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ABSTRACT

Hydrodynamic instabilities in gas turbine fuel injectors help
to mix the fuel and air but can sometimes lock into acoustic oscil-
lations and contribute to thermoacoustic instability. This paper
describes a linear stability analysis that predicts the frequencies
and strengths of hydrodynamic instabilities and identifies the re-
gions of the flow that cause them. It distinguishes between con-
vective instabilities, which grow in time but are convected away
by the flow, and absolute instabilities, which grow in time with-
out being convected away. Convectively unstable flows amplify
external perturbations, while absolutely unstable flows also os-
cillate at intrinsic frequencies. As an input, this analysis requires
velocity and density fields, either from a steady but unstable so-
lution to the Navier–Stokes equations, or from time-averaged nu-
merical simulations. In the former case, the analysis is a predic-
tive tool. In the latter case, it is a diagnostic tool. This technique
is applied to three flows: a swirling wake at Re = 400, a single
stream swirling fuel injector at Re ∼ 106, and a lean premixed
gas turbine injector with five swirling streams at Re∼ 106.

Its application to the swirling wake demonstrates that this
technique can correctly predict the frequency, growth rate and
dominant wavemaker region of the flow. It also shows that the
zone of absolute instability found from the spatio-temporal anal-
ysis is a good approximation to the wavemaker region, which is
found by overlapping the direct and adjoint global modes. This
approximation is used in the other two flows because it is difficult
to calculate their adjoint global modes.

Its application to the single stream fuel injector demon-
strates that it can identify the regions of the flow that are respon-
sible for generating the hydrodynamic oscillations seen in LES
and experimental data. The frequencies predicted by this tech-
nique are within a few percent of the measured frequencies. The
technique also explains why these oscillations become weaker
when a central jet is injected along the centreline. This is be-
cause the absolutely unstable region that causes the oscillations
becomes convectively unstable.

Its application to the lean premixed gas turbine injector re-
veals that several regions of the flow are hydrodynamically unsta-
ble, each with a different frequency and a different strength. For
example, it reveals that the central region of confined swirling
flow is strongly absolutely unstable and sets up a precessing vor-
tex core, which is likely to aid mixing throughout the injector. It
also reveals that the region between the second and third streams
is slightly absolutely unstable at a frequency that is likely to co-
incide with acoustic modes within the combustion chamber. This
technique, coupled with knowledge of the acoustic modes in a
combustion chamber, is likely to be a useful design tool for the
passive control of mixing and combustion instability.

NOMENCLATURE
A 1st matrix in the generalized eigenvalue problem
B 2nd matrix in the generalized eigenvalue problem
D characteristic lengthscale
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f frequency (Hz)
i
√
−1

k axial wavenumber (complex)
m azimuthal wavenumber (real integer)
p pressure field
p̂ pressure profile in radial direction
q̂ state vector, q̂≡ (û, p̂)T

r radial coordinate
Re Reynolds number
s1 saddle point 1
s2 saddle point 2
St Strouhal number, St≡ f D/U (complex)
Sti non-dimensional temporal growth rate
Str non-dimensional frequency
t time
U characteristic velocity
u axial velocity
u velocity field, u≡ (u,v,w)T

û velocity profile in radial direction
v radial velocity
w azimuthal velocity
x axial coordinate

Greek:

θ azimuthal coordinate
ω local angular frequency (complex)
ωi local temporal growth rate
ωr local angular frequency
ω0 local spatio-temporal angular frequency (complex)
ω0i local spatio-temporal growth rate
ω0r local spatio-temporal angular frequency
ωg global angular frequency (complex)
ωgi global growth rate
ωgr global angular frequency

Superscripts:

′ direct perturbation
+ adjoint perturbation

Subscripts:

g global
i imaginary
r real
0 spatio-temporal

INTRODUCTION
In order to achieve high energy densities, the flows within

the combustion chambers of rocket and gas turbine engines are
turbulent. The turbulent kinetic energy is dissipated at small
scales by the action of viscosity. It is provided at large scales
by coherent structures, such as large scale vortices in the flow.
These coherent structures entrain the fuel into the air so that they
can mix at a molecular level and burn [1] [2]. They are observed
across all ranges of Reynolds numbers [3] but are most easily
recognised at lower Reynolds numbers, for example in the vortex
shedding behind a cylinder. In experiments on gas turbine fuel
injectors, these coherent structures have been found to strongly
affect the entrainment of fuel and air [4] (pp240–241).

