259

FDF (ALC + ∆A, sLC + ∆s)H (sLC + ∆s)− 1 = 0 (10)

where ALC and sLC = iωLC are a limit cycle solution of (4), and ∆A is an imposed260

infinitesimal perturbation. If ∆σ/∆A is positive, the limit cycle is unstable, and if it is261

negative then the cycle is stable. To solve (10) the FDF needs to be extended into the262

complex plane C. Following [56], we have tried two different techniques: (i) extrusion,263

by assuming that the FDF does not vary with σ, and (ii) analytical continuation, by264

fitting every amplitude slice of the FDF onto a state space. Both methods give the same265

results.266

The bifurcation diagram we obtain by varying the flame position is shown in Fig. 6.267

Thick and thin lines indicate stable and unstable limit cycles as predicted by the har-268

monic balance method. Results are compared with time domain simulations of the same269

system [14]. Solid lines at A = 0 indicate regions in which the time domain simulations270

are linearly stable, and Hopf bifurcations are marked with circles. The dots represent271

peaks of velocity fluctuations in the time domain. At xf locations where multiple dots272

are plotted, the oscillations therefore are non-periodic. For example, at xf = 0.5 time273

domain oscillations cease to be periodic, and quasiperiodic solutions arise through a274

Neimark-Sacker bifurcation, marked with an arrow in Fig. 6. The two methods give275

similar locations of Hopf bifurcations and amplitudes of periodic oscillations. However,276

the FDF method fails to predict the amplitude of non-periodic oscillations. Further,277

although many stable limit cycles are predicted by the FDF method, time domain sim-278

ulations rarely converge to these solutions. This is because they are not, in fact, stable.279

The FDF criterion for stability misses this because it only considers growth or decay of280

the mode that is already oscillating. It cannot consider growth or decay of another mode281

on top of the oscillating limit cycle, which is considered with the FDIDF in the next282

section.283

A similar comparison between the time and frequency domain methods can be found284

in [14]. However, in that study a mismatch between the locations of the Hopf bifurcations285

predicted by the FDF and those found by time integration was observed. In this study we286

have resolved the FDF more accurately in the frequency range in which thermoacoustic287

oscillations are expected, which has led to a better match between the two methods.288
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Figure 7: FFT of the heat released by the flame when the forcing is quasiperiodic with the form (11).
Top frames: (a) At low forcing amplitudes, A1 = 0.01, A2 = 0.05, the forcing frequencies dominate
the heat release spectrum. (b) At large forcing amplitudes, A1 = 0.2, A2 = 0.25, peaks at other
frequencies become relevant. Bottom frames: nonlinear heat release fluctuations (thin black) and heat
release reconstructed using only the peaks at the forcing frequencies (thick red).

4. FDIDF assumptions and calculation289

By FDIDF, we refer to the frequency domain approximation of the nonlinear flame290

response to a quasiperiodic velocity perturbation of the form:291

u′ac = A1 sin(ω1t) +A2 sin(ω2t) (11)

where ω1 and ω2 are incommensurate frequencies. This choice guarantees that the phase292

between the two signals does not affect the dynamics. In the following subsections we293

discuss in details the approximations and assumptions we make concerning the nonlin-294

earity.295

4.1. FDIDF definition296

First, as in the FDF case, we assume that the nonlinearity does not excite the sub-297

harmonics of the forcing frequencies, and that no intrinsic dynamical instabilities exist.298

Because the heat release is a nonlinear function of the forcing signal (11), we expect that299

its response will contain all the possible combinations of the input frequencies. By using300

a double Fourier series expansion [24], we can write301

q′ =
∑
m

∑
n

q̂mn sin [(mω1 + nω2) t+ φmn] (12)

where the heat release amplitude coefficients q̂mn and the phases φmn are functions of the302

input velocity frequencies and amplitudes. The integers m, n ∈ Z are varied over all the303

possible combinations giving a non-negative value of the angular frequency mω1 + nω2.304
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In order to proceed with the harmonic balance analysis, we need to assume that305

the heat release response is dominated by the frequency components at the two input306

frequencies (see Fig. 4), so that it can be approximated by307

q′ ≈ q̂10 sin (ω1t+ φ10) + q̂01 sin (ω2t+ φ01) (13)

This assumption is less well-justified than the filtering hypothesis of the previous section,308

because the latter only requires that high frequency oscillations will be damped by the309

system. For the FDIDF, the coupling between the frequencies can also lead to low310

frequency oscillations (e.g., at an angular frequency of |ω2 − ω1|) for which the filtering311

hypothesis does not necessarily hold. Therefore, we are implicitly assuming that the312

nonlinearity’s response at these frequencies is either filtered by the system or is weak.313

