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Abstract

We model acoustic oscillations driven by velocity-coupled heat release rate fluc-

tuations. We obtain an inhomogenous wave equation and convert it to the

frequency domain with a modal decomposition. We impose acoustic boundary

conditions and, using a finite element discretization with Lagrange elements,

express this as a nonlinear eigenvalue problem for the complex angular fre-

quency, ω. We solve this using the open source platform FEniCS combined

with the SLEPc, PETSc and OpenMPI libraries. In Hadamard form we write

the derivative of the eigenvalue, ω, with respect to generic geometry changes.

This requires the solution of the adjoint equation, which we obtain with the

same method as the direct equation. The output is a thermoacoustic Helmholtz

solver that cheaply calculates the effect of generic shape changes on the growth

rate and frequency of thermoacoustic oscillations. We then consider symmetry-

preserving and symmetry-breaking geometry modifications. For demonstration

we model a 30kW laboratory-scale annular combustor (MICCA from EM2C).

We parametrize the surfaces of the three-dimensional geometry with NURBS

using control points. For the plenum and the combustion chamber, we find

the eigenvalue shape derivatives with respect to the parameters of these control

points. We apply two different strategies, perpendicular boundary movements

and control point perturbations, to implement shape changes proportional to

these shape derivatives, thereby reducing the growth rate of the unstable mode
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by increasing the phase shift between the pressure and the heat release rate

oscillations. This computational method shows how to significantly alter ther-

moacoustic oscillations by making small geometry changes. The framework in

this paper can handle arbitrarily complex three-dimensional geometries, which

will be useful for the design of industrial combustion systems.

Keywords: thermoacoustic instability, adjoint method, Helmholtz solver,

sensitivity analysis, shape optimization

1. Introduction

Thermoacoustic instabilities are a major threat to the safe operation of gas

turbines and rocket engines. During the combustion process, chemical energy

is converted into thermal energy. The fluctuations in the heat release rate

excite acoustic waves that in turn interact with the flame. If the pressure and5

heat release rate oscillations are sufficiently in phase, then the acoustic energy

grows, until balanced by the energy loss due to damping or acoustic radiation

from the boundaries [1, 2]. These oscillations can become large enough to cause

noise, vibrations or, in the worst cases, extinction of the flame or structural

damage. Thermoacoustic systems are sensitive to small changes to their design10

and operating parameters [3]. They can appear in the late stages of the design

process [4], requiring costly re-design. This motivates the development of tools

that could accurately and cheaply identify the design changes that most stabilize

a thermoacoustic system.

Various modelling approaches can be used during the design process, such15

as acoustic network models [5], Helmholtz solvers [6, 7, 8] and large eddy sim-

ulations [9] of the flame or entire combustion systems [10]. This paper focuses

on Helmholtz solvers because they provide more geometric flexibility than net-

work models but are computationally much cheaper than LES. We use adjoint

methods to compute the sensitivity of the thermoacoustic growth rate and fre-20

quency to geometry modifications. Adjoint-based sensitivity analysis was ap-

plied to a simple thermoacoustic system by [11]. They computed feedback and
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base state sensitivities of the eigenvalues of a Rijke tube with a hot wire, mod-

elled as a time-delay system, which was later confirmed experimentally by [12].

Adjoint-based sensitivity analysis and gradient-based optimization were applied25

to network models of a longitudinal [13] and an annular combustor [14], which

led to stabilization of all the modes by changing the network geometry. In

the network model in those studies, the geometry changes were limited to radii

and length changes. In a Helmholtz solver, however, geometry changes can

be three-dimensional and non-uniform. In Helmholtz solvers, adjoint equations30

have been used for uncertainty quantification in a longitudinal combustor [15]

and for the optimal placement and tuning of acoustic dampers in an annular

combustor [16]. The effect of high-order perturbations for symmetry-breaking

changes to the three-dimensional combustor is investigated in [17] via an adjoint

Helmholtz solver. The azimuthal mode degeneracy is lost due to asymmetric35

changes in the FTF. The shape sensitivity of a Rijke tube using a parameter-free

approach and a 3D Helmholtz solver was performed in [18]. That approach is

easier to implement than writing the shape sensitivity in Hadamard form but

is more computationally expensive because it requires the calculation of shape

gradients for each mesh node. Similarly, shape optimization of a Rijke tube and40

a turbulent swirl combustor using parametric shapes and a 2D Helmholtz solver

was carried out in [19]. By applying small geometry modifications, they man-

aged to stabilize both systems. The theory, numerical methods, and technical

challenges of developing adjoint thermoacoustic Helmholtz solvers were outlined

in [20] for 1D solvers and a review of the use of adjoints in thermoacoustics can45

be found in [21].

Parametrization of complex shapes poses a significant technical challenge in

shape optimization. The NURBS representation used here facilitates the design

process because it allows the manipulation of the entire geometry thorough a

small number of control points [22]. The gradient of the cost function with50

respect to the parameters of the NURBS control points can be found cheaply

with adjoint methods. As the geometric complexity increases, the number of

parameters increases, but the computational expense of the adjoint calculation
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does not increase because the gradient with respect to all parameters is found

with a single calculation. This procedure has been applied to wing shape and55

turbine blade geometry optimization [23, 24].

In this article, we show how to reduce the growth rate of unstable azimuthal

and mixed modes of a laboratory-scale annular combustor (MICCA) by modi-

fying the geometry using NURBS control points. In Section 2 we describe the

theoretical and numerical aspects of the Helmholtz solver. In Section 3 we de-60

rive the formulae of the eigenvalue shape derivative (in Hadamard form) for

different boundary conditions in the case of simple and semi-simple degener-

ate eigenvalues. In Section 4 we describe the discrete model of the MICCA

combustor. In Section 5 we explain a detailed shape sensitivity analysis con-

sidering symmetry-preserving and symmetry breaking geometry modifications.65

In Section 6 we apply symmetry-preserving modifications to the shape of the

combustor, reducing the growth rate of the unstable azimuthal and mixed mode

by modifying the plenum and the combustion chamber applying perpendicular

boundary or control point perturbations. After the iteration, we reveal the

physical mechanism behind the growth rate’s reduction. Finally, in Section 770

we apply the same procedure as in Section 6 with symmetry-breaking geometry

modifications.

2. Thermoacoustic Helmholtz solver

In this section we review the modelling and the numerical analysis of the

Helmholtz solver [6, 20]. We start by considering a compressible, reacting,75

inviscid flow. The fluid is modelled as a perfect gas. We want to study the

evolution of small perturbations superimposed onto a zero Mach number mean

flow. The bar, (̄·), will denote a steady mean quantity and the prime, (·)′, an

unsteady perturbation quantity. We write the linearized momentum and energy

equations80

∂u′

∂t
+

1

ρ̄
∇p′ = 0 (1a)
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∂p′

∂t
+ γp̄∇ · u′ = (γ − 1)q̇′ (1b)

where u′ is the velocity perturbation, p′ is the pressure perturbation, q̇′ is the

heat release rate perturbation per unit volume, ρ̄ is the mean density, p̄ is the

mean pressure, which is constant, and γ is the heat capacity ratio. If we take

γp̄∇·(1a)− ∂
∂t (1b), we obtain an inhomogeneous wave equation for the pressure85

perturbation.