These large scale coherent structures are the nonlinear de-
velopment of large scale linear instabilities. In shear layers, ex-
periments show that the mixing rate is proportional to the growth
rate of linear instabilities. This is shown by comparing the rate
of scalar mixing in curved shear layers [5] with that in straight
shear layers [6]. This works because, in a curved shear layer, the
growth rate of linear instabilities depends on the direction of cur-
vature relative to the velocity gradient. The growth rate of these
linear instabilities, as well as their frequencies and mode shapes,
can be predicted from a linear stability analysis of a steady base
flow. In turbulent flows, the time averaged base flow is appropri-
ate.

In the coaxial fuel injectors used in liquid oxygen/gaseous
hydrogen rocket engines, the combustion efficiency increases
when the exit of the oxygen tube is recessed inside the hydro-
gen tube [7]. This happens because a strong global instability
is provoked by a region of strong absolute instability in the re-
cessed region [8]. This provokes large scale spiralling and flap-
ping structures that improve mixing between the oxygen and hy-
drogen [9]. Similarly, in coaxial gas turbine fuel injectors, large
scale structures appear when the central tube is recessed inside
the outer tube [10]. This is also due to absolute instability in the
injector. In both cases, linear stability analysis provides physi-
cal insight that helps to explain why these injectors mix reactants
particularly well.

Hydrodynamic oscillations are not the only large scale co-
herent structures in rocket and gas turbine combustors. There are
also long wavelength acoustic waves. Sometimes these interact
with hydrodynamic oscillations. Energy is fed into the acoustic
waves due to the synchronisation of heat release and pressure os-
cillations. If the mechanical energy input exceeds the damping,
the waves’ amplitude increases, sometimes to dangerously high
levels. Experiments in which fuel is injected into the shear layer
behind a backwards-facing step in a long combustion chamber
show that the amplitude of these acoustic waves becomes partic-
ularly high when the natural frequency of hydrodynamic oscilla-
tions behind the step is close to the natural frequency of acoustic
waves in the chamber [11]. This is because the frequency of hy-
drodynamic oscillations, and hence the frequency of heat release
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fluctuations, locks into the acoustic frequency when the acous-
tics reaches a sufficiently high amplitude [12]. In gas turbine
fuel injectors, these hydrodynamic oscillations have been shown
to lead to bursts of increased fuel air mixing [4], which provides
a mechanism through which they can cause bursts of heat release.

Improving mixing and suppressing thermoacoustic oscilla-
tions provide two good motives to predict the frequencies and
growth rates of hydrodynamic instabilities in fuel injectors. If
the regions of the flow that cause the instabilities can be identi-
fied, one can see how they should be be altered in order to en-
hance, suppress, or change the frequencies of the instabilities.
The purpose of this paper is to describe an appropriate stability
analysis and to present its application to three flows of increas-
ing complexity: a swirling wake flow, a single stream swirling
fuel injector, and a lean burn gas turbine fuel injector with five
swirling streams.

1 ANALYSING HYDRODYNAMIC INSTABILITIES
Flows with hydrodynamic oscillations can be simulated with

time-resolved computational methods such as DNS, LES and
uRANS. DNS is prohibitively expensive above low Reynolds
numbers and is therefore not useful for most practical situations.
LES is expensive because the timescales of large scale struc-
tures are much larger than the timesteps required for numerical
stability on grids that are sufficiently fine to resolve the small
scales. uRANS is less expensive because only the large scale
structures are resolved, although the turbulence models may not
be adequate for many practical situations [13]. Although LES
and uRANS can simulate flows that contain hydrodynamic insta-
bilities and oscillations, they cannot identify the regions of the
flow that are causing these oscillations and therefore give little
physical insight into how they might be enhanced or suppressed.

Physical insight into the causes of these oscillations can be
obtained by performing a linear stability analysis on the time-
averaged flow and assuming that the nonlinear saturated be-
haviour is similar to that of the most unstable global mode. For
simple flows, this is a reasonable assumption [14], and there is
no reason to suspect that this is not the case for complex flows.
Linear stability analyses reveal useful information, such as the
core of the instability (the wavemaker region), the regions that
are most sensitive to external forcing, and the regions that, if
changed, have the most influence on the instability [15] [16].

