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Abstract

We create a general model for the tracking of a premixed flame sheet. This model is based
on a Lagrangian formulation of the interface motion, which is more computationally e�cient
than the level-set formulation solved on a grid. We apply this model to a conical Bunsen flame
in which flame-base oscillations and flame stretch e↵ects are also considered. We demonstrate
that the flame-front dynamics, the heat release rate perturbations, and the flame transfer
function (FTF) are a↵ected by three features: (i) the velocity field locally perturbing the
flame-front, (ii) the flame-base oscillations normal to the steady flame-front propagating
along the flame and (iii) the flame-base oscillations tangential to the flame-front reducing
and increasing the flame-length. We provide a physical explanation for the saturation of the
FTF phase shift with increasing forcing frequency, which is found experimentally. We show
why a n � ⌧ model with fixed ⌧ cannot model this simple flame and that, when building a
quantitatively-accurate model of a thermoacoustic system containing this flame, the flame
dynamics need to be simulated directly or modelled more accurately than with the n � ⌧
model. The flame model used in this paper has been designed to be di↵erentiable so that it
can be used for rapid data assimilation using Laplace’s method. Code is provided so that
the user can generate the FTF of a conical premixed flame with any set of parameters and
any flame-base trajectory.

Keywords: Thermoacoustics, Premixed flame response, Flame transfer function,
Flame-base motion, Lagrangian front tracking

1. Introduction

There is currently no alternative to combustion for powering long distance air transport,
due to the required power-to-weight and energy-to-weight ratios. There is a desire, however,
to reduce carbon dioxide (CO2) and nitrous oxide (NOx) emissions. This is motivating
research into lean premixed combustion of fossil fuels, sustainable aircraft fuels, and hydrogen
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fuel. Lean combustion is a promising technology to reduce NOx emissions because the
lower temperatures reduce the thermal NOx. Lean combustion systems are, however, more
susceptible to dangerous thermoacoustic oscillations, which motivates continual research in
this area.

Combustion instability has been studied since the 19th century [? ] but remains an active area
of research because of its importance and complexity. If the flame in a combustion chamber
is perturbed by velocity or pressure fluctuations, the heat release rate fluctuates [? ]. If this
unsteady heat release rate occurs su�ciently in phase with pressure oscillations, then heat is
converted to work over an oscillation cycle. This is known as the thermoacoustic mechanism.
This causes the acoustic energy to increase until the damping and acoustic energy losses due
to radiation match the thermoacoustic driving. Usually, this results in periodic limit cycles,
although quasi-periodic and chaotic oscillations have also been observed. These oscillations
can reduce performance, shorten component lifetimes, cause severe damage, and even lead
to catastrophic failure [? ].

Combustion instability is di�cult to model successfully because the e�ciency of the ther-
moacoustic driving mechanism is highly sensitive to small changes in the device [? ]. This
means that, even if a model of a thermoacoustic system is qualitatively correct, it may not
be su�ciently quantitatively correct to be a useful design tool. Usually, aircraft engines are
developed after component tests, then sector tests, then full engine tests. It is not uncom-
mon for thermoacoustic instabilities to appear in the final stages of development, even if
models from component tests did not predict it [? ]. Fortunately, this sensitivity to small
changes also allows combustion instability to be removed with relatively small modifications
to the engine. The challenge is to calculate these modifications as quickly as possible, which
is where a quantitatively-accurate model is desired, ideally combined with adjoint methods
for design [? ]. This is a technically di�cult process, however, which needs to be developed
and tested carefully on canonical flows, which is the subject of this paper.

There are several hundred papers in the literature describing several dozen models for the
components of a thermoacoustic system [? ? ? ]. It is challenging to select the most pertinent
model and, even then, there is no guarantee that parameter values that are accurate for one
configuration will remain accurate for another configuration. An alternative approach is
to obtain a large amount of data from an experimental rig and to use Bayesian inference
to select the best model, by combining data from experiments with prior beliefs about the
candidate models and the probability distributions of their parameters [? ]. This exploits
the convenient fact that, in thermoacoustics, the measurable features such as frequency
and growth rate (or limit cycle amplitude), are usually exceedingly sensitive to the model
parameters, meaning that the influence of model parameters is usually observable in the
data. Examples of data-driven approaches in the context of thermoacoustic instabilities can
be found in the studies of Noiray et al. [? ], Gant et al. [? ] and Ghani et al. [? ? ]. In these
studies, the authors use pressure time series recorded at specific locations in the combustion
chamber during a limit cycle and apply system-identification methods (SI) to infer flame
model parameters with the Maximum Likelihood Estimate approach. In particular, Ghani
et al. [? ] model the flame transfer function of a premixed swirl turbulent flame using the

2



Distributed Time Delay model of Komarek and Polifke [? ], which depends on five physical
parameters and infer their values by minimising the discrepancy between experimental data
and model predictions. The above studies are particularly relevant when optical access to
the flame is not possible. If, however, the flame’s natural emissions can be recorded by high-
speed cameras, it is possible to use this visual data to tune a physics-based reduced-order
model of the flame-front dynamics by minimising the discrepancy between its predictions and
the flame images. This model is governed by partial di↵erential equations and gives, amongst
other things, the heat release rate as a function of acoustic fluctuations. The final result is
a quantitatively-accurate model that is interpretable and extrapolatable. This process only
works, however, if models are qualitatively correct - i.e. if they can replicate the observed
physics with as few parameters as possible. The assimilation process is greatly accelerated
if the model is also di↵erentiable. This is because the gradient of the flame position with
respect to the model parameters can be used to minimise the discrepancy between model
predictions and flame images using a gradient-descent method.

This paper examines a general model for axisymmetric premixed flames that is di↵erentiable
and suitable for rapid data assimilation. We apply this model to an acoustically forced conical
Bunsen flame in order to identify the impact of the most influential parameters on the flame
transfer function and to determine whether or not it could be replaced with a simpler time
delay (n � ⌧) model. This type of flame has been studied before both numerically and
experimentally. The models adopted in these numerical studies can be divided into high-
fidelity CFD models [? ? ] and reduced-order models, in which the flame thickness is
assumed to be much shorter than the hydrodynamic lengthscale [? ]. In the latter models,
the flame is modelled as an infinitesimally thin surface that can be tracked explicitly (the
front-tracking method, such as that used in the current study) or expressed as the level-set
of a time-evolving scalar field, G (the front-capturing method). These level-set methods are
based on the G-equation [? ? ], which can have analytical solutions when linearized. [? ? ?
? ? ]. Analytical derivations are found by assuming that one coordinate can be expressed
as a function of the other. These formulations are particularly attractive because they lead
to analytical equations for flame shapes and FTFs; moreover, a clear identification of the
di↵erent contributions of each model parameter is possible. However, they need to either
assume that the flame remains anchored to the burner rim or neglect the influence of the
flame curvature on the flame speed. Experimental studies [? ? ? ? ] have shown, however,
that the flame base sits a small distance above the rim and follows an approximately elliptical
trajectory when forced. Cuquel et al. [? ] develop an analytical framework in which the
flame base oscillates normally to the flame front. They assume that the flame speed does not
depend on flame stretch (i.e. the Markstein length is zero), which allows them to obtain an
analytical expression for the flame transfer function (FTF) in which the contributions from
the velocity field perturbations and the flame base oscillations are clearly distinguished. With
this assumption, the influence of flame stretch on flame speed is ignored [? ? ]. For a more
detailed model, this influence must be included in order to prevent the formation of cusps
and to capture the decay of wrinkles as they propagate down the flame [? ]. The influence
of geometric curvature (but not hydrodynamic strain) was included by Orchini and Juniper
[? ], but only for a flame anchored to the burner rim.
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In order to take into account the e↵ects of the flame stretch and to allow the flame-base
to follow any possible trajectory, we have developed a front-tracking method based on a
Lagrangian formulation of the flame-front. In this case the flame-front is expressed in the
laboratory frame by a parametrised curve x̃(⌘, t̃), where ⌘ is a scalar parameter. On the
one hand, this formulation makes the computation of the flame dynamics extremely e�cient
because the number of degrees of freedom is reduced with respect to a grid-based level-set
solver. It is also easier to treat open curves, where the end point follows a given trajectory,
which is cumbersome with the level-set method [? ]. One attempt with an open curve with
fixed end points has been made by Smereka [? ]. On the other hand, the level-set method
has the advantage of naturally incorporating topological changes, which is fundamental when
pockets of unburned gases detach from the flame front. In our case, we are interested
in small-amplitude perturbations without pinch-o↵ events so the front-tracking method is
appropriate. After applying the desired discretisation scheme, the FTF can be calculated
with a single fast matrix multiplication operation. This accelerates the evaluation of the
flame response at many design parameters.

