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Physics-informed data-driven prediction of
premixed flame dynamics with data assimilation

By H. Yu†, T. Jaravel, J. Labahn, M. Ihme, M. P. Juniper† AND L. Magri†‡

We propose an on-the-fly statistical learning method to make a qualitative reduced-
order model of the dynamics of a premixed flame quantitatively accurate. This physics-
informed data-driven method is based on the statistically optimal combination of (i) a
reduced-order model of the dynamics of a premixed flame with a level-set method,
(ii) high-quality data, which can be provided by experiments and/or high-fidelity simu-
lations, and (iii) assimilation of the data into the reduced-order model to improve the
prediction of the dynamics of the premixed flame. The reduced-order model learns the
state and the parameters of the premixed flame on the fly with the ensemble Kalman fil-
ter, which is a Bayesian filter used in the data assimilation of high-dimensional dynamical
systems, e.g., in weather forecasting. The proposed method and algorithm are applied
to two test cases with relevance to reacting flow and instability. First, the capabilities of
the framework are demonstrated in a twin experiment, where the assimilated data are
produced from the same model as that used in prediction. Second, the assimilated data
are extracted from a high-fidelity reacting-flow direct numerical simulation (DNS). The
results are analyzed by using Bayesian statistics, which provide the uncertainties of the
calculations. This method opens up new possibilities for on-the-fly optimal calibration of
computationally cheap reduced-order models when experimental data become available,
for example, from sensors.

1. Introduction

Thermoacoustic instabilities are a persistent challenge in the design of jet and rocket
engines. Velocity and pressure oscillations inside the combustion chamber interact with
the flame and cause unsteady heat release. If moments of higher heat release coincide
with moments of higher pressure (and lower heat release with lower pressure), acoustic
oscillations can grow. This can lead to large-amplitude oscillations causing structural
damage in the jet or rocket engine (Lieuwen & Yang 2005; Culick 2006).

A simple example of a thermoacoustic system is a heat source inside a duct. Depend-
ing on the type of heat source, this thermoacoustic system displays varying degrees of
nonlinearity. For an electric heater or a diffusion flame, the nature of the nonlinearity
is relatively simple: after a linear growth phase, the acoustic oscillations saturate and
form a limit cycle. For a premixed flame, the nature of the nonlinearity becomes more
complicated because of the formation of cusps and pinched-off fuel-air pockets. In this
case, the thermoacoustic system displays rich nonlinear dynamics, e.g., chaos through
period doubling or the Ruelle-Takens-Newhouse route (Kabiraj et al. 2012; Kashinath
et al. 2014). Rich nonlinear dynamics have also been observed in more realistic settings,
e.g., a gas-turbine model combustion chamber (Gotoda et al. 2011).
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The time-accurate calculation of thermoacoustic instabilities is challenging for several
reasons, in particular the following:

(i) Aleatoric uncertainty. Under realistic conditions, a thermoacoustic system is sub-
ject to stochastic noise, which cannot be exactly replicated in a simulation. In the worst-
case scenario, stochastic noise may trigger thermoacoustic instabilities before the limit
of linear stability is reached (Juniper & Sujith 2018).

(ii) Epistemic uncertainty. Thermoacoustic instabilities involve hydrodynamic, chem-
ical, and acoustic effects, among others. A simulation usually relies on some modeling
assumptions, e.g., simplified governing equations, a (relatively) low spatial resolution, or
a reduced chemical mechanism. The result is a model that may lack relevant degrees of
freedom or have inaccurate parameters.

(iii) Extreme sensitivity. The long-term behavior of a thermoacoustic system, both
qualitative and quantitative, may be highly sensitive to uncertain parameters such as
boundary conditions and the operating regime.

We propose to address these challenges by augmenting reduced-order models with data
from numerical experiments in the form of high-fidelity simulations using methods based
on the theory of stochastic processes, namely data assimilation and parameter estimation
based on a Bayesian approach. Data assimilation gives an optimal estimate of the true
state of a system given experimental observations. Parameter estimation uses the data
to find a maximum-likelihood set of parameters for the model. The theory of stochastic
processes (Jazwinski 2007) offers a novel approach that has not yet been explored in the
context of thermoacoustics.