A well known example of a global hydrodynamic instability
is vortex shedding behind a cylinder. This arises due to a re-
gion of local absolute instability that exists immediately behind
the cylinder [17]. (A region is absolutely unstable if it supports
perturbations that grow in time but do not convect away.) This
region of absolute instability is found with a local stability anal-
ysis. Numerical simulations show that this is the only region
that is absolutely unstable [18] but, nevertheless, that it triggers
a global mode that influences the entire flow.

Section 1.1 describes the local stability analysis used in this
paper. It has been applied to several model problems that are rel-
evant to fuel injection [8] [19] [20]. In the past, researchers have
found it difficult to apply the local analysis to swirling flows and
have had to resort to linear direct numerical simulation [21] [22].
The technique described here, however, can easily be applied to
swirling flows. It can consider non-isothermal flow and com-
pressible flow but the cases in this paper are all for isothermal
flow.

1.1 Local stability analysis

There are three stages to the local analysis. The first stage is to
calculate the local stability behaviour at each axial position. The
second stage is to combine this behaviour to obtain the frequency
of the global mode. The third stage is to force each axial position
at the global mode frequency in order to evaluate the shape of the
global mode.

The Navier-Stokes and mass conservations equation are lin-
earized about a steady axisymmetric base flow. The base flow
is assumed to be locally parallel and small local perturbations to
the velocity, u(x,r,θ , t), and pressure, p(x,r,θ , t), are assumed
to have the form û(r)exp(i(kx+mθ −ωt)). In this expression,
k is the axial wavenumber, m is the azimuthal wavenumber, and
ω is the angular frequency of the corresponding perturbations.
In general, the angular frequency is complex. Its real part is the
angular frequency of the oscillations and its imaginary part is
their growth rate. In this paper, each azimuthal wavenumber, m,
is considered separately, so that m becomes a parameter in the
problem, rather than a variable.

In order to satisfy the governing equations and boundary
conditions, only certain combinations of k,m, and ω are per-
mitted. These are the eigenvalues of the system. These are
found in practice by discretizing the governing equations and
expressing them as a generalized matrix eigenvalue problem
A(k)q̂ = ωB(k)q̂, where A and B are matrices and q̂ is the state
vector (û, p̂)T . For each value of k, there are as many values of ω

as there are discretization points. Some of these eigenvalues cor-
respond to discrete modes (of the continuous system) and some
correspond to the continuous spectrum. Only those correspond-
ing to the discrete modes are considered here.

In the first stage of the local stability analysis, the maxi-
mum temporal growth rate, ω , and the maximum spatio-temporal
growth rate, ω0, are calculated. The maximum temporal growth
rate is the eigenvalue with the highest value of ωi that can be
obtained when k is a real number. It is found by calculating ω

over the range of real k for which ωi is positive and then iter-
ating to the highest value of ωi. The maximum spatio-temporal
growth rate is the eigenvalue with the highest value of ωi that can
be obtained when dω/dk = 0 (zero group velocity). This corre-
sponds to the highest valid saddle point of ωi in the complex
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k-plane [23]. One hill of this saddle point is always connected to
the maximum temporal growth rate, so this saddle point is found
by starting from the maximum temporal growth rate and iterating
k until dω/dk = 0.

If one considers how the flow responds to an impulse, the
maximum temporal growth rate is the maximum growth rate of
any wave in the corresponding wavepacket [24], while the spatio-
temporal growth rate, ω0i, measures the growth rate of the per-
turbation with zero group velocity, which is the wave that stays
at the point of impulse. The flow is locally absolutely unstable in
the regions in which the spatio-temporal growth rate is positive.
It is convectively unstable or stable elsewhere.

