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A B S T R A C T

We perform twenty experiments on an acoustically-forced laminar premixed Bunsen flame and assimilate
high-speed footage of the natural emission into a physics-based model containing seven parameters. The
experimental rig is a ducted Bunsen flame supplied by a mixture of methane and ethylene. A high-speed
camera captures the natural emission of the flame, from which we extract the position of the flame front. We
use Bayesian inference to combine this experimental data with our prior knowledge of this flame’s behaviour.
This prior knowledge is expressed through (i) a model of the kinematics of a flame front moving through a
model of the perturbed velocity field, and (ii) a priori estimates of the parameters of the above model with
quantified uncertainties. We find the most probable a posteriori model parameters using Bayesian parameter
inference, and quantify their uncertainties using Laplace’s method combined with first-order adjoint methods.
This is substantially cheaper than other common Bayesian inference frameworks, such as Markov Chain Monte
Carlo. This process results in a quantitatively-accurate physics-based reduced-order model of the acoustically
forced Bunsen flame for injection velocities ranging from 1.75m/s to 2.99m/s and equivalence ratio values
ranging from 1.26 to 1.47, using seven parameters. We use this model to evaluate the heat release rate between
experimental snapshots, to extrapolate to different experimental conditions, and to calculate the flame transfer
function and its uncertainty for all the flames. Since the proposed model relies on only seven parameters, it can
be trained with little data and successfully extrapolates beyond the training dataset. Matlab code is provided
so that the reader can apply it to assimilate further flame images into the model.

Novelty and Significance Statement Thermoacoustic systems tend to be extremely sensitive to small
parameter changes, which makes them difficult to model a priori from existing models in the literature. This
means, however, that thermoacoustic models tend to be easy to train using data-driven methods because,
with well-chosen experiments, their parameters can be easily observed from experimental data. This paper
presents a novel use of Bayesian inference to combine experimental measurements, numerical simulations,
and prior knowledge about flame behaviour. We outline our methodology and demonstrate its effectiveness
using a laminar premixed Bunsen flame. Our approach yields a quantitatively-accurate physics-based model
that predicts the expected value and uncertainty bounds of the flame transfer function between velocity and
heat release rate perturbations. The proposed model contains only seven physical parameters, which is fewer
parameters than non-physics-based models, and can therefore be trained on relatively little data. We also
illustrate how the trained model effectively extrapolates beyond the training dataset. Our numerical code and
experimental data are open access.
1. Introduction

The strength of the mechanism driving thermoacoustic oscillations
depends strongly on the phase difference between the heat release
rate (h.r.r) and pressure oscillations. This phenomenon was described

∗ Corresponding author.
E-mail address: mpj1001@cam.ac.uk (M.P. Juniper).

qualitatively by Rayleigh [1], and expressed in terms of the rate of
acoustic energy increase by Chu [2], where the influence of the phase
dependence mentioned above can be deduced from the first term on
the right hand side of Eq. (19b). In turn, this phase difference usually
depends strongly on the flame’s dynamics [3] and on the acoustics of
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Combustion and Flame 274 (2025) 114011 
a combustion chamber. This dependence is particularly strong if time
elays, 𝜏, in the flame are similar to or greater than the period, 𝑇 , of

acoustic chamber modes [4] because small changes to either 𝜏 or 𝑇 lead
o large changes in the phase difference between pressure and h.r.r..
s a result of these strong, coupled dependencies, a combustor’s ther-
oacoustic behaviour tends to be extremely sensitive to changes in the

eometry or flame behaviour [5]. For the same reason, the outputs of
aithful thermoacoustic models are sensitive to small changes in models
nd their parameters. On the negative side, this makes thermoacoustic
ystems difficult to model a priori from existing models in the literature.
n the positive side, this makes thermoacoustic models easy to train

rom experimental data because their parameters tend to be easily
bservable from experimental data. With well-chosen experiments, we
an therefore (i) tune the parameters of candidate models and (ii)

compare candidate models against each other and select the one with
most evidence, given the experimental data [6,7]. Also on the positive
ide, this extreme sensitivity means that thermoacoustic systems can
ften be stabilized by making small changes, which is attractive in
ndustrial settings [5]. The challenge is to model systems accurately

and to determine stabilizing modifications as quickly and accurately as
possible.

The most influential component of a thermoacoustic system is the
mechanism linking acoustic velocity and pressure fluctuations at the
base of the flame to subsequent h.r.r. fluctuations in the body of the
flame. (In most settings, only the acoustic velocity fluctuations are
influential.) This mechanism is difficult to model or simulate [8], so
researchers often rely on experimental measurements of the h.r.r. as
a function of the acoustic velocity. While in some premixed flames,
nfiltered light emission has been shown to reasonably approximate
he heat release rate [9–12], this is not always the case. In general,
luctuating natural emission from the flame is not a consistently reliable
easurement of the fluctuating heat release rate (h.r.r.) [13]. Alterna-

tives, such as PLIF to identify reaction zones [14] are more accurate but
re technically difficult and, in large systems, impractical. This paper
eeks to circumvent the above problems by combining experimental

measurements with numerical simulations of a flame model. The flame
model is physics-based and qualitatively-accurate. It gives, amongst
other things, the flame front dynamics under harmonic forcing and
he heat release rate as a function of time. The physics-based model
as several physical parameters, such as the laminar flame speed and
he Markstein length, whose expected values and uncertainties are
nferred from the flame position, as found from experimental natural
mission measurements. Therefore, we first use the natural emission
ata to estimate the flame front position over time. Next, we tune the
odel parameters by minimizing the discrepancy between the flame

ront dynamics predicted by the model and that obtained from the
xperiment. Finally, with the calibrated parameters, we use the model
o compute the heat release rate (h.r.r.) and its uncertainty, as a
unction of the acoustic velocity perturbations.

In previous work, Juniper & Yoko [6] applied this process to a hot
wire Rijke tube. From several candidate models in the literature, they
selected those with the most evidence, given the data, and created
a quantitatively accurate physics-based model of this thermoacoustic
system. In subsequent work on the same system, they used Bayesian
optimal experimental design [15] to evaluate the most informative
experiments. Following this, they extended the method to infer the
lame response of laminar and weakly turbulent flames from pressure
easurements [16,17]. These study revealed that, in some cases, the

uncertainty in the inferred flame responses could be large when the
source of information was pressure measurements alone. In this paper

e revisit the flames studied in [16] in order to assess an alternative
source of information about the flame response: the dynamics of the
flame front position. We use a high-speed camera to record the natural
emission of the flames in both steady conditions and during harmonic
acoustic forcing. We assimilate this data into a physics-based model of

18]. This model contains
a conical Bunsen flame from a previous study [

2 
sufficient parameters to describe the forced experimental conical flame
and is differentiable with respect to its parameters. We can therefore
obtain the first derivatives of the model outputs with respect to model
arameters and use these gradients to (i) find the most probable param-
ter values, given some data, and (ii) quantify our uncertainty in those

parameters and the resulting uncertainty in the model predictions. This
process creates a quantitatively-accurate physics-based model of the
h.r.r. fluctuations as a function of the velocity perturbation. Unlike the
utput of many other data-driven approaches, the resulting model is
nterpretable, trustworthy and extrapolatable.

The paper is structured as follows: in section 2 we explain the
xperiments and the image processing; in section 3 we report the

key feature of the model and how we generate the gradients of the
model output with respect to its parameters; in section 4 we explain
the Bayesian inference methodology and Laplace’s approximation; in
section 5.1 and 5.2 we show how we assimilate the experimental data
o create the quantitatively-accurate physics-based model of the flame;

in section 5.3 we show how we employ the model to predict the flame
transfer function and its uncertainty; in section 5.4 we show how the

odel is capable of extrapolating outside the training dataset; in section
6 we discuss the conclusions and outline some future work.