∇ ·
(
c̄2∇p′

)
− ∂2p′

∂t2
= −(γ − 1)

∂q̇′

∂t
(2)

where c̄ =
√
γp̄/ρ̄ is the mean speed of sound. We use the method of separation

of variables

(·)′(x, t) = Re
{

(̂·)(x)e−iωt
}

(3)

to obtain an inhomogeneous Helmholtz equation.

∇ ·
(
c̄2∇p̂

)
+ ω2p̂ = iω(γ − 1)ˆ̇q (4)

where ω is the complex eigenvalue, of which the real part is the angular frequency90

and the imaginary part is the growth rate. In this formulation, an eigenvalue is

linearly unstable if its growth rate, ωi, is positive.

The unsteady heat release rate is modelled in terms of the linear response

of the flame to small velocity perturbations. In this paper we assume that the

local heat release rate perturbation, q̂, is uniform across the flame volume and95

is zero elsewhere, although this assumption is easily relaxed:

ˆ̇q
¯̇q

= F (ω)
û(xr) · nr

ū
(5)

where ¯̇q = ¯̇Q/Vf is the thermal power of the flame per unit volume (where ¯̇Q

is the total thermal power of the flame and Vf is the flame volume), F (ω) is

the flame transfer function (FTF), û(xr) · nr is the component of the velocity

perturbation along the unit vector nr, evaluated at the reference point xr, and100

ū is the average flow velocity at the reference point.

By combining Eq. (1a), written in the frequency domain, and Eq. (5),

we can express the flame response as a function of the pressure gradient. We
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substitute the resulting expression into (4) to obtain:

∇ ·
(
c̄2∇p̂

)
+ ω2p̂ =

¯̇q

ū

γ − 1

ρ̄(xr)
F (ω)∇p̂(xr) · nr (6)

Annular combustors consist of a number of annular sectors. When the inter-105

action between neighbouring flames is negligible, we can assume that the sectors

are independent, meaning that the mass flow rate fluctuations in one injector

influence the fluctuating heat release rate in that sector but not in the other

sectors [25]. We also assume that the flame transfer function is the same for

each sector.110

In general, we impose Robin boundary conditions for the acoustics.

∇p̂ · n− iω

c̄Z
p̂ = 0 (7)

where n is the outward unit normal and Z is the specific acoustic impedance

[26], defined as the non-dimensional ratio of the acoustic pressure to the normal

component of the acoustic velocity

Z =
p̂

ρ̄c̄û · n (8)

For one special case, Z → 0 at an ideal open boundary, i.e. the acoustic pressure115

tends to zero and we obtain Dirichlet (sound-soft) boundary conditions, p̂ =

0. For another special case, Z → ∞ at an ideal closed boundary, i.e. the

acoustic velocity tends to zero and we obtain Neumann (sound-hard) boundary

conditions, ∇p̂ · n = 0.

Equations (6) and (7) are discretized using the Bubnov-Galerkin finite ele-120

ment method, in which the trial and test functions belong to the same function

space. We use P1 and P2 elements. The finite element approximation results

in a nonlinear eigenvalue problem for the complex angular frequency ω.

Ap + ωBp + ω2Cp−D(ω)p = 0 (9)

where A is the mass matrix and C is the stiffness matrix. The unsteady heat

release matrix D(ω) depends nonlinearly on the eigenvalue ω. B contains the125

Robin boundary conditions. In this paper these boundary conditions are not
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frequency-dependent, although it is easy to make them frequency-dependent by

treating B in the same way as D. The problem is nonlinear in the eigenvalue

and linear in the eigenvector.

The nonlinear eigenvalue problem (9) is solved using fixed-point iteration130

with relaxation [7]. After finding the solution, we normalize the eigenvector,

p̂, such that 〈p̂|p̂〉 = 1. The code is written with the open source computing

platform FEniCS [27, 28]. The weak forms in Eq. (6) are defined using the

UFL package [29]. At each iteration k, the generalized eigenvalue problem,

(A+ωkB−D(ωk))p+(ω2
k)Cp = 0, is solved with the EPS solver in the SLEPc135

library [30]. All the matrices are assembled within the subroutines of DOLFINx

apart from the active flame matrix (D). This matrix is generated explicitly

using the PETSc package [31]. A shift-and-invert spectral transformation is

used to enhance the convergence of eigenvalues in the neighbourhood of a given

value. The solver is parallelized with the OpenMPI library [32].140

3. Shape derivatives

We wish to calculate how small modifications to the geometry of a com-

bustor affect the stability of the thermoacoustic modes. This translates into

the problem of finding the derivative of an eigenvalue with respect to arbitrary

perturbations to the shape of the domain [33].145

3.1. Shape derivative and Hadamard theorem

Hadamard’s structure theorem [34] shows how to calculate general shape

derivatives from a single deformation field. This provides a computationally-

cheap method to calculate shape derivatives. Following [35], we define a one-

parameter family of linear mappings.150

Tt(x) = x + tV (x) (10)

where t is the parameter of the transformation and V is a continuous vector

field, representing the direction of the shape perturbation. Tt transforms the
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domain Ω into the deformed domain Ωt.

Ωt = Tt(Ω) (11)

Let J be a shape functional, which is a functional that depends on the shape

of the domain.155

The shape derivative of J at Ω in the direction V is defined through the

Gateaux derivative [36], where the square brackets indicate that [V ] is a vector

in the direction of the shape gradient to be calculated:

dJ (Ω)[V ] = lim
t→0+

J (Ωt)− J (Ω)

t
(12)

A shape functional J is shape differentiable at Ω if the derivative exists for all

the directions V and if the mapping V 7→ dJ (Ω)[V ] is linear and continuous.160

As a mild smoothness assumption, we assume that the shape derivative dJ

does not exist for every direction of the vector field V , but only depends on the

outward normal component of V at the boundary of the domain.

dJ (Ω)[V ] =

∫
Γ

C G dS (13)

where Γ is the domain boundary, C = V ·n, and G is the shape gradient. This

result is known as the Hadamard theorem (or formula) [37, 38]. The shape165

derivative is said to be written in Hadamard form.