The second stage of the local analysis is to calculate the
growth rate and frequency of the linear global mode. This global
mode consists of two types of wave with zero group velocity:
upstream waves, which decay to zero as x→ −∞, and down-
stream waves, which decay to zero as x→ +∞. These waves
meet at a streamwise location, xs, known as the wavemaker re-
gion. The easiest way to find xs is to analytically continue ω0(x)
into the complex x-plane and to locate the saddle point of ω0(x)
(figure 7 of [23]). The value of ω0 there is the growth rate of the
global mode, ωg. In this paper, this saddle point is found by in-
terpolating 8th order Padé polynomials through the known values
of ω0 and then extending these polynomials into the complex x-
plane [25]. The frequency of the saturated nonlinear global mode
is easier to find; it is the absolute frequency at the point where
the flow transitions from convective instability to absolute insta-
bility [26].

The third stage of the local analysis is to evaluate the mode
shape of the linear global mode by evaluating the response of
each slice at the linear global mode frequency and then joining
these mode shapes together [25]. The adjoint global mode is
found in a similar way.

In this paper, the local stability behaviour is calculated with
a software package called InstaFlow, which was created in 2009.
Its application to gas turbine engines won the 2009 Environmen-
tal Technology award from the Engineer Magazine [27]. To-
gether, the three stages take around one hour on a single pro-
cessor.

2 RESULTS
The local analysis is presented for three flows: (i) the Rank-

ine vortex with axial flow, (ii) a single stream swirling fuel injec-
tor that has already been extensively studied, and (iii) a lean burn
fuel injector from a gas turbine engine.

2.1 The Rankine vortex with axial flow
The Rankine vortex has solid body rotation in its core and

irrotational flow outside. The azimuthal velocity is continuous
at the junction of the two regions and, in this case, the core and
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FIGURE 1. Streamlines of the Rankine vortex with axial flow.
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FIGURE 2. Spatio-temporal growth rate, ω0i, and spatio-temporal
frequency ω0r, of saddle s1 (grey) and saddle s2 (black) of the m = 2
mode for perturbations to the base flow in figure 1. The dashed line
shows where the s1 saddle becomes invalid.
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FIGURE 3. (a) Direct global mode, u′(x,r), (b) adjoint global mode
u+(x,r), (c) structural sensitivity [16], and (d) spatio-temporal eigen-
function for the m = 2 perturbations from saddle s2 in figure 2. The
colormaps span (a) [−1,1], (b) [−1,1], (c) [0,1], (d) [0,0.27].
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FIGURE 4. Spatio-temporal eigenfunction for m = 2 perturbations
from saddle s1 in figure 2. The colormap spans [0,0.49].
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the exterior have different axial velocities. This velocity profile,
with core radius of 0.5, is imposed at the inlet to a round do-
main, which extends to r = 4 in the radial direction and x = 10
in the axial direction. The Reynolds number is 400, defined in
terms of the outer flow axial velocity, U , and the wake diame-
ter, D. The swirl number is 0.7, defined as the azimuthal ve-
locity divided by U at r = 0.5. The frequencies quoted here are
non-dimensionalized by U/D. A steady solution (figure 1) to
the nonlinear Navier–Stokes equations is found by imposing ax-
isymmetry. This works because axisymmetric perturbations are
stable. The flow evolves rapidly for 0 < x < 0.5 and slowly for
x > 0.5. It has a short upstream recirculation bubble between
0 < x < 0.4 and a long downstream recirculation bubble between
0.9 < x < 4.3. The fact that this flow has two recirculation bub-
bles makes it an interesting test case for the local stability analy-
sis.

The first stage of the local analysis is to calculate the local
stability behaviour. For this flow, the m = 2 azimuthal mode is
the most unstable and is the only one shown here. There are
two influential saddle points, labelled s1 and s2. Their spatio-
temporal growth rates and spatio-temporal frequencies are shown
in figure 2. Saddle s1 dominates for 0 < x < 1.4, in the upstream
bubble and becomes invalid for x > 2. Saddle s2 dominates for
x > 1.4 in the downstream bubble.

The second stage of the local analysis gives ωg = 3.47+
0.298i for the upstream bubble (s1) and ωg = 4.51+ 0.231i for
the downstream bubble (s2). The real component of ωg is the
linear global mode’s frequency, and the imaginary component is
its amplitude. By comparison with figure 2, it can be seen that
the frequency is approximately given by the value of ω0r where
ω0i is a maximum. The value found with a bi-global analysis
is ωg = 4.45 + 0.162i, which matches that of the downstream
bubble. (In wake flows, local analyses over-predict the growth
rate ωgi [16] [25]). This indicates that the downstream bubble
(s2) dominates the global mode.