The objectives of this research are: (i) to assess the combined e↵ects of the flame curvature
and flame-base oscillations on the flame transfer function of a conical Bunsen flame; (ii) to
identify the impact of the most influential parameters of the current model on the flame
transfer function and on the flame-front dynamics; (iii) to determine whether or not the
model can be replaced by a simpler time delay (n � ⌧) model; (iv) to provide a physical
explanation for the saturation of the FTF phase shift with increasing forcing frequency, as is
found experimentally; (v) to provide a code for axisymmetric laminar premixed flames that
is di↵erentiable and suitable for rapid data assimilation. Due to the Lagrangian formulation
of the flame front adopted in this study, the contributions of the velocity field and the
flame-base oscillations can be expressed explicitly. We show through this that the flame
transfer function can be decomposed into three terms, which model the local velocity field
contribution and the flame base oscillations normal and tangential to the steady flame front.
Further, we show examples of how the model parameters impact the flame-front dynamics
and the flame transfer function. We show that this model can replicate characteristic features
of conical flame dynamics observed in experiments.

In section ?? we define the general laminar premixed flame model, adapt it to a Bunsen
burner flame, and define the flame-base trajectory model. In section ?? we describe the
numerical methods. In section ?? we report the results of the study, showing the e↵ect of
the flame base movement on the flame movement and the FTF. Finally, in section ?? we
summarise the results and discuss some future developments.

2. The model

In this section, we introduce a model for laminar premixed flames and customise it for an
axisymmetric Bunsen burner flame. In the following paragraphs, the superscript ˜ denotes
dimensional quantities, an overbar ¯ denotes mean quantities, a hat ˆ denotes Fourier compo-
nents with respect to time or a unit vector, k·k denotes the Euclidean norm, and x̃ indicates
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the position in the laboratory frame.

2.1. Laminar Premixed Flame Model

The propagation of a premixed flame is studied by assuming that two separated length
scales exist: the flame thickness �̃f and the hydrodynamic length L̃ associated, for example,
with the geometry of the burner or with the average size of the flame front wrinkles. With
respect to the hydrodynamic length, the flame is an infinitesimally thin surface dividing the
products from the reactants [? ? ? ]. Such a surface can be defined as a level set of a field
function G̃(x̃, t̃) = 0. A point on this surface moving with velocity dx̃/dt̃ (with respect to
the laboratory frame) remains on this surface if [? ? ]

@G̃

@ t̃
+

dx̃

dt̃
· r̃G̃ = 0. (1)

We define the flame speed S̃f as the normal velocity of the unburnt gas relative to the flame
sheet [? ? ]:

S̃f =

✓
dx̃

dt̃
� ṽ

◆
· n̂, (2)

where ṽ is the velocity field of the unburnt gas and n̂ is the unit normal vector to the flame
sheet pointing towards the unburnt gases. An expression for the flame speed, which takes
into account the flame stretch K̃, is obtained in the form [? ]:

S̃f = S̃L � M̃K̃, (3)

where S̃L is the laminar flame speed in the absence of flame stretch and M̃ is known as the
Markstein length. Flame stretch is a variable that measures the deformation of the flame
front subjected to a non-uniform velocity field and can be expressed as [? ? ]

K̃ = S̃Lk̃ + K̃s. (4)

where k̃ is twice the mean curvature of the surface and K̃s is the hydrodynamic strain due
to nonuniformities in the velocity field:

k̃ = �r̃ · n̂, K̃s = �n̂ · Ẽ · n̂, (5)

where Ẽ = 1/2
⇣
r̃ṽ + r̃ṽT

⌘
is the rate of strain tensor. In order to describe the kinematic

behaviour of the flame front, one can directly solve equation (??) or recast the equation for
G̃ by expressing the normal vector n̂ by

n̂ = � r̃G̃

|r̃G̃|
(6)
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Figure 1: Diagram of an axisymmetric flame.

and substituting it into equation (??). Using equation (??) one obtains the well known
G-Equation [? ]:

@G̃

@ t̃
+ ṽ · r̃G̃ = S̃f |r̃G̃|. (7)

The two formulations are equivalent. In this study, we adopt the first formulation based on
the direct solution of equation (??) to provide an e�cient computational method, which also
allows us to easily describe the movement of the flame-base. In this study, we consider the
case of an axisymmetric flame such as that shown in figure ??. We use a cylindrical reference
frame ⌃ = (0, r̃, ✓, z̃) with corresponding unit vectors êr, ê✓ and êz. We then define a plane
section ⇡, perpendicular to ê✓ and passing through the axis of symmetry z̃, and we study the
flame behaviour on it taking advantage of the axisymmetry. In order to have a general and
yet simple model for premixed flames, which includes the e↵ects of both the flame stretch
and flame-base motions, we identify the position of each point on the line representing the
flame-front by the vector

x̃(⌘, t̃) = x̃n(⌘, t̃) n̂+ x̃t(⌘, t̃) t̂ = r̃(⌘, t̃) êr + z̃(⌘, t̃) êz, (8)

where ⌘ 2 [0, 1] is a parametrisation of the curve representing the flame front and t̂ is the
tangential unit vector to the flame front, as shown in figure ?? (a). The proposed model is
based on a parametrisation of the flame line because i) such an approach allows us to model
complex shapes of the flame, with large deviations from the steady state, by a single-valued
function of the parameter ⌘; ii) an arbitrary movement of the flame base can be imposed.
The unit vectors n̂ and t̂ can be expressed as

t̂ =
1

k(@⌘r̃, @⌘z̃)k
(@⌘r̃êr + @⌘z̃êz) , n̂ = �t̂ ^ ê✓ =

1

k(@⌘r̃, @⌘z̃)k
(@⌘z̃êr � @⌘r̃êz) . (9)
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In the particular case of an axisymmetric surface, the curvature k̃ (defined here as twice the
value of the surface mean curvature) is expressed as

k̃ =
@⌘r̃ @⌘⌘z̃ � @⌘⌘r̃ @⌘z̃
⇣
(@⌘r̃)2 + (@⌘z̃)2

⌘3/2 +
1

r̃

@⌘z̃
⇣
(@⌘r̃)2 + (@⌘z̃)2

⌘1/2 . (10)

We substitute equation (??) into equation (??), obtaining a system for the radial and longi-
tudinal components of the position vector

(
@̃tr̃ = nr

�
ṽrnr + ṽznz + S̃f

�
,

@̃tz̃ = nz

�
ṽrnr + ṽznz + S̃f

�
,

(11)

where the subscripts r and z represent the radial and longitudinal components of any vector
such that, for instance, nr = n̂ · êr and nz = n̂ · êz. Finally, after substituting the expressions
for the normal vector n̂ (??) and of the curvature k̃ (??) into equation (??), the system of
equations (??) is transformed into the following equivalent system of second order nonlinear
partial di↵erential equations of the form:

(
@̃tr̃ = F̃1

�
t̃, @⌘r̃, @⌘⌘r̃, @⌘z̃, @⌘⌘z̃, p̃

�
,

@̃tz̃ = F̃2

�
t̃, @⌘r̃, @⌘⌘r̃, @⌘z̃, @⌘⌘z̃, p̃

�
,

(12)

where p̃ contains all the physical parameters describing the flame and the velocity field and
F̃1 and F̃2 are known functions. In section ?? we non-dimensionalise the governing equations
and we provide their expressions in ??.