2. Experiments

The experimental observations consist of high-speed footage of a
conical flame under steady and acoustically-forced conditions. The
footage is processed to isolate the position of the flame front.

2.1. Data collection

The experimental configuration is a laminar premixed conical flame
inserted into a vertical duct, as illustrated in Fig. 1. The lower end of
the duct is fixed to a plenum chamber, through which co-flow air is
supplied. The upper end is open to the atmosphere. The duct is a 0.8 m
long section of quartz tube with an internal diameter of 75 mm. Quartz
is used to allow for optical access to the flame.

The burner is a 0.85 m long section of brass tubing with an internal
diameter of 14 mm. The outlet of the burner is fitted with a nozzle
hat is chosen such that the system could become thermoacoustically
nstable. At the injection plane, the nozzle diameter is 9.35 mm. The

burner is fuelled by a mixture of methane and ethylene over a wide
range of equivalence ratios and fuel mass flow rates, which allow us
to study flames with a wide range of thermoacoustic responses. The
reactants are metred using a set of mass flow controllers, from which
they flow through a choke plate, decoupling the supply lines from the
acoustic fluctuations in the rig.

We study 20 rich premixed flames, which we select to produce
a wide range of flame responses without encountering blow-off. The
flames are fuelled by a blend of methane and ethylene. The ethy-
lene serves to increase the luminosity of the flame, improving the
signal-to-noise ratio of the flame images.

We parameterize the flames based on (i) the convective time delay,
𝜏𝑐 = 𝐿𝑓∕𝑢̄, which is the time taken for a perturbation travelling at the
bulk velocity in the burner tube, 𝑢̄, to traverse the length of the flame,
𝐿𝑓 , and (ii) the mean heat release rate of the inner cone, 𝑞. We focus on
he heat release rate of the inner cone because we have observed that,
n our rig, the outer diffusion flame front does not respond to acoustic
orcing, and therefore does not contribute to the thermoacoustic effect.

We group the 20 flames into five sets of four flames each, and select
he composition of each flame such that the time delay is constant
ithin a group and the mean heat release rate of the inner cone varies.
he convective time delays range from 9.5 ms to 16 ms, and the mean
eat release rates range from 375 W to 600 W. These flames produce

a thermoacoustic behaviour ranging from strongly damped, to neutral,
to strongly driven. The flame properties are summarized in Table A.1
in Appendix A, and illustrated in Fig. 2.
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Fig. 1. Diagram of the experimental rig.
Depending on the flame properties, the system will either be linearly
stable or self-excited. Our method requires footage of the flame under
both stable and acoustically forced conditions. If the system is linearly
stable, we begin by recording footage of the stable flame. We then use
a loudspeaker to harmonically force the flames near the fundamental
frequency of the system, and record high speed footage of the flame
during forcing. If the system is self-excited, we begin by recording
footage of the flame during limit-cycle oscillation. To record footage
of the flame in the stable condition, we use active feedback control to
stabilize the system. We record the emitted sound with a microphone
and route this signal to a phase-shift amplifier. The phase-shift amplifier
inverts the phase of the microphone signal and we play this through
the loudspeaker, cancelling the acoustic oscillations and stabilizing the
system.

2.2. Data processing

The raw footage is processed in order to (i) isolate the flame front
position and (ii) produce a Euclidian distance field with the flame
front as the zeroth level set. The images are first averaged to improve
the signal-to-noise ratio. For the steady flames, this involves averaging
over 200 frames. For the unsteady flames, it involves phase-averaging
over 20 frames captured at 10 phase angles. The averaged images are
straightened and centred so that the symmetry axis of the flame is
vertical and in the centre of the frame. This is necessary to undo any
misalignment in the camera setup. To do this, we exploit the symmetry
of the flame and find the rigid transformation that maps the image to
its mirror. From this, we can determine the transformation that moves
the symmetry axis of the flame to be vertical and centred in the frame.
Once the flame is centred, we perform an Abel deconvolution to undo
the line-of-sight integration of the natural luminosity of the flame. We
use an implementation of the ‘onion-peeling’ deconvolution [19]. This
process produces a clearly defined flame front but accumulates noise
towards the centre line of the image. We perform image segmentation
on the Abel deconvolved image using Chan–Vese segmentation [20].
This separates the image signal from the background and allows us to
interrogate the connectivity map of each cluster of pixels. We discard
weakly connected clusters to denoise the image, leaving just the flame
front as the dominant image structure. Finally, we perform a Euclidian
distance transform on the binary image of the isolated flame front. This
produces a matrix of the same dimensions as the original image, where
each element contains the normal distance between the corresponding
pixel and the flame front. We use this in our data assimilation process
to quantify the discrepancy between the predicted and observed flame
front positions.
3 
Fig. 2. Processed steady flame images from the 20 flames. Images are artificially
coloured according to the approximate convective time delay. Flames with equal mean
heat release rates are overlaid. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

3. Reduced-order model of a laminar premixed Bunsen flame

3.1. Model description

The flame model is derived from the G-equation and assumes that
the flame front is infinitesimally thin and axisymmetric. The flame
speed incorporates stretch effects through the Markstein length. The
velocity field is modelled as the sum of a steady flow and a perturba-
tion, which takes the form of a wave that originates at the burner rim
and propagates longitudinally at a constant speed [21–23]. Although
heat loss at the burner rim is not modelled directly, the flame base
position in steady conditions and its trajectory under harmonic forcing
are imposed as boundary conditions and assimilated using experimental
data. All model details can be found in Ref. [18]. The model can be
expressed compactly as follows:

𝐱̇(𝑡) = 𝐟 (𝐱(𝑡), 𝑡; 𝐚), 𝐱(0) = 𝐱0, (1)

where 𝐱(𝑡) = (𝐫(𝑡), 𝐳(𝑡)) is the state vector defining the flame front
position in terms of radial coordinates, 𝐫, and longitudinal coordinates,
𝐳, at a given time, 𝑡, and 𝐱𝟎 is the initial state. The vector 𝐚 contains
the physics-based parameters, while 𝐟 is the physics-based nonlinear
operator encapsulating the flame front dynamics. The main feature of
the model is that it has been designed to be differentiable with respect
to the state and the parameters. The heat release rate 𝑞(𝑡) can also be
expressed in compact form through:
𝑞(𝑡) = 𝑔(𝐱(𝑡); 𝐚), (2)
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where 𝑔 is a nonlinear operator that links the heat release rate 𝑞(𝑡) to the
lame front position and shape defined by 𝐱(𝑡). The model parameters

are: (i) the flame aspect ratio 𝛽 = 𝛽(𝑢̄, 𝑆𝐿), which depends on the
ulk velocity in the burner tube 𝑢̄ and the unstretched laminar flame
peed 𝑆𝐿; (ii) the nondimensional Markstein length , which depends

on the thermal expansion parameter, the effective Lewis number of the
mixture, the Zel’dovich number and the thermal conductivity of the
mixture [24]; (iii) the shape parameter 𝜇, which linearly combines a
niform and a parabolic mean velocity profile [25]; (iv) the wavelength
f the harmonic perturbation velocity field 𝐾; (v) the amplitude of the

acoustic forcing 𝜀𝑉 ; (vi) the amplitude of the flame base oscillations
𝜆; (vii) the initial phase of the flame base oscillations 𝜙0. These seven
arameters are sufficient to describe the flame front dynamics qualita-
ively. All lengths, including the Markstein length, are normalized by
he nozzle radius 𝑅 = 4.675 mm.