3.2. Shape derivatives under a state constraint

We want to derive a formula for the shape derivative in Hadamard form,

or equivalently for the shape gradient of ω, where ω is an eigenvalue of the

inhomogeneous Helmholtz equation. We consider Robin boundary conditions,170

which contain Dirichlet and Neumann boundary conditions as special cases. The

boundary Γ is split into a non-deformable and a deformable part. The first is

denoted by Γ0 and the second by Γ1. The problem reads

L(ω)p̂ = 0 in Ω (14a)

∂p̂

∂n
− iω

c̄Z
p̂ = 0 on Γ = Γ0 ∪ Γ1 (14b)
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where L is the linear operator (acting linearly on the eigenfunction p̂) of the175

inhomogeneous Helmholtz equation. We apply the perturbation Tt. Instead

of solving the problem on the perturbed domain Ωt, we map the perturbed

problem onto the unperturbed domain Ω.

Let p̂t solve (14) in the perturbed domain Ωt = Tt(Ω) and let xt = Tt(x) be

a point on the perturbed boundary. The material shape derivative is180

dp̂[V ](x) =
d

dt

∣∣∣∣
t=0

p̂t(xt) (15)

The local shape derivative is

p̂′[V ](x) =
d

dt

∣∣∣∣
t=0

p̂t(x) (16)

The relation between the first, which is a total derivative, and the second, which

is a partial derivative, is given by the chain rule

dp̂[V ] = p̂′[V ] +∇p̂ · V (17)

The material derivative of any boundary condition is identically zero. In

the case of a non-deformable boundary, V = 0, and the material derivative is185

the local derivative. In the case of a deformable boundary, V 6= 0. Using the

chain rule (17), the shape derivative of the Dirichlet and Neumann boundary

conditions are [39]

p̂′ = −C ∂p̂
∂n

(18)

∂p̂′

∂n
= −C ∂

2p̂

∂n2
+∇ΓC · ∇p̂ (19)

We linearize (14). The material derivative of the Robin boundary condition190

is obtained by combining (18) with (19).

L′(ω)ω′p̂+ L(ω)p̂′ = 0 in Ω (20a)

∂p̂′

∂n
− iω

c̄Z
p̂′ =

iω′

c̄Z
p̂ on Γ0 (20b)
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∂p̂′

∂n
− iω

c̄Z
p̂′ = −C ∂

2p̂

∂n2
+∇ΓC · ∇p̂+

iω

c̄Z
C
∂p̂

∂n
+
iω′

c̄Z
p̂ on Γ1 (20c)

Given two square-integrable functions, f and g, we define the inner product

〈f |g〉 =
∫

Ω
f∗g dV . Further, for an operator L, we define its adjoint operator L†195

through the property 〈p̂†,Lp̂〉 = 〈L†p̂†, p̂〉. We multiply (20a) by p̂†
∗
, which is

the complex conjugate of the adjoint pressure, and integrate over the domain.

Then we integrate the Laplace operator ∇ · c̄2∇(·) by parts.〈
p̂†
∣∣L′(ω)p̂

〉
ω′ +

〈
L†(ω∗)p̂†

∣∣p̂′〉+

∫
Γ

p̂†
∗
c̄2
∂p̂′

∂n
dS −

∫
Γ

∂p̂†
∗

∂n
c̄2p̂′ dS = 0 (21)

The second term contains the adjoint equation. We substitute (20b) and (20c)

into (21). We choose the adjoint boundary conditions in such a way as to200

eliminate the terms containing the term p̂′ in (21).

L†(ω∗)p̂† = 0 in Ω (22a)

∂p̂†

∂n
+
iω∗

c̄Z∗
p̂† = 0 on Γ (22b)

The eigenvalues of the adjoint operator L† are the complex conjugates of the

eigenvalues of L. In the Bubnov-Galerkin finite element method there is no dif-

ference between the discrete adjoint and the discretization of the continuous ad-

joint because the resulting matrices for the weak formulations are identical[18].

Equation (21) becomes(〈
p̂†
∣∣L′(ω)p̂

〉
+

∫
Γ

p̂†
∗ ic̄

Z
p̂ dS

)
ω′+∫

Γ1

p̂†
∗
c̄2
(
−C ∂

2p̂

∂n2
+∇ΓC · ∇p̂+

iω

c̄Z
C
∂p̂

∂n

)
dS = 0 (23)

We can write a normalization condition for the adjoint pressure.〈
p̂†
∣∣L′(ω)p̂

〉
+

∫
Γ

p̂†
∗ ic̄

Z
p̂dS = 1 (24)

We use the adjoint boundary condition (22b) to eliminate the eigenvalue ω from

the last term.205

ω′ =

∫
Γ1

(
Cp̂†

∗
c̄2
∂2p̂

∂n2
−∇ΓC ·

(
p̂†

∗
c̄2∇p̂

)
− C ∂p̂

†∗

∂n
c̄2
∂p̂

∂n

)
dS (25)
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The eigenvalue sensitivity (or shape derivative) is written as a functional

of p̂ and p̂†. The second term under the integral sign is, however, not yet in

Hadamard form. We apply the tangential Stokes formula (A.3) with f = C

and v = p̂†
∗
c̄2∇p̂. We obtain the shape derivative for the Robin boundary

conditions in Hadamard form.

ω′ =

∫
Γ1

C

(
p̂†

∗
c̄2
∂2p̂

∂n2
− κp̂†

∗
c̄2
∂p̂

∂n
+ divΓ

(
p̂†

∗
c̄2∇p̂

)
− ∂p̂†

∗

∂n
c̄2
∂p̂

∂n

)
dS (26)

where κ is the curvature. The shape derivative for the Dirichlet and the Neu-

mann boundary conditions are special cases of Equation (26).

When applying Dirichlet boundary conditions, p̂ = 0, p̂† = 0, ∇p̂† =

∂p̂†
/
∂n and ∇p̂ = ∂p̂/∂n , we obtain

ω′ = −
∫

Γ1

C

(
c̄2
∂p̂†

∗

∂n

∂p̂

∂n

)
dS (27)

When applying Neumann boundary conditions, ∂p̂/∂n = 0 and ∂p̂†
/
∂n =210

0, we obtain

ω′ =

∫
Γ1

C
(
∇ ·

(
p̂†

∗
c̄2∇p̂

))
dS (28)

If q̂ = 0 on the boundary, we obtain from (4)

ω′ =

∫
Γ1

C
(
c̄2∇p̂†

∗
· ∇p̂− ω2p̂†

∗
p̂
)

dS (29)

3.3. The 2-fold degenerate case

To illustrate the semi-simple degenerate case, we write the formula for the

eigenvalue shape derivative in Hadamard form215 ∫
Γ1

C G
(
p̂†, p̂

)
dS − ω′

〈
p̂†
∣∣L′(ω)p̂

〉
= 0 (30)

For repeated eigenvalues, two-fold degenerate in this case, the eigenfunction p̂

is given by the linear combination

p̂ = α1p̂1 + α2p̂2 =

2∑
j=1

αj p̂j (31)