2.2. Comparison with state-of-the-art models

This study solves equation (??), rather than equation (??), which was the starting point for
previous studies such as [? ? ]. Orchini and Juniper [? ] used

G̃(r̃, z̃, t̃) = z̃ � F̃ (r̃)� "f̃(r̃, t̃) = 0, (13)

where F̃ (r̃) defines the steady flame front and f̃(r̃, t̃) defines a perturbation in the longitu-
dinal direction (see figure ?? (b)), and " ⌧ 1 defines the perturbation’s amplitude. In [?
], the e↵ects of the flame curvature on the flame speed are included and the flame-base is
anchored to the burner. Experiments [? ? ? ] have shown, however, that the flame-base is
not anchored to the burner and that its movement must be modelled when calculating the
FTF. This is done by Cuquel et al. [? ], who assume a zero Markstein length, resulting in a
conical flame. They then define a reference system X-Y attached to the steady flame front,
as shown in figure ?? (c), and express the scalar field G as:

G̃(X̃, Ỹ , t̃) = Ỹ � ⇠̃(X̃, t̃) = 0, (14)

where Ỹ is the coordinate normal to the steady flame front and ⇠̃ its perturbation in the
normal direction. Using this model, [? ] allows the flame-base to move in the direction
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normal to the steady flame front. The e↵ects of the flame stretch could not, however, be
considered. Both Orchini and Juniper [? ] and Cuquel et al. [? ] assume that the un-
perturbed velocity field is uniform in space, while this study assumes that it is a linear
combination of a uniform velocity profile and a parabolic velocity profile.

Figure 2: Diagrams of (a) the flame surface in this paper compared with (b) that of Orchini and Juniper[?
], and (c) that of Cuquel et al. [? ]. The models (b) and (c) both rely on linearisation of the G-Equation

expressed by equation (??) for model (b) and equation (??) for model (c). Model (b) includes the e↵ect of

flame stretch but the flame-base is anchored to the burner rim and the steady component of the velocity

field is uniform. Model (c) does not include the e↵ect of flame stretch, which leads to nonphysical flame tip

dynamics, but allows the flame base to move on a straight line perpendicular to the steady flame front. The

model in this paper is based on equation (??). The flame front is described by a parameterised curve with

the parameter ⌘ in the interval I = [0, 1] and the flame-base can follow any trajectory. Models (b) and (c)

are therefore special cases of model (a).

2.3. Bunsen burner flame

We apply the model described in section ?? to an acoustically forced axisymmetric Bun-
sen burner flame. The system of equations (??) is completed by the initial condition�
r̃(⌘, 0), z̃(⌘, 0)

�
and the following four boundary conditions:

r̃(⌘ = 1, t̃) = r̃b(t̃), z̃(⌘ = 1, t̃) = z̃b(t̃), r̃(⌘ = 0, t̃) = 0, @⌘z̃(⌘ = 0, t̃) = 0,

(15a-d)
where r̃b and z̃b are the flame-base coordinates, which depend on the chosen trajectory, as
discussed in section ??.

Experimental studies on acoustically perturbed conical flames [? ? ? ] have shown that
harmonic acoustic forcing with angular frequency !̃ generates a perturbation of the unburnt
gases’ incompressible velocity field. Such a perturbation takes the form of a wave originating
at the burner rim and travelling along the longitudinal direction with constant phase speed
Ṽc and angular frequency !̃. Therefore, we assume that the velocity field ṽ of the unburnt
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gases is composed of a steady mean component Ṽ and a small perturbation "ṽ0, namely
ṽ = Ṽ+ "ṽ0, where " is the amplitude of the acoustic forcing. This assumption implies that
the amplitude of the acoustic velocity perturbation at the burner lip equals the amplitude
of the unburnt gases velocity field perturbation ṽ0 [? ? ]. For simplicity, we assume that
the mean flow has no component in the radial direction and that it is a function of the
radial coordinate only: Ṽ = Ṽ (r̃)êz. We also neglect the feedback e↵ect of the flame-front
dynamics on the fresh gas velocity field. This is the main limitation of our model but is
acceptable for the purpose of this study. To account for the fact that the nozzle converges
just upstream of the flame, the steady velocity field Ṽ (r̃) is modelled as a linear combination
of a uniform flow and a Poiseuille flow [? ] (see figure ??) such that:

Ṽ (r̃) = ˜̄V
�
1 + µ(1� 2(r̃/R̃)2)

�
, (16)

where µ is a shape parameter in the range [0, 1]. When µ = 0, the flow is uniform in the
radial direction and when µ = 1, the flow is parabolic. The velocity model does not attempt
to resolve the boundary layer at the wall and violates the no slip condition within the burner
tube. Outside the burner tube, however, the velocity will relax to a profile that is non-zero
everywhere, and since the flame is stabilised at a stand-o↵ distance from the burner, the
fresh-gas velocity profile that we prescribe there is not un-physical. Finally, we express the
velocity field perturbation ṽ0 as [? ? ? ? ? ]

ṽ0(r̃, t̃) = ˜̄V cos
⇣
!̃t̃� k̃cz̃

⌘
êz �

˜̄V k̃cr̃

2
sin
⇣
!̃t̃� k̃cz̃

⌘
êr , (17)

where k̃c = !̃/Ṽc is the wave number of the harmonic wave. The total velocity field is then

ṽ = �"
˜̄V k̃cr̃

2
sin
⇣
!̃t̃� k̃cz̃

⌘
êr +

˜̄V
⇣
1 + µ(1� 2(r̃/R̃)2) + " cos

⇣
!̃t̃� k̃cz̃

⌘⌘
êz . (18)

Using this velocity field, the hydrodynamic strain K̃s is

K̃s =
dṼ

dr̃

@⌘r̃ @⌘z̃

(@⌘r̃)
2 + (@⌘z̃)

2 +O(") = �4µr̃ ˜̄V

R̃2

@⌘r̃ @⌘z̃

(@⌘r̃)
2 + (@⌘z̃)

2 +O("). (19)

2.4. Heat release rate

The total heat release rate of the flame q̃(t̃), in dimensional form, is expressed as:

q̃(t̃) =

Z

@⌦

⇢̃RS̃f h̃RdÃ, (20)

where @⌦ is the total flame area, ⇢̃R is the reactant’s density, h̃R is the heat release rate
per unit mass of burnt reactants, and dÃ is an infinitesimal flame area. Assuming an
axisymmetric flame, the infinitesimal area dÃ is evaluated as

dÃ = r̃d✓dl̃, (21)
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where

dl̃ = k@⌘x̃k =
q
(@⌘r̃)

2 + (@⌘z̃)
2. (22)

Therefore, the instantaneous heat release rate q̃ is

q̃(t̃) = 2⇡⇢̃Rh̃R

Z 1

0

S̃f r̃
q

(@⌘r̃)
2 + (@⌘z̃)

2d⌘. (23)

