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ABSTRACT
We use approximate Bayesian inference, accelerated by ad-

joint methods, to construct a quantitatively accurate model of the
thermoacoustic behaviour of a turbulent conical flame in a duct.
We first perform a series of automated experiments to generate a
data set. The data consists of time series pressure measurements
from which we extract (i) the eigenvalue, whose real part is the
growth rate and imaginary part is the angular frequency, and
(ii) the pressure eigenmode measured at several axial locations.
We assimilate the data into a thermoacoustic network model to
infer the unknown model parameters. We begin this process by
rigorously characterizing the acoustics of the cold rig. We then
introduce a series of different flames and infer their flame transfer
functions with quantified uncertainty bounds. The flame transfer
function is obtained with the flames in-situ, so it accounts for any
confinement or heat loss effects. The inference process uses only
pressure measurements, so the technique is suitable for complex
combustors where optical access is not available, provided the
eigenvalue or eigenmode of oscillations can be measured. We
validate the method by comparing the inferred fluctuating heat
release rate against direct measurements. We find that the in-
ferred quantities compare well with the direct measurements, but
the uncertainty bounds can be large if the experimental error is
large.
Keywords: Thermoacoustic instability, Bayesian inference,
turbulent flame

NOMENCLATURE
Roman letters
𝐼 Spatially integrated image intensity
𝑄 Heat release rate [W]
z Observation vector
s Prediction vector
𝑅 Reflection coefficient
𝑘𝑒𝑢 Linear feedback from velocity to energy
𝑘𝑒𝑝 Linear feedback from pressure to energy

∗Corresponding author: mpj1001@cam.ac.uk

𝑘𝑚𝑢 Linear feedback from velocity to momentum
𝑘𝑚𝑝 Linear feedback from pressure to momentum
a Parameter vector
H Candidate model
J Cost function
C𝑒𝑒 Experimental covariance
C𝑎𝑎 Parameter covariance
H Hessian matrix
J Jacobian matrix
𝑥 Axial position in the duct [m]
𝐿 Length of the duct
𝑢 Velocity [m/s]
F Flame transfer function
𝑝 Pressure [Pa]
𝑐 Sound speed [m/s]
𝑆𝐿 Laminar flame speed [m/s]
Greek letters
[ Visco-thermal dissipation strength
𝛾 Ratio of specific heats
𝜌 Density [kg/m3]
𝜔∗ Reduced frequency
Superscripts and subscripts
u Upstream condition
d Downstream condition
b Burner base condition
i Injection condition
MP Most probable
★′ Perturbation quantity
★̄ Mean quantity

1. INTRODUCTION
The predictions of low order thermoacoustic models are typ-

ically qualitatively accurate, but not quantitatively accurate. This
is largely because the model predictions are sensitive to the val-
ues of unknown model parameters, particularly the flame transfer
function [1]. Small errors in the estimates for these unknown
parameters can lead to large errors in the model predictions. It is
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therefore important to be able to accurately quantify these model
parameters. This is made more challenging by the fact that the
flame transfer function has been shown to be sensitive to changes
in details of the chamber [2, 3], operating condition [4, 5] and
when the flame interacts with neighbouring flames [6, 7]. It
is therefore desirable to be able to quantify the flame transfer
function with the flame in-situ.
The flame transfer function is typically measured directly

using (i) a measurement of the velocity at a reference location
near the flame and (ii) a measurement of the instantaneous heat
release rate. The velocity is often either measured using a hot
wire [4, 8, 9] or optical methods [10–12]. The heat release rate
is typically measured using optical methods [4, 8–12]. None of
these measurement techniques are suitable for measuring flame
transfer functions in-situ in an industrial system, because (i) the
sensors are often delicate, (ii) optical access is typically not avail-
able in complex industrial combustion chambers, and (iii) optical
measurement of heat release rate fluctuations in the non-premixed
flames typical of practical combustors is not straightforward [13–
15].
Previous work has demonstrated a method for indirectly ob-

taining flame transfer functions from pressuremeasurements [16–
18]. This approach uses the two-source method [19], which
requires specially designed experimental rigs with two sets of
loudspeakers or sirens to force the rig from either end, and mul-
tiple microphones distributed along the length of the rig. This
method provides an estimate for the flame transfer function, but
does not quantify the uncertainty in this estimate.
A few recent studies have used data-driven methods to infer

flame transfer functions from pressure time series data [20–22].
Two of these studies [20, 21] use a non-probabilistic algorithm
to find the flame transfer function that minimizes the discrep-
ancy between model predictions and experimental data. Like
the two-source method, this method does not consider the un-
certainty in the data, or the resulting uncertainty in the model
predictions. The third paper [22] uses a frequentist framework
in which the authors can infer the flame transfer functions and
their uncertainty, but cannot exploit any prior knowledge that they
may have. Additionally, the authors demonstrate their method-
ology using synthetic data generated by their model. This does
not reveal how the framework manages systematic discrepancies
between the model and data, which are always present when
assimilating experimental data into a model.
In previous work we have used Bayesian inference to con-

struct a quantitatively accurate model of an electrically heated
Rijke tube [23]. In a subsequent study on the same rig, we used
Bayesian experimental design to minimize the data required to
infer the unknown model parameters [24]. We then applied the
same framework to infer the flame transfer functions of lami-
nar conical flames in a duct [25]. In the same study we used
Bayesian model comparison to identify the best sub-models for
our rig, which we apply again in the current work.
In the current paper, we demonstrate the Bayesian frame-

work by inferring the flame transfer functions of turbulent con-
ical flames in-situ using observations of growth (or decay) rate,
natural frequency, and Fourier-decomposed pressure, which are
extracted from pressure time-series data. This framework can be

used to infer the flame transfer function for an arbitrarily com-
plex flame using a simple experimental setup, provided (i) the
chamber acoustics can be accurately modelled, and (ii) the linear
growth rate, natural frequency and/or the Fourier-decomposed
pressure can be experimentally determined. For simple systems,
such as the ducted flame described in this paper, the growth rate
and natural frequency can be obtained by measuring the impulse
response of the system. For more complex combustion chambers,
the methodology described in [26, 27] may be more appropriate.
If the growth rate cannot bemeasured, the flame transfer functions
can be inferred using the Fourier-decomposed pressure alone, but
the resulting uncertainty may be larger.