11



where p̂1 and p̂2 are the independent eigenfunctions associated with the repeated

eigenvalue ω and α1 and α2 are complex numbers. The same applies to the

adjoint eigenfunction p̂†. We substitute the linear combinations into (30)220

α∗i

(∫
Γ1

C G
(
p̂†i , p̂j

)
dS − ω′

〈
p̂†i

∣∣∣L′(ω)p̂j

〉)
αj = 0 (32)

The shape gradient has now four components. We can normalize the bases of

the two eigenspaces (direct and adjoint) such that they become biorthonormal

〈
p̂†i

∣∣∣L′(ω)p̂j

〉
= δij (33)

We are left with a 2× 2 eigenvalue problem for the shape derivative ω′

(∫
Γ1

C G
(
p̂†i , p̂j

)
dS − ω′δij

)
αj = 0 (34)

4. The MICCA combustor

The MICCA combustor is a laboratory-scale annular combustor at Labo-225

ratoire EM2C (CentraleSupélec) in France. Stable thermoacoustic limit cycles

of standing and spinning azimuthal modes and a slanted mode are observed at

some operating conditions [40, 41, 42].

4.1. Geometry

The MICCA combustor consists of an annular plenum, 16 injectors and an230

annular combustion chamber. Each injector consists of a burner and a perfo-

rated plate. Following [43], in the discrete model, the perforated plate and the

burner are replaced by a cylindrical volume. Fig. 1 shows a section view of one

sector of the numerical model of the MICCA combustor.

4.2. NURBS parametrization235

Before generating the mesh, we decompose the geometry into the plenum,

burner, perforated plate and combustion chamber. We start by defining the
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z

r

rp

Rp

rcc

Rcc

lp

lb
lpp

lcc

�db

�dpp

lf

�df

Figure 1: Section of one sector of the MICCA combustor. The dash-dotted line is the axis

of symmetry. The subscripts stand for: plenum (p), burner (b), perforated plate (pp), flame

(f ), combustion chamber (cc). rp = 140 mm, Rp = 210 mm, lp = 70 mm, db = 33 mm, lb =

14 mm, dpp = 18.9 mm, lpp = 6 mm, df = 36 mm, lf = 6 mm, rcc = 150 mm, Rcc = 200

mm, lcc = 200 mm. The vertical dashed axis represents the longitudinal axis of the burner.
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control points to generate the Non-Uniform Rational B-Spline (NURBS) sur-

faces. A brief introduction to NURBS using the example of a unit circle is in

Appendix C.240

We define 9 control points in the circumferential parametric direction, k1,

for each individual component. For the parametric radial direction, k2, we

use 5 control points for the plenum and combustion chamber and 3 control

points for the burner and perforated plate. We use degree 2 B-Spline functions

for the biparametric k1 and k2 directions. Then we generate inlet and outlet245

circles and a lateral boundary and fuse them to obtain a parametrized cylinder

[44]. We iterate this process for each component. To generate the plenum

and combustion chamber, we generate an inner cylinder with inner radius and

subtract it from the outer cylinder with outer radius. To generate the burner

and perforated plate for each sector, we copy the parametrized cylinders and250

rotate them 15 times. Finally, we merge the decomposed components to obtain

the full geometry. The NURBS control points of the MICCA are shown in Fig.

2.

4.3. Numerical grid - Mesh

The parametrized geometry is then used to generate the unstructured mesh255

using the open-source automated 3D finite element mesh generator, Gmsh [45]

with a Delaunay-triangulation method. We perform local mesh refinement near

the reference points. We then optimize the quality of the tetrahedral elements

using the Netgen optimizer. The unstructured mesh and the slice view of the

sector mesh are shown in Fig. 3260

4.4. Operating conditions and flame transfer function

We consider the same operating conditions as operating point B in [43]. A

standing mode with a stable limit cycle at a frequency of 489 Hz is observed in

the experiments. The equivalence ratio of the mixture of propane and air is φ =

1.11. The total power of the flame for each burner is ¯̇Q = 2.08 kW, and the bulk

flow velocity is ū = 0.66 m/s. The ratio of specific heats, γ, is 1.4. The mean
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(a)

(b)

Figure 2: NURBS geometry viewed in the (a) XY -plane and (b) ZY -plane . The control

points for each component are shown in different colors. The yellow and black control points

control the outer and inner surfaces of the plenum, respectively. The green control points

represent the burner, the cyan points indicate the perforated plate, and the blue and red

points correspond to the outer and inner surfaces of the combustion chamber.
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(a)

(b)

Figure 3: Finite element mesh of the MICCA combustor (a) external view and (b) slice

through a burner. The grid consists of 5.4 million cells. Local refinement is applied at the

measurement point to capture the gradient of the acoustic pressure there more accurately.

The red zone shows the volumetric cylindrical heat release rate field.
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temperature in the plenum and in the injectors is T̄ = 300 K. In the combustion

chamber the temperature profile is parabolic, monotonically decreasing between

the values at the flame position and the chamber outlet, shown in (35).

T (z) =

300 if z < zf

(1200− 1521)
(
z−zf
lcc

)2

+ 1521, otherwise

(35)

The experimental flame describing function (FDF) depends on the frequency of

the excitation and on the ratio of the root mean square of the velocity fluctuation

measured at the reference point, u′, to the average flow velocity in the injector,

ū.265

We impose sound-hard (Neumann) acoustic boundary conditions at the com-

bustor walls and impedance (Robin) boundary condition at the outlet bound-

ary. The reflection coefficient we impose on the outlet boundary is Routlet =

(Zoutlet − 1)/(Zoutlet + 1) = −0.875 − 0.2i. It would be possible to model the

flame with an amplitude-dependent flame describing function (FDF) and to ob-270

tain the shape sensitivity at each amplitude. In this paper, we demonstrate

the method only for small amplitudes by obtaining the flame transfer function

(FTF) from the FDF, by considering a small forcing amplitude, |u′/ū| = 0.1. In

order to calculate the first derivative of the linear operator L with respect to the

eigenvalue ω without approximations, we need F (ω) in equation (5) to be ana-275

lytic in the complex plane [17]. We approximate the frequency response of the

flame with a linear state-space model. The transfer function of the state-space

model:

F (ω) = cT
(
iωI−A

)−1
b + d (36)

will correspond to the FTF. In order to obtain an analytic transfer function, we

apply the Vector Fitting algorithm [46, 47, 48]. The experimental FTF and the280

transfer function of the state-space model are shown in Fig. 4.

5. Preliminary shape sensitivity analysis
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Figure 4: Gain and phase of the flame transfer function (|u′/ū| = 0.1) as a function of the

frequency. The squares are the values obtained from the experiments [43], and the solid line

is the transfer function of the linear state-space model, evaluated at real values of ω.