2. Level-set methods and data assimilation

The thermoacoustic system under investigation is a ducted premixed flame. In the
past, its nonlinear dynamics have been successfully characterized using dynamical system
techniques and continuation analysis on a reduced-order model, as reviewed by Juniper &
Sujith (2018). The acoustics are governed by linearized one-dimensional momentum and
energy equations. The heat release rate perturbations are governed by the kinematics of
the flame surface. Dowling (1999) showed that the kinematics of the flame surface are
the major source of nonlinearity in a ducted premixed flame.

A data-driven framework for the time-accurate calculation of a ducted premixed flame
using the reduced-order model requires two components: (i) a computational method
to predict the motion of the flame surface (Section 2.1) and (ii) a statistical algorithm
to find the optimal estimate from a model prediction and experimental observations
(Section 2.2).

2.1. Hamilton-Jacobi equation

The laws of motion of a surface are given by

dx

dt
= u− sLn, (2.1)

where x is the position of one point on the surface, n is the normal vector at this point, u
is the velocity field of the underlying medium, and sL is the speed of the surface relative
to the underlying medium. If we assume hyperbolicity, the laws of motion are equivalent
to the following Hamilton-Jacobi equation (Yu et al. 2018)

∂G

∂t
+ (u · n− sL) = 0, (2.2)
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subject to G(x(t), t)−G(x(0), 0) = 0, (2.3)

and
√
∇G · ∇G− 1 = 0. (2.4)

In combustion, Eq. (2.2) is also known as theG-equation. The normal vector n depends on
the computation of partial derivatives in space, which makes Eq. (2.2) a partial differential
equation (PDE). Equations (2.3) and (2.4) are constraints, which make the solution to
the G-equation unique away from the surface. The solution G(x, t) to the Hamilton-
Jacobi equation is the so-called generating function. The solution x(t) to Eq. (2.3) gives
the location of the surface at every time t.

There are several consequences to solving the Hamilton-Jacobi equation (Eqs. (2.2)-
(2.4)) instead of the laws of motion (Eq. (2.1)). Firstly, the laws of motion require a
parameterization of the surface. The quality of the parameterization quickly deterio-
rates when the metric on the surface or its topology changes. The Hamilton-Jacobi
equation avoids these issues by embedding the surface as a level set of the generat-
ing function, which is defined over the entire domain. Secondly, the Hamilton-Jacobi
equation needs to be in theory solved over the entire domain even though surfaces are
one-codimensional (i.e., surfaces have one less dimension than the volume they inhabit).
This is more computationally expensive but has the advantage that surfaces can be iden-
tified by their generating functions as vectors in a state space. A well-defined state space
is a prerequisite for data assimilation, which will be described in the next section.

The G-equation is solved using a computationally inexpensive narrow-band level-set
method (Peng et al. 1999): The computational domain is discretized using a weighted
essentially non-oscillatory (WENO) scheme and a total-variation diminishing (TVD)
version of the Runge-Kutta scheme. This gives third-order accuracy in time and up to
fifth-order accuracy in space. Cusps and pinched-off fuel-air pockets are reliably captured.
The generating function is reconstructed from the solution to the G-equation using a fast-
marching method (Sethian 1996).