2. EXPERIMENTAL CONFIGURATION
The experimental rig is illustrated in figure 1. It consists of

a burner inserted into a cylindrical duct. The upper end of the
duct open to the atmosphere. The lower end of the duct is fitted
to a plenum chamber, which is lined with acoustic treatment to
avoid resonance in the plenum. The plenum is fed with air to
induce a co-flow in the duct, which is used to keep the duct and
instruments at an acceptable temperature.
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FIGURE 1: Diagram of experimental rig

The duct is a 0.8 m long section of quartz tube with an
internal diameter of 75 mm. The duct joins the plenum via a
machined flange. The flange provides an airtight seal and an
acoustic termination without any internal steps. Eight holes have
been drilled along the length of the duct to allow for instrument
access to the internal flow.
The plenum is a fibreboard box with dimensions

1 m × 0.6 m × 0.6 m. The interior is lined with acoustic
treatment to damp acoustic oscillations. Air is fed into the
plenum via a mass flow controller to provide a constant flow of
cool air through the duct. This keeps the duct and instrumen-
tation at an acceptable temperature, and flushes the combustion
products out of the rig.
The burner is a 0.85 m long section of brass tubing with

an internal diameter of 14 mm. We supply the burner with a
premixed mixture of air, methane and ethylene using a bank of
mass flow controllers. The fuel-air mixture passes through a
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mixing chamber to minimize mixture inhomogeneities, followed
by a choke plate to decouple the supply lines from the acoustic
fluctuations. The burner is fitted with a turbulence generation
grid, which is a disk with a thickness of 0.3 mm perforated with
19 holes of diameter 1.5 mm. The grid is positioned 35 mm
upstream of the injection plane. Immediately downstream of the
turbulence grid is a nozzle that is chosen such that the system
can become thermoacoustically unstable. The nozzle diameter is
9.35 mm at the injection plane.
The burner is mounted on a traverse so that the flame can

be moved vertically within the duct. The burner is mounted to
an electrically-driven traverse so that the vertical position of the
burner inside the duct can be controlled. We are therefore able
to explore changes in (i) flame position, (ii) flame shape (through
changes in fuel composition) and (iii) mean heat release rate
(through total fuel flow rate and fuel composition).
The duct is instrumented with seven probe microphones dis-

tributed along its length, and an eighth microphone mounted near
the base of the burner. The microphones are mounted through
ports drilled in the duct and burner walls. The duct is further in-
strumented with eight thermocouples monitoring the internal gas
temperature, and eight thermocouples monitoring the wall tem-
perature. The thermocouples are used to ensure that the system is
at thermal equilibrium before we collect pressure measurements.

3. EXPERIMENTAL PROCEDURE
We collect data from both linearly stable and self-excited

flames through a series of automated experiments. The automa-
tion code runs through a pre-determined test matrix of burner
positions and air/fuel flow rates. For each experiment, the code
(i) sets the burner position and air/fuel flow rates, (ii) waits for the
system to reach thermal equilibrium, (iii) determines if the flame
is linearly stable or self-excited, (iv) conducts an experiment to
measure the local sound speed at several stations along the duct,
and (v) conducts an experiment to measure the growth rate, an-
gular frequency and Fourier-decomposed pressure, the procedure
of which differs for linearly stable and self-excited flames. Steps
(iii)-(v) are repeated 100 times for each entry in the test matrix,
allowing us to estimate the random uncertainty in the data. We
now provide further detail on the experiments conducted in steps
(iv) and (v).
For step (iv), we measure the local sound speed along the

duct using the probe microphones. We generate an acoustic
impulse with the loudspeaker, which initiates a pressure wave that
propagates through the duct at the local sound speed. At the same
time, we record the acoustic pressure with the seven microphones
distributed along the length of the duct. From the pressure time-
series data, we extract the time at which the impulse arrives
at each microphone, from which we can calculate the average
sound speed between each neighbouring pair of microphones.
This allows us to account for the variation of sound speed along
the length of the duct.
For step (v), when the system is linearly stable, we apply

a brief period of harmonic forcing to excite the system near its
fundamental frequency. The forcing is then abruptly terminated,
following which the oscillations switch to the exact fundamental
frequency, and begin to decay. This is similar to a standard

impulse-response test, but the impulse is replaced with a brief
period of harmonic forcing. For each flame, the fundamental
frequency is strongly affected by the sound speed distribution and
the flame transfer function, neither of which are known a-priori.
We therefore select the forcing frequency by taking an FFT of
the stochastic noise produced by the turbulent flame, which has a
prominent peak near the fundamental frequency.
For step (v), when the system is self-excited, we begin by

stabilizing the system using active feedback control with a phase-
shift amplifier. While the system is stabilized, we perform the
sound speed test. We then terminate the control and measure the
pressure time-series as the oscillations grow to a limit cycle.
We isolate the growing or decaying portions of the pressure