This holds true at small forcing amplitude, for which nonlinear effects are small, but it314

has to be tested at larger amplitudes.315

Fig. 7 shows examples on the quality of the FDIDF approximations: at low forcing316

amplitude (7a) nonlinear effects are weak and the heat release approximated by (13)317

compares well with the fully nonlinear output. At larger input amplitudes (7b) the318

quality of the approximation deteriorates. This is because the nonlinearity couples the319

modes, and high peaks can be observed in the heat release FFT at frequencies which are320

simple combinations of the input ones. For example, in Fig. 7b one can see that the peak321

at the very low frequency 2St1−St2 has a large amplitude, meaning that the heat release322

exhibits large fluctuations over long time scales. The FDIDF approximation cannot see323

these long time scale fluctuations, as shown in the bottom frame. This is because it324

ignores all the FFT contributions which are not at St1 and St2. For this reason, we325

cannot expect the FDIDF method to work well at large amplitudes. Therefore, we limit326

the FDIDF calculations in amplitude so that both A1 and A2 are smaller than 0.4, and327

their sum is less than 0.5.328

The FDIDF is defined as:329

FDIDF ≡ [F10,F01] ≡ U

Q

[
q̂10e

iφ10

û10
,
q̂01e

iφ01

û01

]
(14)

where û′10 and û′01 are the Fourier components of the input velocity at ω1 and ω2 re-330

spectively. F10 (F01) contains information on how the amplitude and phase of heat331

release fluctuations at ω1 (ω2) vary when the flame is forced quasiperiodically. The total332

(non-dimensional) heat release fluctuations are then approximated by333

q̂′ ≈ FDIDF · [û10, û01]
T

= F10û10 + F01û01 (15)

Note that the heat release in (15) is not a simple linear superposition of two FDFs. This334

is because the FDIDF’s gains and phases are functions of all the four input variables335

(A1, ω1, A2, ω2). Finally, notice that the FDIDF is a symmetric object with respect to336

the input pairs (A1, ω1) and (A2, ω2) so that337

F10(A1, ω1, A2, ω2) = F01(A2, ω2, A1, ω1) (16)

4.2. FDIDF amplitude saturation338

In §3, using knowledge of the flame’s gain response from the literature, we performed339

calculations only for frequencies close to the first two acoustic modes. No information is340
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Figure 8: Amplitudes dependence of the FDIDF gains. The forcing frequencies have been fixed at the
arbitrary values St1 = 1.513 and St2 = 5.153. The region A1 +A2 > 0.5 has not been investigated.

available about the gain response of conical flames when they are forced with quasiperi-341

odic signals. However, it is reasonable to assume that, when fixing the amplitude A1342

and increasing the amplitude A2 (or viceversa), the gains of the FDIDF will decrease.343

This is because we expect the flame nonlinear responses F10 and F01 to saturate, at least344

on average, with respect to the amplitudes A1 and A2 of both forcing modes. This is345

proven to be correct for a simple cubic nonlinearity in [21], where also some experimental346

evidence of this fact is provided.347

We therefore assume that the FDIDF gains are less than 1. As a consequence, we348

expect that self-excited thermoacoustic oscillations can only be found at frequencies for349

which the acoustic gain is larger than one (see the FDIDF dispersion relations (18)).350

These frequency ranges are the same as in the FDF case, because we have not modified351

the acoustic system. Because we expect two modes to be unstable, it is reasonable352

to guess that one of the mode’s frequencies will be close to the fundamental acoustic353

frequency, and the other one will be close to the acoustic second acoustic eigenfrequency.354

Note that, if two modes with similar frequencies were to oscillate simultaneously, beating355

phenomena could occur, and one should also investigate the coupling between these close356

frequencies. However, this does not happen for the system we are considering, as was357

also shown via the time domain analysis carried out in [14] on the same thermoacoustic358

system. Given this, and the symmetry condition (16), we will limit the calculations359

to the cases in which the non-dimensional frequencies Stn ≡ Lffn/U lie in the ranges360

St1 ∈ [1.273, 3.024] and St2 ∈ [4.138, 7.162] respectively. In the following, we will361

refer to mode 1 and mode 2 when referring to oscillations with a frequency in the range362

spanned by St1 and St2 respectively.363

4.3. FDIDF calculation and validation364

Fig. 8 shows an example of the FDIDF gains as a function of the two forcing ampli-365

tudes. The forcing frequencies are fixed at arbitrary values. We observe that the gain of366

F10 (low frequencies) is generally larger than the gain of F01 (high frequencies); this is367

in line with the low-pass filter characteristics of the conical flame we are investigating.368
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Figure 9: In the limit in which one of the two amplitude vanishes, the FDIDF tends to the FDF. FDIDF
limits are plotted as surfaces and the FDF results as dots. In the region St ∈ [1.273, 3.024] the limit
of |F10| is plotted fixing St2 = 5.153 and A2 = 0.01 in (17); in the region St ∈ [4.138, 7.162] the limit
of |F01| is plotted fixing St1 = 1.513 and A1 = 0.01. The results compare well over the entire set of
parameters investigated.