2.2. Ensemble Kalman filter

The Kalman filter provides a statistically optimal estimate of the true state of a system
from a model prediction and experimental observations. In general, the model prediction
is represented by a vector ψf in the state space (where f denotes forecast). The exper-
imental observations are collected in a vector d in the observation space. The model
prediction is mapped from the state space to the observation space through a linear
measurement operator M. The prediction uncertainty and the experimental errors are
represented by covariance matrices Cf

ψψ and Cεε, respectively. The statistically optimal
estimate of the state ψa and its uncertainty Ca

ψψ (where a denotes analysis) are given
by (Evensen 2009)

ψa = ψf +
(
MCf

ψψ

)T [
Cεε + MCf

ψψM
T
]−1 (

d−Mψf
)
, (2.5)

Ca
ψψ = Cf

ψψ −
(
MCf

ψψ

)T [
Cεε + MCf

ψψM
T
]−1 (

MCf
ψψ

)
. (2.6)

For the ducted premixed flame, the state vectors ψf and ψa are the generating functions
G(x, t) from Section 2.1. After discretization, the state vectors have O(105) entries and
the covariance matrices have O(1010) entries. The computation and manipulation of the
covariance matrices make the Kalman filter computationally infeasible. Alternatively,
the prediction uncertainty may be approximated by an ensemble ψfi of size N . The
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Figure 1. Solutions of G-equation over one period. The fuel-air mixture leaves the burner at
the bottom of each frame. The infinitely thin flame surface separates the burnt (red) from the
unburnt (blue) gas.

statistically optimal estimates ψai and Ca
ψψ from the ensemble Kalman filter are given

by (Evensen 2009)

ψai = ψfi +
(
MCf

ψψ

)T [
Cεε + MCf

ψψM
T
]−1 (

d−Mψfi

)
, (2.7)

ψ =
1

N

N∑
i=1

ψi , Cψψ =
1

N − 1

N∑
i=1

(
ψi − ψ

) (
ψi − ψ

)T
. (2.8)

For combined state and parameter estimation, the state vectors are augmented by ap-
pending the parameters of interest to the discretized generating functions.

3. Results

Solutions of the G-equation for the ducted premixed flame are shown in Figure 1. The
flame is attached to the burner lip, while the perturbations are convected from the base
of the flame to the tip. If the perturbations are sufficiently large, a fuel-air pocket pinches
off. In our reduced-order model, the convection of perturbations is mainly governed by
two non-dimensional parameters (Kashinath et al. 2013): (i) the parameter K, which
governs the perturbation convection speed; and (ii) ea, which governs the amplitude
of the response of the flame surface to acoustic excitation. Both parameters enter the
G-equation via the underlying velocity field u. Neither parameter is accurately known
a priori , which is a major source of uncertainty.

In the following sections, two types of problems are addressed: The forward problem
quantifies the propagation from the input (the uncertainty in the parameters) to the
output (the uncertainty in the location of the flame surface) (Section 3.1). In the inverse
problem, data assimilation is used to identify the location of the flame surface and to re-
duce the uncertainty in the location and the parameters (Sections 3.2-3.3). In Section 3.1,
no data are used. In Sections 3.2-3.3, synthetic and DNS data are used, respectively.

3.1. Forward uncertainty quantification

In the ensemble Kalman filter, the probability distributions over the discretized generat-
ing functions are evolved in time using a Monte-Carlo method. The marginal probability
distribution for the k-th entry in the state vector representing the discretized generating
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function is given by

ψ[k] ∼ N (ψ[k],Cψψ[k, k]), (3.1)

where N denotes the normal distribution. The mean ψ[k] and the variance Cψψ[k, k] are
computed from Eq. (2.8). Hence the likelihood for the flame surface to be found at the
location k is given by

p[k] =
1√

2πCψψ[k, k]
exp

(
− ψ[k]2

2Cψψ[k, k]

)
. (3.2)

In Figure 2, the logarithm of the normalized likelihood is shown,

log

(
p[k]

p0[k]

)
= − ψ[k]2

2Cψψ[k, k]
. (3.3)

The zero-level set gives the maximum-likelihood location of the flame surface. The more
negative the value at a location, the less likely it is that the flame surface will be found
there. As the perturbation is convected from the base of the flame to the tip, the high-
likelihood volume for the location of the flame surface grows. The largest area exists
during pinch-off, which represents maximal uncertainty.