2.5. Non-dimensionalisation

The reference speed is the mean value of the velocity field ˜̄V ; axial distances are scaled by L̃f ,
which represents the longitudinal length of the steady flame in the case µ = 0 and M̃ = 0;
radial distances are scaled by the burner radius R̃. The ratio of these two reference lengths,
� = L̃f/R̃, is the flame aspect ratio. Time is non-dimensionalised by L̃f/V̄ . In summary,
the non-dimensional variables are defined through:

ṽr =
˜̄V vr ṽz =

˜̄V vz z̃ = L̃fz r̃ = R̃r

t̃ =
L̃f

˜̄V
t � =

L̃f

R̃

S̃L

˜̄V
=

1p
1 + �2

M̃ = L̃fM

(24a)

(24b)

We also introduce the Strouhal number St = !̃L̃f/
˜̄V and the ratio between the velocity

Figure 3: Schematic representation of the flame and the non-dimensionalisation.

perturbation phase speed, Ṽc, and the mean value of the velocity field, ˜̄V , K = ˜̄V/Ṽc.
The non-dimensional velocity components vr(⌘, t) and vz(⌘, t) are then written as vr(⌘, t) =
"v0r(⌘, t) and vz(⌘, t) = v̄z(⌘) + "v0z(⌘, t), where v̄z(⌘) = 1 + µ

�
1� 2(r(⌘))2

�
and the acoustic

velocity perturbation in phasor notation is written as

v0r(⌘, t) = Re(v̂r(⌘)e
iSt t), v0z(⌘, t) = Re(v̂z(⌘)e

iSt t), (25a-b)
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where

v̂r(⌘) = i
KSt

2�
re�iStKz, v̂z(⌘) = e�iStKz. (26a-b)

In the following text we use phasor notation but, for simplicity, drop Re. The stand-o↵
distance is also scaled by the flame length L̃f :

 ̃f = L̃f f . (27)

Due to the di↵erent scaling of the radial and longitudinal axes, the normal vector n̂ is no
longer perpendicular to the curve in the non-dimensional axes, as shown in figure ??. When
non-dimensional variables are used, n̂ is expressed as

n̂ =
1

k(@⌘r, �@⌘z)k
(@⌘�zêr � @⌘rêz) . (28)

The heat release rate in equation (??) can be expressed as q̃(t̃) = q̃refq(t), where q̃ref and
q(t) are the reference and non-dimensional heat release rate, respectively:

q̃ref = 2⇡⇢̃Rh̃RR̃
2 ˜̄V q(t) =

Z 1

0

Sfr
q
(@⌘r)

2 + (@⌘�z)
2d⌘, (29a-b)

where

Sf = S̃f/
˜̄V =

1p
1 + �2

(1�Mk)�MKs (30)

is the non-dimensional flame speed. Finally, the non-dimensional form of the system of
equations (??) governing the movement of the flame is:

(
@tr = F1 (t, @⌘r, @⌘⌘r, @⌘z, @⌘⌘z,p) ,

@tz = F2 (t, @⌘r, @⌘⌘r, @⌘z, @⌘⌘z,p) .
(31)

The expressions for functions F1 and F2 are reported in ??.

2.6. Steady equations

In steady conditions, the non-dimensional hydrodynamic strain K̄s =
˜̄KsL̃f/

˜̄V is expressed
as

K̄s = �4µr̄�2 @⌘r̄@⌘z̄

(@⌘r̄)2 + �2(@⌘z̄)2
(32)

and the non-dimensional curvature k̄ = ˜̄kL̃f can be written as

k̄ = �2

0

B@
@⌘r̄ @⌘⌘z̄ � @⌘⌘r̄ @⌘z̄
⇣
(@⌘r̄)2 + (�@⌘z̄)2

⌘3/2 +
1

r̄

@⌘z̄
⇣
(@⌘r̄)2 + (�@⌘z̄)2

⌘1/2

1

CA . (33)
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Dropping the time derivative terms in equation (??) and considering the velocity field
given by equation (??), one obtains the following equation for the steady-state flame shape�
r̄(⌘), z̄(⌘)

�
:

⇣
1 + µ

�
1� 2r̄2

�⌘
n̄z +

1p
1 + �2

(1�Mk̄)�MK̄s = 0. (34)

Therefore, the steady flame sheet is uniquely defined by setting the parameters �, M, µ and
the appropriate boundary conditions.

2.7. Flame-base model

Using the flame model presented in section ??, any time-dependent trajectory of the flame-
base can be imposed. Such a trajectory can be directly inferred from experiments, from
numerical simulations of the flame-base interaction with the velocity field, or from a low
order model of the behaviour of the flame base such as that in [? ] or the one described
in this section. Both Mejia et al. [? ] and Cuquel et al. [? ] have tracked the flame-base
trajectory experimentally. It can be modelled by an ellipse centred at the base point, whose
major axis forms an angle ✓ < ⇡/2 with respect to the radial direction, as shown in figure ??.
We indicate with � the length of the major axis and with AR the aspect ratio, so that the

Figure 4: Kinematic diagram of the elliptical flame-base trajectory.

minor axis is equal to the product of �AR. We assume that the amplitude of the trajectory
is proportional to the acoustic forcing amplitude " and that the flame-base point completes
its orbit in the same period of the acoustic forcing (see equations (??)). Therefore, the
position of the flame base is expressed as rb(t) = r̄b + "r0b(t) and zb(t) = z̄b + "z0b(t), where r̄b
and z̄b indicate the non-dimensional radial and longitudinal steady-state coordinates of the
flame-base position and

r0b(t) = � (cos(✓) + iAR sin(✓)) ei(St t+�0), z0b(t) = �(sin(✓)� iAR cos(✓))ei(St t+�0),

(35a-b)
represent their perturbation in phasor notation; the angle �0 is the initial phase included in
the model to allow an additional degree of freedom for the flame-base movement. The angle

12



↵ in figure ?? is the angle that the steady flame front forms with the longitudinal axis z at
the flame-base. This is useful for decomposing the flame-base motions into the normal and
tangential components to the steady-flame line such that

r0b(t) = xb,n(t) cos(↵)� xb,t(t) sin(↵), z0b = xb,n(t) sin(↵) + xb,t(t) cos(↵), (36a-b)

where

xb,n(t) = �ne
i(St t+�0), xb,t(t) = �te

i(St t+�0), (37a-b)

are the normal and tangential flame base movement components, respectively and

�n = � (cos(✓ � ↵) + iAR sin(✓ � ↵)) , �t = � (sin(✓ � ↵)� iAR cos(✓ � ↵)) , (38a-b)

are complex numbers, whose absolute values correspond to the maximum displacements in
the normal and tangential direction, as shown in figure ??. In section ??, it is shown that
these components have two distinctive e↵ects on the heat release rate.