Also, for F10 we see that the gain tends to decrease with respect to both amplitudes,369

as was discussed in the previous section. This is not always true for the F01. It is not370

surprising because F01 contains the heat release response at frequencies spanned by St2.371

Even in the FDF analysis we observed that, in this frequency range, the gain does not372

decrease monotonically with the amplitude, meaning that subcritical Hopf bifurcations373

and regions with multi-stable solutions may be observed.374

In rare cases, we observe that the gain of F01 is larger than one. This always happens375

when the amplitude of A1 is large (between 0.3 and 0.4), and the amplitude of A2 is at376

its minimum, 0.01. This is due to the fact that, although we numerically ensure that the377

two forcing frequencies are incommensurate, their ratio can be close to a simple fraction.378

For example, in some cases the frequency St2 is close to a harmonic of St1. If the velocity379

amplitude at St1 is large, the heat release responds significantly also at its harmonics.380

Because we perform FFTs on signals of finite length, the FDIDF component at St2 will381

see part of the harmonic contribution of St1, artificially increasing the gain of the second382

mode (see Fig. 8). This is a source of error which increases when the thermoacoustic383

eigenfrequencies are close to multiples of each other. It could be reduced by integrating384

the governing equations over a longer time period, in order to have a better frequency385

resolution in Fourier space and distinguish the various peak contributions. However, this386

would lead to an extra numerical cost, which is undesirable.387
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A good test to assess the accuracy of the FDIDF calculations is to look at the limit
in which the amplitude of one of the two modes goes to zero. From the definitions of the
FDIDF and FDF one can verify that:

lim
A2→0

F10(A1, ω1, A2, ω2) = FDF(A1, ω1) ∀ω2

lim
A1→0

F01(A1, ω1, A2, ω2) = FDF(A2, ω2) ∀ω1

(17)

meaning that F10 tends to the FDF results in the region covered by St1 when A2 vanishes388

and, by exploiting the symmetry condition (16), F01 tends to the FDF results in the389

region covered by St2 when A1 vanishes.390

Assuming that the FDIDF is a continuous function, we use the calculations at the391

smallest amplitudes we have investigated (0.01) as limits. Therefore, the horizontal slice392

of |F10| at A2 = 0.01 and the vertical slice of |F01| at A1 = 0.01 in Fig. 8 need to393

match the FDF gain at St = 1.513 and St = 5.153 respectively (vertical slices of Fig. 5).394

Fig. 9 shows this comparison over the entire range of frequencies and amplitudes we395

have investigated. The limits agree well with the FDF results, with the largest difference396

between the FDF and the FDIDF limit being about 10−3.397

5. FDIDF analysis398

We now couple the FDIDF with the acoustic response in a similar fashion as in Fig. 1
and find the dispersion relations that need to be satisfied for quasiperiodic oscillations to
exist. The coupling between the acoustic network and the FDIDF is sketched in Fig. 10.
Note that, although q̂10 is explicitly proportional only to û10 through F10, the latter is
an implicit nonlinear function of both û10 and û01. Therefore, the dispersion relations
we obtain when imposing the harmonic balance condition are coupled, and need to be
simultaneously satisfied:

F10(A1, s1, A2, s2)Hxf
(s1)− 1 = 0

F01(A1, s1, A2, s2)Hxf
(s2)− 1 = 0

(18)

Quasiperiodic oscillations of the form (11) exist when the growth rates of the Laplace399

variables sn = σn + iωn are both equal to zero, which is the condition under which the400

FDIDF was calculated. However, to investigate the stability of the FDIDF solutions, we401

want to calculate the rate of change of the growth rates when the calculated amplitudes402

are perturbed. This will yield solutions of (18) with non-zero growth rates. Because403

we are working with a non-static nonlinearity, the FDIDF is a function of two complex404

variables, and it is not straightforward to extend it to the complex C2 space. Thus, we405

decide to use the extrusion method of [56], by assuming that FDIDF(A1, s1, A2, s2) =406

FDIDF(A1, iω1, A2, iω2), which is a zero-order approximation of the FDIDF around the407

solutions. This complication is not present in the study of [21], because static nonlin-408

earities were used. In that case, the FDIDF is a simpler object and depends only on the409

forcing amplitudes, not on the frequencies.410

5.1. Linear stability of limit cycles: Neimark-Sacker bifurcations411

A first set of solutions of the FDIDF are those for which the amplitude of one of
the two modes is equal to zero. These are the FDF harmonic solutions. For example, if
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Figure 10: Sketch of the FDIDF feedback loop with the acoustics. The FDIDF (dashed block) is a
two-input, two-output nonlinear object. The output is formed with the superposition of two, coupled,
nonlinear elements which respond at different frequencies.

The two harmonic components of the quasiperiodic signal are indicated with subscripts

10 and 01 respectively. The implicit dependence of F10, F01 with respect to both û10
and û01 has been highlighted to emphasise that the dispersion relations (18) are

coupled.