3.2. Obtaining periodic solutions and their sensitivities using adjoint meth-
ods

All flames are perturbed by a harmonic acoustic forcing with period
𝑇 . We consider the following vector-valued function:

𝐅(𝐱0; 𝐚) = 𝐱(𝑇 ) − 𝐱0, where 𝐱(𝑇 ) = ∫

𝑇

0
𝐟 (𝐱(𝑡), 𝑡; 𝐚)d𝑡 + 𝐱0. (3)

For a given parameter set 𝐚, a solution 𝐱(𝑡) of Eq. (1) with an initial
state 𝐱0 is periodic with period 𝑇 if:

𝐅(𝐱0; 𝐚) = 𝟎. (4)

We solve Eq. (4) using the trust-region dogleg algorithm and by pro-
viding the partial derivative of 𝐅 with respect to the initial state 𝐱0
𝜕𝐅
𝜕𝐱0

=
𝜕𝐱(𝑇 )
𝜕𝐱0

− 𝐈, (5)

where 𝐈 is the identity matrix, and 𝜕𝐱(𝑇 )∕𝜕𝐱0 is the Jacobian matrix
containing the partial derivatives of the state at time 𝑇 with respect
to changes in the initial state 𝐱0. We compute these derivatives using
djoint methods, as discussed in Refs. [26–28]. Further details are

provided in Appendix B. We can also obtain the gradient of the periodic
solution 𝐱(𝑡) with respect to the parameters 𝐚, by differentiating Eq. (3)

ith respect to 𝐚:
d𝐅
d𝐚

=
𝜕𝐱(𝑇 )
𝜕𝐚

+
𝜕𝐱(𝑇 )
𝜕𝐱0

d𝐱0
d𝐚

−
d𝐱0
d𝐚

. (6)

If Eq. (4) holds true for any variation in the parameters (i.e., the
solution remains periodic when the parameters change), we can set
Eq. (6) to zero. Consequently, we have:

d𝐅
d𝐚

= 𝟎 ⟹

(

𝜕𝐱(𝑇 )
𝜕𝐱0

− 𝐈
)

d𝐱0
d𝐚

= − 𝜕𝐱(𝑇 )
𝜕𝐚

, (7)

which can be solved for the sensitivity matrix d𝐱0∕d𝐚. Next, we can
btain the sensitivity of the periodic solution at any arbitrary time by
ifferentiating the state 𝐱(𝑡) with respect to the model parameters. The

state depends directly on the parameters and the initial condition. Thus,
we obtain:

d𝐱(𝑡)
d𝐚

=
𝜕𝐱(𝑡)
𝜕𝐚

+
𝜕𝐱(𝑡)
𝜕𝐱0

d𝐱0
d𝐚

. (8)

In Appendix B, we describe how to compute the matrices 𝜕𝐱(𝑡)∕𝜕𝐚 and
𝐱(𝑡)∕𝜕𝐱0. Finally, we compute the gradients of the heat release rate
h.r.r.) with respect to the parameters by differentiating Eq. (2):
d𝑞(𝑡)
d𝐚

=
𝜕 𝑔(𝐱(𝑡); 𝐚)

𝜕𝐚
+

𝜕 𝑔(𝐱(𝑡); 𝐚)
𝜕𝐱(𝑡)

d𝐱(𝑡)
d𝐚

. (9)

This quantity is essential for the rapid calculation of uncertainties in
the heat release rate and, consequently, in the flame transfer function.
a

4 
4. Bayesian data assimilation

Bayesian data assimilation provides a set of tools that allow the
researcher to (i) infer the most probable parameters of a physics-based
model, given some data, (ii) quantify the uncertainty in the model
parameters, and estimate the systematic uncertainty in the model and
data, (iii) rank several candidate models to select the best model,
given the data, and (iv) identify optimal experiment designs and sensor
placements. In this paper, we use points (i) and (ii), so these are
described in detail. A demonstration of model ranking can be found
in [16], and a demonstration of optimal experiment design can be
found in [15].

In this section, we introduce the following notation to outline the
ayesian inference methodology: the data 𝐃 contains several experi-
ental observations of the flame position, 𝐱𝑒, in steady and/or unsteady

configurations; the model  encodes a physics-based reduced-order
odel, such that for a given set of parameters, 𝐚, the model (𝐚) returns

he predicted flame front position, 𝐱.

4.1. Parameter inference

When performing parameter inference, we assume that the model is
tructurally correct and we infer its most probable parameters, 𝐚MP. The
odel is rarely free of structural error, however, and we will revisit this

ssumption later. We encode our level of uncertainty in the parameter
alues through a probability distribution, which we denote 𝑃 (∙). Using
ny prior knowledge we have about the unknown parameters (which

may be none at all), we propose a prior probability distribution over
the parameter values, 𝑃 (𝐚|). We then assimilate the data, 𝐃, by
erforming a Bayesian update on the parameter values:

𝑃 (𝐚|𝐃,) = 𝑃 (𝐃|𝐚,)𝑃 (𝐚|)
𝑃 (𝐃|)

(10)

The quantity on the left-hand side of Eq. (10) is the posterior proba-
ility of the parameters, given the data. It is generally computationally

intractable to calculate the full posterior, because this requires inte-
ration over a large parameter space. The integral typically cannot be
valuated analytically, and requires thousands of model evaluations to
ompute numerically. At the parameter inference stage, however, we
re only interested in finding the most probable parameters, which are
hose that maximize the posterior. We therefore use an optimization
lgorithm to find the peak of the posterior without evaluating the full
istribution.

The right-hand side of Eq. (10) does not depend on the parameters,
so we can find the most probable parameters by maximizing the prod-
uct 𝑃 (𝐃|𝐚,)𝑃 (𝐚|). This process is made computationally efficient by
i) assuming that the experimental uncertainty is Gaussian distributed,
uch that 𝑃 (𝐃|𝐚,) is a Gaussian distribution over the data for a given
et of parameters, and (ii) choosing the prior parameter distribution,
(𝐚|), to be Gaussian. Assumption (i) is reasonable for well-designed
xperiments in which the uncertainty is dominated by random error,
hich is typically Gaussian distributed. For assumption (ii) we note that

he choice of prior is often the prerogative of the researcher, and we are
ree to exploit the mathematical convenience offered by the Gaussian
istribution. Under the assumption of Gaussian distributions, we can
ransform the optimization problem into a quadratic minimization
roblem by defining the cost function,  , to be the negative log of the
roduct 𝑃 (𝐃|𝐚,)𝑃 (𝐚|):

 (𝐚) = − log {𝑃 (𝐃|𝐚,)𝑃 (𝐚|)}

=
𝑁𝑒
∑

𝑖=1

1
2
(𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )

𝑇𝐂−1
𝑒𝑒 (𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )

+ 1
2
(𝐚 − 𝐚𝐩)𝑇𝐂−1

𝑎𝑎 (𝐚 − 𝐚𝐩) + const.