2.8. Linearisation

If the amplitude of the acoustic forcing is small enough (" ⌧ 1), we can find a solution of
system (??) by reconstructing its first-order approximation assuming that

r(⌘, t) = r̄(⌘) + "r0(⌘, t) +O("2), z(⌘, t) = z̄(⌘) + "z0(⌘, t) +O("2). (39a-b)

Substituting equations (??a) and (??b) into F1 and F2 of system (??), performing a Taylor
expansion about " = 0, and neglecting higher-order terms in ", we obtain a system of linear
equations for the perturbation components r0 and z0 of the type:

@tr
0 = a11r

0 + a12@⌘r
0 + a13@⌘⌘r

0 + a14z
0 + a15@⌘z

0 + a16@⌘⌘z
0 + b1e

iSt t,

@tz
0 = a21r

0 + a22@⌘r
0 + a23@⌘⌘r

0 + a24z
0 + a25@⌘z

0 + a26@⌘⌘z
0 + b2e

iSt t,

(40a)

(40b)

where the coe�cients of the linear PDEs aij = aij(⌘), bi = bi(⌘, St), with i = 1, 2 and j =
1, ..., 6 are functions of the steady-state flame coordinates r̄ and z̄, which are found by solving
equation (??). In particular, the coe�cients b1 and b2 contain terms from the velocity field
and are therefore also functions of the Strouhal number St. The same procedure is applied
to the non-dimensional heat release rate q(t): we reconstruct its first-order approximation
q(t) = q̄+"q0(t); then we substitute equations (??a) and (??b) into equation (??b) obtaining
an equation for the heat release rate perturbation of the form

q0 =

Z 1

0

(c1r
0 + c2@⌘r

0 + c3@⌘⌘r
0 + c4z

0 + c5@⌘z
0 + c6@⌘⌘z

0) d⌘, (41)

where the coe�cients cn = cn(⌘), with n = 1, ..., 6 are functions of the steady-state flame
coordinates r̄ and z̄, which are found by solving equation (??). Also the perturbation
components r0 and z0 can be expressed in terms of Fourier components, such that r0(⌘, t) =
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r̂(⌘)eiSt t and z0(⌘, t) = ẑ(⌘)eiSt t. Substituting these expressions into equations (??a) and
(??b) we obtain the following system:

✓
iStI�

✓
a11 + a12@⌘ + a13@⌘⌘ a14 + a15@⌘ + a16@⌘⌘
a21 + a22@⌘ + a23@⌘⌘ a24 + a25@⌘ + a26@⌘⌘

◆◆✓
r̂
ẑ

◆
=

✓
b1
b2

◆
(42)

where I is the identity matrix, which is solved once boundary conditions have been imposed
on r̂ and ẑ. The expressions for the coe�cients can be found in the code supplied with this
paper.

2.9. Flame transfer function

We define the flame transfer function FTF as the ratio between the Fourier components of the
heat release rate normalised by the mean heat release rate, q̂, and the longitudinal component
of the acoustic velocity field measured at the burner rim normalised by the mean flow velocity,
û, at angular frequency St. We assume, for simplicity, that the longitudinal component of
the unburnt gas velocity perturbation is equal to the acoustic velocity perturbation at the
burner rim v̂z(z = � f ) = û [? ]. Substituting z = � f into equation (??b), û is expressed
as

û = e�iStK(� f ). (43)

Because equation (??) is linear, we can employ the superposition principle and express the
heat release rate (and therefore the FTF) as the sum of three contributions: the first, q̂v, is
caused by the velocity field perturbation; the other two, q̂n and q̂t, are caused by motions
of the flame base in the normal and tangential directions with respect to the steady-state
flame at the flame base, respectively. Therefore, the FTF can be expressed as

FTF =
q̂

û
=

q̂v
û

+
q̂n
û

+
q̂t
û
. (44)

The flame transfer functions corresponding to flame base motions can be expressed as

FTFn =
q̂n
û

=
q̂n
�n

�n
v̂n(0)

v̂n(0)

û

FTFt =
q̂t
û

=
q̂t
�t

�t
�n

�n
v̂n(0)

v̂n(0)

û

(45a)

(45b)

where the factor �t/�n takes into account the geometrical properties of the flame-base tra-
jectory. The transfer function �n/v̂n(0) links the normal flame-base oscillations to the local
velocity field perturbation and can be expressed through the model proposed by Rook et al.
[? ] as in [? ].

3. Numerical Methods

The governing equations (??) are discretized in ⌘ by a uniform 1D mesh using N = 200
nodes. The first and second derivatives with respect to ⌘, @⌘ and @⌘⌘, are discretised with
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Figure 5: Diagram of the reparametrisation step on a generic curve x of length l = 1, where, for simplicity,

it has been assumed that the parameter ⌘ is discretised on a uniform grid of five nodes. The square markers

represent the points on the ⌘-grid before and after the reparametrisation step.

a second-order accurate central finite di↵erence scheme. The system is marched forward in
time by a fifth-order accurate embedded Runge-Kutta scheme. The steady-state equation
(??) is solved by assuming ⌘j = rj, with the index j = 1, .., 200, and then solved numerically
for zj using a Newton-Raphson method.

The accuracy of the time marching solution is improved by imposing that the finite number
of points defining the flame front are approximately equidistant from each other. At the
beginning of each time step, the curve is re-parametrised. We consider the arc-length s(⌘)
(or natural parameter)

s(⌘) =

Z ⌘

0

k@⌘̄xk d⌘̄, (46)

of the curve x identifying the flame front. In discrete form, equation (??) is

sj ⇡
jX

n=1

k@⌘xkn�⌘, (47)

where sj denotes the arc-length corresponding to the j-th node of the ⌘-grid, so that the
length of the curve x can be approximated by sN , where N is the number of nodes of the
⌘-grid. The values of sj also define a non-uniform grid with corresponding values for rj and
zj. Therefore, the idea is to interpolate the values of rj and zj onto a uniform grid s̄j at
each time-step, where the s̄-grid is obtained by dividing the total length of the curve x into
N equal parts, such that s̄j+1 � s̄j = sN/N . An illustrative diagram is shown in figure ??.
Finally, the integrals in equations (??) and (??) are solved by employing the trapezoidal
rule.

The computational cost of this Lagrangian formulation is significantly lower compared to
that of the level-set method, which would require an N ⇥ N 2D Cartesian grid to achieve
approximately the same spatial resolution. A reduction of the computational cost can be
achieved by employing the local level-set approach [? ] as in Hemchandra [? ].
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4. Contribution to the FTF from flame-base oscillations

We introduce the parameter Kf = (1 + �2)/�2, which is the convection speed of flame
shape perturbations when M = 0 (see equation (12) in [? ]). When K = Kf the velocity
perturbations and the flame disturbances are convected at the same speed. We also introduce
the modified Strouhal number St2 = St(1 + �2)/�2, which corresponds to !⇤ in [? ].

4.1. Tangential component F̄t

Let us consider the first term on the r.h.s. of equation (??b). This is the ratio of the
heat release rate perturbation due to flame-base tangential movement, q̂t, and the tangential
component of the flame-base movement, �t:

F̄t =
q̂t
�t
. (48)

This movement varies the flame length without changing its shape. According to equations
(??a-b) and (??a-b), the flame-base coordinates r0b(t) and z0b(t) follow

r0b(t) = ��t sin(↵)ei(St t+�0), z0b(t) = �t cos(↵)e
i(St t+�0). (49a-b)

In the case of zero Markstein length, M = 0, the heat release rate q̂t is equal to the flame
area ratio Ât/Ā. Moreover, the flame shape is a cone with area A(t) = ⇡R(t)L(t), where
R(t) and L(t) are the cone radius and side length, respectively. In this case the flame area
is:

A(t) = ⇡R(t)L(t) = ⇡
⇣
R� �te

i(St t+�0) cos(↵)
⌘⇣

R
p
1 + �2 � �te

i(St t+�0)
⌘
. (50)

Hence,

F̄t =
Â/Ā

�t/R
= � 2p

1 + �2
. (51)

Therefore, F̄t has the same gain at all frequencies, and a constant phase shift equal to
�⇡. For non-zero values of the Markstein length, one obtains the results reported in figure
?? showing the gain, phase and polar plot of the transfer function F̄t computed with M =
0, 0.001, 0.005, 0.01. Such results confirm that the flame stretch has a negligible influence on
the transfer function F̄t, which can be well approximated by the analytical solution reported
in equation (??).