A2 = 0 then we look for periodic solutions (with zero growth rate) of mode 1. From (18)
we have:

FDF(A1, iω1)Hxf
(iω1)− 1 = 0

F01(A1, iω1, 0, s2)Hxf
(s2)− 1 = 0

(19)

The first equation derives from the limit (17) and converges to the FDF dispersion412

relation (4). It is now decoupled from the second equation. We have already calculated413

its solutions, shown as yellow lines in Fig. 6. The second dispersion relation, however,414

contains information that the FDF cannot provide. It has to be solved for the frequency415

ω2 and the growth rate σ2 by fixing the frequency and amplitude of the other mode at416

the FDF solution. If the growth rate σ2 is positive, then oscillations at frequency ω2 are417

linearly unstable around the limit cycle with amplitude A1 and frequency ω1. The onset418

of these instabilities is known as a secondary Hopf or Neimark-Sacker bifurcation.419

Fig. 11 shows the bifurcation diagram of periodic solution when their stability is420

assessed with the FDIDF method. Most of the limit cycles that were found to be stable421

with the FDF method are now predicted to be unstable because, according to the solution422

of (19), oscillations at a different frequency will grow around them. This is consistent423

with the time integration results, in which we rarely observe periodic oscillations. Time424

domain and FDIDF results cannot compare perfectly throughout the entire bifurcation425

map, because the latter neglects contributions away from the input frequencies, which426

may be important at large amplitudes. However, the FDIDF correctly captures some427

of the system’s bifurcations. For example, analysing Fig. 11 from xf = 0.60 backwards,428

time marching results show a supercritical Hopf bifurcation at xf = 0.59, a Neimark-429

Sacker bifurcation at xf = 0.50, and an inverse Neimark-Sacker at xf = 0.11. The430
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Figure 11: Comparison between time domain (as in Fig. 6) and FDIDF period bifurcation diagrams.
The flame position xf is used as a control parameter. Thin and thick lines are used to plot unstable
and stable limit cycles respectively. Neimark-Sacker bifurcations are found at the edges of the stable
solution with a non-zero amplitude.

FDIDF method locates correctly the first Hopf bifurcation for mode 1, and predicts431

Neimark-Sacker bifurcations at xf = 0.53 and xf = 0.045.432

With the FDIDF we can also calculate the frequency of oscillations that grow around433

limit cycles after Neimark-Sacker bifurcations. At xf = 0.53 the FDIDF predicts that os-434

cillations with a non-dimensional frequency St2 = 5.0136 are linearly unstable (σ2 = 2.86·10−5)435

around the limit cycle with A1 = 0.1305 and St1 = 2.1132. This prediction can be com-436

pared with self-excited time domain results. Fig. 12 shows the FFT of the velocity signal437

just before and after the Neimark-Sacker bifurcation in the time domain (see Fig. 11). In438

the former case, the oscillation is dominated by a component at frequency St1 = 2.148439

with intensity A1 = 0.1399. Just after the bifurcation a second high peak appears at440

St2 = 5.005. All these results are consistent with the FDIDF predictions.441

5.1.1. Discussion on cost and practical implementation442

The FDIDF is a function of four independent input parameters. As a consequence,443

the numerical cost of building such an object increases quickly when wide ranges of444

parameters are investigated. By using the arguments in §§4.1-4.2, we limit as much445

as possible the width of these ranges. However, it is non-trivial to determine how to446

discretize these regions to appropriately estimate the FDIDF response. Because our447

model is low-order, we can afford to carry out a very detailed calculation of the FDIDF,448

and then investigate its dependence on the number of points used. We use about 60449

discretization points for each frequency range. We vary the amplitudes in the range450

[0.01, 0.4] in 9 steps, with the additional constraint that their sum does not exceed the451

threshold value of 0.5. With these limits, the total number of simulations we run to build452

the FDIDF is about 200 000. About 70 000 CPU hours were required to perform the453

analysis, which is approximately 5 times more expensive than the continuation method454
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Figure 12: FFT of velocity fluctuations of time domain simulations as described in [14]. (a): xf = 0.51,
the solution is periodic, only a dominant peak at St1 = 2.148 is found; its harmonics are present but
negligible. (b) xf = 0.49, a second intense peak is found at St2 = 5.005; the system has undergone a
subcritical Neimark-Sacker bifurcation.
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used by [12] to calculate limit cycle bifurcations on a similar thermoacoustic system455

with a continuation algorithm. We then use a four-dimensional cubic spline method to456

interpolate the real and imaginary parts of the FDIDF between calculated points onto a457

much finer grid, as functions of the input amplitudes and frequencies. The interpolation458

is performed both using the full set of simulations or partial information only, to assess459

the effect of the discretization on the system dynamics.460

Fig. 13 shows the relative error of the interpolated FDIDF as a function of the number461

of points (always uniformly spaced) used for the interpolation. The results at the finest462

discretization, which are those used for the analysis in the rest of this study, are used as463

reference. By halving the number of discretization points used for St1 and St2, the cost464

of the FDIDF is reduced by a factor of 4 and the percentage error is about 5%. However,465

further reduction in the number of points used for the interpolation lead to larger errors,466

and significant deviation from the actual dynamic response should be expected. This467

shows that a large number of calculations is required to accurately estimate the FDIDF.468

This makes it currently non-affordable for, say, compressible LES studies, in which many469