5.1. Shape sensitivity of degenerate modes

Because of the discrete rotational symmetry of the annular combustor, the

modes are degenerate with algebraic and geometric multiplicity of 2. Conse-285

quently, these eigenvalues are referred to as semi-simple [8]. If this symmetry

is broken, the eigenvalues split, and each can then be considered as a simple

eigenvalue.

5.1.1. Shape derivatives for simple eigenvalues

In the case of simple eigenvalues, the shape gradient is the eigenvalue sensi-290

tivity to boundary perturbations. The shape derivative for a geometry pertur-

bation proportional to the shape gradient constitutes an upper bound for the

shape derivative itself. We obtain an upper bound for the angular frequency

drift from the real part of G and for the growth rate drift from the imaginary

part of G. In other words, shape changes proportional to the real part of the295

shape gradient have the maximum effect on the angular frequency, while shape

changes proportional to the imaginary part of the shape gradient have the max-

imum effect on the growth rate.
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5.1.2. Shape derivatives for semi-simple eigenvalues

In the case of semi-simple two-fold degenerate eigenvalues, the shape gra-300

dient, Gij , has four entries and the shape derivatives are the eigenvalues of

the matrix
∫
CGij dS, where C is the perpendicular boundary perturbation or

control point perturbation.

G11 gives the upper bound for ω1 and G22 gives the upper bound for ω2.

For geometry perturbations proportional to G12 and G21, either their real or305

imaginary parts, the diagonal elements of the matrix
∫
CGij dS are equal to

zero. Therefore, the shape derivatives take the form ω′ = ±(a+ bi). The shape

derivative is the same for the two eigenvalues, ω1 and ω2, but with opposite

sign. In other words, at first order the eigenvalues split in opposite directions.

The off-diagonal elements also have the property that:310 ∫
Gij dS = 0 if i 6= j (37)

which means that the volume of the combustor does not change when boundary

perturbations proportional to them are applied. Interestingly, this is conceptu-

ally similar to what was observed by Mensah [17] for the same annular combus-

tor, when the burners/injectors are perturbed such that the FTF perturbations

have the same phase and their average is zero. The eigenvalue perturbation for315

the two modes is the same but with opposite sign.

5.1.3. Shape differentiability

In the simple case, the eigenvalues are shape differentiable; i.e. the deriva-

tive dω(Ω) exists for all directions V and the mapping V 7→ dω(Ω) is linear

and continuous. In the semi-simple degenerate case, the eigenvalues are not dif-320

ferentiable at first order because each eigenvalue splits in two. This can cause

a problem in gradient-based optimization because the gradients are in general

discontinuous and the cost functional is therefore non-convex. This problem can

be avoided by applying symmetry-preserving geometry changes. In this case,

the two repeated eigenvalues do not split and the two shape derivatives have the325

same value. Sections 6.1 and 6.2 concern this type of geometry change. When
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applying symmetry-breaking changes, this problem can be worked around by

noticing when an eigenvalue has split and subsequently calculating the shape

derivatives of each split eigenvalue separately. Section 7 concerns this type of

geometry change. In all cases, the real part of the shape derivative represents330

changes that reduce the angular frequency and the imaginary part represents

changes that reduce the growth rate.

5.2. Shape modification

In this paper, we consider changes to the plenum and combustion chamber.

We can also compute shape derivatives for changes to the diameter of the burner335

and to the total flow passage area of the perforated plate. Such changes would,

however, alter the flame’s transfer function. We have used an experimentally-

derived flame transfer function and we do not know how it would change due

to these changes, so we do not consider these changes further. For an estimate

of flame transfer function changes in a different burner, the reader is referred to340

[13].

In this paper we propose two different shape perturbation methods: perpen-

dicular boundary perturbations and NURBS control point perturbations. In

the former, the displacements along the boundary’s normal direction are uni-

form. In the latter, the displacements along the boundary’s normal direction345

are non-uniform due to the independent movements of individual control points.

We apply both of these methods and demonstrate the shape changes for two

different degenerate modes in Sec. 6.1 and Sec. 6.2. In Sec. 7, we consider

symmetry-breaking changes for the mixed mode using the shape gradients cal-

culated at the NURBS control points.350

5.2.1. Perpendicular boundary perturbations

When using a non-parametric approach, the boundary displacement is pro-

portional to the shape gradient. We divide the geometry into patches and, for

each patch we use Eq. (34) to compute the shape derivatives for a unitary
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deformation field355

C =

1 on ∂Ωi

0 elsewhere

(38)

Then we divide the shape derivatives by the surface area of the patch. In this

way, we obtain a local average of the derivatives, which does not depend on the

area of the patch. An example perpendicular deformation field, C, is shown in

Fig. 5 for the outer surface of the combustion chamber.

Figure 5: Perpendicular deformation field (V ) for the outer combustion chamber surface of

the MICCA combustor. By construction, the deformation vectors have the same magnitude

at each node of the surface mesh.

5.2.2. Control point perturbations360

When using a parametric approach, as in the case of B-spline or NURBS

surfaces, the set of admissible boundary displacements and shapes is expanded.

We point out that more elaborate shape changes could be considered with this

approach, as we obtained the NURBS parametrization of the shape. However,

for this approach, we do not change the length of the plenum and the combustion365

chamber. The control point perturbation, V i,j , is the derivative of the NURBS
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surface with respect to the position of the control point P i,j . We use

V i,j =
∂S(k1, k2)

∂Pi,j
=

m∑
i=0

m∑
j=0

Ni,p(k1)Nj,q(k2)wi,j

m∑
i=0

m∑
j=0

Ni,p(k1)Nj,q(k2)wi,j

(39)

to compute the corresponding deformation fields for the node i in the circum-

ferential direction and the node j in the axial direction. In Eq. (39), N denotes

the B-Spline basis function, k1 and k2 denote the circumferential and axial pa-370

rameters of the surface and wi,j denotes the weight of the control point P i,j .

We show the boundary perturbation of the control point on the plenum surface

in Fig. 6.

Figure 6: Deformation field (V ) due to changes in the middle node on the top of the lateral

plenum surface of the MICCA combustor.

As we only perform changes on the plenum and combustion chamber, we

use Eq. (28) to compute the shape gradients of the control points on the Neu-375

mann boundaries. We apply two different geometry modifications using NURBS

control points: symmetry-preserving (Sec. 6) and symmetry-breaking (Sec. 7).

5.3. Optimization procedure

When we modify the shape, we fix the geometry of the burner and allow

changes only in the plenum and in the combustion chamber. For symmetry-380

22



preserving changes, the combustor axis in the longitudinal direction is taken as

the symmetry axis. Our goal is to reduce the eigenvalue growth rate by following

the steps below.

(i) We use P2 elements to compute the shape derivatives for each boundary

or control point.385

(ii) We take the imaginary part and normalize such that the maximum abso-

lute value among all the shape derivatives is 1.