(11)

where: the summation is over the 𝑁𝑒 frames of the footage; 𝐱(𝐚, 𝑡𝑖)
nd 𝐱𝑒 are column vectors of the predicted and measured flame front
𝑖
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Fig. 3. Illustration of parameter inference on a simple univariate system. (a) the marginal probability distributions of the prior and data, 𝑝(𝑎) and 𝑝(𝑥𝑒), as well as their joint
distribution, 𝑝(𝑎, 𝑥𝑒) are plotted on axes of parameter value, 𝑎, vs observation outcome, 𝑥𝑒. (b) the model, , imposes a functional relationship between the parameters, 𝑎, and
the predictions, 𝑥. Marginalizing along the model predictions yields the true posterior, 𝑝(𝑎|𝑥𝑒). This is computationally intractable for even moderately large parameter spaces. (c)
instead of evaluating the full posterior, we use gradient-based optimization to find its peak. This yields the most probable parameters, 𝑎MP.
positions at the time of the 𝑖th snapshot; 𝐂𝑒𝑒 is the covariance matrix
describing the experimental uncertainty; 𝐚 and 𝐚𝑝 are column vectors
of the current and prior parameter values respectively; 𝐂𝑎𝑎 is the
covariance matrix describing the uncertainty in the prior, and const. is
a constant that arises from the Gaussian pre-exponential factors, which
does not impact the maximum posterior parameter estimation 𝐚MP. In
this study, we evaluate the discrepancy between the model predictions
and the experimental observations by projecting the predicted flame
front position onto the Euclidian distance field produced from the
corresponding frame of the high speed footage. This produces a column
vector in which each entry is the normal distance between the predicted
and observed flame front position at each point in the model. We
minimize Eq. (11) over the parameters using the BFGS gradient-based
optimization algorithm, where the gradient information is provided
using adjoint methods.

The parameter inference process is illustrated in Fig. 3 for a simple
system with a single parameter, 𝑎, and a single observable variable, 𝑥𝑒.
In (a) we show the marginal probability distributions of the prior, 𝑝(𝑎),
and the data, 𝑝(𝑥). The prior and data are independent, so we construct
the joint distribution, 𝑝(𝑎, 𝑥𝑒) by multiplying the two marginals. In
(b), we overlay the model predictions, 𝑥, for various values of 𝑎.
Marginalizing along the model predictions yields the true posterior,
𝑝(𝑎|𝑥𝑒). This is possible for a cheap model with a single parameter,
but exact marginalization quickly becomes intractable as the number
of parameters increases. In (c) we plot the cost function,  , which
is the negative log of the unnormalized posterior. We show the three
steps of gradient-based optimization that are required to find the local
minimum, which corresponds to the most probable parameters, 𝑎MP.

4.2. Uncertainty quantification

Uncertainty quantification can be split into two steps: (i) quan-
tifying the parametric uncertainty and propagating it to the model
prediction uncertainty, and (ii) estimating the systematic and structural
uncertainty in the experiments and model predictions. We will deal
with these separately.

4.2.1. Parametric uncertainty
Once we have found the most probable parameters, 𝐚MP, we esti-

mate the uncertainty in these parameter values using Laplace’s method
[6,29,30]. This method approximates the posterior as a Gaussian dis-
tribution with a mean of 𝐚 , and a covariance given by the Hessian of
MP

5 
the cost function:

𝐂MP−1
𝑎𝑎 ≈ 𝜕2

𝜕 𝑎𝑖𝜕 𝑎𝑗
≈ 𝐂−1

𝑎𝑎 + 𝐉𝑇𝐂−1
𝑒𝑒 𝐉

(12)

where 𝐉 is the Jacobian matrix of the model predictions with respect
to the parameters 𝐚, and the higher-order terms have been neglected.
It was claimed in Section 1 that the sensitivity of thermoacoustics can
be beneficial because it makes the uncertain parameters easy to infer
from experimental data. This is clear from Eq. (12), which shows that
the precision (inverse variance) of the posterior parameter estimate
increases with parameter sensitivity.

The accuracy of the Laplace approximation depends on the func-
tional dependence between the model predictions and the parameters.
This is shown graphically in Fig. 4 for three univariate systems. In (a),
the model is linear in the parameters. Marginalizing a Gaussian joint
distribution along any intersecting line produces a Gaussian posterior,
so Laplace’s method is exact. In (b), the model is weakly nonlinear
in the parameters. The true posterior is skewed, but the Gaussian
approximation is still reasonable. This panel also shows a geometric in-
terpretation of Laplace’s method: the approximate posterior is given by
linearizing the model around 𝐚MP, and marginalizing the joint distribu-
tion along the linearized model. In (c), the model is strongly nonlinear
in the parameters, so the true posterior is multi-modal and the main
peak is highly skewed. In this case, the gradient-based optimization
algorithm will only find a single local minimum, which will depend on
the choice of initial condition for the optimization. Furthermore, we see
that the posterior estimated using Laplace’s method is a poor approxi-
mation of the true posterior. This problem can be avoided by reducing
the extent of the nonlinearity captured by the joint distribution by (i)
shrinking the joint distribution by providing more precise prior infor-
mation or more precise experimental data, or (ii) re-parameterizing the
model to reduce the strength of the nonlinearity [30, Chapter 27].

In many cases, the use of this approximate inference framework
will be justifiable, given the substantial reduction in computational cost
compared to sampling methods, which are the only viable alternative
for constructing the posterior. In previous work, we compared the
computational cost of our framework to two sampling approaches [16].
The comparison was done on a computationally cheap thermoacoustic
network model. Applying our framework to this model, we can compute
the posterior probability of five unknown parameters in under 5 s
on a single core on a laptop. The same inference problem takes 35
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Fig. 4. Illustration of uncertainty quantification for three univariate systems, comparing the true posterior, 𝑝(𝑎|𝑧) to the approximate posterior from Laplace’s method, 𝑝(𝑎|𝑧)𝐿. (a)
the model is linear in the parameters, so the true posterior is Gaussian and Laplace’s method is exact. (b) the model is weakly nonlinear in the parameters, the true posterior is
slightly skewed, but Laplace’s method yields a reasonable approximation. (c) the model is strongly nonlinear in the parameters, the posterior is multi-modal and Laplace’s method
underestimates the uncertainty.
CPU hours running on a workstation when solved with Markov Chain
Monte Carlo, and 22 CPU hours when solved with Hamiltonian Monte
Carlo.

4.2.2. Uncertainty propagation
To quantify the uncertainty in the model predictions due to the

parametric uncertainty, we linearize the model around 𝐚MP and prop-
agate the parameter uncertainties through the linearized model [31].
The uncertainty in the model prediction is given by:

𝐂𝑥𝑥 = 𝐉𝑇𝐂𝑎𝑎𝐉 (13)

where 𝐂𝑥𝑥 represents the covariance in the model predictions, and 𝐉
denotes the Jacobian matrix of the model predictions with respect to
the parameters 𝐚. The square of the marginal uncertainty in each model
prediction, (𝜎𝑥𝑖 )

2, is given by the diagonal entries of 𝐂𝑥𝑥.

4.2.3. Systematic uncertainty
In most cases, experimental data will contain some systematic un-

certainty, and models will contain some structural uncertainty. These
uncertainty sources cannot be quantified a-priori, and are often re-
ferred to as ‘‘unknown unknowns’’. We can, however, construct a
total covariance matrix, 𝐂𝑡𝑡, which encodes the total uncertainty due
to (i) the known experimental uncertainty, (ii) the unknown system-
atic experimental uncertainty, and (iii) the unknown structural model
uncertainty. We can then estimate this total covariance from the pos-
terior discrepancy between the model and the data. This must be
done simultaneously with parameter inference, because the posterior
parameter distribution depends on the total uncertainty in the model
and data. We therefore replace 𝐂𝑒𝑒 with 𝐂𝑡𝑡 in Eq. (11), and estimate
the total uncertainty by simultaneously minimizing  with respect to 𝐚
and 𝐂−1

𝑡𝑡 .
We begin by calculating the derivative of  with respect to 𝐂−1

𝑡𝑡 ,
assuming that the observed variables are uncorrelated, and keeping in
mind that the normalizing constant, 𝐾, depends on 𝐂𝑡𝑡:

 =
𝑁𝑒
∑

𝑖=1

1
2
(𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )

𝑇𝐂−1
𝑡𝑡 (𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 ) +𝑁𝑒 log

(

√

(2𝜋)𝑘|𝐂𝑡𝑡|

)