CPU hours are already required to calculate the FDF only [57].470

Part of the high cost of the current FDIDF analysis is due to the fact that all possi-471

ble flame positions are investigated. Because a temperature jump follows the flame, the472

eigenfrequencies vary significantly when xf spans from 0 to 1, and wide range of frequen-473

cies need to be investigated. In practical situations this is probably not the case, and the474

frequency bands of interest may be narrower, thus reducing the number of calculations475

required for the FDIDF. Also, we emphasise that, to calculate the stability of limit cycles476

found with the FDF (as was shown in §5.1), we need only a part of the FDIDF calcu-477

lation. This is because we examine cases in which one of the two amplitudes is small.478

The only parameter that has to be varied is the frequency of the small amplitude mode.479

In this framework, the FDIDF method is much cheaper (it approximately reduces to the480

cost of two FDFs), and is comparable in cost with the continuation method described481
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Figure 13: Interpolated FDIDF relative error dependence with respect to the number of discretization
points Np used. Choosing fewer than 30 000 points leads to deviations from the actual response larger
than 10%.

by [12]. The latter remains more accurate, because it studies the stability of periodic482

solutions (i.e., the spectrum of the oscillations may contain peaks at the harmonics of483

the fundamental frequency), whereas the FDIDF is limited to harmonic solutions (i.e.,484

the spectrum of the oscillations contains only one peak at the fundamental frequency).485

The advantage of the FDIDF is that it can be reused in different acoustic networks to486

calculate the stability of several thermoacoustic systems.487

The use of the FDIDF to assess the stability of periodic solutions could also be488

exploited in experiments at approximately the cost of two FDFs by means of the following489

procedure: (i) measure an FDF; (ii) obtain harmonic solutions and their stability – with490

respect to a single mode – with the harmonic balance; (iii) for solutions that are predicted491

to be stable by the FDF method, perform another set of experiments to assess again their492

stability with respect to other forcing frequencies. This is accomplished by forcing the493

flame with a signal of the form (11), by fixing the amplitude and frequency of a mode494

at the FDF solution and the amplitude of the other mode at a small value. The only495

parameter left is the frequency of the second mode. It has to be varied over a range496

of dangerous frequencies, which can be obtained by the FDF results and the acoustic497

response. The stability of the FDF solutions with respect to other frequencies can then498

be calculated following the procedure described in §5.1.499

5.2. Prediction and stability of quasiperiodic oscillations500

Once limit cycles have become unstable, thermoacoustic oscillations converge towards501

another stable solution. This can be another periodic solution, with a different frequency502

and amplitude, a quasiperiodic attractor, or even a strange attractor. The FDIDF can503

approximate the location and stability of periodic and quasiperiodic solutions, but cannot504

predict the existence of other types of attractors, which were shown to exist in this type505

of thermoacoustic system by [11, 14].506

When looking for quasiperiodic attractors, the dispersion relations (18) need to be507

solved by fixing the growth rates σ1 and σ2 at zero, and looking for solutions with finite508

amplitudes for both modes. We rely on numerical techniques to find the roots of (18)509

that satisfy this conditions starting from a good initial guess. Because five parameters510
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(two amplitudes, two frequencies and the bifurcation parameter) can be varied, a large511

number of initial guesses can be chosen, which is numerically inefficient. To reduce the512

numerical cost, we first locate isolated solutions by starting from a coarse grid of initial513

guesses that covers the parameter space. Then, we extend the solutions to continuous514

lines with an arclength continuation method by slowly varying the bifurcation parameter.515

5.2.1. Stability criterion516

We find several sets of quasiperiodic solutions and require a criterion to assess their517

stability. From a dynamical system viewpoint, the coupled evolution of the oscillations’518

amplitudes can be written in terms of a linear operator L and a nonlinear operator N(A)519

as520

dAj
dt

= LjAj +Nj(A) ≡ σj(A)Aj (20)

where A is the amplitudes vector. Although the explicit expressions for the linear and
nonlinear operators are not known, σj represents a nonlinear growth rate, in the sense
that its intensity varies with the amplitudes of the oscillations. When at least one σj
equals zero, a non-trivial solution (with a finite amplitude) to the dynamical system has
been found. The amplitude of each mode varies with respect to the value of its growth
rate only, which is implicitly a function of all the amplitudes. For our system, which
contains only two modes, the dynamical system (20) reduces to:

Ȧ1 = σ1(A1, A2)A1

Ȧ2 = σ2(A1, A2)A2

(21)

Equations (21) will slowly vary the oscillations’ amplitudes, which in turn will change the521

growth rates and frequencies according to the solution of (18) at the current amplitudes.522

Eqs. (21) were also discussed in [21], where their interpretation in terms of an averaging523

procedure was also provided.524

Let us now indicate a solution of (21) with overlines. These solutions are fixed525

point if both amplitudes are equal to zero, limit cycles if only one amplitude is zero, or526

quasiperiodic if both amplitudes are non-zero. By linearising eq.(21) around a solution527

the evolution of small perturbations, indicated with ∆, is given by:528

d

dt

[
∆A1

∆A2

]
=

[
∂σ1

∂A1
A1 + σ1

∂σ1

∂A2
A1

∂σ2

∂A1
A2

∂σ2

∂A2
A2 + σ2

] [
∆A1

∆A2

]
≡ J∆A (22)

where the partial derivatives are evaluated at the solution. If the eigenvalues of the529