(iii) We subtract from the geometric parameters the imaginary part of the

shape derivatives multiplied by the step size, ε, which can take a range

of values. Here, ε is 0.025 for symmetry-preserving changes and between390

0.01 and 0.07 for symmetry-breaking changes.

(iv) We generate a refined finite element mesh with latterly calculated geomet-

ric parameters.

(v) We simulate the optimized geometry with P1 elements and observe the

changes in the growth rate of the new eigenvalue of the new eigenmode.395

6. Symmetry-preserving Changes

In this section, we change geometries of the plenum and the combustion

chamber with two methods: perpendicular boundary movements and control

point displacements with symmetry-preserving changes.

6.1. Azimuthal Mode400

Fig. 7 shows the normalized magnitude of the eigenvector, p̂ of the first

azimuthal mode. Figure 8 shows the real and the imaginary part of the shape

derivatives for the plenum and the combustion chamber. These are shown as

perpendicular boundary displacements proportional to the shape derivatives of

the surfaces of the combustor. In order to investigate the effects of the control405

points on the lateral boundaries of the plenum and combustion chamber, the

shape derivatives of the control points on the +yz plane (k2 = 2) are computed.

Figure 9 shows the real and the imaginary part of the shape derivatives for the
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Figure 7: Normalized absolute value of the eigenvector, p̂, of the first azimuthal mode of

the MICCA combustor (in arbitrary units). This is a weakly coupled plenum mode. The

associated eigenvalue is ω = 3222 + 517i rad s−1.

first azimuthal mode. These are shown as control point displacements propor-

tional to the shape derivatives in the normal direction of the relevant surface.410

Fig. 10 (top) shows the initial and the final shapes of a sector of the annular

combustor. The growth rate has reduced by 20% after 4 iterations. Although

the process can be continued, the salient points are most easily demonstrated

before the geometry has changed significantly. Table 1 tabulates the associated

eigenvalues for the initial geometry and the two final geometries. The size of the

Table 1: Degenerate eigenfrequencies of the MICCA combustor for the initial and the two

optimized designs. The units of the eigenfrequencies are in rad s−1. The eigenvalues for each

case get closer as number of cells increase (not shown here).

Case ω1,r ω1,i ω2,r ω2,i ∠q̂ - ∠p̂ [deg]

initial 3222.77 517.51 3222.50 518.66 56.83

perpendicular 3085.27 402.92 3084.97 401.03 65.37

NURBS 3152.32 413.42 3152.19 414.30 62.10
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Figure 8: Real (top) and imaginary (bottom) components of the eigenvalue shape derivatives

for changes to the length and the radii of the plenum and the combustion chamber for the

first azimuthal mode. The real part gives the influence on the angular frequency and the

imaginary part gives the influence on the growth rate.

plenum has increased for both approaches. The only boundary that has moved415

inwards is the combustion chamber outlet with perpendicular displacements.

Fig. 10 (bottom) shows the modulus of the corresponding pressure eigenvectors

along the dotted line at r = 0.175 m, where the absolute value of the eigenvector

is maximum.

We observe that changes applied to the shape of the combustion chamber420

have little or no effect on the angular frequency, which is expected because this

mode is a plenum mode. We also observe that the sensitivity of the eigenvalue
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Figure 9: As for Fig. 8 but for changes parametrized by the NURBS points.

growth rate in the plenum is higher than in the combustion chamber. This can

be explained by the fact that the gas is cooler, so the local wavelength is shorter

and therefore geometry modifications of a given size have more influence.425

6.2. Mixed Mode

In this subsection, we find an unstable mixed tangential–longitudinal ther-

moacoustic eigenmode of the MICCA. We perform shape sensitivity analysis for

this eigenmode and we reveal the optimized designs using perpendicular surface

changes and control point movements with symmetry-preserving changes. Fig.430

11 shows the absolute value of the eigenvector of the mixed mode. The corre-

sponding eigenfrequency is 1663.60 Hz with 377.19 rad s−1 growth rate.
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Figure 10: (Top) Section view of one sector of the MICCA combustor for the initial (black),

perpendicular displacement (red) and the NURBS displacement (green) after applying the

shape changes to the plenum and the combustion chamber to reduce the growth rate. The

gray dashed line represents the longitudinal axis of the burner as shown in Fig. 1. (Bottom)

Absolute value of the eigenvector of the first azimuthal mode of the MICCA combustor, along

the dotted line in the top figure, before (gray) and after (red and green) the shape changes.

The sector is that in which the pressure is maximum.

Figure 12 shows the real and the imaginary part of the shape derivatives for

the plenum and the combustion chamber for the mixed mode. These are shown

as perpendicular boundary movements proportional to the shape derivatives of435

the surfaces of the combustor. Figure 13 shows the real and the imaginary part of

the shape derivatives for the unstable mixed mode. The shape derivatives of the

control points on the +xz plane (k2 = 0) are computed. These are depicted as
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Figure 11: Normalized magnitude of the eigenvector of the mixed mode. The associate eigen-

value is ω = 10830.42 + 401.16i rad s−1.

control point displacements proportional to the shape derivatives in the outward

normal direction of the combustor boundary. Fig. 14 (top) shows the initial and440

the final shapes of a sector of the annular combustor. The most influential region

on the growth rate is found to be the combustion chamber for the mixed mode.

This is because the circumferential and axial modes combine in the combustion

chamber. The contribution of the axial component of the mixed mode causes

higher sensitivity on the outlet surface because it depends on the length of the445

combustion chamber. Table 2 tabulates the associated eigenvalues for the initial

geometry and the optimized geometries. The same step size, 0.025 is chosen to

perform shape changes with control points or boundary displacements. After

4 iterations, the growth rate has reduced by 32% with perpendicular boundary

changes and 47% with control point displacements. The NURBS approach450

provides more stabilization for this unstable mixed mode considering same step

size.
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Figure 12: As for Fig. 8 but for the mixed mode.

6.3. Dephasing mechanism

The physical mechanism behind the growth rate’s reduction can be explained

by using the (generalized) Rayleigh criterion. According to the Rayleigh crite-455

rion, a thermoacoustic system is unstable if the average of the product between

the pressure, p′, and the heat release rate perturbation, q̇′, over the volume

and over one period of oscillation is greater than the average of the losses due

to acoustic radiation from the boundaries, Eq. (B.2). This paper focuses only

on shape sensitivity of eigenvalues with Neumann and Robin boundary condi-460

tions. Internal acoustic losses could be included, but this would not change the

analysis regarding shape sensitivity of eigenvalues. If we expand the Rayleigh

index, p′q̇′, we see that it depends on the modulus of the pressure in the flame
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Figure 13: As for Fig. 9 but for the mixed mode.

volume, |p̂|, and of the component of the velocity along the reference direction

at the reference point, |û(xr) · nr|, and on the phase angle difference between465

the heat release rate perturbation and the pressure perturbation as well as on

the modulus of the flame transfer function. If we expand the acoustic energy

flux, p′u′, we see that this only depends on the modulus of the pressure at the

boundary. On the other hand, the last columns of Table. 1 and Table 2 show

the averaged phase difference between the fluctuating heat release rate and the470

pressure perturbation for all sixteen burners for the azimuthal mode and the

mixed mode, respectively. To calculate the phase of the heat release fluctua-

tions we use (5) to obtain q̂. The phase of the acoustic pressure can be directly

obtained from the calculated eigenvector, p̂. For each burner we pick the centre
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Figure 14: As for Fig. 10 but for the mixed mode.

point of the heat release zone (Fig. 3b) and calculate the phase angles of q̂ and475

p̂ at that point, then take the difference to obtain the phase difference.