time-series, from which we extract (i) the growth (or decay) rates
of the oscillations, (ii) the natural frequency of the oscillations,
and (iii) the Fourier-decomposed pressure at seven of the micro-
phones, measured relative to a reference microphone. We select
the microphone nearest to the duct pressure node to be the refer-
encemicrophone (see figure 1). This data forms our experimental
observations for inference, which we collectively refer to as the
observation vector z.
We use a high speed camera to record a subset of the exper-

iments for each flame. The camera exposure is fixed to 150 µs
for all tests. We synchronize the camera trigger to the acoustic
forcing and capture images of 100 thermoacoustic cycles at 20
phase angles (2000 frames per flame). By phase-averaging the
frames, we isolate the coherent perturbations caused by the acous-
tic forcing and remove the stochastic turbulent perturbations, as
illustrated in figure 2 for 10 of the 20 phase angles.

FIGURE 2: Instantaneous (top) and phase-averaged (bottom) im-
ages of the perturbed flame at ten phase angles (artificial colour).

The camera captures the unfiltered emission of the flame in
the visible range, which we use as a proxy for the heat release rate.
It is not generally guaranteed that the unfiltered light emission
can be related to the heat release rate. Several studies have,
however, shown the unfiltered light emission to be a reasonable
approximation for heat release rate for various premixed flames
that are similar to (or more complex than) ours [28–31]. We
therefore assume that for the flames in this study, 𝐼 ∝ 𝑄, where
𝐼 is the spatially integrated intensity of the image, and 𝑄 is the
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instantaneous heat release rate. The relevant fluctuating intensity,
𝐼 = 𝐼 ′/𝐼, and the relative fluctuating heat release rate, �̂� =

𝑄 ′/�̄�, are therefore equal. We estimate the uncertainty in the
direct measurement using the standard deviation over the 200
thermoacoustic cycles that were recorded.

4. FLAME PROPERTIES
Flame transfer functions are generally obtained by recording

the system’s response to forcing over a range of frequencies.
However, the setup of our rig only allows us to collect data at
the fundamental frequency of the system. We work around this
by noting that the flame transfer functions of conical flames have
been shown to collapse when plotted against reduced frequency,
𝜔∗ = 𝑠𝑖𝑅/(𝑆𝐿 [1 − 𝑆𝐿/�̄�]1/2), where 𝑠𝑖 is the angular frequency,
𝑅 is the burner radius, 𝑆𝐿 is the laminar flame speed and �̄�
is the injection velocity [2, 10, 32]. While this has only been
shown for laminar conical flames, we assume that for a constant
turbulence intensity, the same collapse will occur for turbulent
flames because (i) we observe that the dynamics of the phase-
averaged flames are identical to those of laminar conical flames
(see phase-averaged images in figure 2), and (ii) for constant
turbulence intensity the turbulence will act to shorten all flames
from their laminar equivalents by a constant factor. Therefore,
for the purpose of demonstrating the inference methodology, we
exploit this collapse and sample the flame transfer function over
a range of reduced frequencies by varying the flame length rather
than the forcing frequency.
We study 15 turbulent conical flames, the properties of which

are controlled by varying the fuel and air flow rates using themass
flow controllers. The flames are all rich, premixed flames, and are
therefore characterized by two distinct flame fronts: the primary
premixed flame front, which we refer to as the inner cone (blue in
figure 1), and the secondary diffusion flame front, which we refer
to as the outer cone (red in figure 1) (note that the camera footage
in figure 2 only exposes the inner cone because it is substantially
more luminous). We select the air/fuel flow rates to ensure that
the flames all have the same heat release rate in the inner cone,
which we estimate using Cantera [33] under the assumption of
complete combustion of the fuel with all the available premixed
air. We choose to control the heat release rate of the inner cone
because we observe that, in our rig, the outer cone does not
respond to acoustic forcing, and therefore does not significantly
contribute to the thermoacoustic oscillations.
The main flow and combustion characteristics of the 15

flames are illustrated in figure 3. The flames are equispaced on
the 1 kW iso-contour, extending from the maximum flow rate that
the mass flow controllers can deliver down to lean blow-off. The
benefit of only studying rich flames is that we can study a wide
range of equivalence ratios with minimal changes in injection ve-
locity. We can therefore study a wide range of flame lengths and
flame shapes with almost constant turbulence intensities. The
turbulence properties and additional flame properties of the 15
flames are summarized in table 1. In both figure 3 and table 1, the
fuel flow rates correspond to the volumetric flow rate of a single
fuel component. In this work we supply equal volumetric flow
rates of methane and ethylene. Details of the flow rates are given
in table 2 in the Appendix.
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FIGURE 3: Properties of the 15 flames studied, which are plotted as
blue dots on axes of the air and fuel flow rates commands sent to
the mass flow controllers. The injection velocity and equivalence
ratio are overlaid as labelled iso-contours. The inner cone heat re-
lease rate, Q̄ , is shown as coloured contours in the background,
with the 1 kW iso-contour highlighted as a solid blue line.

TABLE 1: Summary of the properties of the 15 flames studied.