Jacobian J have negative real parts, the solution under consideration is stable.530

It is worth discussing the forms that the Jacobian assumes for the different types of531

solutions. For a fixed point, both amplitudes vanish and J simply contains the growth532

rates σ1 and σ2 on the main diagonal, retrieving the classic linear stability result. For a533

limit cycle solution (say of mode 1), the Jacobian takes the form534

JLC =

[
∂σ1

∂A1
A1

∂σ1

∂A2
A1

0 σ2

]
(23)

and has eigenvalues ∂σ1/∂A1A1 and σ2. Because A1 is positive, the stability is deter-535

mined by the sign of ∂σ1/∂A1 (the FDF condition) and σ2. This corresponds to the536
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stability condition that was intuitively discussed in the previous section. Furthermore,537

the eigenvector corresponding to the limit cycle eigenvalue ∂σ1/∂A1A1 is orientated along538

the A1 direction. The second eigenvector, however, has a non-trivial direction and can539

be calculated only having the FDIDF. We will shortly return to the significance of these540

eigenvectors in the FDIDF analysis.541

Lastly, for quasiperiodic solutions we obtain that the stability is determined by the542

eigenvalues of the Jacobian543

JQP =

[
∂σ1

∂A1
A1

∂σ1

∂A2
A1

∂σ2

∂A1
A2

∂σ2

∂A2
A2

]
(24)

This is not exactly the condition that was suggested by [21], whose Jacobian does not544

depend on the solution amplitudes. Nonetheless, condition (24) derives from the lineari-545

sation of the amplitudes’ evolution around a solution. Given that we retrieve correct546

physical conditions for the stability of fixed point and limit cycles, we shall expect it to547

hold even for quasiperiodic oscillations.548

Two methods can be used to calculate the partial derivatives of the growth rates549

with respect to the amplitudes. By brute force, in analogy with eq. (10), one can fix one550

amplitude at its solution’s value, slightly perturb the other amplitude, and determine the551

variations in frequency and growth rate of both modes by solving (18) with an iterative552

method. Alternatively, the implicit function theorem may be used, as suggested by [21].553

The latter is quicker and more reliable because no iterative methods need to be used.554

Details on the implicit function theorem method are given in Appendix A. Both methods555

have been tested and yield the same results.556

5.2.2. FDIDF bifurcation analysis557

Fig. 14 contains the FDIDF solutions when the bifurcation parameter is varied be-558

tween 0.40 ≤ xf ≤ 0.60. Limit cycle solutions lie on A1 = 0 and A2 = 0, whereas559

solutions for which both amplitudes are non-zero are quasiperiodic. We have plotted560

with black filled circles attractors (solutions for which both eigenvalues have a negative561

real part), with red empty circles repellors (both eigenvalues have a positive real part),562

and with red squares saddle-nodes (one eigenvalue has a positive real part, and the other563

a negative real part). The latter are particularly interesting because thermoacoustic os-564

cillations can be first attracted towards them along their stable manifold, and only later565

diverge along the unstable manifold towards an attractor. If the growth rate of the un-566

stable mode is small, the oscillations may persist for a long time around the saddle-node567

state. This can be problematic for time domain simulations or experiments, because the568

system has to be observed for a long time before being sure that the final attractor has569

been reached. Saddle-nodes in thermoacoustic systems were also discussed in [11], where570

they were referred to as “unstable attractors”.571

A convenient way of representing the FDIDF results is through phase-planes. A572

phase-plane contains the trajectories that the amplitudes will follow before converging573

to an attractor. Starting from different initial conditions can lead thermoacoustic oscil-574

lations towards different attractors. The set of initial conditions that converge towards575

an attractor is known as the basin of attraction of the attractor. On a theoretical ba-576

sis, it should be possible to identify the basins of attraction boundaries by investigating577

the growth rates of the thermoacoustic modes while varying the oscillations’ amplitudes.578
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Figure 14: FDIDF bifurcation diagram in the region 0.40 ≤ xf ≤ 0.60. The FDF solutions of mode
1 and 2 lie on the A2 = 0 and A1 = 0 planes, respectively. The fixed point solutions lie on the line
A1 = A2 = 0. Super- and subcritical quasiperiodic oscillations are found. The stability of all solutions
is assessed with the FDIDF conditions. Stable attractors are indicated with filled black circles, repellors
with empty red circles and saddle-nodes with empty red squares. Two views of the same bifurcation
diagram are shown.