+1
2
(𝐚 − 𝐚𝐩)𝑇𝐂−1

𝑎𝑎 (𝐚 − 𝐚𝐩) + log
(

√

(2𝜋)𝑘|𝐂𝑎𝑎|

)

(14)

𝜕 =
𝑁𝑒
∑ 1 (𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )(𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )

𝑇 ◦𝐈 − 1𝑁𝑒𝐂𝑡𝑡 (15)

𝜕𝐂−1

𝑡𝑡 𝑖=1 2 2

6 
where 𝐈 is the identity matrix, and ◦ denotes the Hadamard product.
For a given set of parameters, the most probable 𝐂𝑡𝑡 sets equation (15)
to zero. This gives the estimate:

𝐂𝑡𝑡 =
1
𝑁𝑒

𝑁𝑒
∑

𝑖=1
(𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )(𝐱(𝐚, 𝑡𝑖) − 𝐱𝑒𝑖 )

𝑇 ◦𝐈 (16)

which is the expected result that the total variance in the model
and data is the mean square of the discrepancy between the model
predictions and the data. Although we cannot directly identify the
source of the unknown uncertainty because the experimental and model
uncertainties cannot be disentangled, the inferred total uncertainty can
assist the researcher with identifying potential error sources. For exam-
ple, if the unknown error in a single sensor is unexpectedly large, this
could indicate a faulty sensor or bad installation. If the unknown error
at a certain experimental operating condition is large, this could prompt
the researcher to repeat that experiment. If the unknown error grows
with one of the input variables, the researcher might investigate the
model to see if any important physical phenomena has been neglected.

5. Creating the quantitatively-accurate physics-based model

In this study, we perform Bayesian data assimilation in two steps.
In the first step, we assimilate the flame front position data of each
flame individually. Therefore, for each experimental configuration
(i.e. for each combination of mean flow velocity 𝑢̄ and equivalence
ratio 𝜙), we determine the most probable set of model parameters 𝐚 =
(, 𝜇 , 𝛽 , 𝐾 , 𝜀𝑉 , 𝜆, 𝜙0), which have been introduced in Section 3. This
process does not create a general model that can predict the behaviour
of an arbitrary flame, but is useful for assessing the influence of the
model parameters 𝐚 on the model predictions. After completion of this
step, we need to introduce a set of hyperparameters 𝜶, such that 𝐚 =
𝐚(𝜙, ̄𝑢;𝜶). We then simultaneously assimilate the flame front position
data of all flames. This allows us to determine the most probable set of
hyperparameters 𝜶 so that, for each combination of mean flow velocity
𝑢̄ and equivalence ratio 𝜙, the model 𝐚 = 𝐚(𝜙, ̄𝑢;𝜶) provides the best
prediction of the physics-based model parameters 𝐚 and, consequently,
of the flame front dynamics. In Fig. 5, we show a diagram describing the
methodology followed in this study. The end goal is to create a general
model that provides the flame transfer function, along with quantified
uncertainty bounds, for any given pair of equivalence ratio and bulk
velocity in the burner tube.



A. Giannotta et al.

𝛽

p
p
𝜙

i
d
u

F
u
w
o
0

p
o

Combustion and Flame 274 (2025) 114011 
Fig. 5. Illustration showing the methodology for constructing a quantitatively-accurate reduced-order model. The general model depends on the hyperparameters 𝜶 and comprises
two components: the physics-based reduced order model, which depends on the physical parameters 𝐚, and a metamodel 𝐚 = 𝐚(𝜙, ̄𝑢;𝜶) that establishes the relationship between
these physical parameters 𝐚 and the hyperparameters 𝜶. The model is fully differentiable and provides the flame front dynamics and the flame transfer function. By comparing
the model’s predictions of the flame front with experimental images, we refine our hyperparameters 𝜶 through Bayesian updates. The resulting model predicts the flame transfer
function, with confidence bounds, for any combination of equivalence ratio 𝜙 and the mean flow velocity 𝑢̄. This model is both interpretable and capable of extrapolation.
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5.1. Step 1: assimilation of each flame individually

First, we assimilate the steady-state snapshots in order to infer ,
and 𝜇. Second, we use these inferred values as priors for the second

step, in which we assimilate the unsteady flame images and infer all
arameters simultaneously: , 𝛽, 𝜇, 𝐾, 𝜀𝑉 , 𝜆, 𝜙0. Here we show the
rocess for flame 17 in Table A.1, which has an equivalence ratio
= 1.34, a flow rate of 𝑢̄ = 2.86m/s and an equal volume fraction

of methane (CH4) and ethylene (C2H4).

5.1.1. Steady-state data assimilation
The steady flame front position depends on 𝛽,  and 𝜇. We can

nclude prior knowledge about the parameter 𝛽 = 𝛽(𝑢̄, 𝑆𝐿) because it
epends on the unstretched flame speed 𝑆𝐿, which can be estimated
sing the open source chemical kinetics code Cantera [32], and the

mean flow velocity 𝑢̄, which can be measured during the experiments.
urthermore, we can estimate the value of the Markstein length by
sing Matalon’s formulation [24]. Following this process for flame 17,
e assign a prior estimate to the unstretched laminar flame speed
f 𝑆𝐿 = 0.4036ms−1 and a dimensional Markstein length of ̃ =
.2579mm, corresponding to  = ̃∕𝑅 = 0.0552. To construct the

parameter covariance matrix, we must assign confidence bounds to
these values, which is naturally a subjective process. In this case,
we assign an uncertainty of 6𝜎𝑆𝐿

= 10%𝑆𝐿 and 6𝜎 = 100% to
indicate that we are relatively more confident in our ability to predict
laminar flame speed than Markstein length. The only prior knowledge
available for the velocity shape parameter 𝜇 is that it can vary between
0 and 1, so we set a prior with large uncertainty for this parameter.
From the steady-state flame snapshot, we can infer the maximum a
posteriori probability estimate of the aspect ratio, 𝛽, the nondimensional
Markstein length, , and the velocity shape parameter, 𝜇. Fig. 6(a–
b) shows the prior and posterior probability distributions of the model
parameters. The contours show 1,2 and 3 standard deviations from the
rior 𝐚𝑝 (blue) and posterior 𝐚MP (red). We see that the experimental
bservations have reduced the uncertainties in the model parameters.

Fig. 6(c) shows the model prediction ±3 standard deviations overlaid
on the steady flame image. The largest uncertainties are found at the
flame tip, which is the region that is most sensitive to the parameters.
The model prediction uncertainty is found by solving Eq. (13).
 r

7 
5.1.2. Unsteady-state (acoustically forced)
We repeat the process with the images of the acoustically forced

flame. In this case, we set the values of the three steady parameters
sing the information gained from the previous step, and we set large
ncertainties in the prior values of 𝐾, 𝜀𝑉 , 𝜆 and 𝜙0. Fig. 7(a–b) shows
he prior and posterior distribution of the parameters before and after

assimilating the unsteady flame images. The results show that the un-
certainty in the values of 𝐾, 𝜀𝑉 , 𝜆 and 𝜙0 has been reduced significantly
through the assimilation of this data, and the values of  and 𝜇
have shifted slightly from the values found during the assimilation of
the steady data, without exceeding the 3-standard deviation bounds.
Fig. 7(c) shows the model prediction ±3 standard deviations, plotted
gainst the unsteady flame images before (blue) and after (red) assim-
lating the experimental video footage. As in the steady-state case, the
argest uncertainties are found at the flame tip. We see that the model
atches the data well at each frame. With this, we have produced

a digital twin of the flame, which we can use to estimate additional
quantities of interest such as the unstretched laminar flame speed 𝑆𝐿,
the Markstein length , the convective speed of velocity perturbations
𝐾 and the heat release rate, which were not directly measured in the
experiments. Furthermore, because the model is probabilistic, we can
also quantify our uncertainty in these estimates.