Property Units Value / Range
Equivalence ratio - 1.09-1.42
Injection velocity m/s 4.58-5.00
Volumetric air flow rate 𝐿𝑛/𝑚𝑖𝑛 15.7-16.7
Volumetric fuel flow rate 𝐿𝑛/𝑚𝑖𝑛 0.72-1.00
Inner cone heat release rate W 1000
Total heat release rate W 1100-1600
Reynolds number - 2800-3000
Turbulence intensity - 5.94-6.02%

5. THERMOACOUSTIC MODEL
The thermoacoustic network model, illustrated in figure 4,

has been described in detail previously [23, 25]. The rig is
divided into 𝑁 acoustic elements in which forward travelling
waves, 𝑓 (𝑡 − 𝑥/𝑐), and backward travelling waves, 𝑔(𝑡 + 𝑥/𝑐),
propagate. In element 𝑖, the pressure is given by 𝑝′

𝑖
= 𝑓𝑖 + 𝑔𝑖

and the velocity is 𝑢′
𝑖
= ( 𝑓𝑖 − 𝑔𝑖)/( �̄�𝑖𝑐𝑖), where 𝑝′ is the acoustic

pressure, 𝑢′ is the acoustic velocity, �̄� is the local mean density
and 𝑐 is the local sound speed, which can vary along the duct.
The complex wave amplitudes in adjacent elements are related
through jump conditions for themomentumand energy equations.
We model each component of the network using local linear
feedback from velocity or pressure into the energy or momentum
equations [1, 34], which we label 𝑘𝑒𝑢 , 𝑘𝑒𝑝 , 𝑘𝑚𝑢 , and 𝑘𝑚𝑝 . The
general jump conditions between elements are therefore given by:

𝑝𝑖+1 − 𝑝𝑖= −𝑘𝑚𝑢𝑢𝑖 − 𝑘𝑚𝑝𝑝𝑖 (1)
𝑢𝑖+1 − 𝑢𝑖= −𝑘𝑒𝑢𝑢𝑖 − 𝑘𝑒𝑝𝑝𝑖 (2)

The model predicts the growth rate and angular frequency
of oscillations, as well as the amplitude and phase of acoustic
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FIGURE 4: Diagram of the acoustic network model used in this
study. The unknown model parameters are: R?, the reflection co-
efficients at the boundaries, η, the strength of the visco-thermal
damping, and F, the transfer function from velocity perturbations
to heat release rate fluctuations.

pressure at the microphone locations. We collectively refer to
these as the prediction vector, s. These predictions depend on
a set of model parameters, the values of which we do not know
a-priori. These parameters arise from the modelling of (i) the
reflection of acoustic energy at the ends of the duct and the base
of the burner, (ii) the visco-thermal damping in the boundary
layer on the duct and burner walls, and (iii) the heat release rate
fluctuations of the flame.
We model item (i) using complex reflection coefficients,

which we label 𝑅𝑢 , 𝑅𝑑 and 𝑅𝑏 for the upstream and downstream
ends of the duct, and the base of the burner respectively. We
model item (ii) using local linear feedback from velocity into
momentum, 𝑘𝑚𝑢𝑏𝑙 , for viscous dissipation, and from pressure
(equiv. temperature) into energy, 𝑘𝑒𝑝𝑏𝑙 , for thermal dissipation.
We model item (iii) as local linear feedback from velocity into
energy, 𝑘𝑒𝑢𝑓 .
We either infer these parameters directly from the data, or

infer correction factors to sub-models for the parameters. For
example, models have been proposed for the reflection coefficient
at the open end of flanged [35, 36] and unflanged [37–39] circular
ducts, and for the visco-thermal damping in the boundary layer
of an oscillating flow [40, 41]. Each candidate sub-model can
have its own set of unknown model parameters, which we must
infer from data. We collectively refer to the unknown parameters
as the vector a.

6. ADJOINT-ACCELERATED BAYESIAN INFERENCE
We follow the Bayesian inference framework of MacKay

[42], whichwe have described in detail in previous work [23]. We
have previously demonstrated how this framework can be used for
(i) inferring the values of unknownmodel parameters [23, 25, 43],
(ii) quantifying uncertainty in the unknown parameters, and the
resulting uncertainty in model predictions [23, 25], (iii) selecting
the best model from a set of candidate models [23, 25], and
(iv) identifying optimal experimental configurations and sensor
placements [24]. In the current work we will only require points

(i) and (ii), so we will not discuss points (iii) and (iv).

6.1 Parameter inference
We begin by assuming that the candidate model, H𝑖 , is cor-

rect1, and we use data to infer its most probable parameters,
aMP. We propose a prior probability distribution over the param-
eter values, through which we can encode any prior knowledge
we may have. We then assimilate the data, z, by performing a
Bayesian update on the parameter values:

𝑃(a|z,H𝑖) =
𝑃(z|a,H𝑖)𝑃(a|H𝑖)

𝑃(z|H𝑖)
(3)

The left-hand side of equation (3) is the posterior probability
of the parameters, given the data. It generally cannot be eval-
uated analytically, and numerical computation typically requires
millions of model evaluations, which is usually prohibitively ex-
pensive. At the parameter inference stage, however, we are only
interested in finding the parameters that maximize the posterior,
which are the most probable parameters. Instead of evaluating
the full posterior, we use an optimization algorithm to find the
peak of the posterior. We can transform this problem into a
standard quadratic optimization problem by making two assump-
tions. Firstly, we assume that the experimental uncertainty is
Gaussian distributed, so 𝑃(z|a,H𝑖) is Gaussian for a given set
of parameters. This assumption is reasonable for well-designed
experiments in which the experimental error is dominated by ran-
dom error, which is typically Gaussian distributed. Secondly, we
choose the prior distribution, 𝑃(a|H𝑖), to be Gaussian.
When formulating the optimization problem, we can neglect

the denominator of equation (3), because it does not depend on
the parameters. It is convenient to define the cost function, J,
as the negative log of the numerator of equation (3), which we
minimize. Substituting Gaussian distributions for 𝑃(z|a,H𝑖) and
𝑃(a|H𝑖) and taking the negative log of their product, the cost
function becomes:

J= (s(a) − z)𝑇 C−1
𝑒𝑒 (s(a) − z)

+ (a − ap)𝑇 C−1
𝑎𝑎 (a − ap) + 𝐾

(4)

where s and z are column vectors of the model predictions and
experimental observations respectively,C𝑒𝑒 is the covariancema-
trix describing experimental uncertainties, a and ap are column
vectors of the current and prior parameter values respectively,
C𝑎𝑎 is the covariance matrix describing the uncertainty in the
prior, and 𝐾 is a constant from the Gaussian pre-exponential fac-
tors, which has no impact on the parameter inference. We assume
that the experimental uncertainty is dominated by random uncer-
tainty2, and that this uncertainty is uncorrelated. We therefore
prescribe C𝑒𝑒 as a diagonal matrix, where each diagonal entry
is the variance in the measured quantity, calculated from 100
repetitions of each experiment. Similarly, the prior parameter
covariance, C𝑎𝑎, is a diagonal matrix with the diagonal entries
given by the square of the prior uncertainty in each parameter.

1The quality of this assumption can be assessed using systematic error estimation
[23], or model comparison [23, 25].
2The quality of this assumption can be checked using systematic error estimation
[23]
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The first term in equation 4 penalizes parameter values that yield
model predictions that are far from the data, while the second
term regularizes the problem by penalizing parameter values that
are far from the prior estimate.
We find the minimum of 𝐽 with the fewest model evaluations

by using gradient-based optimization. In this work we obtain
the gradients using first order adjoint methods, which allow us to
evaluate the gradient of a model with respect to many parameters,
with a computational cost that is independent of the number
of parameters [44, 45]. The same approach could be used by
calculating the gradients using automatic differentiation or even
finite differences, although the cost of finite differences scales
poorly with the number of parameters.

6.2 Uncertainty quantification
Once we have found the most probable parameter values by

minimizing equation (4), we estimate the uncertainty in these
parameter values using Laplace’s method [23, 42, 46]. This
method approximates the posterior as a Gaussian distribution,
centred around the most probable parameters3. The covariance
matrix of the Gaussian that best approximates the true posterior
is given by the Hessian of the cost function:

CMP𝑎𝑎
−1 ≈ 𝜕2J

𝜕𝑎𝑖𝜕𝑎𝑗

= C−1
𝑎𝑎 + J𝑇 C−1

𝑒𝑒J + (s(a) − z)𝑇 C−1
𝑒𝑒H

(5)

where J is the Jacobian matrix containing the parameter sensitiv-
ities of the model predictions, 𝜕𝑠𝑖/𝜕𝑎𝑗 , and H is the rank three
tensor containing the second order sensitivities, 𝜕2𝑠𝑖/𝜕𝑎𝑗𝜕𝑎𝑘 .
We obtain J and H using first and second order adjoint methods.
To quantify the uncertainty in the model predictions, we

propagate the parameter uncertainties through the model. This is
done cheaply by linearizing the model around aMP and propagat-
ing the uncertainties through the linear model. The uncertainty
in the model predictions is given by:

C𝑠𝑠 = J𝑇 C𝑎𝑎J (6)

where C𝑠𝑠 is the covariance matrix describing the model pre-
diction uncertainties. The marginal uncertainty in each of the
model predictions, (𝜎𝑠𝑗 )2, is given by the diagonal elements of
C𝑠𝑠, because the prediction uncertainties are Gaussian.

7. RESULTS
We infer the unknown parameters sequentially because it is

usually not possible to infer all model parameters at once, unless
accurate prior information is available. We first assimilate the
parameters of the acoustic network model in the absence of the
flame, following which we infer the parameters of the fluctuating
heat release rate model.

7.1 Calibrating the cold rig
In previous work, we assimilated nine parameters describing

the characteristics of the cold rig [25]. We used six parameters

3This approximation may seem restrictive, but it has been shown that in many
practical cases, the posterior tends to a Gaussian distribution as the number of
observations increases [47].

for the three complex reflection coefficients. We used a further
three parameters for the strength of the visco-thermal damping on
(i) the inner wall of the duct, (ii) the outer wall of the burner and
(iii) the inner wall of the burner. The posterior values of the three
visco-thermal damping strengths were, however, quite similar, so
in the current work we apply a single value for the strength of
this damping to all three surfaces. This reduces the number of
parameters used to describe the cold rig from nine to seven.
We perform three sets of cold experiments, which we label

C1-C3. In C1 we test the empty duct, which allows us to infer
the duct reflection coefficients, 𝑅𝑢 and 𝑅𝑑 , and the strength of
the visco-thermal damping, [, in the absence of the burner. We
supply prior information for the reflection coefficients using ana-
lytical models for the reflection at flanged [35] and unflanged [38]
duct terminations. We assign large uncertainty to the priors, be-
cause the analytical models make assumptions that are relatively
poor for our rig, such as infinitely thin walls, infinitely long ducts
and infinitely large flanges. The visco-thermal damping strength,
[, is a multiplicative factor applied to the analytical model of
Tijdeman [41]. If this model is accurate, it would not require
any correction, and so we would find that [ = 1. In previous
work we studied a duct with identical upstream and downstream
terminations, allowing us to assume 𝑅𝑢 = 𝑅𝑑 and eliminate two
parameters [23]. In that study, we found [ to be very close to
unity with high confidence. We therefore set a prior of [ = 1,
with a tight prior. Being able to supply strong prior information
for one of the parameters is helpful, because it avoids a highly
correlated posterior. In this case, inferring all five parameters
with weak prior information results in a three-way correlation
between |𝑅𝑢 |, |𝑅𝑑 | and [.
In C2 we introduce the burner and traverse it through the rig