However we find that when we are not close to solutions of our system, the growth rates579

quickly become large. The FDIDF was not evaluated under these conditions, therefore580

it cannot be used to build the phase-planes because the extrusion method we adopted is581

no longer valid. Note that, for a static nonlinearity as the one considered by [21], this582

problem does not arise because the FDIDF is a function of the amplitudes only.583

For the non-static nonlinearity we are considering in this study, the FDIDF can still be584

used to estimate the phase-planes. This is accomplished by calculating the eigenvectors585

of the Jacobian (22). By means of the Centre Manifold Theorem [58], the eigenspaces586

spanned by the eigenvectors associated with the stable and unstable eigenvalues are587

locally tangent to the stable and unstable manifolds respectively. A sketch of the phase-588

planes of our system across the Neimark-Sacker bifurcation at xf = 0.53 is shown in589

Fig. 15. Stable and unstable solutions are plotted with the same shape and colour590

scheme of Fig. 14, together with vectors pointing in the direction of their eigenvectors.591

For saddle-nodes, these vectors are locally tangent to the stable and unstable manifolds.592

For attractors and repellors, the eigenvalues and eigenvectors of J can be complex-valued.593

In this case, trajectories will spiral inwards/outwards the solution. We have also sketched594

with dashed lines possible heteroclinic orbits. A heteroclinic orbit is a path that connects595

an unstable solution to a stable one. Note that some solutions may be missing from our596

maps, because they can lie in a region we have not investigated (large amplitudes or597

amplitudes smaller than 0.01), or they can be strange attractors that we cannot locate.598

Although we have only partial information about phase-planes, they help to iden-599

tify possible routes that thermoacoustic oscillations undertake before converging to an600

attractor. For example, let us consider Fig. 15a, which corresponds to the xf location601

just before the Neimark-Sacker bifurcation marked in Fig. 11. Starting from the quies-602
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Figure 15: Sketch of phase-planes before (a) and after (b) the Neimark-Sacker bifurcation at xf =
0.53. The arrows pointing inwards and outwards the solutions indicate the directions of the Jacobian
eigenvectors with a negative and positive growth rate, respectively. Some hypothetical heteroclinic orbits
are sketched with dashed lines. Across the bifurcation, the amplitude A1 (A2) of the attractor reached
starting from a quiescent state suddenly decreases (increases).

(a) (b)

cent state A1 = A2 = 0, the oscillations will be attracted towards the stable limit cycle603

solution along A2 = 0. However, starting from an excited state with A2 6= 0 or by trig-604

gering the system, the oscillations may converge to a different attractor. Here, the other605

possible attractors are quasiperiodic. We have added a non-calculated solution (marked606

with a question mark) in order to sketch some heteroclinic paths. The position of this607

solution however is not entirely arbitrary; by slowly varying the bifurcation parameter,608

the limit cycle solution at A2 = 0 loses its stability. A possible scenario is that, at the609

bifurcation point, a quasiperiodic repellor (or another type of oscillation) collapses onto610

the stable limit cycle solution. After the bifurcation (Fig. 15b), the limit cycle on A1611

turns into a saddle-node, changing the topology of the phase-plane. Now, starting from612

a quiescent state thermoacoustic oscillations are first attracted towards the limit cycle613

solution along the A2 = 0 axis (which is the limit cycle stable manifold), and only later614

are repelled from it along the unstable manifold towards the stable quasiperiodic oscilla-615

tion. This is exactly what is observed in time domain simulations, although not shown616

here. Analogous time domain results can be find in [11].617

Lastly, Fig. 15 also shows that the amplitudes A1 and A2 suddenly vary across the618

bifurcation. This is possible across a Neimark-Sacker bifurcation, as solutions are sud-619

denly attracted towards a different attractor. Time domain results of the same bifurca-620

tion shown in Fig. 12 are in line with this FDIDF prediction. Indeed, The FFT of the621

time signal before and after the bifurcation shows that the amplitudes A1 (A2) suddenly622

decreases (increases) across the bifurcation. This feature of Neimark-Sacker bifurcations623

is also seen in the time domain results shown in Fig. 11. At xf = 0.50 the maximum624

amplitude of the oscillations suddenly deviates from the limit cycle amplitude before625

the bifurcation. A fair comparison between the oscillation amplitudes predicted by the626

FDIDF and time marching is seen by looking at the position of the stable quasiperiodic627
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Figure 16: Overview of the FDIDF bifurcation diagram. PDF of stable quasiperiodic solutions’ peaks
(shaded regions) are plotted on top of stable limit cycle amplitudes (lines). The PDF intensity is higher
in darker regions. The location of Neimark-Sacker bifurcations is highlighted with dots.

attractor in Fig. 15 and the intensity of the peaks in Fig. 12. Note that, however, these628

figures contain information at slightly different values of xf , because the location of the629

Neimark-Sacker bifurcation predicted by the two methods is slightly different, due to the630

FDIDF approximations.631

We conclude this study by showing in Fig. 16 the bifurcation diagram calculated632

with the FDIDF in the entire range 0 ≤ xf ≤ 1. We have plotted only the peaks of633

stable oscillations, which are those observable in self-excited experiments or time domain634

simulations. For limit cycle solutions, these peaks are shown as lines corresponding635

at the oscillations amplitude. For quasiperiodic solutions, we calculate the Probability636

Density Functions (PDF) of their peaks. These are shown as shaded regions in Fig. 16.637

The locations of Neimark-Sacker bifurcations have been highlighted with black dots.638