For the example of flame 17, the unstretched laminar flame speed
nd the Markstein length are estimated to be 𝑆𝐿 = 0.4191m/s and

= 0.2430mm compared to the value of 𝑆𝑐
𝐿 = 0.4036m/s and 𝑐 =

.2579mm obtained from Cantera and the value of the convective speed
s estimated to be 𝐾 = 0.8874 compared to 𝐾 = 1 in Schuller et al. [21],
𝐾 = 0.9 in Kashinath et al. [33] and 𝐾 = 0.83 in Orchini & Juniper [34].
In this case, we were able to provide reasonable prior information for

and 𝑆𝐿. Similar values are, however, inferred even if the prior is
naccurate and uncertain. This methodology could therefore be used to

cheaply and easily estimate combustion properties of fuels for which
data are not available.

The proposed model contains few parameters, allowing it to be
rained on a relatively small amount of data. Furthermore, the data
equired to train the model is easy to collect from a simple experi-
ent because only snapshots of the natural emission of the flame are

equired.
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Fig. 6. (a-b) Probability distributions of parameters in the steady case: prior (blue) and posterior (red). Contours denote 1, 2, and 3 standard deviations from the prior 𝐚𝑝 and
posterior 𝐚MP estimations. Parameters include the flame aspect ratio 𝛽, which is a function of the unstretched laminar flame speed 𝑆𝐿 and the bulk velocity in the burner tube 𝑢̄, the
shape parameter for the velocity field 𝜇, and the nondimensional Markstein length . Both panels represent the same quantities but panel (a) is scaled to the prior distributions,
while panel (b) is scaled to the posterior distributions. (c) Comparison between model predictions before (red line) and after (blue line) assimilating the experimental steady-state
flame image. Confidence intervals, spanning 3 standard deviations, are illustrated by the red and blue shadings overlaying the steady flame image. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Once the most probable parameter values are inferred and the flame
front position has been predicted, we can estimate the heat release rate
using Eq. (2). The resulting heat release rate estimation is shown for
flame 8 in Fig. 8. Panel (a) shows the model prediction (red lines)
with a confidence of 3 standard deviations (red shading) overlaid on
the experimental observations (greyscale). We also plot the predictions
between two observations (blue lines and shading). Panel (b) shows the
h.r.r. perturbation 𝑞′ normalized by its mean value 𝑞, computed using
the model. The black dots correspond to the time frames observed in the
experiments. Fig. 8 highlights the advantages of the Bayesian inference
approach: using experimental flame images we know the flame front
position at ten different time points during a period of oscillation; we
use this data to infer the seven parameters of a physics-based reduced
order model, which gives the flame front position and the heat release
rate at any point in time with their uncertainties.

5.2. Step 2: assimilation of all flames into a general model

At this stage, we introduce a metamodel 𝐚 = 𝐚(𝜙, ̄𝑢;𝜶), designed to
determine the model parameters 𝐚 based on the equivalence ratio 𝜙 and
bulk flow rate in the burner tube 𝑢̄, given a set of hyperparameters 𝜶.
Fig. 9 shows the maximum a posteriori probability distribution of the
model parameters 𝐚MP assimilated in the first step, denoted by blue
markers with error bars representing 3 standard deviations. Panel (a)
shows the assimilated unstretched laminar flame speed 𝑆𝐿 against the
equivalence ratio 𝜙. Panel (b) shows the assimilated Markstein length
 against the equivalence ratio 𝜙. Panel (c) shows the assimilated
shape parameter 𝜇 against the bulk velocity 𝑢̄ in the burner tube.
The parameter 𝜇 decreases linearly with increasing 𝑢̄. Panel (d) shows
the assimilated convective speed ratio 𝐾 against the acoustic-forcing
Strouhal number St. The plot shows that 𝐾 falls within the range of
0.8 to 1, with no discernible pattern with respect to St. The remaining
parameters 𝜀𝑉 , 𝜆, and 𝜙0 (not shown) depend on experimental condi-
tions and vary according to external acoustic forcing, both of which are
independent of the flame properties.

Based on these observations, the model 𝐚 = 𝐚(𝜙, ̄𝑢;𝜶) is formulated
as follows. (i) The laminar flame speed 𝑆𝐿(𝜙) is expressed as 𝑆𝐿(𝜙) =
𝑆𝑐
𝐿(𝜙) + 𝛼1𝜙 + 𝛼2, indicating that it is equal to the laminar flame

speed computed using Cantera, 𝑆𝑐
𝐿(𝜙), plus a linear correction that

depends on the equivalence ratio. In this study, we have data over a
narrow range of equivalence ratios, and a simple linear correction for
the laminar flame speed is sufficient. However, if we were to study
a wider range of equivalence ratios, we would need a more elabo-
rate correction. (ii) The Markstein length (𝜙) is given by (𝜙) =
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𝛼3𝑐 (𝜙), indicating that it is equal to the Markstein length computed
using Cantera, 𝑐 (𝜙), multiplied by the parameter 𝛼3. (iii) The shape
parameter 𝜇 = 𝛼4𝑢̄ + 𝛼5 is assumed to vary linearly with the bulk
flow velocity and therefore with the Reynolds number of the bulk
flow in the burner tube. (iv) The value 𝐾 = 𝛼6 is assumed to be
constant across all flame cases. We keep 𝜀𝑉 , 𝜆 and 𝜙0 equal to the values
obtained in the previous assimilation step because the amplitudes of
the acoustic forcing and of the flame base oscillations depend on the
specific experimental conditions and are not general properties of the
flame.

We then assimilate all the data simultaneously to infer the most
probable hyperparameter set, denoted as 𝜶MP. The results of this step
are shown in red in Fig. 9. The red lines display the estimates of the
physical parameters 𝐚 as functions of the equivalence ratio 𝜙, the mean
flow velocity 𝑢̄, and the Strouhal number St, after the assimilation of the
hyperparameters 𝜶. The three red contours show 1, 2, and 3 standard
deviations from the posterior values.

We now compare the model predictions to experimental data for
all 20 flames, while calculating the parameters of the physics-based
model using our metamodel. Fig. 10 displays the predicted flame front
dynamics for all 20 flames in the library at a single timestep. The
experimental observations are shown as greyscale images, and the
model predictions are overlaid as red lines with confidence intervals of
1, 2, and 3 standard deviations (depicted as red shading). The numbers
at the base of the flames indicate the corresponding flame numbers
referenced in Table A.1. In the supplementary material, we provide
the animated version of this figure, showing the predictions for all
timesteps of the experimental video footage.