We see from Table 1 and Table 2 that, by changing the geometry, the al-

gorithm increases the phase difference between the pressure, p̂, and the heat

release rate, q̂. This reduces the heat converted to work each cycle and there-

fore reduces the growth rate of the system (B.6). In this process the pressure480

within the flame volume and the velocity along the reference direction at the

reference point do not change. They would change, however, if we were to allow

the shape of the injector to change. In [13], the alterations in bluff body geome-

try are taken into account, showing that even minor changes yield a substantial

influence on the flame transfer function, ultimately impacting the stability of485
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Table 2: Degenerate eigenfrequencies of the mixed mode for the initial and the two optimized

designs. The units of the eigenfrequencies are in rad s−1. Nc denotes the number of finite

element cells for each case. The eigenvalues for each case get closer as Nc increases (not shown

here).

Case ω1,r ω1,i ω2,r ω2,i Nc ∠q̂ - ∠p̂ [deg]

initial 10830.42 401.16 10831.18 402.10 13.60M -15.94

perpendicular 10552.63 274.20 10552.97 274.83 11.78M -19.70

NURBS 10322.15 211.83 10322.04 211.76 11.74M -23.73

the thermoacoustic system. Similarly, the algorithm would try to decouple the

plenum and the combustion chamber by expanding the diameter of the burner,

db, and contracting the diameter of the perforated plate, dpp. Consequently it

would reduce the modulus of the velocity perturbation at the reference point

and of the pressure perturbation within the flame volume.490

This analysis shows how to significantly alter the growth rate of thermoa-

coustic oscillations by changing the geometry of a combustion chamber and

plenum. In most practical devices, it would be possible to alter the geometry

of the plenum without extensive re-design. It would be less feasible to alter the

geometry of the combustion chamber, which is constrained by other considera-495

tions such as cooling and high altitude re-light. Nevertheless, as seen here and

in [13], the most influential component is the burner, due to its effect both on

the flow rate through the burner and the heat release rate response of the flame.

7. Symmetry-breaking Changes

In this section, we consider non-axisymmetic changes in the MICCA ge-500

ometry for the unstable mixed mode. Compared to axisymmetric changes in

Sec. 6, we enlarge the deformation step size, ε, to enhance geometry deforma-

tion and better observe the effects of non-axisymmetry. Each control point of

the NURBS geometry is moved in the direction provided by its shape deriva-

tive. The resulting eigenvectors can be seen in Fig. 15. We observe that the505
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(a) (b)

(c) (d)

Figure 15: Normalized magnitude of the mixed mode eigenvectors of the non-axisymmetrically

deformed MICCA for ε = 0.07. The associate eigenvalues are ω1 = 9709.58 + 100.72i rad s−1

(left column) and ω2 = 9465.52 + 101.27 rad s−1 (right column).

NURBS geometry is extended more in the outward normal direction of the con-

trol points on the pressure node of the first mixed eigenmode, p̂1. Due to the

non-axisymmetric changes in the NURBS geometry, eigenvalue degeneracy is

lost during symmetry-breaking changes.

From Fig 16, eigenvalue splitting is observed between two unstable mixed510

modes for different deformations. The changes in the eigenvalues follow two

different branches. Starting from the degenerate case where ε = 0, the non-

axisymmetric changes split both angular frequencies and growth rates. For each

deformation case, the magnitude of the frequency splits are much greater than

those of the growth rate. For the most deformed case (ε = 0.07), the frequency515

difference between the two unstable modes reaches 244.06 rad s−1 whereas the

growth rate varies by 0.55 rad s−1.

As we follow the deformation directions provided by the shape derivatives,
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Figure 16: Splitted eigenvalues of the p̂1 (triangles) and p̂2(circles) for different deformation

sizes (ε). Blue square marker represents the degenerate configuration before perturbation.

The lightest grey corresponds to ε0 = 0.01 and the darkest to ε7 = 0.07. Same triangle-circle

couples correspond same deformation size.

the splitted modes become more stable as expected, compared to the initial

geometry. When compared to the axisymmetric deformations with the same520

deformation size ε, one mode becomes more stable and other mode becomes less

stable for symmetry-breaking modifications in the geometry.

8. Conclusions

We combine a thermo-acoustic Helmholtz solver with adjoint-based shape

optimization to reduce the growth rate of linearly unstable thermoacoustic525

modes in a symmetric annular combustor. We parametrize the entire com-

bustor geometry with NURBS control points. The modes are azimuthal and

mixed, and therefore two-fold degenerate. We express the shape derivative of

the eigenvalue in Hadamard form, i.e. for arbitrary shape changes. We ap-

34



ply both symmetry-preserving and symmetry-breaking changes to the MICCA530

geometry with NURBS and show that these can be used to reduce the thermoa-

coustic growth rate efficiently. This process could be continued to zero growth

rate, but large geometry changes would be required. After modifying the shape,

we use the analysis to reveal the physical mechanism that causes the growth

rate’s reduction. The shape changes increase the phase difference between the535

pressure and the heat release rate fluctuations.

This method can be applied to the plenum, the burner, and the combustion

chamber. In practical devices, modifying the plenum may be the most practical

option and, as shown in this paper, has a strong influence on the thermoacoustic

growth rate. The most influential component on thermoacoustic behaviour,540

however, is the burner. We use an experimentally-determined flame transfer

function, which is fixed because we do not know how it would change with

the burner geometry. If adjoint methods are to be used for combustor design,

then these methods must include the influence of the burner shape on the flow

behaviour, as in [49], and hence on the flame. Using the linearized Navier-Stokes545

equations as in [50] with resolvent analysis would provide a better approximation

to the response of the flame and enable a deeper exploration of the influence of

burner geometry on thermo-acoustic oscillations. This is a significantly larger

challenge and we leave it for future work.