One can see that there is a nice match between their location and the onset of stable639

quasiperiodic solutions. This does not happen if we apply the stability criterion for640

quasiperiodic solutions contained in [21]. In the region 0.60 ≤ xf ≤ 1, quasiperiodic641

oscillations tend to have a large amplitude, which exceeds the A = 0.5 threshold we have642

set when calculating the FDIDF. This is partly consistent with time domain results, in643

which very large oscillations, e.g. at xf = 0.83, are occasionally observed. In some644

regions, multiple stable solutions are found. With time marching methods, a thorough645

investigation of the initial condition is required to find these solutions.646

6. Summary and conclusions647

We have presented a numerical approach for the investigation of non-periodic ther-648

moacoustic oscillations. A Flame Double Input Describing Function (FDIDF) of a non-649

static nonlinear flame model based on the G-equation has been calculated by forcing650

the flame with a quasiperiodic signal composed of two harmonic components with in-651

dependent amplitudes and incommensurate frequencies. The FDIDF assumptions and652
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limitations have been outlined, and it has been tested against the Flame Describing Func-653

tion (FDF) in the limit in which the amplitude of a mode is small. The FDIDF has been654

embedded into a thermoacoustic network and, through the harmonic balance method,655

stable and unstable thermoacoustic oscillations have been calculated. Furthermore, a656

criterion to assess their stability has been derived.657

The FDIDF contains a far more accurate approximation of the nonlinear flame re-658

sponse than the FDF. Exploiting all its information, one can predict the amplitude and659

stability of quasiperiodic solutions. Also, via the Centre Manifold Theorem, it can be660

used to sketch phase-planes to understand the path that thermoacoustic oscillations tra-661

jectories will take. Quantitative comparisons between the FDIDF and time marching662

results have been presented. We have shown that the FDIDF is capable of predicting663

the location of Neimark-Sacker bifurcations, the frequency of the unstable modes and664

the amplitude of the final quasiperiodic oscillations. We have discussed in detail the665

change in behaviour of a system at a Neimark-Sacker bifurcation, across which a new666

mode becomes unstable and the amplitude of the oscillations varies abruptly. This can667

lead to quasiperiodic oscillations or mode-switching to another stable periodic oscillation668

at a different frequency. Neither type of behaviour can be predicted by linear stability669

analysis nor by the FDF framework.670

Although the FDIDF is an expensive object to calculate, for simple dynamical flame671

models, such as the G-equation, this is affordable. Also, we have shown how its cost can672

be greatly reduced if one is interested in calculating only the stability of limit cycles.673

This accounts for the nonlinear interaction between modes, which the FDF ignores, and674

provides the location of Neimark-Sacker bifurcations. Only the information at which675

one of the amplitudes is fixed at a very small value is needed for this, and the cost of676

the FDIDF reduces to the cost of a second FDF, making it affordable for experimental677

purposes too. We find that, for our system, most of the limit cycles that are predicted to678

be stable by the FDF method, are predicted to be unstable by the FDIDF method. This679

is consistent with self-excited time marching results of the same thermoacoustic system.680

Within this framework, the FDIDF is capable of predicting the frequency of oscillations681

that will grow in time around limit cycles. Knowing these frequencies, Helmholtz res-682

onators can be tuned and retro-fitted to the thermoacoustic system in order to make it683

less prone to oscillations.684
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Appendix A. Growth rate variations by implicit function theorem688

For convenience, let us rewrite the dispersion relations (18) in a compact form by
splitting them into real and imaginary part as N(A,y) ≡ (NRe

10 , N
Im
10 , N

Re
01 , N

Im
01 ) = 0,
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where we have defined

NRe
10 ≡ Re [F10(A1, ω1, A2, ω2, )H(σ1 + iω1)− 1]

N Im
10 ≡ Im [F10(A1, ω1, A2, ω2, )H(σ1 + iω1)− 1]

NRe
01 ≡ Re [F01(A1, ω1, A2, ω2, )H(σ2 + iω2)− 1]

N Im
01 ≡ Im [F01(A1, ω1, A2, ω2, )H(σ2 + iω2)− 1]

(A.1)

where A ≡ (A1, A2) is the vector of amplitudes, and y ≡ (σ1, ω1, σ2, ω2) is the vector689

of growth rates and frequencies. This is a system of four equations through which the690

four dependent variables (frequencies and growth rates) are implicit functions of the691

amplitude levels, i.e., y = y(A). By implicit differentiation of the dispersion relations,692

one obtains693

dN =
∂N

∂y
dy +

∂N

∂A
dA = 0 (A.2)

or, by rearranging694

dy

dA
=


∂σ1

∂A1

∂σ1

∂A2
∂ω1

∂A1

∂ω1

∂A2
∂σ2

∂A1

∂σ2

∂A2
∂ω2

∂A1

∂ω2

∂A2

 = −
(
∂N

∂y

)−1
∂N

∂A
(A.3)

The latter expression yields the growth rates and frequencies sensitivities with respect to695

amplitudes variations. The right hand side terms can be evaluated by finite difference by696

imposing small perturbations (one by one) in the dispersion relations (A.1). No iterative697

methods are required when using the implicit function theorem, which makes the method698

more reliable because is not susceptible to convergence problems.699
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