4.2. Normal component F̄n

Let us consider the first term on the r.h.s. of equation (??a), which is the ratio of the heat
release perturbation due to flame-base normal oscillations, q̂n, and their amplitude �n;

F̄n =
q̂n
�n

. (52)
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Figure 6: Gain, phase and polar plot of the transfer function F̄t = q̂t/�t plotted as a function of the modified

Strouhal number St2 = St(1 + �
2
)/�

2
, for di↵erent values of the non-dimensional Markstein length. The

lines cannot be distinguished because they are all superimposed.

Figure 7: Diagram of the heat release rate perturbation, which in the linear approximation is proportional to

the signed area that the perturbed flame front forms with the steady flame front. For simplicity, we report

the case with non-dimensional Markstein length M = 0. We observe that, for St2 = St(1+�
2
)/�

2
= 2⇡ and

4⇡ the net area is zero and the heat release rate perturbation is also zero.

The flame-base coordinates rb(t) and zb(t) follow

r0b(t) = �n cos(↵)e
i(St t+�0), z0b(t) = �n sin(↵)e

i(St t+�0). (53a)

In this case, the flame-front is distorted by the flame-base motion. Perturbations starting
from the flame base propagate towards the flame tip with constant phase speed. In the linear
approximation, the heat release rate is proportional to the signed area that the perturbed
flame front sweeps out with respect to the steady flame-front [? ]. An extended explanation
of this observation is reported in ??. The diagram in figure ?? shows three snapshots of
the perturbed flame-front corresponding to normal oscillations of the flame-base at Strouhal
numbers St2 = 2⇡, 3⇡ and 4⇡, respectively, with the non-dimensional Markstein length equal
to zero. We observe that, when the Strouhal number St2 is a multiple of 2⇡, the positive
area portion balances the negative portion, resulting in zero heat release rate fluctuation.
The diagram is also helpful for interpreting figure ??, which shows the gain, phase and polar
plot of the transfer function F̄n for three values of the non-dimensional Markstein length M.
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We observe that when the Markstein length is zero (i.e. the flame speed does not depend on
the flame stretch), perturbations created at the base of the flame propagate along the flame
with constant amplitude. At St2 = 2n⇡, where n is an integer, the fluctuation h.r.r. cancels
out (figure ??) so the gain is zero. For other St2, the gain is non-zero. For zero Markstein
length, the heat release rate can be expressed as a function of the flame-base displacement
after a time delay ⌧ , which is half the time that perturbations take to travel from the base
to the tip.

When the Markstein length is non-zero (i.e. the flame speed depends on the flame curvature),
flame surface perturbations reduce in amplitude as they convect towards the flame tip.
Figure ?? shows three snapshots of the flame oscillations moving along the flame for the
cases of non-dimensional Markstein length M = 0 and M = 0.01. We observe that, as the
frequency of the oscillations increases, the flame tip becomes increasingly less perturbed,
while the flame base remains perturbed. The spatial decay rate of the amplitude increases
as the curvature increases, and therefore as the Strouhal number increases. This decay rate
also increases as the Markstein length increases. This amplitude reduction means that the
contribution to the fluctuating h.r.r. from the downstream part of the flame can no longer
cancel the contribution from the base of the flame (see figure ??). The contribution to the
fluctuating h.r.r. therefore comes increasingly from the base of the flame, where the FTF
has a fixed phase lag of ⇡/2. This reveals that the flame has a constant time delay for zero
Markstein length, but tends towards a constant phase delay for non-zero Markstein length
as the Strouhal number increases.

We also analyse the influence of the flame aspect ratio, �, on the transfer function F̄n, when
the Markstein length is non-zero. Figure ?? shows the gain, phase and polar plot of the
transfer function F̄n for three values of the flame aspect ratio: � = 2, 4 and 6. Due to
the mechanism described in the preceding paragraph, as the Strouhal number increases, the
contribution to fluctuating h.r.r. from the base of the flame becomes more influential than
the contribution from the tip. The polar plot in figure ?? therefore resembles the polar plot
in figure ??, with the small di↵erence that the origin is encircled once or more when the
flame is longer (larger �). As the Strouhal number increases, the phase delay becomes ⇡/2,
as before. Note that this is plotted as ⇡/2 + n⇡ for the longer flames, so that the lines of
phase vs. Strouhal number are continuous, but that the addition of n⇡ is cosmetic. The
same behaviour is seen in the measurements of the FTF in Fig. 7 in [? ]. The important
point is that, as the Strouhal number increases, the FTFs tend towards a constant phase
delay of ⇡/2, whatever the value of �.

4.3. Influence of the flame-base trajectory

In order to consider the contribution of the flame-base trajectory, we fit an ellipse (section ??)
to the experimental trajectory reported in figure 4 in [? ], which was measured at f = 100Hz
and " = 0.1. We determine the optimal values for the ellipse major axis length � = 0.6,
its aspect ratio AR = 0.04, and angle ✓ = ⇡/14 by minimising the di↵erence between the
vertical and horizontal displacements from our model and the experimental data, as shown
in figure ??. Separately, the values of �, µ and M are estimated from the corresponding
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Figure 8: (Left to right) gain, phase and polar plot of the transfer function F̄n = q̂n/�n plotted as a function

of the modified Strouhal number St2 = St(1 + �
2
)/�

2
, for di↵erent values of the non-dimensional Markstein

length: M = 0 (blue), 0.005 (red) and 0.01 (yellow). The value of the tip half-angle is equal to ↵ = ⇡/6

(� =
p
3) to allow a direct comparison with figure 2 in [? ]. In all cases the value of the gain goes to

2�/
p
1 + �2 when St approaches zero.

Figure 9: Snapshots of half of the flame-front perturbed by flame-base oscillations normal to the flame-front

for three values of the modified Strouhal number St2 = St(1 + �
2
)/�

2
: St2 = 2⇡, 4⇡ and 8⇡ and two values

of the non-dimensional Markstein length M = 0 and 0.01. The value of the flame aspect ratio � in this

simulation is � = 1. The dashed lines show the steady flame front in the case with M = 0.01. We observe

that as the Strouhal number is increased, the upper part of the flame is not perturbed.
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Figure 10: (Left to right) gain, phase and polar plot of the transfer function F̄n = q̂n/�n plotted as a function

of the modified Strouhal number St2 = St(1 + �
2
)/�

2
, for di↵erent values of the aspect ratio: � = 2 (blue),

4 (red) and 6 (yellow). From left to right, we plot the gain and the phase; then we represent the transfer

function by its real and imaginary part; finally, we show a magnification of the latter. The value of the

non-dimensional Markstein length in this simulation is M = 0.01.

steady flame, which is shown in figure 2.6 in [? ]. The parameters � = 3.873, µ = 0.422
and M = 0.0186 fit the experimental image well (figure ?? left). We then set K = Kf and
calculate the FTF at f = 100Hz, corresponding to St ⇡ 17, both ignoring and considering
flame base oscillations.

In figure ?? (right) we plot the gain and phase of the flame transfer function FTF for three
values of the aspect ratio AR as a function of the inclination angle ✓ of the ellipse, where
the major axis is fixed at � = 0.6. The horizontal dashed lines correspond to the values of
the gain and phase when the flame base contribution is ignored. The red circles refer to the
parameters of the experimental trajectory in figure ??, and the triangles refer to the values
of the gain and phase of the FTF when we simplify the flame-base trajectory to a straight
line perpendicular to the flame front, ignoring the tangential component. We observe that
neglecting the flame base contribution leads to a significant error in the prediction of the
gain and phase of the flame transfer function. Furthermore, the angle, ✓, of the trajectory
has a large influence, while the aspect ratio AR has a small influence. These results indicate
that a simplified trajectory consisting of a straight line at the correct angle ✓ is su�cient
when estimating the flame base contribution.