The shape of the linear global mode, found from the third
stage of the local analysis, is shown in figure 3(a). This image
shows streamwise velocity oscillations which, because m = 2,
wind around the axis in a double helix pattern. The adjoint global
mode is also calculated from the local analysis (figure 3b) [28].
When overlapped with the direct global mode (figure 3a), this
gives the wavemaker region (figure 3c) [16]. This shows the re-
gion of the flow that is the core of the instability. In this case, the
instability is driven by the strong axial and azimuthal shear in
the recirculation bubble and is prevented from convecting away
by the reverse flow there.

It is often convenient to present the results of the first stage
of the analysis in a different way. Figure 3(d) shows the kinetic
energy of the eigenfunction of saddle s2, E(r,x) ≡ (u2(r,x) +
v2(r,x) + w2(r,x))/2, multiplied by the local spatio-temporal
growth rate, ω0i(x), This quantity is called the spatio-temporal
eigenfunction map. It shows the region of the flow that is re-

sponsible for the absolute instability. Unsurprisingly, it is very
similar to the wavemaker region (figure 3c), which was found by
overlapping the direct and adjoint global modes. While figure
3(d) shows this for saddle s2, which is dominant, figure 4 shows
this for saddle s1, which is sub-dominant. This shows that the
sub-dominant mode lies in the upstream bubble.

It is much easier and quicker to calculate the spatio-temporal
eigenfunction map than it is to perform the second and third
stages of the local analysis. Furthermore, the second and third
stages can be inaccurate when applied to noisy data or to flows
that are strongly non-parallel [29]. For these reasons, only the
temporal and spatio-temporal eigenfunction maps are shown for
the next flows.

For the nonlinear global mode, the frequency is determined
by the absolute frequency at the point where the flow transitions
from convective instability to absolute instability [26]. In this
flow there are two such points. One is at the front of the upstream
bubble and would cause a frequency of 3.1. The other is at the
front of the downstream bubble and would cause a frequency of
4.6. The nonlinear frequency of this flow is not known but, if it
were (e.g. from LES or experimental data), the dominant region
of the nonlinear mode could be inferred. From the local analy-
sis alone it is not possible to determine which will dominate. In
swirling vortex breakdown bubbles, for instance, the dominant
point switches from the upstream to the downstream recircula-
tion bubble as the swirl increases [30].

2.2 Single stream swirling fuel injector
The second test case is a model fuel injector that is based

on an industrial gas turbine injector. Previous experiments have
shown that this design is susceptible to large thermoacoustic os-
cillations [31]. The hydrodynamic oscillations in this injector
have been extensively studied under isothermal conditions, both
experimentally [4] and numerically [13]. This section concerns
the causes of these hydrodynamic oscillations.

The injector has a swirling outer stream with exit diameter
D = 37.63 mm and a central non-swirling jet with exit diameter
6.2 mm. The outer stream’s bulk axial velocity is U = 1.99 ms−1,
its maximum axial velocity is 3.0 ms−1, and its maximum az-
imuthal velocity is 8.7 ms−1. The central jet’s axial velocity is
5.3 ms−1 and it can be switched off (figure 5a), or on (figure 6a).
The amplitude of the hydrodynamic oscillations is found to be
around 2 ms−1 [13].

Dunham et al. [13] calculated the isothermal flow with LES
and uRANS. They showed that LES gives a more faithful repre-
sentation of the experimental results than uRANS. For example,
the position of the swirl cone reattachment region is predicted
more accurately. For this reason, LES, rather than uRANS, data
is used for the local analysis in this paper. The natural frequency
of hydrodynamic oscillations is already known from the LES
and experimental data so the local analysis is used here to show
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FIGURE 5. (a) Streamlines of the time-averaged LES velocity field
for the single stream injector without a central jet, from Dunham et
al. [13]. The flow enters on the left at 0.01 < r < 0.0188 and exits
on the right at 0.05 < r < 0.07. Frames (b)–(e) The spatio-temporal fre-
quency, ω0r, spatio-temporal growth rate, ω0i, and the spatio-temporal
eigenfunction maps for the azimuthal modes m = 1 to m = 4. In (b)–
(e) the spatio-temporal frequency, ω0r(x) (black lines), and the spatio-
temporal growth rate, ω0i (grey lines, multiplied by 10), are expressed
as Strouhal numbers, where St ≡ ωD/(2πU) and D = 0.03763m and
U = 1.99ms−1). The colormaps span [0,5].
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FIGURE 6. The same information as figure 5 but for the single stream
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where the core of the instability lies and how these instabilities
can be inhibited.