5.3. Flame transfer function predictions

With the model parameters inferred from the available data, we use
the calibrated model to predict the flame transfer functions for each of
the 20 flames with quantified uncertainty bounds. We introduce the
flame transfer function  as:

 (St;𝜙, ̄𝑢,𝜶) = 𝑞∕𝑞
𝑢̂ref∕𝑢̄

, (17)

where ⋆̂ denotes the Fourier component of ⋆ at the Strouhal number
St; 𝑞 denotes the fluctuating heat release rate and 𝑢ref denotes the
velocity fluctuations at a reference position. The heat release rate 𝑞
is normalized by the mean heat release rate, while the velocity 𝑢̂𝑟𝑒𝑓
is normalized by the mean flow velocity in the burner tube 𝑢̄. In this
study, we define the reference velocity 𝑢̂ as the component of the
ref
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Fig. 7. (a-b) Probability distributions of parameters for the acoustically forced case: prior (blue) and posterior (red). Contours depict 1, 2, and 3 standard deviations from
the prior 𝐚𝑝 and posterior 𝐚MP estimations. Both panels represent the same quantities; however, panel (a) is scaled to the prior distributions, while panel (b) is scaled to the
posterior distributions. Parameters include the flame aspect ratio 𝛽, which is a function of the unstretched laminar flame speed 𝑆𝐿 and the bulk velocity in the burner tube 𝑢̄, the
shape parameter for the velocity field 𝜇, the nondimensional Markstein length , the nondimensional velocity perturbation convective speed 𝐾, and the amplitude of velocity
perturbations 𝜀𝑉 . (c) Comparison of model predictions before (red line) and after (blue line) assimilating the experimental video footage. The confidence interval, spanning 3
standard deviations, is indicated by red and blue shadings overlaid on the experimental flame images. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
velocity field that is perpendicular to the flame front at its base, scaled
by 1∕ sin (𝛼𝑏

)

, where 𝛼𝑏 is the angle between the flame base and the
axial direction. This definition aligns with the formulations provided
by Orchini & Juniper [35] and Preetham et al. [36]. This scaling is
necessary because, in the velocity model employed in our study and
theirs, the radial velocity component vanishes as the Strouhal number
approaches zero, resulting in purely axial flow. In this limit, the scaling
ensures that the magnitude of the reference velocity corresponds to that
of the axial velocity, allowing the gain of the flame transfer function to
approach 1. While this simple velocity model has clear limitations, it
allows us to demonstrate our Bayesian framework in a simple setting.
In future work we will refine the velocity model.

Using Eq. (17) and our calibrated model, we calculate a flame trans-
fer function for each of the 20 flames. The polar plot in Fig. 11(a) shows
the predicted flame responses, and their uncertainties, evaluated at the
9 
experimentally observed frequency. Each flame response is coloured
according to its corresponding flame group as in Fig. 2. It is worth
noting that the flames within the same group, which share the same
convective time delay 𝜏, exhibit similar phase delays on the polar plot,
as one would expect.

Fig. 11(b) shows the predicted flame transfer functions for each of
the 20 flames, along with their uncertainties, over a wide range of
Strouhal numbers (St). For reference, the Strouhal numbers at which
data were collected are highlighted with a dot. We see that the para-
metric uncertainty (shown with a shaded patch) is low throughout
the frequency range for each of the 20 flame transfer functions. This
indicates that experimental data at a single forcing frequency contains
enough information about the unknown parameters to collapse our
parametric uncertainty over a wide range of frequencies. We note, how-
ever, that without observations at other forcing frequencies, we cannot
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Fig. 8. Diagram showing the concept of using Bayesian inference to create a quantitatively accurate model capable of providing physical information not directly available from
experiments. The experimental data consists of ten frames during one period of oscillation. Panel (a) shows the model prediction (red line) with a confidence interval of 3 standard
deviations (red shading) plotted on top of the experimental flame images, as in Fig. 7. We also use the model to infer the flame position (blue lines) and its uncertainty (blue
shading) at moments between observations. Panel (b) shows the h.r.r. perturbation normalized by its mean value, computed using the model. The black dots correspond to the
timeframes observed in the experiments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Results of the second step of the data assimilation process. From the first step of the process, we obtain the trends of the physical parameters with respect to the equivalence
ratio 𝜙 and the bulk velocity 𝑢̄, which is proportional to the Reynolds number, Re, inside the burner tube. Then we propose a general model for the parameters and assimilate
all the flame conditions together. The blue markers represent the posterior values from the first step of the data assimilation process and the error bars correspond to 3 standard
deviations. The red dotted lines correspond to the posterior values from the second step and the shaded areas represent 1, 2 and 3 standard deviations. Panel (a) shows the
assimilated values of the unstretched laminar flame speed 𝑆𝐿 plotted against the equivalence ratio 𝜙. Panel (b) shows the assimilated values of the dimensional Markstein length
̃ plotted against the equivalence ratio 𝜙. Panel (c) shows the assimilated values of the velocity shape parameter 𝜇 plotted against the bulk velocity in the burner tube 𝑢̄. Panel
(d) shows the assimilated values of the convective speed ratio 𝐾 plotted against the acoustic perturbation Strouhal number St.
identify other sources of uncertainty such as systematic experimental
uncertainty or structural model uncertainty.

5.4. Extrapolation

The model in this paper contains a small number of parameters
because it is physics-based. Consequently, the training process requires
only a small amount of data. In this section, we show the model’s ability
to predict the flame front dynamics of the 20 flames in our library using
data from just four flames. We train the model’s hyperparameters on
flames 1, 6, 11, and 16 of Table A.1 and predict the remaining flames
with this model. These four flames have the same convective time
delay, but different powers. We therefore test the ability of the model to
extrapolate outside the range of trained convective time delays, which
is more challenging than scaling with power.

Fig. 12 shows the predicted flame front dynamics for all flames
at a single timestep. Red lines show the flames that were used for
training and blue lines show the flames used for testing. The red
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and blue shading denotes 1, 2, and 3 standard deviations from the
predicted flame front position. All model predictions are overlaid onto
the experimental flame images for comparison. The number at the
base of each flames indicates the flame numbers in Table A.1. In the
supplementary material, we provide the animated version of this figure,
showing the predictions for all timesteps of the experimental video
footage.

We now compare Figs. 10 and 12. When only one-fifth of the
available data has been used, the predicted flame front positions are
less accurate and have larger uncertainty. This is particularly clear for
flame 7, which has a large acoustic amplitude and is close to pinch
off in these figures. Indeed, the model shows significant sensitivity to
the model parameters as the acoustic amplitude increases. Similarly,
the prediction for flame 20 is less accurate because the flame length is
much larger than the length of the four flames used for model training.
Even with such a small amount of training data, however, the data still
falls within the uncertainty bounds of the model predictions, even when
the data is well outside the training range. We further note that Fig. 12
shows the timestep with the largest model misfit and uncertainties. In
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Fig. 10. The general model predictions for all flames in the library are represented by the red line, with confidence intervals of 3 standard deviations (depicted as red shading),
overlaid on the experimental flame images. The numbers at the base of the flames indicate the corresponding flame numbers referenced in Table A.1. Additionally, in the
supplementary material, we provide an animated version of this figure, showing predictions at all time steps of the experimental video footage. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (a) Predicted flame transfer functions at the experimentally observed frequency, presented in a polar plot. Each curve is coloured according to the flame group as shown
in Fig. 2. Flames within the same group, sharing the same convective time delay 𝜏, exhibit similar phase delays, as expected. (b) Predicted flame transfer functions, with associated
uncertainties, over a broad range of Strouhal numbers (St). Strouhal numbers where experimental data were available are marked with dots. The shaded regions represent the
parametric uncertainty, which remains low across the frequency range for all 20 flame transfer functions. . (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 12. Predicted flame front dynamics for all flames in the library at a single timestep. Red lines show flames used for training, while blue lines show flames used for testing.
The shaded regions in red and blue indicate 1, 2, and 3 standard deviations from the optimal flame front estimation. Additionally, all model predictions are overlaid onto the
experimental flame images for comparison. In the supplementary material, we provide an animated version of this figure, presenting predictions for all time steps of the experimental
video footage. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the supplementary material, we provide an animated version of this
figure showing the predictions for all timesteps of the video footage.