while supplying a mass flow of air sufficient to choke the choke
plate. At each burner position, wemeasure the response of the rig
to a brief period of harmonic forcing. We use the data to update
(i) the upstream reflection coefficient, including the disturbance
of the burner, and (ii) the strength of the visco-thermal damping,
accounting for both the duct and burner walls. We supply the
posteriors inferred from the C1 experiments as priors for the C2
experiments, but inflate the uncertainty in 𝑅𝑢 and [ to allow the
parameters to be updated based on the new evidence. We supply
a weak prior for 𝑅𝑏 , using the theoretical value for a choked
boundary as the prior expected value.
In C3 we install the turbulence grid and repeat the C2 ex-

periments. This was intended to inform a model for the damping
of the turbulence grid, but we found that the turbulence grid
had a negligible impact on the decay rate and natural frequency,
suggesting that the damping is negligible. We had expected the
damping to be small because the turbulence grid (i) is very thin
(0.3 mm), (ii) has a large open area ratio (43%), and (iii) is placed
near a velocity node in the burner.
The results of the cold rig characterisation are shown in figure

5. We see that the prior model predictions for the C1 experiment
are poor, but the posterior model predictions match the data well.
Having learned from the C1 data, the prior model predictions
for the C2 experiment are reasonably accurate, but there remains
some error which is mostly due to an inacurate prior estimate
for 𝑅𝑏 . After we infer the parameters from the data, the model
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predictions match the data to within experimental uncertainty,
and the uncertainty bounds on the posterior model predictions
are small, meaning that we have high confidence in the posterior
parameter values. While the errors in the prior model predictions
may be small, it is important that they are removed as well as
possible. Any errors in the cold rig model will be incorporated
into the flame transfer function (FTF) in the next step, making
the inferred flame transfer functions inaccurate.
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FIGURE 5: Experimental measurements (circles) of (a) growth rate
and (b) angular frequency plotted against burner exit location for
the three sets of cold characterisation experiments. Prior model
predictions are plotted (dashed lines) without confidence bounds.
Model predictions after data assimilation are plotted (solid lines)
with a confidence bound of 2 standard deviations (shaded patch).

The posterior parameter values and their uncertainties are
shown graphically in figure 6. Each set of axes plots the joint
probability distribution between a pair of parameters. The discs
represent regions of one, two and three standard deviations, cen-
tred around the expected value. These joint distributions are
extracted from the prior and posterior covariance matrices, be-
cause both the prior and posterior are taken to be Gaussian. The
first thing we note is that the posterior covariance is much smaller
than the prior covariance, indicating that we have become much
more certain in the parameter values. Secondly, we see that two
pairs of parameters are tightly correlated, indicated by a diago-
nally stretched disc. These parameters are the real parts of 𝑅𝑢 and
𝑅𝑑 , and the imaginary parts of 𝑅𝑢 and 𝑅𝑑 . Correlated parame-
ters arise when the data can be explained by some combination
of parameters. For example, the decay rate of the rig is strongly
influenced by the product of 𝑅𝑢 and 𝑅𝑑 , so a decay rate obser-
vation provides information about what this product is, but little
information about how the product is split between 𝑅𝑢 and 𝑅𝑑 .
Ideally we would be able to decorrelate the parameters by devis-
ing additional experiments to provide more precise information

about at least one of the parameters. In our rig, however, this has
not been possible. With that said, this correlation has been noted
in previous work [25] and has not negatively affected the results.
Finally, we see that the C2 posterior for Im(𝑅𝑢) has shifted away
from the C1 posterior. This is because the disturbance of the
burner at the upstream boundary of the duct causes a change in
Im(𝑅𝑢).

Prior
C1 Posterior
C2 Posterior

FIGURE 6: Prior and the posterior joint parameter probability dis-
tributions after assimilating data from the cold experiments. Each
disc shows the joint probability distribution between a pair of pa-
rameters. The three rings represent one, two and three standard
deviations, centred around the expected value. The upper and
lower triangles show the same information zoomed to the prior 3
s.d. bound (lower triangle) and the posterior 3 s.d. bound (upper
triangle).

7.2 Assimilating heat release rate models from pressure
data
Oncewe have an accurate representation of the cold acoustics

and we introduce the flame, any changes in the system behaviour
can be attributed to the flame. We assume that the cold rig
parameters do not change when the flame is introduced, apart
from 𝑅𝑑 , which we expect to change with temperature. We
account for this by using the value for 𝑅𝑑 that we inferred from
the cold rig to calculate a correction factor for a model for the
reflection coefficient [38]. When the flame is introduced, we
use the corrected model to calculate the downstream reflection
coefficient in the hot duct.
As mentioned in section 5, we model the fluctuating heat

release rate (HRR) as a velocity-dependent source in the energy
equation of the acoustic network model. We label the strength
of this feedback mechanism 𝑘𝑒𝑢𝑓 , which is a complex number
that we assimilate from data. In this case we have no meaningful
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prior information, so we set a prior of 𝑘𝑒𝑢𝑓 = 0 + i0 with large
uncertainty. The feedback strength is related to the typical flame
transfer function by:

F=
𝑄 ′/�̄�
𝑢′/�̄� =

𝛾

𝛾 − 1
𝑝�̄�

�̄�
𝑘𝑒𝑢𝑓 (7)

where F is the complex-valued flame transfer function, which
relates fluctuations in velocity, 𝑢′, to fluctuations in HRR, 𝑄 ′.
The fluctuations in velocity and HRR are normalised by the mean
bulk values, �̄� and �̄�. 𝛾 is the ratio of specific heats, 𝑝 is the
mean pressure at the injection plane, and �̄� is the mean velocity
at the injection plane.
The flame in our rig is exposed to acoustic perturbations

from the acoustic field inside the burner, and from the acoustic
field in the duct. In previous work, we used Bayesian model
comparison to identify which of these perturbations was most
significant, and we found that for laminar conical flames both
need to be considered [25]. For the turbulent conical flames,
however, we find that the acoustic perturbations from within the
burner dominate the thermoacoustic behaviour.
We infer the real and imaginary components of 𝑘𝑒𝑢𝑓 for each

of the 15 flames individually4, using observations of the growth
(or decay) rate, angular frequency, and Fourier-decomposed pres-
sure. We repeat this with the flames in two axial positions within
the duct: 𝑥/𝐿 = 0.25 and 𝑥/𝐿 = 0.5, where 𝑥 is the axial position
along the duct measured from the upstream end, and 𝐿 is the
length of the duct.
We compare the posterior model predictions against the ex-

perimental observations in figure 7, where we plot the growth rate
and angular frequency of oscillations against reduced frequency,
𝜔∗ = 𝑠𝑖𝑅/(𝑆𝐿 [1 − 𝑆𝐿/�̄�]1/2), where 𝑠𝑖 is the angular frequency
of oscillations, 𝑅 is the burner radius, and 𝑆𝐿 is the laminar flame
speed. This is effectively a Strouhal number where the reference
velocity is taken to be the laminar flame speed and the reference
length is taken to be the length of an unstretched, laminar conical
flame of equivalent fuel composition. We note that this would
not be a sensible scaling if the turbulence intensity had changed
significantly between our 15 flames.
We see from figure 7 that after inferring the most probable

fluctuating HRR for each flame, the model predicts the experi-
mental observations exactly. However, we note that assimilating
the HRR for each flame individually gives the model freedom
to fit any data. Any errors in the data or the cold model would
therefore be incorporated into the HRR parameters in order to
make the model fit the data.
We convert the feedback strength, 𝑘𝑒𝑢𝑓 , into the more famil-

iar form of a flame transfer function using equation (7). As a
reminder, we obtain the FTF of each flame at a single frequency
(the observed frequency). We then assume that the 15 FTFs are
similar when plotted against reduced frequency, allowing us to
present the 15 point measurements as a single FTF (see section
4). We note that this is only to overcome a limitation of our rig
and assist with presentation in this paper, and is not a limitation
of the inference framework we are demonstrating.

4We use real-imaginary form, because it leads to a well-posed optimization
problem with a single global optimum when minimizing equation (4).
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FIGURE 7: Comparison of experimental (circles and error bars) and
predicted (line and patch) values of (a) growth rate and (b) angular
frequency of thermoacoustic oscillations plotted against reduced
frequency, ω∗. The results for two burner positions are shown:
x/L = 0.25 in blue and x/L = 0.5 in orange.

The inferred FTFs at two burner positions are plotted against
reduced frequency in figure 8. We see that the FTF qualita-
tively resembles the typical FTF seen for laminar conical flames
(see [2, 10, 32]), as would be expected. We also note that the
FTFs inferred from the two burner positions are similar, which
we should expect because the FTF should not depend on burner
position. We do not expect them to be identical, however, be-
cause the perturbation amplitude, 𝑢′/�̄�𝑖 , is not constant for all
tests (�̄�𝑖 is the injection velocity). We apply the same excitation
amplitude for all tests, but the amplitude of 𝑢′/�̄�𝑖 depends on (i)
the thermoacoustic behaviour of the system, and (ii) the position
of the burner. When the flame provides strong thermoacoustic
driving, the excitation system achieves larger forcing amplitudes
than when the flame provides strong thermoacoustic damping.
Additionally, when the burner exit is placed close to the pressure
anti-node in the duct, there is larger acoustic forcing on the burner
tube and therefore 𝑢′/�̄�𝑖 is larger. As a result, when the burner
is placed at 𝑥/𝐿 = 0.5, the perturbation amplitude reaches the
range where nonlinear thermoacoustic response can be expected.
The result of this is seen in the saturation of the FTF phase in
figure 8(b), which is a typical effect of increasing the perturba-
tion amplitude [6]. This demonstrates the ability of this method
to infer flame transfer functions in both the linear and nonlinear
regimes. If data were available over a wider range of forcing am-
plitudes, the same method could be used to infer flame describing
functions.
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An alternate representation of the flame transfer function is
given in figure 9, which plots the point measurements of the FTF
on polar axes. For clarity, only the FTFs for the flames at 𝑥/𝐿 =