Figure 5(b) shows that the m = 1 mode of the no jet case
has a positive spatio-temporal growth rate (grey line) for 0 < x <
0.075 m with a maximum at Sti = 0.17. (The growth rate is
multiplied by 10 so that it can appear alongside the frequency.)
The spatio-temporal frequency (black line) is Str = 0.8073 at en-
try and drops monotonically. The spatio-temporal eigenfunction
map shows that the core of this instability lies in the upstream
part of the shear layer between the swirling jet and the central
recirculating zone. Stage 2 of the local analysis reveals that this
mode has frequency St = 0.674 (35.6 Hz). For comparison, the
LES and experimental data of Dunham et al. [13] reveal a spec-
tral peak at St = 0.67 (35.4 Hz) in LES and St = 0.69 (36.5 Hz)
in experiments. The local analysis agrees well with both. The
nonlinear global mode predicted by the local analysis, which is
the absolute frequency of the most upstream point of absolute in-
stability, has St = 0.8073 (42.7 Hz). This is about 17% too high.
It seems, therefore, that the nonlinear global mode frequency is
best estimated from the linear global mode frequency or the ab-
solute frequency at the point where the absolute growth rate is a
maximum, which is St = 0.662 (35.0 Hz) at x = 0.0046 m.

Figure 5(c)–(e) show the same information for m = 2,3 and
4. For these modes, the core of the instability also lies in the shear
layer between the swirling jet and the central recirculating zone
but extends further downstream. The m = 2 mode has the highest
absolute growth rate but the eigenfunction of the m = 4 mode is
thinner, which is why it appears to have a higher amplitude in the
image. It is worth noting that the m = 3 and m = 4 modes have a
small, or negative, growth rate at entry.

Stage 2 of the local analysis gives St = 1.396 (73.8 Hz) for
m = 2, St = 2.122 (112.2 Hz) for m = 3, and St = 2.672 (141.3)
for m = 4. For comparison, the LES and experimental data of
Dunham et al. [13] reveal a second spectral peak at St = 1.34
(70.9 Hz) in LES and St = 1.39 (73.5 Hz) in experiments, but no
further spectral peaks. This data also reveals that the mode shape
is a combination of the m = 1 and m = 2 modes. The spectral
peaks in the LES and experimental data clearly correspond to the
m = 1 and m = 2 modes calculated with the local analysis. The
absence of the m = 3 and m = 4 modes in the LES and experi-
mental data is probably explained by the fact that the m = 1 and
m = 2 modes start growing further upstream than the m = 3 and
m = 4 modes and therefore dominate in the nonlinear regime.

Figure 5 shows that the wavemaker regions of all the modes
lie in the upstream region of the shear layer, between the swirling
jet and the recirculating zone. As for the Rankine vortex in sec-
tion 2.1, the axial and azimuthal shear drive the instability and
the reverse flow prevents it from convecting away. This suggests
that these instabilities could be weakened by blowing a jet of air
axially into this region so that perturbations are convected more
rapidly downstream, making the flow less absolutely unstable
there. This is confirmed by the results for the case with a cen-

tral jet, which are shown in figure 6 on the same scale as figure
5. The spatio-temporal eigenfunction map shows that the wave-
maker region of each mode remains in the shear layer between
the swirling jet and the central recirculation zone, which has
shifted radially outwards. The absolute growth rates, however,
are significantly lower. The only area of reasonably strong abso-
lute instability is the small double recirculation bubble between
the swirling jet and the central jet, around (x,r) = (0,0.004), but
this is unstable only for the m = 1 and m = 2 modes.