The methods in this paper can now be applied to more complex geometries550

such as those on aircraft gas turbines, in which the plenum surrounds the com-

bustion chamber and is connected to it by dilution holes. While this paper

addresses the conceptual challenges of obtaining shape gradients of thermoa-

coustic eigenvalues, the implementation of NURBS in realistic systems intro-

duces significant geometric complexity. Additionally, modeling the inlet and555

outlet conditions of aero-engine combustors remains challenging, particularly

due to choked flow near the compressor and the turbine, and is out of scope of

this paper. Finally, we note that it is possible to reduce the growth rates of sev-

eral eigenvalues simultaneously, as in [13], although this has not been attempted

in this paper.560
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Appendix A. Tangential calculus

Let f be a scalar field and v a vector field. The tangential gradient of f is

∇Γf =∇f − ∂f

∂n
n (A.1)

This is the orthogonal projection of the gradient onto the tangent space. The

tangential divergence of v is570

divΓv = divv − (Dvn) · n (A.2)

Dv is the Jacobian of v and Dvn is the matrix product between Dv and n.

In addition to the definitions of tangential gradient and divergence, we give the

Tangential Stokes formula∫
Γ

fdivΓv +∇Γf · v dS =

∫
Γ

κfv · ndS (A.3)

where κ = divΓn is the curvature.

Appendix B. Acoustic energy balance575

If we take ρ̄u′ · (1a) + 1
γp̄ (1b), we obtain

∂e′

∂t
+∇ · (p′u′) =

γ − 1

γp̄
p′q̇′ (B.1)

where e′ = ρ̄u′2/2 + 1
γp̄p
′2/2 is the acoustic energy density and p′u′ is the

acoustic energy flux [51]. If we average over the volume and over one period,

we obtain the stability criterion

γ − 1

γp̄

∫
Ω

∫ T

0

p′q̇′ dV dt >

∫
∂Ω

∫ T

0

p′u′ · n dS dt (B.2)
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p′, u′ · n and q′ can all be written, as in Eq. (3), in the form580

(·)′(x, t) =
∣∣∣(̂·)(x)

∣∣∣ cos
(

2πft− ∠(̂·)(x)
)
eλt (B.3)

where f and λ are the frequency and the growth rate of the eigenvalue, ω =

2πf + iλ, respectively, and ∠(̂·) is the phase angle. Before substituting the

expressions for p′, u′ · n and q̇′ into (B.2), we write the trigonometric identity

cos(2πft− ∠p̂) cos(2πft− ∠q̂) =

1

2

[
cos(4πft− ∠p̂− ∠q̂) + cos(∠q̂ − ∠p̂)

]
(B.4)

Equation (B.2) becomes

γ − 1

γp̄

∫
Ω

|p̂||q̂| cos(∠q̂ − ∠p̂) dV >

∫
∂Ω

|p̂||û · n| cos(∠û · n− ∠p̂) dS (B.5)

In fact, the integral containing cos(4πft− ∠p̂− ∠q̂)e2λt is zero, regardless of the

values assumed by the two phase angles (and analogously the integral containing

cos(4πft− ∠p̂− ∠û · n)e2λt). We substitute q̂ from Eq. (5) and û ·n from Eq.

(8) into Eq. (B.5), and obtain

(γ − 1)
q̄

ū
|F (ω)|

∫
Ω

|p̂||û(xr) · nr| cos(∠q̂ − ∠p̂) dV >∫
∂Ω

c̄

|Z|
∣∣p̂2
∣∣ cos(∠Z) dS (B.6)

The left-hand side depends on the modulus of the flame transfer function, of

the pressure in the flame volume and of the component of the velocity along

the reference direction at the reference point, and on the phase angle difference

between the heat release rate perturbation and the pressure perturbation. The

right-hand side only depends on the modulus of the pressure at the boundary585

if we assume that the impedance does not depend on the frequency.

Appendix C. NURBS representation of unit circle

In this appendix, we give a brief introduction to NURBS curves and surfaces

with a unit circle example. The main reference for this section is chapter 7 in
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[44]. A NURBS curve with degree p can be obtained from590

C(k1) =

n∑
i=0

Ni,p(k1)wiPi

n∑
i=0

Ni,p(k1)wi

(C.1)

where Pi(xi, yi, zi) are the control points, wi are the weights, Ni,p are the pth

degree B-spline basis functions and k1 is the knot. Composition of two NURBS

curves with different directions gives a NURBS surface. The mathematical

representation of the NURBS surface is similar to (C.1):

S(k1, k2) =

n∑
i=0

n∑
j=0

Ni,p(k1)Nj,q(k2)wi,jPi,j

n∑
i=0

n∑
j=0

Ni,p(k1)Nj,q(k2)wi,j

(C.2)

where q is the degree and the k2 is the knot of the second curve.595

For shape derivative calculations, we need displacement fields from NURBS.

We can obtain these by differentiating the NURBS geometry with respect to

the control point, giving:

V i =
∂C(k1)

∂Pi
=

n∑
i=0

Ni,p(k1)wi

n∑
i=0

Ni,p(k1)wi

(C.3)

for the curve and

V i,j =
∂S(k1, k2)

∂Pi,j
=

n∑
i=0

n∑
j=0

Ni,p(k1)Nj,q(k2)wi,j

n∑
i=0

n∑
j=0

Ni,p(k1)Nj,q(k2)wi,j

(C.4)

for the surface. Note that Eq. (C.4) implies the cross product of the basis600

functions of the two different NURBS curves. We use these formulae to calculate

the displacement field in the shape gradient formula.

Appendix C.1. NURBS Parametrization of Unit Circle

As a demonstration, we define a unit circle using NURBS. Parameters of

the NURBS control points are tabulated in Table C.3. Using Gmsh Python605
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Table C.3: Control points and their weights of the NURBS for the unit circle (r = 1) with

degree 2. The knot vector is k1 = (0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.5, 0.75, 0.75, 1, 1, 1).

i xi yi zi wi

1 1.0 0.0 0.0 1.0

2 1.0 1.0 0.0
√

2/2

3 0.0 1.0 0.0 1.0

4 -1.0 1.0 0.0
√

2/2

5 -1.0 0.0 0.0 1

6 -1.0 -1.0 0.0
√

2/2

7 0.0 -1.0 0.0 1.0

8 1.0 -1.0 0.0
√

2/2

9 1.0 0.0 0.0 1.0

API, we define the control points in Table C.3 with the weights of the control

points and the knot vector with multiplicities as well as characteristic mesh size

of 0.04. We then generate the degree 2 closed NURBS curve and transform it

into the NURBS surface to obtain the NURBS unit circle. If we deform point 2

in the direction towards the centre of the circle, we obtain the deformed circle610

shown in Fig. C.17. The parametrization utility of the Gmsh model is used

to parametrize the boundary curve. We use these parameters to compute the

displacement field of the control points using Eq. (C.3) to compute the pointwise

shape derivative in the outward normal direction. The example displacement

field of the second control point of the unit circle is shown in Fig. C.18.615
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