0.25 are shown, because the results for 𝑥/𝐿 = 0.5 are similar.
This plot provides insight about the uncertainty in the inferred
FTFs. We noted in previous work that, for laminar conical flames,
the uncertainty of the inferred FTFs was largest for (i) neutral
flames, and (ii) strongly damping flames [25]. We attributed (i)
to the fact that neutral flames produce a weak thermoacoustic
effect, so it is difficult to infer the FTF from observations of the
thermoacoustic effect alone, and we attributed (ii) to the fact that
strongly damping flames produce quickly decaying oscillations,
which increases the experimental uncertainty in the growth rate
and natural frequency. For turbulent flames, however, we see
that the uncertainty in the FTF is dominated by experimental
uncertainty. The experimental uncertainty for turbulent flames is
larger because (i) the turbulence produces additional broadband
noise, which reduces the signal-to-noise ratio of the data, and
(ii) the turbulence perturbs the flame shape, causing variation in
the thermoacoustic effect, which introduces additional random
uncertainty into the experimental data.
Finally, we see from both figures 8 and 9 that the uncertainty

in the phase delay of the FTF is typically lower than for the gain.
This is because the predictions of the thermoacoustic model are
more sensitive to the phase delay [1]. In the forward modelling
problem this is typically a challenge, because small errors in the
FTF phase delay can cause large errors in the model predictions.
In the inference problem, however, this is beneficial because it
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FIGURE 9: Flame transfer functions for the 15 flames at x/L = 0.25
plotted on polar axes, with the gain plotted on the radial axis and
the phase delay on the angular axis. The patches denote a region
of 1 standard deviation. The contour in the background represents
the effect of the gain and phase of the FTF on the growth rate of os-
cillations, where red represents increased growth rates, blue rep-
resents reduced growth rates and white represents no change in
growth rates.

provides a more precise posterior parameter estimation.

7.3 Validation of inferred fluctuating heat release rate
We validate the inferred quantities by comparing the poste-

rior fluctuating heat release rate against that measured directly
using the high speed camera. The validation results are shown
in figure 10. We see from figure 10(a) that the magnitude of the
inferred fluctuating HRR compares well with the direct measure-
ments for all 15 flames at both burner positions. The uncertainty
in the inferred HRR magnitudes is generally slightly larger than
the uncertainty of the direct measurements, except for flame 12,
where the uncertainty in the inferred HRR is much larger than the
direct measurement. The large uncertainty in flame 12 is, how-
ever, due to larger experimental uncertainty. When the burner is
at 𝑥/𝐿 = 0.25, flame 12 produces a growth rate near zero. The
system alternates between linearly stable and self-excited, which
causes a large variation in the experimental results.
Figure 10(b) shows the phase of the fluctuating HRR, mea-

sured relative to the pressure at the reference microphone. We see
that the inferred quantities compare well with the direct measure-
ments, except for when the magnitude of the HRR fluctuations
are small. In this case we can expect larger errors in both the in-
ferred quantities and direct measurements, because it is generally
challenging to identify the phase of a low amplitude, noisy signal.
Unlike the HRR magnitude, the uncertainty in the inferred HRR
phase is smaller than that in the direct measurements. This is
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because (i) the direct measurement of the relative phase between
two noisy signals is prone to error, and (ii) the sensitivity of the
model to HRR phase results in a more precise posterior. The
uncertainty in the inferred HRR phase does, however, increase
when the HRR magnitude is small, as we would expect.

8. CONCLUSION
In this paper we demonstrate a framework for inferring the

fluctuating heat release rate of an acoustically perturbed flame
in-situ from pressure measurements alone. The framework uses
adjoint-accelerated Bayesian parameter inference to obtain the
fluctuating heat release rate without directly measuring it. We
show that, once the fluctuating HRR has been inferred from data,
the model of the thermoacoustic system becomes quantitatively
accurate. We then verify that the inferred fluctuating HRR is cor-
rect by comparing it to direct measurements. If data is available
at multiple forcing frequencies (or if the flame structure allows
scaling rules to be applied, as is done in this paper) it is possible
to obtain the flame transfer function with quantified uncertainty
bounds, without optical access to the flame.
The predictions of thermoacoustic models are sensitive to

the flame transfer function, so small errors in the FTF can lead
to large errors in model predictions. If the flame’s response to
acoustic forcing is sensitive to its environemnt, which it often is,
the FTFmust be obtained with the flame in-situ. In most practical

combustors, however, it is not possible to obtain optical access
to the flame in order to directly measure the FTF. This method is
therefore useful for indirectly obtaining the FTF using pressure
measurements, which are readily obtained in practical combus-
tors. The method simultaneously identifies the most probable
FTF, given the data, and quantifies the uncertainty in the FTF.
The uncertainty in the FTF and the model predictions is a valu-
able input for decision-making that is not available in most other
methods for obtaining FTFs without optical access, such as the
two-source method.
The inference framework is general and flexible, and can be

adapted to suit the available data. In this study we use mea-
surements of the growth rate, angular frequency and Fourier-
decomposed pressure at the fundamental mode, because these
are available to us. In work being carried out in parallel, we ap-
ply the same framework to characterize the cold acoustics of the
Rolls–Royce SCARLET test rig, where only Fourier-decomposed
pressure data is available [48]. In future work we will attempt to
infer flame transfer functions from the pressure data captured on
this rig. In more complex combustors it may be possible to esti-
mate the growth rate and angular frequency of the thermoacoustic
modes from time-series pressure measurements of the combus-
tion noise [26, 27]. The proposed inference framework could
then be used to estimate the flame transfer function at the natural
frequencies of the system, with the flame in-situ. This could be a
valuable input for designing solutions to mitigate thermoacoustic
oscillations.
In future work we will apply the framework to more complex

systems, such as the Rolls–Royce SCARLET test rig, where data
is available over a range of forcing frequencies. We will also use
our current dataset to assimilate video footage of flames intomore
detailed flame models to investigate whether we can obtain more
precise estimates of the FTF when optical access is available.
We will then use the calibrated flame models, along with adjoint
shape optimization, to identify the changes required to the burner
geometry in order to stabilize the system.
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