3.2. Twin experiment

In a twin experiment, both the model predictions and the experimental observations
are generated by solving the G-equation. For the model predictions, an ensemble of
20 G-equations is solved. The same initial condition is used for the whole ensemble,
but a different set of parameters K and ea is chosen for each simulation. They are
sampled from two independent normal distributions each with 20% standard deviation.
For the experimental observations, a separate set of parameters K and ea is chosen. The
measurements are taken at all grid points where the absolute value of the discretized
generating function is less than one grid size. This gives a cloud of grid points inside
a narrow band around the zero-level set of the generating function. Corresponding to
the zero-level set, the vector of measurements d is zero-valued. The measurement matrix
M is a restriction operator, which maps the state space to the observation space and
indicates the locations of the grid points inside the narrow band. The covariance matrix
Cεε, which represents the experimental errors, is a diagonal matrix with the grid size
squared on the diagonal.

In a first twin experiment, the ensemble Kalman filter is used to perform state esti-
mation. The middle row of Figure 2 illustrates the logarithm of the normalized likeli-
hood (Eq. (3.3)). A qualitative comparison to the top row of Figure 2 shows that the
high-likelihood volume for the location of the flame surface is significantly reduced. A
quantitative measure for the uncertainty in the location of the flame surface is given by
the root mean square (RMS) error, which is defined as the square root of the trace of
the covariance matrix of the ensemble,

tr (Cψψ) =
1

N − 1

N∑
i=1

(
ψi − ψ

)T (
ψi − ψ

)
. (3.4)

In Figure 3, the RMS error is plotted over time. At timestep 0, the error is zero because the
same initial condition is used for the whole ensemble. In the forward problem, the RMS
error grows until it reaches a high-uncertainty plateau. Peaks in the high-uncertainty
plateau coincide with the moments when fuel-air pockets are pinched off. With state
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Figure 2. Snapshots of logarithm of normalized likelihood over one period for the forward
problem (top row) and the inverse problems with state estimation (middle row) and combined
state and parameter estimation (bottom row). In the twin experiment, the experimental obser-
vations are extracted from a G-equation simulation (black line). High-likelihood (yellow) and
low-likelihood (blue) volumes are shown.

estimation, the uncertainty is regularly capped, and the predictions of the location of the
flame surface significantly improve.

In a second twin experiment, the ensemble Kalman filter is used to perform combined
state and parameter estimation. In Figure 3, the RMS error is plotted over time. The ini-
tial behavior is similar to that of the twin experiment with state estimation. After the first
data assimilation at timestep 1000, the uncertainty remains at a relatively constant level.
At this point, combined state and parameter estimation has updated the parameters to
values close to the truth. Consequently, the subsequent uncertainty does not grow and
the parameters do not improve. When the first fuel-air pocket is pinched off, at timestep
4000, the uncertainty grows rapidly until combined state and parameter estimation up-
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Figure 3. Logarithm of root mean square (RMS) error plotted over time for the forward problem
(blue line) and the inverse problems with state estimation (orange dash) and combined state
and parameter estimation (green dash-dot).

dates the state and the parameters again. The update step coincides with the moment
of pinch-off, which is also a moment of high uncertainty. Thus, the parameters can be
found very accurately, which leads to a low-uncertainty plateau. High uncertainties at
later pinch-off events are suppressed without much change in the parameters.

3.3. Data from direct numerical simulation

After the twin experiment, the assimilated data are extracted from a DNS performed
with the compressible flow solver CharLES-X. The computational mesh has 500,000
grid points, the grid size being 0.2 mm in the region of the flame. At the inlet of the
domain, an ethylene-methane-air mixture comes out of the burner, surrounded by an
air coflow. The reduced chemical mechanism includes 15 species and 5 quasi-steady-state
species. At the outlet of the domain, a sponge region is implemented to suppress reflected
acoustic waves. In Figure 4, snapshots of the DNS are shown. The flame is attached to
the burner lip on the edge of flashing back. The DNS displays the same qualitative
behavior as the G-equation in that perturbations are observed to travel from the base
to the tip of the flame. In the DNS, there are no pinched-off fuel-air pockets. For the
model predictions, an ensemble of 24 G-equations is solved. The same initial condition
is used for the whole ensemble, but a different set of parameters K and ea is chosen
for each simulation. They are sampled from two independent normal distributions with
25% and 5% standard deviation, respectively. The covariance matrix Cεε is a diagonal
matrix with nine times the grid size squared on the diagonal. In Figure 5, the logarithm
of the normalized likelihood is shown for the forward problem and the inverse problems,
the latter involving state estimation and combined state and parameter estimation. As
in Figure 2, data assimilation significantly improves the ability of the reduced-order
G-equation model to capture the motion of the flame surface. This is quantitatively
confirmed by the RMS error shown in Figure 6. While the motion of the flame surface
is accurately captured toward the tip of the flame, the attachment of the flame to the
burner lip is not.