We can then simplify our calculation of the flame transfer function FTF with:

FTF = Fu + Fb, (54)

where Fu is the contribution of the velocity field to the flame transfer function, with the
flame base fixed and Fb is the contribution of the flame base oscillations, with the velocity
field set to zero. Furthermore, the term Fb is given by the product F̄b · (�/û), where F̄b is
the contribution to the FTF given by the shape of the trajectory followed by the flame base
and is expressed as

F̄b =
q̂t + q̂n
�

=
�t
�
F̄t +

�n
�
F̄n = sin(✓ � ↵)F̄t + cos(✓ � ↵)F̄n, (55)
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Figure 11: (Left) experimental flame-base trajectory shown in figure 4 in [? ] fitted by an ellipse with

parameters � = 0.6, ✓ = ⇡/14 and AR = 0.04; (right) comparison of the experimental and fitted flame-base

displacement as a function of the phase angle of the oscillation.

and (�/û) is the transfer function linking acoustic fluctuations to the amplitude of the flame
base oscillations. Figure ?? shows the gain and phase of the transfer function F̄b versus the
modified Strouhal number St2 = St(1+�2)/�2 for di↵erent values of the angle ✓, with � = 1
and M = 0. The transfer function F̄b is the result of the linear combination of F̄t and F̄n as
shown by equation (??). The transfer function is therefore heavily influenced by the angle
of the flame base trajectory, as can be seen in figure ??.

4.4. Modelling the flame transfer function as a time-delay

If the heat release rate fluctuations from a flame depend only on the fluctuating velocity,
rather than fluctuating pressure or fluctuating composition, then the h.r.r. fluctuations must
be slightly out of phase with the velocity fluctuations for the thermoacoustic mechanism to
be active. The simplest physics-based model for this phase lag is a time delay between
velocity perturbations at the base of a flame and subsequent h.r.r. fluctuations along the
flame. This is known as the n � ⌧ model and it dates back to the 1940’s [? ]. This time
delay accounts for physical phenomena such as droplet break-up and evaporation, or (as in
this paper) perturbations travelling down a flame sheet. In this case study, we note that the
time delay between acoustic and heat release rate harmonic fluctuations must be interpreted
as a relaxation time property rather than a net delay property because any perturbation on
the flame front will immediately result in a heat-release rate perturbation. Modelling the
flame response using a constant value of the time delay across harmonic forcing frequencies
is attractively simple and is frequently used for premixed flames.

In section ?? we showed that, for flames with non-zero Markstein lengths, the h.r.r. fluc-
tuations could not be modelled with such a time delay. This is because, if the flame speed
increases with the flame curvature (i.e. at higher Strouhal numbers and higher Markstein
lengths), perturbations decay as they travel downstream and only the base of the flame
contributes to the fluctuating h.r.r. The time delay model, although simple, would not be
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Figure 12: (Left) comparison of the experimental steady-state flame image in [? ] corresponding to the same

experimental setup used in the dynamical case where the flame base motion is tracked (figure ??) and the

steady-state flame obtained by the model developed in this work with � = 3.87, µ = 0.422 and M = 0.0186;

(right) gain and phase of the FTF at St ⇡ 17 (f = 100Hz in the experimental setup) versus the angle ✓

of the ellipse describing the flame base motion for di↵erent values of the aspect ratio AR. The horizontal

dashed lines correspond to the values of the gain and phase when the flame base is not moving. The circles

correspond to the flame-base motion shown in figure ?? (✓ = ↵, AR = 0), and the triangles refer to the values

of the gain and phase obtained when simplifying the flame-base trajectory to a straight line perpendicular

to the flame steady-state at the base (✓ = ↵, AR = 0).

Figure 13: Gain and phase of the transfer function F̄b = (q̂t + q̂n)/� obtained by varying the angle ✓ of the

flame-base trajectory, assumed as a straight line (AR = 0). We consider normal and parallel motions as well

as horizontal and vertical motions. The non-dimensional Markstein length is M = 0 and the aspect ratio is

� = 1.
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a good model for this flame in general. It would only be justifiable if the Markstein length
were zero.

In section ?? we explained that acoustic fluctuations at the burner rim result in both flame-
base and velocity field perturbations. Every perturbation of the flame shape propagates
from the base to the tip. When M = 0 the convection speed of flame shape perturbations
is Kf = (1 + �2)/�2. We define the characteristic time T = 1/Kf as the time taken for
a perturbation to travel from the flame-base to the flame-tip. When subjected to acoustic
velocity fluctuations, the velocity field and the flame base are perturbed and both of these
cause flame wrinkles that propagate from the base to the tip. The flame shape arises from
the combined action of the velocity field and the convection of wrinkles. This can amplify,
increase or even cancel the flame wrinkles [? ]. The heat-release-rate perturbations are
proportional to the signed area generated by the intersection of the perturbed and steady
flame-fronts, as explained in section ?? and figure ??. The mechanism linking acoustic
fluctuations to heat-release-perturbations in the Bunsen flame is illustrated in figure ??.

Flame-base
oscillations

Velocity field
perturbation

Flame
wrinkles

Signed
Area

Heat-release-rate
perturbations

Acoustic
fluctuations

Figure 14: Diagram of the mechanism linking acoustic fluctuations to heat-release-rate perturbations in the

Bunsen flame.

For illustration, we perform three simulations: (i) anchoring the flame-base and setting the
value of the non-dimensional convective speed to K = Kf , Fu; (ii) setting the velocity field
perturbation to zero and forcing the flame-base to oscillate in the normal direction, F̄n and
(iii) simulation (i) but allowing the non-dimensional convective speed to vary. We set the
non-dimensional Markstein length M = 0 and use � = 1.

Simulations (i) and (ii) are compared in figure ??. When the value of the non-dimensional
convective speed is set toK = Kf the velocity field and flame wrinkle convection are in phase.
Therefore, when the flame is subjected to harmonic acoustic forcing, the flame wrinkles are
amplified as they are convected towards the tip, as shown in figure ?? (bottom). If we
compare the phase of the Transfer Functions in figure ?? (top), we see that the time delay
associated with case (i) is equal to T because the flame tip contributes most to heat release
rate fluctuations, whereas the time delay associated with case (ii) is T/2 because each part
of the flame surface contributes equally to heat release rate fluctuations. The third kind of
simulation is performed by setting K = Kf , 1/2Kf , 5Kf . In figure ??, we show the Transfer
Functions alongside the flame wrinkles for three values of the modified Strouhal number
St2 = ⇡, 3⇡, 5⇡. The interaction between the convection of the flame wrinkles with the
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velocity field varies with K/Kf . When K = Kf , ⌧ = T but when K = 5Kf , the envelope of
the flame wrinkles is uniform along the flame-front and the time delay tends to T/2 as for
the flame-base oscillations case described above.

Figure 15: (Top) Gain and phase of the Transfer Functions Fu and F̄n. (Bottom) Envelopes of the perturbed

flame in the two cases with a forcing Strouhal number St2 = ⇡, 3⇡ and 5⇡, with " = 0.03. With this set of

parameters, the envelope of the velocity field case are more pronounced at the tip of the flame. The envelope

of the flame-base case shows that perturbations created at the base of the flame propagate along the flame

without any reduction in amplitude. The slope of the phase plot on the right show that the time delay for

the velocity field case is twice the time delay of the flame-base case.