6. Conclusions

In this study, we perform experiments on an acoustically forced,
laminar premixed conical flame in a duct. We use a high-speed cam-
era to record snapshots of the natural emission of the flame while
steady and forced. We propose a physics-based reduced-order model
that provides, amongst other things, the flame front dynamics under
harmonic forcing. We combine the model output with the experimental
images of the flame to infer the most probable model parameters. This
process (i) turns a qualitatively-accurate model into a quantitatively-
accurate model, and (ii) quantifies the uncertainty in the inferred model
parameters and the model predictions.

The inference process produces a digital twin of the flame, which
provides access to quantities that were not directly measured in the
experiments. From observations of the steady flame, we can estimate
combustion characteristics such as the laminar flame speed and the
Markstein length. This can be used to characterize the combustion
properties of a fuel for which data are not available. From observations
of the perturbed flame, we can infer the fluctuating heat release rate as
a response to the velocity perturbation, which is then used to calculate
the flame’s thermoacoustic response through, for example, the flame
transfer function. The proposed model contains few parameters and can
therefore be trained on relatively little data. To demonstrate this we
infer the model’s parameters using one-fifth of the available data and
successfully predict the remaining flames in the dataset. The model is
also differentiable with respect to the parameters meaning that it can
be used as a design optimization tool.

In future work, the flame model will be included within a larger
model of the thermoacoustic behaviour of the system, whose other
parameters are tuned in the same way. The final result will be a
quantitatively-accurate physics-based model of the flame and the ther-
moacoustic system that is interpretable, trustworthy, and extrapolat-
able. The results of the current work are limited to simple flames due
to the simplicity of the physics-based model. In future work we will
increase the fidelity of the model so that the inference framework can
be applied to more interesting flames.
12 
The Matlab code developed in this study is made available to the
reader, who is invited to modify and apply it to assimilate other flame
image data into the flame model.
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Table A.1
Summary of the properties of the 20 flames studied. We show the average measured
low rates of air, methane (CH4) and ethylene (C2H4), the equivalence ratio (𝜙), the
ulk velocity in the burner tube (𝑢̄), the measured flame length (𝐿𝑓 ), and the mean
eat release rate (𝑄̄).
Flame No. Air CH4 C2H4 𝜙 𝑢̄ 𝐿𝑓 meas. 𝑄̄
[-] [ln/min] [ln/min] [ln/min] [-] [m/s] [mm] [W]

1 6.049 0.325 0.325 1.28 1.75 16.6 375
2 6.147 0.348 0.348 1.35 1.79 20.0 375
3 6.219 0.364 0.364 1.40 1.82 23.1 375
4 6.283 0.379 0.379 1.44 1.84 26.4 375
5 6.338 0.391 0.391 1.47 1.86 28.9 375

6 7.246 0.387 0.387 1.27 2.10 19.8 450
7 7.369 0.416 0.416 1.34 2.15 23.8 450
8 7.459 0.436 0.436 1.39 2.18 27.4 450
9 7.537 0.454 0.454 1.43 2.21 30.9 450
10 7.603 0.468 0.468 1.47 2.24 34.2 450

11 8.444 0.449 0.449 1.27 2.45 23.1 525
12 8.594 0.484 0.484 1.34 2.51 27.6 525
13 8.699 0.508 0.508 1.39 2.55 31.7 525
14 8.790 0.529 0.529 1.43 2.58 36.4 525
15 8.868 0.546 0.546 1.47 2.61 39.2 525

16 9.644 0.512 0.512 1.26 2.80 25.9 600
17 9.818 0.553 0.553 1.34 2.86 30.1 600
18 9.939 0.580 0.580 1.39 2.91 34.8 600
19 10.045 0.604 0.604 1.43 2.95 39.9 600
20 10.134 0.624 0.624 1.47 2.99 43.6 600

Appendix A. Properties of the flames studied in this paper

See Table A.1.

Appendix B. Adjoint methods for computing the sensitivity of a
ynamical system to variations in initial conditions and model
arameters

Consider the general dynamical system:

̇ (𝑡) − 𝐟 (𝐱(𝑡), 𝑡; 𝐚) = 0, 𝐱(0) = 𝐱0, (B.1)

where 𝐱(𝑡) is the state vector, at a given time 𝑡, 𝐱0 is the initial state and
represents parameters. Any small variation in the initial condition
𝐱(0) and in the system parameters 𝛿𝐚 will result in variations in the

state 𝛿𝐱(𝑡) and 𝛿𝐱(𝑇 ), where 𝐱(𝑇 ) is the state vector at a final time 𝑇 .
ssuming the system dynamics expressed by Eq. (B.1) hold at all times,

he variation of the state is governed by:
d𝛿𝐱
d𝑡

− 𝜕𝐟
𝜕𝐱

𝛿𝐱 − 𝜕𝐟
𝜕𝐚

𝛿𝐚 = 0 (B.2)

To derive the adjoint equation, we multiply this equation by a vector
𝑇 having the same size of vector 𝐱 and integrate over the time interval
0, 𝑇 ]:

∫

𝑇

0
𝐰𝑇

( d𝛿𝐱
d𝑡

− 𝜕𝐟
𝜕𝐱

𝛿𝐱 − 𝜕𝐟
𝜕𝐚

𝛿𝐚
)

dt = 0. (B.3)

The vector 𝐰 is called the adjoint vector. Integration by parts yields:

𝐰𝑇 (𝑇 )𝛿𝐱(𝑇 ) − 𝐰𝑇 (0)𝛿𝐱(0) − ∫

𝑇

0

(

d𝐰𝑇

d𝑡
+ 𝐰𝑇 𝜕𝐟

𝜕𝐱

)

𝛿𝐱 dt

− ∫

𝑇

0

(

𝐰𝑇 𝜕𝐟
𝜕𝐚

)

𝛿𝐚 dt = 0. (B.4)

To ensure the integrand is zero for arbitrary 𝛿𝐱, we impose the follow-
ing equation:
d𝐰𝑇

d𝑡
+ 𝐰𝑇 𝜕𝐟

𝜕𝐱
= 0, (B.5)

which is solved backward in time from 𝑇 to 0. Eq. (B.5) is called the
djoint equation. With the adjoint equation satisfied, we are left with:

𝐰𝑇 (𝑇 )𝛿𝐱(𝑇 ) − 𝐰𝑇 (0)𝛿𝐱(0) −
𝑇 (

𝐰𝑇 𝜕𝐟 ) 𝛿𝐚 dt = 0. (B.6)
∫0 𝜕𝐚
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This equation relates variations in the final state to variations in the
initial conditions. To compute the sensitivity of the 𝑖th component of
the state at time 𝑇 to the initial condition, we set:

𝐰(𝑇 ) = [0,… , 0, 1ith, 0,… , 0]𝑇 (B.7)

and solve the adjoint Eq. (B.5). Eq. (B.6) can be then expressed by:

𝛿 𝑥𝑖(𝑇 ) = 𝐰𝑇 (0)𝛿𝐱(0) + ∫

𝑇

0

(

𝐰𝑇 𝜕𝐟
𝜕𝐚

)

𝛿𝐚 dt. (B.8)

Finally, the 𝑖th row of the Jacobian matrix with respect to the initial
ondition is given by:
𝜕 𝑥𝑖(𝑇 )
𝜕𝐱(0)

= 𝐰𝑇 (0). (B.9)

Analogously, the 𝑖th row of the Jacobian matrix with respect to the
model parameters is given by:
𝜕 𝑥𝑖(𝑇 )
𝜕𝐚

= ∫

𝑇

0

(

𝐰𝑇 𝜕𝐟
𝜕𝐚

)

dt. (B.10)

Appendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.combustflame.2025.114011.

Data availability

The experimental data is openly available at http://doi.org/10.
17863/CAM.106960. The Matlab code is available at https://github.
com/aleGiannotta/Bayesian_Inference_Lam_Flame.git.
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