Finally, we build on our understanding of the state and parameter uncertainties to
attempt model uncertainty quantification. Unlike optimization-based approaches, Bayes-
ian statistics do not focus on the minimization of one cost functional but rather re-
volve around probability distributions. As such, they can be analyzed using histograms
for example. In Figure 7, a preliminary result is shown. In the twin experiment (Fig-
ure 7(a)), most observation points are located in the high-likelihood volume. The like-
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Figure 4. Ethylene mass fractions in direct numerical simulation (DNS) over one period. The
fuel-air mixture leaves the burner at the bottom. The flame surface separates the burnt (blue)
from the unburnt (red) gas.

Figure 5. Snapshots of logarithm of normalized likelihood over one period for the forward prob-
lem (top row) and the inverse problems with state estimation (middle row) and combined state
and parameter estimation (bottom row). For the data assimilation, the experimental observa-
tions are extracted from a DNS (black line). High-likelihood (yellow) and low-likelihood (blue)
volumes are shown.

lihood of finding the flame surface in the low-likelihood volume decays exponentially.
When assimilating DNS data (Figure 7(b)), the histogram has a fat tail. The deviation
from an exponentially decaying distribution is a piece of information non-existent in an
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Figure 6. Logarithm of root mean square (RMS) error plotted over time for the forward problem
(blue line) and the inverse problems with state estimation (orange dash) and combined state
and parameter estimation (green dash-dot).
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Figure 7. Histograms of experimental observations over logarithm of normalized likelihood in
(a) twin experiment and (b) assimilation of DNS data. High-likelihood bins are located on the
left of each histogram, low-likelihood bins on the right.

optimization-based approach, and indicates model error. This shows how model uncer-
tainty, which is traditionally the most difficult to quantify, may be estimated by Bayesian
statistics.

4. Conclusions

We propose an on-the-fly statistical learning method, based on data assimilation with
the ensemble Kalman filter, to improve the prediction of the dynamics of premixed flames.
The proposed framework can also be applied to other interface-tracking problems. First,
the capabilities of the framework are demonstrated in a twin experiment, where the
assimilated data are produced from the same model as that used in prediction. This
guarantees that the assimilated data are consistent with the predictions, which is partic-
ularly useful to validate the algorithm. The uncertainties of the calculations are estimated
by using Bayesian statistics. This method shows that the major sources of uncertainty
are the unknown parameters, and that the pinch-off events are extremely sensitive to
both parameters and initial conditions. Second, the assimilated data are extracted from
a high-fidelity reacting-flow DNS. State estimation and combined state and parameter
estimation again provide significant improvements in the model predictions. While the
motion of the flame surface is well captured toward the tip of the flame, the attachment
of the flame to the burner lip is not. Bayesian statistics reveal the reason to be neither
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state nor parameter uncertainties but deficiencies in the model. Although the convection
of perturbations along the flame surface is accurately modeled, the reduced-order G-
equation model does not include the physical mechanisms necessary to model the flame
attachment, i.e., heat loss to the burner and the shear layer in the wake of the burner.
This physical insight into the significance of the pinch-off events and the flame attach-
ment informs both the modeling assumptions and the design of experiments toward truly
accurate prediction, for example in turbulent flows (Labahn et al. 2018).
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