Stage 2 of the local analysis, applied to this region, predicts
that the only unstable linear global mode is m = 2 with St = 1.48
(78.3 Hz). The m = 1 mode is globally stable. For comparison,
the LES and experimental data of Dunham et al. [13] reveal a
spectral peak at St = 1.44 (76.2 Hz) in LES and St = 1.39 (73.5
Hz) in experiments, whose mode shape is the m = 2 mode. There
is also a very weak second peak at St = 2.88 (152.2 Hz) in LES
and St = 2.78 (147.0 Hz) in experiments. This does not corre-
spond to the m = 3 or m = 4 modes so is likely to be the first
harmonic of the m = 2 mode.

In summary, a local analysis of the time-averaged LES data
predicts global mode frequencies and shapes that agree well with
the time-resolved LES and experimental results. In addition to
this, the local analysis reveals the wavemaker regions of the cor-
responding global modes and explains why these global modes
are weakened by the addition of a central jet.

2.3 Lean burn fuel injector
The third example is a generic lean burn fuel injector, which

has five coaxial swirling air streams. Liquid fuel is injected be-
tween the first and second stream, to create a pilot flame, and
between the fourth and fifth stream, to create the main flame.
Here, the hydrodynamic stability of the injector is studied with-
out fuel injection. The base flow is taken from time-averaged
LES data. All quantities are non-dimensionalized with respect
to the diameter, D, and the maximum axial velocity, U , of the
central stream.

Five of the unstable modes of this flow are shown in figure 7:
one along the axis of the injector, three at the interfaces between
the streams, and one at the interface between the outer stream
and the gas in the chamber. They are all for the m = 1 mode,
which is the most unstable.

The graphs in figure 7(a–e) show the temporal frequency
(grey) and the spatio-temporal frequency (black) as a function
of downstream distance, St(x). The images in figure 7(a–e) show
two different eigenfunction maps. The top half of each image
shows the temporal eigenfunction multiplied by the temporal
growth rate, while the bottom half shows the spatio-temporal
eigenfunction multiplied by the spatio-temporal growth rate, as
in figures 5 and 6. In general terms, the top half shows how unsta-
ble the mode is, while the bottom half shows how self-sustained
it is.

7 Copyright c© 2012 by ASME



Figure 7(a) shows the mode along the centreline. This mode
is unstable and self-sustained, at St≈ 2. It corresponds to a heli-
cal motion that rotates (in time) in the same direction as the swirl
but winds (in space) in the opposite direction. It is the cause
of the precessing vortex core often seen in this type of injector.
This generates large scale coherent structures that are likely to
aid mixing throughout the injector. This instability is driven by
the axial shear and is held in place by the low velocity region
along the centreline of this confined swirling flow. It could be
removed by injecting a jet along the centreline, as for the single
stream injector, although this is unlikely to be desirable.

Figure 7(b) shows the mode between the first and second
streams. This mode is convectively unstable, at St≈ 10, but is not
self-sustained. This mode is caused by azimuthal shear between
these two streams but exists in a region of high axial flow. This
means that perturbations here are are quickly convected down-
stream by the flow and are therefore not absolutely unstable.

Figure 7(c) shows the mode between the second and third
streams, which is also driven by axial and azimuthal shear. This
mode is unstable and weakly self-sustained, which means that it
oscillates naturally at St ≈ 0.5 and responds strongly to forcing
around that frequency. If liquid fuel were to be injected here,
it is likely that heat release fluctuations would occur at this fre-
quency. The frequency of this hydrodynamic mode is close to
the frequencies of typical themoacoustic modes in the combus-
tion chamber and, depending on the overlap of the mode shapes,
it is possible that the two types of mode will lock into each other,
as seen in [11].

Figures 7(d–e) show the modes in the outer streams. They
are unstable at St ≈ 0.1 and St ≈ 0.3, but very weakly self-
sustained.