In summary, even when the Markstein length is zero, the time delay ⌧ can vary in the range
⌧ = [0, T ], depending on the Strouhal number and on whether the flame motion depends
mainly on the velocity field, the flame base movement, or a combination of the two. Even for
this simple Bunsen flame, a model with a single time delay is not valid. Instead, the flame
dynamics must either be simulated or modelled with a more elaborate model. These results
are in line with the observations of Blumenthal et al. [? ], which state that conical premixed
flames are better represented by a distribution of time lags rather than a single time delay.
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Figure 16: (Top) Gain and phase of the Transfer Functions F̄n and Fu with K = Kf , 1/2Kf , 5Kf . (Bottom)

Flame envelope for 3 values of the Strouhal number St2, using " = 0.03. Comparing the envelopes with

the phase it is clear that when the perturbation is uniformly distributed along the flame front, the transfer

functions become similar to the one related to the flame-base motions (dashed line).

.
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5. Conclusions

In this study, we create a general model for the tracking of a premixed flame sheet. This
model is based on a Lagrangian formulation of the interface motion and is more compu-
tationally e�cient than the level-set formulation solved on a grid. This model has been
applied to a conical Bunsen flame and has been validated against Orchini and Juniper [? ]
who included the curvature e↵ect on the flame dynamics but assumed that the flame-base is
attached to the burner rim, and against Cuquel et al. [? ], who neglected the flame-stretch
influence and assumed that the flame-base oscillates normal to the flame front direction only.
These are special cases of the general model presented here.

We have demonstrated that the flame front dynamics, the heat release rate perturbations,
and the flame transfer function FTF contain three contributions: (i) the velocity field locally
perturbing the flame-front, (ii) the flame-base oscillations normal to the steady flame-front,
which propagate along the flame from the base to the tip and (iii) the flame-base oscillations
tangential to the flame-front, reducing and amplifying the flame-length.

When we include the e↵ect of the flame-stretch, increasing the frequency of the oscillations,
the flame wrinkles decay with downstream distance, as observed by Preetham et al. [?
]. When the frequency is large enough, the tip of the flame barely oscillates and, as we
increase the frequency, the region of the flame a↵ected by wrinkles reduces and the phase
shift saturates towards a constant value, as found experimentally in [? ]. In this case, the
time delay associated with the FTF reduces with the frequency and this has a clear physical
cause: the perturbations take less time to reach the point at which they disappear and this
point no longer coincides with the flame tip. Experimental studies [? ? ] have shown that
the flame-base follows an approximately elliptical trajectory. For the trajectory taken from
[? ], we show that the aspect ratio of this elliptical trajectory has little influence on the FTF,
but that the angle has a significant influence. We conclude that the flame-base trajectory
can be well approximated by a straight line, but the angle with respect to the flame-front
must be specified. Finally, we show why a simple n � ⌧ model, with fixed ⌧ , will not work
even for this simple flame. This demonstrates that, when building a quantitatively-accurate
model of a thermocaoustic system containing this flame, the flame dynamics will need either
to be simulated or to be modelled with a more elaborate model than a simple n� ⌧ model.

The flame model used in this paper can capture the numerically and experimentally-observed
behaviour in [? ] and [? ], and has been designed to be di↵erentiable, meaning that the
gradient of the model output can be calculated with respect to the model parameters. Di↵er-
entiable codes can be used for rapid data assimilation using Laplace’s method [? ], meaning
that this code can be used to assimilate model parameters from experimental observations
of a Bunsen flame. This code is provided with the paper, allowing the user to generate the
FTF of a conical premixed flame with any flame aspect ratio �, any Markstein length M,
any convective speed ratio K and any flame-base trajectory.
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Appendix A. Governing equations in non-dimensional form

The non-dimensional governing nonlinear system of equations (??) is expressed by
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are the radial and longitudinal component of the velocity field, respectively.

Appendix B. Validations

We validate the linear code in four steps.
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Figure B.17: Flame transfer functions FTFs during step 1 of the validation. The flame base is attached to

the burner rim and we vary the Markstein length M while setting � = 6 and ⌘ = 1.1. The results match

those in figure 5 in [? ].

1. In the first step, we compute the flame transfer functions for M = 0, 0.005, 0.01, 0.02.
We anchor the flame-base to the burner rim and set the other parameters to � = 6,
⌘ = 1.1 and µ = 0. The results are shown in figure ?? and match those reported in
figure 5 in [? ].

2. In the second step, we compute the Flame-Base Transfer Function F̄b for � = 1, 3, 6.
We force the flame-base to oscillate in the longitudinal direction (✓ = ⇡/2). We set
the Markstein length M = 0 and compare the results with the analytical solution:

F̄b =
2�

1 + �2

✓
1

i St2

⇣
1� e�iSt2

⌘
� 1

◆
. (B.1)

The results are shown in figure ??.

3. In the third step, we compute the Flame-Base Transfer Function F̄b for ↵ = atan(1/�) =
⇡/12, ⇡/6, ⇡/3. We force the flame-base to oscillate in the direction perpendicular to
the flame front (✓ = ↵). We set the Markstein length M = 0. In this case we can
compare the results shown in figure ?? with figure 2a in [? ].

4. In the fourth step, we compare the linear results of the flame transfer function FTF
with the nonlinear results of the flame describing function FDF . We set the amplitude
of the velocity field perturbation to " = 10�3, 10�2, 10�1. We set the Markstein length
M = 0.02, � = 6 and ⌘ = 1.1. In figure ?? we show that as the amplitude of the
forcing goes to zero, the FDFs converge to the FTF.

Appendix C. Signed-area interpretation of the heat release rate fluctuations

The total heat release rate of the flame q̃(t̃), in dimensional form, is expressed as:

q̃(t̃) =

Z

@⌦

⇢̃RS̃f h̃RdÃ, (??)
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Figure B.18: Flame-Base Transfer Functions F̄b during step 2 of the validation. The velocity field is set to

zero and we force the flame base to oscillate in the longitudinal direction (✓ = ⇡/2). We vary the value of

� and set the Markstein length M = 0 so that we can compare the results with the analytical solution of

equation (??).

Figure B.19: The flame-Base Transfer Function F̄b during step 3 of validation. The velocity field is set to

zero and we force the flame base to oscillate in the normal direction with respect to the flame front (✓ = ↵).

We vary the value of ↵ and set the Markstein length M = 0. The results match those reported in figure 2a

of [? ].
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Figure B.20: Comparison of the Flame Describing Function FDF with the flame transfer function FTF

during step 4 of validation. The flame base is attached to the burner rim and we vary the amplitude of the

velocity field perturbation " while setting � = 6, M = 0.02 and ⌘ = 1.1. The FDF converges to the FTF as

" goes to zero.

where @⌦ is the total flame area, ⇢̃R is the reactant’s density, h̃R is the heat release rate per
unit mass of burnt reactants, and dÃ is an infinitesimal flame area expressed as dÃ = r̃d✓dl̃.
If we consider the case with Markstein length equal to M̃ = 0, the heat release rate q̃(t) is
proportional to

q̃(t) /
Z

@⌦

dÃ = 2⇡

Z

L

r̃dl̃. (C.1)

We define a local reference frame X � Y whose origin is the flame apex and the X-axis is
aligned to the flame front in steady condition, as shown in figure ??. The radial coordinate
of the perturbed flame front is

r̃ = X sin (↵) + Y (X) cos (↵), (C.2)

where ↵ is the cone angle and Y (X) is the perturbed flame front coordinate. In the linear
approximation,

dl̃ ⇡ dX

Hence substituting these expressions in (??) we obtain
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(C.3)

Therefore the unsteady part of the heat release rate q0 is proportional to the signed area of

q̃0(t̃) /
R̃/ sin (↵)Z

0

Y (X)dX
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(a) Steady flame-front (b) Perturbed flame-front

Figure C.21: Digram of the signed area interpretation of the heat release rate perturbation.

.
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