This analysis quickly reveals the mode shapes of hydrody-
namic instabilities, their frequencies, the degree to which they
are self-sustained and their wavemaker regions. It can be ap-
plied to any fuel injector and provides useful guidance for design
engineers. For example, this analysis shows that the precessing
vortex core at St≈ 2 is caused by the region of confined swirling
flow along the centreline. It suggests that removing this confined
region, or injecting flow along the centreline, is likely to elim-
inate this mode. Secondly, this analysis shows that small high
frequency structures will develop between the first and second
streams but be swept quickly downstream. It is not yet clear
how useful these structures can be for driving fuel/air mixing.
On the positive side, their frequencies are too far from typical
thermoacoustic frequencies for the hydrodynamic oscillations to
lock into the thermoacoustic oscillations. On the negative side,
their corresponding wavelengths and saturation amplitudes are
small so they will not create very large scale structures to drive
entrainment and mixing. Their usefulness will have to be de-
termined by analysing more fuel injectors and comparing their
overall performance with the results of the analysis presented in
this paper. Thirdly, this analysis shows that the flow between the

second and third streams has a resonant frequency that is close to
thermoacoustic modes in the combustion chamber. If the shape
of the corresponding hydrodynamic mode overlaps with that of
the thermoacoustic mode, this could cause strong thermoacoustic
oscillations.

3 CONCLUSIONS
Hydrodynamic instabilities in gas turbine fuel injectors gen-

erate large scale coherent structures. These aid mixing but can
sometimes lock into acoustic modes in the combustion chamber,
making a combustion system more susceptible to thermoacous-
tic oscillations. This paper describes a technique that can predict
the frequencies of hydrodynamic instabilities and identify the re-
gions of the flow that causes them.

First, this technique is applied to a swirling wake at Re =
400. This is a steady but unstable flow in which there are two
recirculation bubbles. The technique shows that each bubble
causes a hydrodynamic instability and that the instability of the
larger bubble dominates. The results from this technique com-
pare well with a linear global analysis. For this flow, the wave-
maker region is identified by overlapping the direct and adjoint
eigenfunctions (figure 3c). It is shown that a similar result can be
obtained by multiplying the spatio-temporal eigenfunction by the
spatio-temporal growth rate, which is easier and less error-prone
(figure 3d).

Second, this technique is applied to a single stream swirling
fuel injector at Re∼ 106. This approach differs from the first be-
cause the base flow is taken from time-averaged LES data, rather
than from a steady but unstable solution to the Navier–Stokes
equations. In this case, the technique is used as a diagnostic tool
rather than a predictive tool. The technique identifies the wave-
maker regions for the first four azimuthal modes (m = 1,2,3,4),
which all happen to lie in the same place. The calculated global
frequencies of the m = 1 and m = 2 modes are within a few per-
cent of those measured from the time-resolved LES data. In this
case, the nonlinear frequency selection criterion of Pier [26] does
not seem to work as well as the conventional linear frequency
selection criterion [23]. It seems therefore that the m = 1 and
m = 2 modes are active but the m = 3 and m = 4 are not, which
is likely to be because the m = 1 and m = 2 modes have higher
upstream growth rates than the m = 3 and m = 4 modes, a feature
also revealed by this technique. The technique explains how the
addition of a central jet to this flow weakens its hydrodynamic
instability. This is because the jet blows away the region of ab-
solute instability between the swirling jet and the recirculation
zone.

Third, this technique is applied to a lean burn gas turbine
fuel injector, which contains five swirling streams. The tech-
nique identifies several different wavemaker regions, each cor-
responding to a different instability of the m = 1 mode. Each
wavemaker region has its own range of natural frequencies and
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FIGURE 7. The five most unstable modes in the lean burn fuel injec-
tor. For each mode (a–e), the graphs show the temporal frequency, ωr

(grey line), and the spatio-temporal frequency, ω0r (black line). The im-
ages show the temporal eigenfunction multiplied by the temporal growth
rate (top half) and the spatio-temporal eigenfunction multiplied by the
spatio-temporal growth rate (bottom half).

different stability characteristics. For example, the central re-
gion is strongly absolutely unstable and sets up a precessing vor-
tex core at St ≈ 2; the region between the first two streams is
strongly convectively unstable and tends to amplify maximally
at St ≈ 10; and the region between the second and third streams
is weakly absolutely unstable and oscillates at St ≈ 0.5, which
would typically be close to an acoustic frequency in the combus-
tion chamber.

By identifying the hydrodynamic instabilities in a fuel injec-
tor and then comparing their frequencies and mode shapes with
those of acoustic modes in the combustion chamber, it will be
possible to identify which hydrodynamic instabilities are respon-
sible for mixing and which could be contributing to thermoacous-
tic instabilities. This will be a useful design tool for the passive
control of mixing and thermoacoustic instability.
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